©゙"doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

AREA UNDER CURVES

Question Bank

1. The area enclosed by $g(x), x=-3, x=5$ and x-axis
where $g(x)$ is the inverse of $f(x)=x^{3}+3 x+1$ is

- View Text Solution

2. Let $\mathrm{f}(\mathrm{x})=\{[2 \mathrm{x}, 0$ le $\mathrm{x}<1],[2,1$ le x le 3$],[8-2 \mathrm{x}, 3$ If the area of region bounded by the curve $|y+1|=f(x+4)$ isSthen $f \in$ dhevalueof(S/3)..

- View Text Solution

3. A differentiable function satisfies $f^{\prime}(x)=f(x)+2 e^{x}$ with initial conditions $f(0)=0$. The area enclosed between $f(x)$ and the x-axis is.

D View Text Solution

4. The area of the region (s) enclosed by the curves
$y=x^{2}$ and $y=\sqrt{|x|}$ is

- View Text Solution

5. The area (in sq. units) bounded by the curves $y=x$ $(x-3)^{2}$ and $y=x$ is

- View Text Solution

6. Area of the region enclosed between the curves
$x=y^{2}-1$ and $x=|y| \sqrt{1}-y^{2}$ is

- View Text Solution

7. If $f(x)$ is a periodic function with period 3 and defined
$f(x)=[\{x\}, x \in(0,1)],\{x\} x \in(1,2)],[\{-x\} x \in(2,3)]$
then the value of $\frac{1}{3} \int_{3}^{12} f(x) d x$ (where [.] and . denote greatest integer and tionalpart functions, respectively)

- View Text Solution

8. If area bounded by curves $y=(|x|-2)^{2}$ and $y=4-x^{2}$ is ' A ' (in sq. units), then value of $3 A$ is

- View Text Solution

9. If line $x=1$ divides the area bounded by the curve $2 x+1=\sqrt{4} y+1, y=x$ and $y=2$ in two regions of area R_{1} and R_{2}, then $\frac{1}{R_{1}^{2}} \div \frac{1}{R_{2}^{2}}$ is equal to

- View Text Solution

10. Area of the region bounded by the curves
$y=4, y=\sqrt{x}$ and $x=-\sqrt{y}$ is

- View Text Solution

11. The shaded area enclosed by $f(x)=12+a x-x^{2}$ coordinate axes and the ordinate at $x=3$ is 45 sq. units.

If m and n are the x-axis intercepts of the graph of $y=f(x)$ then the value of $(m+n+a)$ equals FIGURE

- View Text Solution

12. The area enclosed by the parabola $y^{2}=12 x$ and its latus rectum is

- View Text Solution

13. The area bounded by the curve $y=x^{2}+2 x+1$ and tangent at $(1,4)$ and y-axis is

- View Text Solution

14. If the area enclosed between $f(x)=\min \left(\cos ^{-1}(\cos x) \cdot \cot ^{-1}(\cot x)\right)$ and x-axis
in $x \in(\pi, 2 \pi)$ is $\frac{\pi^{2}}{k}$ where $k \in N$, then k is equal to

D View Text Solution

15. If area bounded by $y=x^{2}-2 x-1$ and $m x+y-1=0$ is minimum, then m 'is equal to
16. The area bounded by the curve $y=x^{2}$ and $y=\frac{2}{1+x^{2}}$ is λ sq. units, 'then the value of $[\lambda]$ is [Note: [k] denotes greatest integer less than or equal to

- View Text Solution

17. If the area bounded by the parabolas $y^{2}=4 \alpha(x+\alpha)$ and $y^{2}=-4 \alpha(x-\alpha)$, where $\alpha>0$ is 48 sq. units then α is equal to

- View Text Solution

18. 'If the area bounded by the graph of $y=x e^{-a} x(a>0)$ and the abscissa axis is $\frac{1}{9}$ then the
value of ' a ' is equal to

- View Text Solution

19. The area of the quadrilateral with its vertices at the foci of the conics $9 x^{2}-16 y^{2}-18 x+32 y-23=0$ and $25 x^{2}+9 y^{2}-50 x-18 y+33=0$, is

- View Text Solution

20. $y=f(x)$ is a function which satisfies
(i) $f(0)=0$
(ii) $f^{\prime \prime}(x)=f^{\prime}(x)$ and
(iii) $f^{\prime}(0)=1$ then the area bounded by the graph of
$y=f(x)$, the lines $x=0, x-1=0$ and $y \div 1=0$, is

View Text Solution

