

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

AREA UNDER CURVES

Question Bank

1. The area enclosed by g(x), x = -3, x = 5 and x -axis

where g(x) is the inverse of $f(x)=x^3+3x+1$ is

View Text Solution

2. Let `f(x) = { [2 x, 0 le x<1],[2, 1 le x le 3],[8-2 x, 3 lf the area of region bounded by the curve |y+1| = f(x+4)isSthenf $\in dthevalueof(S/3)$ `.

View Text Solution

3. A differentiable function satisfies $f'(x) = f(x) + 2e^x$ with initial conditions f(0) = 0. The area enclosed between f(x) and the x -axis is.

4. The area of the region (s) enclosed by the curves $y=x^2$ and $y=\sqrt{|x|}$ is

6. Area of the region enclosed between the curves
$$x=y^2-1$$
 and $x=|y|\sqrt{1}-y^2$ is

View Text Solution

7. If f(x) is a periodic function with period 3 and defined

$$f(x) = [\{x\}, x \in (0,1)], \{x\}x \in (1,2)], [\{-x\}x \in (2,3)$$

then the value of $rac{1}{3} \int\limits_{3}^{12} f(x) dx$ (where [.] and . denote

greatest integer and tionalpart functions, respectively)

View Text Solution

- 8. If area bounded by curves $y = (|x| 2)^2$ and
- $y=4-x^2$ is 'A' (in sq. units), then value of 3A is

View Text Solution

9. If line x = 1 divides the area bounded by the curve $2x + 1 = \sqrt{4}y + 1$, y = x and y = 2 in two regions of area R_1 and R_2 , then $\frac{1}{R_1^2} \div \frac{1}{R_2^2}$ is equal to

11. The shaded area enclosed by $f(x) = 12 + ax - x^2$ coordinate axes and the ordinate at x = 3 is 45 sq. units. If m and n are the x -axis intercepts of the graph of y = f(x) then the value of (m + n + a) equals FIGURE

View Text Solution

12. The area enclosed by the parabola $y^2=12x$ and its latus rectum is **View Text Solution 13.** The area bounded by the curve $y = x^2 + 2x + 1$ and tangent at (1, 4) and y -axis is **View Text Solution** 14. If the area enclosed between $f(x) = \min\left(\cos^{-1}(\cos x). \cot^{-1}(\cot x)
ight)$ and x -axis

mx+y-1=0 is minimum, then m 'is equal to

View Text Solution

16. The area bounded by the curve $y = x^2$ and $y = \frac{2}{1+x^2}$ is λ sq. units, 'then the value of $[\lambda]$ is [Note: [k] denotes greatest integer less than or equal to

View Text Solution

17. If the area bounded by the parabolas $y^2 = 4lpha(x+lpha)$

and $y^2=~-~4lpha(x-lpha)$, where lpha>0 is 48 sq. units

then α is equal to

18. 'If the area bounded by the graph of $y = x e^{-a} x (a > 0)$ and the abscissa axis is $rac{1}{9}$ then the

19. The area of the quadrilateral with its vertices at the foci of the conics $9x^2 - 16y^2 - 18x + 32y - 23 = 0$ and $25x^2 + 9y^2 - 50x - 18y + 33 = 0$, is

View Text Solution

20.
$$y = f(x)$$
 is a function which satisfies

(i) f(0) = 0

(ii)
$$f^{\,\prime\,\prime}(x)=f^{\,\prime}(x)$$
 and

(iii) f'(0) = 1 then the area bounded by the graph of

$$y=f(x)$$
 , the lines $x=0, x-1=0$ and $y \div 1=0$, is

