© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

Complex Numbers

Single correct Answer

1. The value of $\sum_{n=0}^{100} i^{n!}$ equals (where $i=\sqrt{-1}$)
A. -1
B. i
C. $2 i+95$
D. $97+i$
2. Suppose n is a natural number such that $\left|i+2 i^{2}+3 i^{3}+\ldots \ldots+n i^{n}\right|=18 \sqrt{2}$ where i is the square root of -1 . Then n is
A. 9
B. 18
C. 36
D. 72

Answer: C

- Watch Video Solution

3. Let $i=\sqrt{-1}$ Define a sequence of complex number by $z_{1}=0, z_{n+1}=\left(z_{n}\right)^{2}+i$ for $n \geq 1$. In the complex plane, how far from the origin is z_{111} ?
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

4. The complex number, $z=\frac{(-\sqrt{3}+3 i)(1-i)}{(3+\sqrt{3} i)(i)(\sqrt{3}+\sqrt{3} i)}$
A. lies on real axis
B. lies on imaginary axis
C. lies in first quadrant
D. lies in second quadrant

Answer: B

5. a, b, c are positive real numbers forming a G.P. ILf $a x 62+2 b x+c=0 a n d d x^{2}+2 e x+f=0$ have a common root, then prove that $d / a, e / b, f / c$ are in A.P.
A. A. P.
B. G. P.
C. H. P.
D. None of these

Answer: C

- Watch Video Solution

6. The equation $Z^{3}+i Z-1=0$ has
A. three real roots
B. one real roots
C. no real roots
D. no real or complex roots

Answer: C

- Watch Video Solution

7. If a, b are complex numbers and one of the roots of the equation $x^{2}+a x+b=0$ is purely real whereas the other is purely imaginery, and $a^{2}-\bar{a}^{2}=k b$, then k is
A. 2
B. 4
C. 6
D. 8

Answer: B

8. If Z^{5} is a non-real complex number, then find the minimum value of $I m z^{5}$ $\overline{I^{5} z}$.
A. -1
B. -2
C. -4
D. -5

Answer: C

- Watch Video Solution

9.

For
any
complex
numbers
z_{1}, z_{2} and $z_{3}, z_{3} \operatorname{Im}\left(z_{2}^{-} z_{3}\right)+z_{2} \operatorname{Im}\left(z_{3} z_{1}\right)+z_{1} \operatorname{Im}\left(z_{1} z_{2}\right)$ is
A. 0
B. $z_{1}+z_{2}+z_{3}$
C. $z_{1} z_{2} z_{3}$
D. $\left(\frac{z_{1}+z_{2}+z_{3}}{z_{1} z_{2} z_{3}}\right)$

Answer: A

- Watch Video Solution

10. The modulus and amplitude of $\frac{1+2 i}{1-(1-i)^{2}}$ are
A. $\sqrt{2}$ and $\frac{\pi}{6}$
B. 1 and $\frac{\pi}{4}$
C. 1 and 0
D. 1 and $\frac{\pi}{3}$

Answer: C

11. If the argument of $(z-a)(\bar{z}-b)$ is equal to that $\left(\frac{(\sqrt{3}+i)(1+\sqrt{3} i)}{1+i}\right)$ where a, b, c are two real number and \bar{z} is the complex conjugate o the complex number z, find the locus of z in the Argand diagram. Find the value of a and b so that locus becomes a circle having its centre at $\frac{1}{2}(3+i)$
A. $(3,2)$
B. $(2,1)$
C. $(2,3)$
D. $(2,4)$

Answer: B

- Watch Video Solution

12. If a complex number z satisfies $|z|^{2}+\frac{4}{(|z|)^{2}}-2\left(\frac{z}{\bar{z}}+\frac{\bar{z}}{z}\right)-16=0$, then the maximum value of $|z|$ is
A. $\sqrt{6}+1$
B. 4
C. $2+\sqrt{6}$
D. 6

Answer: C

Watch Video Solution

13. If $\cos \alpha+\cos \beta+\cos \gamma=0=\sin \alpha+\sin \beta+\sin \gamma$, then $\frac{\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma}{\sin (\alpha+\beta+\gamma)}$ is equal to
A. 1
B. -1
C. 3
D. -3

Answer: C

- Watch Video Solution

14. The least value of $|z-3-4 i|^{2}+|z+2-7 i|^{2}+|z-5+2 i|^{2}$ occurs when $z=$
A. $1+3 i$
B. $3+3 i$
C. $3+4 i$
D. None of these

Answer: D

15. The roots of the equation $x^{4}-2 x^{2}+4=0$ are the vertices of a :
A. square inscribed in a circle of radius 2
B. rectangle inscribed in a circle of radius 2
C. square inscribed in a circle of radius $\sqrt{2}$
D. rectangle inscribed in a circle of radius $\sqrt{2}$

Answer: D

- Watch Video Solution

16. If z_{1}, z_{2} are complex numbers such that $\operatorname{Re}\left(z_{1}\right)=\left|z_{1}-2\right|$, $\operatorname{Re}\left(z_{2}\right)=\left|z_{2}-2\right|$ and $\arg \left(z_{1}-z_{2}\right)=\pi / 3$, then $\operatorname{Im}\left(z_{1}+z_{2}\right)=$
A. $2 / \sqrt{3}$
B. $4 / \sqrt{3}$
C. $2 / \sqrt{3}$
D. $\sqrt{3}$

Answer: B

D Watch Video Solution

17. If $z=e^{\frac{2 \pi i}{5}}$, then $1+z+z^{2}+z^{3}+5 z^{4}+4 z^{5}+4 z^{6}+4 z^{7}+4 z^{8}+5 z^{9}=$
A. 0
B. $4 z^{3}$
C. $5 z^{4}$
D. $-4 z^{2}$

Answer: C

D Watch Video Solution

18. If $z=(3+7 i)(a+i b)$, where $a, b \in Z-\{0\}$, is purely imaginery, then minimum value of $|z|^{2}$ is
A. 74
B. 45
C. 65
D. 58

Answer: D

- Watch Video Solution

19. Let z be a complex number satisfying $|z+16|=4|z+1|$. Then
A. $|z|=4$
B. $|z|=5$
C. $|z|=6$
D. $3<|z|<68$

Answer: A

20. If $|z|=1$ and $z^{\prime}=\frac{1+z^{2}}{z}$, then
A. z^{\prime} lie on a line not passing through origin
B. $\left|z^{\prime}\right|=\sqrt{2}$
C. $\operatorname{Re}\left(z^{\prime}\right)=0$
D. $\operatorname{Im}\left(z^{\prime}\right)=0$

Answer: D

- Watch Video Solution

21. a, b, c are three complex numbers on the unit circle $|z|=1$, such that $a b c=a+b+c$. Then $|a b+b c+c a|$ is equal to
A. 3
B. 6
C. 1
D. 2

Answer: C

- Watch Video Solution

22. If $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$ then value of $\left|z_{1}-z_{3}\right|^{2}+\left|z_{3}-z_{1}\right|^{2}+\left|z_{1}-z_{2}\right|^{2}$ cannot exceed
A. 6
B. 9
C. 12
D. none of these

Answer: B

- Watch Video Solution

23. Number of ordered pairs $(s),(a, b)$ of real numbers such that $(a+i b)^{2008}=a-i b$ holds good is
A. 2008
B. 2009
C. 2010
D. 1

Answer: C

- Watch Video Solution

24. The region represented by the inequality $|2 z-3 i|<|3 z-2 i|$ is
A. the unit disc with its centre at $z=0$
B. the exterior of the unit circle with its centre at $z=0$
C. the inerior of a square of side 2 units with its centre at $z=0$
D. none of these

Answer: B

- Watch Video Solution

25. If ω is any complex number such that $z \omega=|z|^{2}$ and $|z-\bar{z}|+|\omega+\bar{\omega}|=4$, then as ω varies, then the area bounded by the locus of z is
A. 4 sq. units
B. 8 sq. units
C. 16 sq. units
D. 12 sq. units

Answer: B

- Watch Video Solution

26. If $a z^{2}+b z+1=0$, where $a, b \in C,|a|=\frac{1}{2}$ and have a root α such that $|\alpha|=1$ then $|a \bar{b}-b|=$
A. $1 / 4$
B. $1 / 2$
C. $5 / 4$
D. $3 / 4$

Answer: D

- Watch Video Solution

27. Let p and q are complex numbers such that $|p|+|q|<1$. If z_{1} and z_{2} are the roots of the $z^{2}+p z+q=0$, then which one of the following is correct ?
A. $\left|z_{1}\right|<1$ and $\left|z_{2}\right|<1$
B. $\left|z_{1}\right|>1$ and $\left|z_{2}\right|>1$
C. If $\left|z_{1}\right|<1$, then $\left|z_{2}\right|>1$ and vice versa
D. Nothing definite can be said

Answer: A

- Watch Video Solution

28. If z and w are two complex numbers simultaneously satisfying te equations, $z^{3}+w^{5}=0$ and $z^{2}+\bar{w}^{4}=1$, then
A. z and w both are purely real
B. z is purely real and w is purely imaginery
C. w is purely real and z is purely imaginery
D. z and w both are imaginery

Answer: A

- Watch Video Solution

29. All complex numbers 'z' which satisfy the relation $|z-|z+1||=|z+|z-1||$ on the complex plane lie on the
A. $y=x$
B. $y=-x$
C. circle $x^{2}+y^{2}=1$
D. line $x=0$ or on a line segment joining $(-1,0) \rightarrow(1,0)^{\text { }}$

Answer: D

- Watch Video Solution

30. If z_{1}, z_{2} are two complex numbers such that $\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|=1$ and $i z_{1}=K z_{2}$, where $K \in R$, then the angle between $z_{1}-z_{2}$ and $z_{1}+z_{2}$ is
A. $\tan ^{-1}\left(\frac{2 K}{K^{2}+1}\right)$
B. $\tan ^{-1}\left(\frac{2 K}{1-K^{2}}\right)$
C. $-2 \tan ^{-1} K$
D. $2 \tan ^{-1} K$

Answer: D

- Watch Video Solution

31. If $z+\frac{1}{z}=2 \cos 6^{\circ}$, then $z^{1000}+\frac{1}{z^{1000}}+1$ is equal to
A. 0
B. 1
C. -1
D. 2

Answer: A

32. Let z_{1} and $z_{2} q$, be two complex numbers with α and β as their principal arguments such that $\alpha+\beta$ then principal $\arg \left(z_{1} z_{2}\right)$ is given by:
A. $\alpha+\beta+\pi$
B. $\alpha+\beta-\pi$
C. $\alpha+\beta-2 \pi$
D. $\alpha+\beta$

Answer: C

- Watch Video Solution

33. Let $\arg \left(z_{k}\right)=\frac{(2 k+1) \pi}{n}$ where $k=1,2, \ldots \ldots . n$. If $\arg \left(z_{1}, z_{2}, z_{3}, \ldots \ldots \ldots \ldots z_{n}\right)=\pi$, then n must be of form $(m \in z)$
A. $4 m$
B. $2 m-1$
C. $2 m$
D. None of these

Answer: B

- Watch Video Solution

34. Suppose two complex numbers $z=a+i b, w=c+i d$ satisfy the equation $\frac{z+w}{z}=\frac{w}{z+w}$. Then
A. both a and c are zeros
B. both b and d are zeros
C. both b and d must be non zeros
D. at least one of b and d is non zero

Answer: D

- Watch Video Solution

35. If $|z|=1$ and $z \neq \pm 1$, then one of the possible value of $\arg (z)-\arg (z+1)-\arg (z-1)$, is
A. $-\pi / 6$
B. $\pi / 3$
C. $-\pi / 2$
D. $\pi / 4$

Answer: C

- Watch Video Solution

36. If $\arg \left(z^{3 / 8}\right)=\frac{1}{2} \arg \left(z^{2}+\bar{z}^{1 / 2}\right)$, then which of the following is not possible?
A. $|z|=1$
B. $z=\bar{z}$
C. $\arg (z)=0$
D. None of these

Answer: D

- Watch Video Solution

37. z_{1}, z_{2} are two distinct points in complex plane such that $2\left|z_{1}\right|=3\left|z_{2}\right|$ and $z \in C$ be any point $z=\frac{2 z_{1}}{3 z_{2}}+\frac{3 z_{2}}{2 z_{1}}$ such that
A. $-1 \leq \operatorname{Rez} \leq 1$
B. $-2 \leq R e z \leq 2$
C. $-3 \leq \operatorname{Rez} \leq 3$
D. None of these

Answer: B

38. If $\alpha, \beta, \gamma \in\left\{1, \omega, \omega^{2}\right\}$ (where ω and ω^{2} are imaginery cube roots of unity), then number of triplets (α, β, γ) such that $\left|\frac{a \alpha+b \beta+c \gamma}{a \beta+b \gamma+c \alpha}\right|=1$ is
A. 3
B. 6
C. 9
D. 12

Answer: C

- View Text Solution

39. The value of $\left(3 \sqrt{3}+\left(3^{5 / 6}\right) i\right)^{3}$ is (where $\left.i=\sqrt{-1}\right)$
A. 24
B. -24
C. -22
D. -21

Answer: B

- Watch Video Solution

40. If $\omega \neq 1$ is a cube root of unity and $a+b=21, a^{3}+b^{3}=105$, then the value of $\left(a \omega^{2}+b \omega\right)\left(a \omega+b \omega^{2}\right)$ is be equal to
A. 3
B. 5
C. 7
D. 35

Answer: B

- Watch Video Solution

41. If $z=\frac{1}{2}(\sqrt{3}-i)$, then the least possible integral value of m such that $\left(z^{101}+i^{109}\right)^{106}=z^{m+1}$ is
A. 11
B. 7
C. 8
D. 9

Answer: D

- Watch Video Solution

42. If $y_{1}=\max | | z-\omega\left|-\left|z-\omega^{2}\right|\right|$, where $|z|=2$ and $y_{2}=\max \| z-\omega\left|-\left|z-\omega^{2}\right|\right|$, where $|z|=\frac{1}{2}$ and ω and ω^{2} are complex cube roots of unity, then
A. $y_{1}=\sqrt{3}, y_{2}=\sqrt{3}$
B. $y_{1}<\sqrt{3}, y_{2}=\sqrt{3}$
C. $y_{1}=\sqrt{3}, y_{2}<\sqrt{3}$
D. $y_{1}>3, y_{2}<\sqrt{3}$

Answer: C

- View Text Solution

43. Let I, ω and ω^{2} be the cube roots of unity. The least possible degree of a polynomial, with real coefficients having $2 \omega^{2}, 3+4 \omega, 3+4 \omega^{2}$ and $5-\omega-\omega^{2}$ as roots is -
A. 4
B. 5
C. 6
D. 7

Answer: B

44. Number of imaginary complex numbers satisfying the equation, $z^{2}=\bar{z} 2^{1-|z|}$ is
A. 0
B. 1
C. 2
D. 3

Answer: C

D Watch Video Solution

45. Least positive argument ofthe 4 th root ofthe complex number $2-i \sqrt{12}$ is
A. $\pi / 6$
B. $5 \pi / 12$
C. $7 \pi / 12$
D. $11 \pi / 12$

Answer: B

D Watch Video Solution

46. A root of unity is a complex number that is a solution to the equation,
$z^{n}=1$ for some positive integer nNumber of roots of unity that are also the roots of the equation $z^{2}+a z+b=0$, for some integer a and b is
A. 6
B. 8
C. 9
D. 10

Answer: B

47. If z is a complex number satisfying the equation $z^{6}+z^{3}+1=0$. If this equation has a root $r e^{i \theta}$ with $90^{\circ}<0<180^{\circ}$ then the value of θ is
A. 100°
B. 110°
C. 160°
D. 170°

Answer: C

- Watch Video Solution

48. Suppose A is a complex number and $n \in N$, such that $A^{n}=(A+1)^{n}=1$, then the least value of n is 3 b .6 c .9 d .12
A. 3
B. 6
C. 9
D. 12

Answer: B

- Watch Video Solution

49. If $z_{1}, z_{2}, z_{3} \ldots \ldots \ldots \ldots z_{n}$ are in G. P with first term as unity such that $z_{1}+z_{2}+z_{3}+\ldots+z_{n}=0$. Now if $z_{1}, z_{2}, z_{3} \ldots \ldots . z_{n}$ represents the vertices of n-polygon, then the distance between incentre and circumcentre of the polygon is
A. 0
B. $\left|z_{1}\right|$
C. $2\left|z_{1}\right|$
D. none of these

Answer: A

50. If $|z-1-i|=1$, then the locus of a point represented by the complex number $5(z-i)-6$ is
A. circle with centre $(1,0)$ and radius 3
B. circle with centre ($-1,0$) and radius 5
C. line passing through origin
D. line passing through ($-1,0$)

Answer: B

- Watch Video Solution

51. Let $z \in C$ and if $A=\left\{z: \arg (z)=\frac{\pi}{4}\right\}$ and $B=\left\{z: \arg (z-3-3 i)=\frac{2 \pi}{3}\right\}$.

Then $n\left(\begin{array}{ll}A & B\end{array}\right)=$
A. 1
B. 2
C. 3
D. 0

Answer: D

D Watch Video Solution

52. $\theta \in[0,2 \pi]$ and z_{1}, z_{2}, z_{3} are three complex numbers such that they are collinear and $(1+|\sin \theta|) z_{1}+(|\cos \theta|-1) z_{2}-\sqrt{2} z_{3}=0$. If at least one of the complex numbers z_{1}, z_{2}, z_{3} is nonzero, then number of possible values of θ is
A. Infinite
B. 4
C. 2
D. 8

Answer: B

- Watch Video Solution

53. Let ' z ' be a comlex number and ' a ' be a real parameter such that $z^{2}+a z+a^{2}=0$, then which is of the following is not true ?
A. locus of z is a pair of straight lines
B. $|z|=|a|$
C. $\arg (z)= \pm \frac{2 \pi}{3}$
D. None of these

Answer: D

- Watch Video Solution

54. Let $z=x+i y$ then locus of moving point $\mathrm{P}(\mathrm{z}) \frac{1+\bar{z}}{z} \in R$, is
A. union of lines with equations $x=0$ and $y=-1 / 2$ but excluding origin.
B. union of lines with equations $x=0$ and $y=1 / 2$ but excluding origin.
C. union of lines with equations $x=-1 / 2$ and $y=0$ but excluding origin.
D. union of lines with equations $x=1 / 2$ and $y=0$ but excluding origin.

Answer: C

D Watch Video Solution

55. Let $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ are two distinct non-real complex numbers in the argand plane such that $\frac{z_{1}}{z_{2}}+\frac{\bar{z}_{1}}{z_{2}}=2$. The value of $|\angle A B O|$ is
A. $\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. None of these

Answer: C

- Watch Video Solution

56. Complex numbers z_{1} and z_{2} satisfy $\left|z_{1}\right|=2$ and $\left|z_{2}\right|=3$. If the included angle of their corresponding vectors is 60°, then the value of
$19\left|\frac{z_{1}-z_{2}}{z_{1}+z_{2}}\right|^{2}$ is
A. 5
B. 6
C. 7
D. 8

Answer: C

57. Let $A(2,0)$ and $B(z)$ are two points on the circle $|z|=2 . M\left(z^{\prime}\right)$ is the point on $A B$. If the point \bar{z}^{\prime} lies on the median of the triangle $O A B$ where O is origin, then $\arg \left(z^{\prime}\right)$ is
A. $\tan ^{-1}\left(\frac{\sqrt{15}}{5}\right)$
B. $\tan ^{-1}(\sqrt{15})$
C. $\tan ^{-1}\left(\frac{5}{\sqrt{15}}\right)$
D. $\frac{\pi}{2}$

Answer: A

- Watch Video Solution

58. If $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ are vertices of a triangle such that $z_{3}=\frac{z_{2}-i z_{1}}{1-i}$ and $\left|z_{1}\right|=3,\left|z_{2}\right|=4$ and $\left|z_{2}+i z_{1}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then area of triangle $A B C$ is
A. $\frac{5}{2}$
B. 0
C. $\frac{25}{2}$
D. $\frac{25}{4}$

Answer: D

- Watch Video Solution

59. Let O, A, B be three collinear points such that $O A . O B=1$. If O and B represent the complex numbers O and z, then A represents
A. $\frac{1}{\bar{Z}}$
B. $\frac{1}{Z}$
C. \bar{z}
D. z^{2}
60. If the tangents at z_{1}, z_{2} on the circle $\left|z-z_{0}\right|=r$ intersect at z_{3}, then $\left(z_{3}-z_{1}\right)\left(z_{0}-z_{2}\right)$
equals
$\left(z_{0}-z_{1}\right)\left(z_{3}-z_{2}\right)$
A. 1
B. -1
C. i
D. $-i$

Answer: B

- Watch Video Solution

61. If z_{1}, z_{2} and z_{3} are the vertices of $\triangle A B C$, which is not right angled triangle taken in anti-clock wise direction and z_{0} is the circumcentre, then
$\left(\frac{z_{0}-z_{1}}{z_{0}-z_{2}}\right) \frac{\sin 2 A}{\sin 2 B}+\left(\frac{z_{0}-z_{3}}{z_{0}-z_{2}}\right) \frac{\sin 2 C}{\sin 2 B}$ is equal to
A. 0
B. 1
C. -1
D. 2

Answer: C

- Watch Video Solution

62. Let P denotes a complex number $z=r(\cos \theta+i \sin \theta)$ on the Argand's plane, and Q denotes a complex number
$\sqrt{2|z|^{2}}\left(\cos \left(\theta+\frac{\pi}{4}\right)+i \sin \left(\theta+\frac{\pi}{4}\right)\right) \cdot$.f ' O ' is the origin, then $\triangle O P Q$ is
A. isosceles but not right angled
B. right angled but not isosceles
C. right isosceles
D. equilateral

Answer: C

- Watch Video Solution

Multiple Correct Answer

1. Complex numbers whose real and imaginary parts x and y are integers and satisfy the equation $3 x^{2}-|x y|-2 y^{2}+7=0$
A. do not exist
B. exist and have equal modulus
C. form two conjugate pairs
D. do not form conjugate pairs

Answer: B::C

2. If $a, b, c, d \in R$ and all the three roots of $a z^{3}+b z^{2}+c Z+d=0$ have negative real parts, then
A. $a b>0$
B. $b c>0$
C. $a d>0$
D. $b c-a d>0$

Answer: A::B::C

- Watch Video Solution

3. Suppose three real numbers a, b, c are in G. P. Let $z=\frac{a+i b}{c-i b}$. Then
A. $z=\frac{i b}{c}$
B. $Z=\frac{i a}{b}$
C. $z=\frac{i a}{c}$
D. $z=0$

Answer: A: B

- Watch Video Solution

4. w_{1}, w_{2} be roots of $(a+\bar{c}) z^{2}+(b+\bar{b}) z+(\bar{a}+c)=0$. If $\left|z_{1}\right|<1$, $\left|z_{2}\right|<1$, then
A. $\left|w_{1}\right|<1$
B. $\left|w_{1}\right|=1$
c. $\left|w_{2}\right|<1$
D. $\left|w_{2}\right|=1$

Answer: B::D

- Watch Video Solution

5. A complex number Z satisfies the equation $\left|Z^{2}-9\right|+\left|Z^{2}\right|=41$, then the true statements among the following are
A. $|Z+3|+|Z-3|=10$
B. $|Z+3|+|Z-3|=8$
C. Maximum value of $|Z|$ is 5
D. Maximum value of $|Z|$ is 6

Answer: A: C

- Watch Video Solution

6. Let a, b, c be distinct complex numbers with $|a|=|b|=|c|=1$ and z_{1}, z_{2} be the roots of the equation $a z^{2}+b z+c=0$ with $\left|z_{1}\right|=1$. Let P and Q represent the complex numbers z_{1} and z_{2} in the Argand plane with $\angle P O Q=\theta, o^{\circ}<180^{\circ}$ (where O being the origin).Then
A. $b^{2}=a c, \theta=\frac{2 \pi}{3}$
B. $\theta=\frac{2 \pi}{3}, P Q=\sqrt{3}$
C. $P Q=2 \sqrt{3}, b^{2}=a c$
D. $\theta=\frac{\pi}{3}, b^{2}=a c$

Answer: A: B

- Watch Video Solution

7. Let $Z_{1}=x_{1}+i y_{1}, Z_{2}=x_{2}+i y_{2}$ be complex numbers in fourth quadrant of argand plane and $\left|Z_{1}\right|=\left|Z_{2}\right|=1, \operatorname{Ref}\left(Z_{1} Z_{2}\right)=0$. The complex numbers $Z_{3}=x_{1}+i x_{2}, Z_{4}=y_{1}+i y_{2}, Z_{5}=x_{1}+i y_{2}, Z_{6}=x_{6}+i y$, will always satisfy
A. $\left|Z_{4}\right|=1$
B. $\arg \left(Z_{1} Z_{4}\right)=-\pi / 2$
C. $\frac{Z_{5}}{\cos \left(\arg Z_{1}\right)}+\frac{Z_{6}}{\sin \left(\arg Z_{1}\right)}$ is purely real
D. $Z_{5}^{2}+\left(\bar{Z}_{6}\right)^{2}$ is purely imaginergy

- View Text Solution

8. If the imaginery part of $\frac{z-3}{e^{i \theta}}+\frac{e^{i \theta}}{z-3}$ is zero, then z can lie on
A. a circle with unit radius
B. a circle with radius 3 units
C. a straight line through the point $(3,0)$
D. a parabola with the vertex $(3,0)$

Answer: A::C

- Watch Video Solution

9. If α Is the fifth root of unity, then:
A. $\left|1+\alpha+\alpha^{2}+\alpha^{3}+\alpha^{4}\right|=0$
B. $\left|1+\alpha+\alpha^{2}+\alpha^{3}\right|=1$
C. $\left|1+\alpha+\alpha^{2}\right|=2 \cos \frac{\pi}{5}$
D. $|1+\alpha|=2 \cos \frac{\pi}{10}$

Answer: A::B::C

- Watch Video Solution

10. If z_{1}, z_{2}, z_{3} are any three roots of the equation $z^{6}=(z+1)^{6}$, then
$\arg \left(\frac{z_{1}-z_{3}}{z_{2}-z_{3}}\right)$ can be equal to
A. 0
B. π
C. $\frac{\pi}{4}$
D. $-\frac{\pi}{4}$

Answer: A::B

11. Let z_{1}, z_{2}, z_{3} are the vertices of $\triangle A B C$, respectively, such that $\frac{z_{3}-z_{2}}{z_{1}-z_{2}}$ is purely imaginery number. A square on side $A C$ is drawn outwardly. $P\left(z_{4}\right)$ is the centre of square, then
A. $\left|z_{1}-z_{2}\right|=\left|z_{2}-z_{4}\right|$
B. $\arg \left(\frac{z_{1}-z_{2}}{z_{4}-z_{2}}\right)+\arg \left(\frac{z_{3}-z_{2}}{z_{4}-z_{2}}\right)=+\frac{\pi}{2}$
C. $\arg \left(\frac{z_{1}-z_{2}}{z_{4}-z_{2}}\right)+\arg \left(\frac{z_{3}-z_{2}}{z_{4}-z_{2}}\right)=0$
D. z_{1}, z_{2}, z_{3} and z_{4} lie on a circle

Answer: C::D

- Watch Video Solution

1. z_{1}, z_{2}, z_{3} are vertices of a triangle. Match the condition in List I with type of triangle in List II.

List I		List II	
(p)	$z_{1}{ }^{2}+z_{2}{ }^{2}+z_{3}^{2}=$ $z_{2} z_{3}+z_{3} z_{1}+z_{1} z_{2}$	(1)	right angled but not necessarily iscosceles
(q)	$\operatorname{Re}\left(\frac{z_{3}-z_{1}}{z_{3}-z_{2}}\right)=0$	(2)	obtuse angled
(r)	$\operatorname{Re}\left(\frac{z_{3}-z_{1}}{z_{3}-z_{2}}\right)<0$	(3)	isosceles and right angled
(s)	$\frac{z_{3}-z_{1}}{z_{3}-z_{2}}=i$	(4)	equilateral

Codes
A. $\begin{array}{llll}p & q & r & s \\ 3 & 2 & 1 & 4\end{array}$
B. $\begin{array}{llll}p & q & r & s \\ 1 & 2 & 4 & 3\end{array}$
C. $\begin{array}{llll}p & q & r & s \\ 4 & 1 & 2 & 3\end{array}$
D. $\begin{array}{llll}p & q & r & s \\ 2 & 1 & 4 & 3\end{array}$

Answer: C

Comprehension

1. Consider the region R in the Argand plane described by the complex number. Z satisfying the inequalities $|Z-2| \leq|Z-4|,|Z-3| \leq|Z+3|$,
$|Z-i| \leq|Z-3 i|,|Z+i| \leq|Z+3 i|$
Answer the followin questions :
The maximum value of $|Z|$ for any Z in R is
A. 5
B. 3
C. 1
D. $\sqrt{13}$

Answer: D

2. Consider the region R in the Argand plane described by the complex number. Z satisfying the inequalities $|Z-2| \leq|Z-4|,|Z-3| \leq|Z+3|$,

$$
|Z-i| \leq|Z-3 i|,|Z+i| \leq|Z+3 i|
$$

Answer the followin questions :
The maximum value of $|Z|$ for any Z in R is
A. 5
B. 14
C. $\sqrt{13}$
D. 12

Answer: A

- Watch Video Solution

3. Consider the region R in the Argand plane described by the complex number. Z satisfying the inequalities $|Z-2| \leq|Z-4|,|Z-3| \leq|Z+3|$, $|Z-i| \leq|Z-3 i|,|Z+i| \leq|Z+3 i|$

Answer the followin questions :
Minimum of $\left|Z_{1}-Z_{2}\right|$ given that Z_{1}, Z_{2} are any two complex numbers lying in the region R is
A. 0
B. 5
C. $\sqrt{13}$
D. 3

Answer: A

- Watch Video Solution

4. Let z_{1} and z_{2} be complex numbers such that $z_{1}^{2}-4 z_{2}=16+20 i$ and the roots α and β of $x^{2}+z_{1} x+z_{2}+m=0$ for some complex number m satisfies $|\alpha-\beta|=2 \sqrt{7}$.

The locus of the complex number m is a curve
A. straight line
B. circle
C. ellipse
D. hyperbola

Answer: B

- Watch Video Solution

5. Let z_{1} and z_{2} be complex numbers such that $z_{1}^{2}-4 z_{2}=16+20 i$ and the roots α and β of $x^{2}+z_{1} x+z_{2}+m=0$ for some complex number m satisfies $|\alpha-\beta|=2 \sqrt{7}$.

The maximum value of $|m|$ is
A. 14
B. $2 \sqrt{7}$
C. $7+\sqrt{41}$
D. $2 \sqrt{6}-4$

Answer: C

- Watch Video Solution

6. Let z_{1} and z_{2} be complex numbers such that $z_{1}^{2}-4 z_{2}=16+20 i$ and the roots α and β of $x^{2}+z_{1} x+z_{2}+m=0$ for some complex number m satisfies $|\alpha-\beta|=2 \sqrt{7}$. The value of $|m|$, when $\operatorname{are}(m)$ is maximum
A. 7
B. $28-\sqrt{41}$
C. $\sqrt{41}$
D. $2 \sqrt{6}-4$

Answer: D

7. The locus of any point $P(z)$ on argand plane is $\arg \left(\frac{z-5 i}{z+5 i}\right)=\frac{\pi}{4}$. Then the length of the arc described by the locus of $P(z)$ is
A. $10 \sqrt{2} \pi$
B. $\frac{15 \pi}{\sqrt{2}}$
C. $\frac{5 \pi}{\sqrt{2}}$
D. $5 \sqrt{2} \pi$

Answer: B

- Watch Video Solution

8. The locus of any point $P(z)$ on argand plane is $\arg \left(\frac{z-5 i}{z+5 i}\right)=\frac{\pi}{4}$.

Total number of integral points inside the region bounded by the locus of $P(z)$ and imaginery axis on the argand plane is
B. 74
C. 136
D. 138

Answer: C

- View Text Solution

9. The locus of any point $P(z)$ on argand plane is $\arg \left(\frac{z-5 i}{z+5 i}\right)=\frac{\pi}{4}$.

Area of the region bounded by the locus of a complex number Z
satisfying $\arg \left(\frac{z+5 i}{z-5 i}\right)= \pm \frac{\pi}{4}$
A. $75 \pi+50$
B. 75π
C. $\frac{75 \pi}{2}+25$
D. $\frac{75 \pi}{2}$

D View Text Solution

10. A person walks $2 \sqrt{2}$ units away from origin in south west direction $\left(S 45^{\circ} W\right)$ to reach A, then walks $\sqrt{2}$ units in south east direction $\left(S 45^{\circ} E\right)$ to reach B. From B he travel is 4 units horizontally towards east to reach C. Then he travels along a circular path with centre at origin through an angle of $2 \pi / 3$ in anti-clockwise direction to reach his destination D.

Let the complex number Z represents C in argand plane. then $\arg (Z)=$
A. $-\frac{\pi}{6}$
B. $\frac{\pi}{4}$
C. $-\frac{\pi}{4}$
D. $\frac{\pi}{3}$

Answer: C

11. A person walks $2 \sqrt{2}$ units away from origin in south west direction $\left(S 45^{\circ} \mathrm{W}\right)$ to reach A, then walks $\sqrt{2}$ units in south east direction $\left(S 45^{\circ} E\right)$ to reach B. From B he travel is 4 units horizontally towards east to reach C. Then he travels along a circular path with centre at origin through an angle of $2 \pi / 3$ in anti-clockwise direction to reach his destination D.

Position of D in argand plane is (w is an imaginary cube root of unity)
A. $(3+i) \omega$
B. $-(1+i) \omega^{2}$
C. $3(1-i) \omega$
D. $(1-3 i) \omega$

Answer: C

- Watch Video Solution

1. Evaluate :
(i) i^{135}
(ii) $i \frac{1}{47}$
(iii) $(-\sqrt{-1})^{4 n+3}, n \in N$
(iv) $\sqrt{-25}+3 \sqrt{-4}+2 \sqrt{-9}$

- Watch Video Solution

2. Find the value of $i^{n}+i^{n+1}+i^{n+2}+i^{n+3}$ for all $n \in N$
A. 0
B. i
C. -i
D. $2 i^{n}$
3. Find the value of $1+i^{2}+i^{4}+i^{6}++i^{2 n}$

Watch Video Solution

4. Show that the polynomial $x^{4 p}+x^{4 q+1}+x^{4 r+2}+x^{4 s+3}$ is divisible by $x^{3}+x^{2}+x+1$, wherep, $q, r, s \in n$

- Watch Video Solution

5. Solve:
$i x^{2}-3 x-2 i=0$,

- Watch Video Solution

6. If $z=4+i \sqrt{7}$, then find the value of $z^{3}-4 z^{2}-9 z+91$.
A. 23
B. i
C. -1
D. 0

Answer: C

- Watch Video Solution

7. Express each of the following in the standerd from $a+i b$
(i) $\frac{5+4 i}{4+5 i}$ (ii) $\frac{(1+i)^{2}}{3-i}$ (iii) $\frac{1}{1-\cos \theta+2 i \sin \theta}$

- Watch Video Solution

8. The root of the equation $2(1+i) x^{2}-4(2-i) x-5-3 i=0$, where $i=\sqrt{-1}$, which has greater modulus is
9. Find the value of $(1+i)^{6}+(1-i)^{6}$
A. $16 i$
B. 0
C. $-16 i$
D. 1

Answer: B

Watch Video Solution
10. If $\left(\frac{1+i}{1-i}\right)^{m}=1$, then find the least positive integral value of m

- Watch Video Solution

11. Prove that the triangle formed by the points $1, \frac{1+i}{\sqrt{2}}$, andi as vertices in the Argand diagram is isosceles.

Watch Video Solution

12. Find the value of θ if $\frac{3+2 i \sin \theta}{1-2 i \sin \theta}$ is purely real or purely imaginary.

- Watch Video Solution

13. If the imaginary part of $(2 z+1) /(i z+1)$ is -2 , then find the locus of the point representing in the complex plane.

- Watch Video Solution

14. If z is a complex number such that $|z-\bar{z}|+|z+\bar{z}|=4$ then find the area bounded by the locus of z.
15. If $(x+i y)^{5}=p+i q$, then prove that $(y+i x)^{5}=q+i p$

- Watch Video Solution

16. If $z=x+i y$ lies in the third quadrant, then prove that $\frac{\bar{z}}{z}$ also lies in the third quadrant when $y<x<0$

- Watch Video Solution

17. Prove that $\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{5}+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^{5}$ is purely real.

- Watch Video Solution

18. Find the relation if $z_{1}, z_{2}, z_{3}, z_{4}$ are the affixes of the vertices of a parallelogram taken in order.
19. Let z_{1}, z_{2}, z_{3} be three complex numbers and a, b, c be real numbers not all zero, such that $a+b+c=0$ andaz $_{1}+b z_{2}+c z_{3}=0$. Show that z_{1}, z_{2}, z_{3} are collinear.

- Watch Video Solution

20. Find real values of x and y for which the complex numbers $-3+i x^{2} y$ and $x^{2}+y+4 i$ are conjugate of each other.

- Watch Video Solution

21. Given that $\mathrm{x}, y \in R$. Solve: $\frac{x}{1+2 i}+\frac{y}{3+2 i}=\frac{5+6 i}{8 i-1}$

- Watch Video Solution

22. If $(x+i y)^{3}=u+i v$, then show that $\frac{u}{x}+\frac{v}{y}=4\left(x^{2}-y^{2}\right)$.

- Watch Video Solution

23. Let z be a complex number satisfying the equation $z^{3}-(3+i) z+m+2 i=0$, wherem $\in R$ Suppose the equation has a real root. Then root non-real root.

- Watch Video Solution

24. Show that the equation $Z^{4}+2 Z^{3}+3 Z^{2}+4 Z+5=0$ has no root which is either purely real or purely imaginary.

- Watch Video Solution

25. Find the square roots of the following:
(i) $7-24 i$ (ii) $5+12 i$
26. Find all possible values of $\sqrt{i}+\sqrt{-i}$

Watch Video Solution

27. Solve the following for $\mathrm{z}: \mathrm{z}^{2}-(3-2 i) z=(5 i-5)$

- Watch Video Solution

28. Solve the equation $(x-1)^{3}+8=0$ in the set C of all complex numbers.

- Watch Video Solution

29. If n is n odd integer that is greater than or equal to 3 but not la ultiple of 3, then prove that $(x+1)^{n}=x^{n}-1$ is divisible by $x^{3}+x^{2}+x$
30. ω is an imaginary root of unity.

Prove that
(i) $\left(a+b \omega+c \omega^{2}\right)^{3}+\left(a+b \omega^{2}+c \omega\right)^{3}=(2 a-b-c)(2 b-a-c)(2 c-a-b)$
(ii) If $a+b+c=0$ then prove that
$\left(a+b \omega+c \omega^{2}\right)^{3}+\left(a+b \omega^{2}+c \omega\right)^{3}=27 a b c$.

Watch Video Solution

31. Find the complex number ω satisfying the equation $z^{3}-8 i$ and lying in the second quadrant on the complex plane.

- Watch Video Solution

32. $\frac{1}{a+\omega}+\frac{1}{b+\omega}+\frac{1}{c+\omega}+\frac{1}{d+\omega}=\frac{1}{\omega}$ where, $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \in \mathrm{R}$ and ω is a
complex cube root of unity then find the value of $\sum \frac{1}{a^{2}-a+1}$
33. Write the following complex number in polar form :
(i) $-3 \sqrt{2}+3 \sqrt{2} i$
(ii) $1+i$
(iii) $\frac{1+7 i}{(2-i)^{2}}$

- View Text Solution

34. Let $z_{1}=\cos 12^{\circ}+I \sin 12^{\circ}$ and $z_{2}=\cos 48^{\circ}+i \cdot \sin 48^{\circ}$. Write complex number $\left(z_{1}+z_{2}\right)$ in polar form. Find its modulus and argument.

- Watch Video Solution

35. Covert the complex number $z=1+\frac{\cos (8 \pi)}{5}+i . \frac{\sin (8 \pi)}{5}$ in polar form.

Find its modulus and argument.

- Watch Video Solution

36. Let zandw be two nonzero complex numbers such that $|z|=|w| \operatorname{andarg}(z)+\arg (w)=\pi$ Then prove that $z=-w$

- Watch Video Solution

37. Find nonzero integral solutions of $|1-i|^{x}=2^{x}$

- Watch Video Solution

38. Let z be a complex number satisfying $|z|=3|z-1|$. Then prove that
$\left|z-\frac{9}{8}\right|=\frac{3}{8}$

(Watch Video Solution

39. If complex number $z=x$ +iy satisfies the equation $\operatorname{Re}(z+1)=|z-1|$, then prove that z lies on $y^{2}=4 x$.
40. Solve the equation $|z|=z+1+2 i$

- Watch Video Solution

41. Find the range of real number α for which the equation $z+\alpha|z-1|+2 i=0$ has a solution.

- Watch Video Solution

42. Find the Area bounded by complex numbers $\arg |z| \leq \frac{\pi}{4}$ and $|z-1|<|z-3|$

- Watch Video Solution

43. Prove that traingle by complex numbers z_{1}, z_{2} and z_{3} is equilateral if $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$ and $z_{1}+z_{2}+z_{3}=0$
44. Show that $e^{2 m i \theta}\left(\frac{i \cot \theta+1}{i \cot \theta-1}\right)^{m}=1$.

- Watch Video Solution

45. $Z_{1} \neq Z_{2}$ are two points in an Argand plane. If $a\left|Z_{1}\right|=b\left|Z_{2}\right|$, then prove that $\frac{a Z_{1}-b Z_{2}}{a Z_{1}+b Z_{2}}$ is purely imaginary.

- Watch Video Solution

46. Find the real part of $(1-i)^{-i}$

- Watch Video Solution

47. If $(\sqrt{8}+i)^{50}=3^{49}(a+i b)$, then find the value of $a^{2}+b^{2}$
48. Show that $\left(x^{2}+y^{2}\right)^{4}=\left(x^{4}-6 x^{2} y^{2}+y^{4}\right)^{2}+\left(4 x^{3} y-4 x y^{3}\right)^{2}$

- Watch Video Solution

49. If $\arg \left(z_{1}\right)=170^{0} \operatorname{andarg}\left(z_{2}\right) 70^{0}$, then find the principal argument of $z_{1} z_{2}$

- Watch Video Solution

50. Find the value of expression $\left(\frac{\cos \pi}{2}+\right.$ is $\left.\in \frac{\pi}{2}\right)\left(\frac{\cos \pi}{2^{2}}+\right.$ is $\left.\in \frac{\pi}{2^{2}}\right) \rightarrow \infty$

- Watch Video Solution

$$
(1+i)^{5}(1+\sqrt{3 i})^{2}
$$

51. Find the principal argument of the complex number

$$
-1 i(-\sqrt{3}+i)
$$

- Watch Video Solution

52. If $z=\frac{(\sqrt{3}+i)^{17}}{(1-i)^{50}}$, then find $\operatorname{amp}(z)$.

- Watch Video Solution

53. If $z=x+$ iyand $w=\frac{1-i z}{z-i}$, show that $|w|=1 z$ is purely real.

- Watch Video Solution

54. It is given the complex numbers z_{1} and $z_{2},\left|z_{1}\right|=2$ and $\left|z_{2}\right|=3$. If the included angle of their corresponding vectors is 60°, then find value of

$$
\left|\frac{z_{1}+z_{2}}{z_{1}-z_{2}}\right|
$$

55. Solve the equation $z^{3}=\bar{z}(z \neq 0)$

- Watch Video Solution

56. If $2 z_{1} / 3 z_{2}$ is a purely imaginary number, then find the value of $\left|\left(z_{1}-z_{2}\right)\right|\left(z_{1}+z_{2}\right) \mid$

Watch Video Solution

57. Find the complex number satisfying the system of equations $z^{3}+\omega^{7}=0 a n d z^{5} \omega^{11}=1$.

- Watch Video Solution

58. Express the following in $a+i b$ form:
(i) $\left(\frac{\cos \theta+i \sin \theta}{\sin \theta+i \cos \theta}\right)^{4}$
(ii) $\frac{(\cos 2 \theta-i \sin 2 \theta)^{4}(\cos 4 \theta+i \sin 4 \theta)^{-5}}{(\cos 3 \theta+i \sin 3 \theta)^{-2}(\cos 3 \theta-i \sin 3 \theta)^{-9}}$
(iii) $\frac{(\sin \pi / 8+i \cos \pi / 8)^{8}}{(\sin \pi / 8-i \cos \pi / 8)^{8}}$

- Watch Video Solution

59. If $z=\left(\frac{\sqrt{3}}{2}+\frac{i}{2}\right)^{5}+\left(\frac{\sqrt{3}}{2}-\frac{i}{2}\right)^{5}$, then prove that $\operatorname{Im}(z)=0$

- Watch Video Solution

60. Prove that the roots of the equation $x^{4}-2 x^{2}+4=0$ forms a rectangle.

- Watch Video Solution

61. If $z+1 / z=2 \cos \theta$, prove that $\left|\left(z^{2 n}-1\right) /\left(z^{2 n}+1\right)\right|=|\tan n \theta|$

Watch Video Solution

62. If $z=x+i y$ is a complex number with $x, y \in Q$ and $|z|=1$, then show that $\left|z^{2 n}-1\right|$ is a rational numberfor every $n \in N$.

- Watch Video Solution

63. If $z=\cos \theta+i \sin \theta$ is a root of the equation $a_{0} z^{n}+a_{2} z^{n-2}++a_{n-1} z^{+} a_{n}=0$ then prove that $a_{0}+a_{1} \cos \theta+a_{2}^{\cos 2} \theta++a_{n} \cos n \theta=0 a_{1} \sin \theta+a_{2}^{\sin 2} \theta++a_{n} \sin n \theta=0$

- Watch Video Solution

64. If $\left|z_{1}\right|=1,\left|z_{2}\right|=2,\left|z_{3}\right|=3$, and $\left|9 z_{1} z_{2}+4 z_{1} z_{3}+z_{2} z_{3}+3\right|=12$, then find the value of $\left|z_{1}+z_{2}+z+3\right|$
65. If α and β are different complex numbers with $|\beta|=1$, then find $\left|\frac{\beta-\alpha}{1-\bar{\alpha} \beta}\right|$.

- Watch Video Solution

66. Prove that $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}$, if $\quad z_{1} / z_{2}$ is purely imaginary.

- Watch Video Solution

67. Let $\left|\left(z_{1}-2 z_{2}\right) /\left(2-z_{1} z_{2}\right)\right|=1$ and $\left|z_{2}\right| \neq 1$, where z_{1} and z_{2} are complex numbers. shown that $\left|z_{1}\right|=2$

- Watch Video Solution

68. If z_{1} andz z_{2} are two complex numbers and $c>0$, then prove that $\left|z_{1}+z_{2}\right|^{2} \leq(1+c)\left|z_{1}\right|^{2}+\left(1+c^{-1}\right)\left|z_{2}\right|^{2}$

- Watch Video Solution

69. If $z_{1}, z_{2}, z_{3}, z_{4}$ are the affixes of four point in the Argand plane, z is the affix of a point such that $\left|z-z_{1}\right|=\left|z-z_{2}\right|=\left|z-z_{3}\right|=\left|z-z_{4}\right|$, then prove that $z_{1}, z_{2}, z_{3}, z_{4}$ are concyclic.

- Watch Video Solution

70. if $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then prove that $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)$ if $\left|z_{1}-z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then prove that $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)=\pi$

- Watch Video Solution

71. Show that the area of the triangle on the Argand diagram formed by the complex number z, izandz + iz is $\frac{1}{2}|z|^{2}$

- Watch Video Solution

72. Find the minimum value of $\mid z-1$ if $|z-3|-|z+1| \mid=2$.

- Watch Video Solution

73. Find the greatest and the least value of $\left|z_{1}+z_{2}\right|$ if $z_{1}=24+7$ iand $\left|z_{2}\right|=6$.

- Watch Video Solution

74. If z is a complex number, then find the minimum value of $|z|+|z-1|+|2 z-3|$
75. If $\left|z_{1}-1\right| \leq,\left|z_{2}-2\right| \leq 2,\left|z_{33}\right| \leq 3$, then find the greatest value of $\left|z_{1}+z_{2}+z_{3}\right|$

- Watch Video Solution

76. Prove that following inequalities:
(i) $\left|\frac{z}{|z|}-1\right| \leq|\arg z|($ (ii) $|z-1| \leq|z||\arg z|+|z|-1 \mid$
77. Identify the locus of z if $z=a+\frac{r^{2}}{z-a},>0$.

- Watch Video Solution

78. If z is any complex number such that $|3 z-2|+|3 z+2|=4$, then identify the locus of z

Watch Video Solution

79. If $|z|=1$ and let $\omega=\frac{(1-z)^{2}}{1-z^{2}}$, then prove that the locus of ω is equivalent to $|z-2|=\mid z+2$

- Watch Video Solution

80. Let z be a complex number having the argument 'theta, 0

- Watch Video Solution

81. How many solutions the system of equations $||z+4|-|z-3 i| \quad|=5$ and $|z|=4$ `has ?
82. Prove that $\left|Z-Z_{1}\right|^{2}+\left|Z-Z_{2}\right|^{2}=a$ will represent a real circle [with center $\left(\left|Z_{1}+Z_{2}\right|^{\prime} 2+\right)$] on the Argand plane if $2 a \geq\left|Z_{1}-Z_{1}\right|^{2}$

- Watch Video Solution

83. If $|z-2-3 i|^{2}+|z-5-7 i|^{2}=\lambda$ respresents the equation of circle with least radius, then find the value of λ.

(Watch Video Solution

84. If $\frac{|2 z-3|}{|z-i|}=k$ is the equation of circle with complex number 'I' lying inside the circle, find the values of K.

- Watch Video Solution

85. Find the point of intersection of the curves $\arg (z-3 i)=\frac{3 \pi}{4} \operatorname{andarg}(2 z+1-2 i)=\pi / 4$.

(D) Watch Video Solution

86. If complex numbers $z_{1} z_{2}$ and z_{3} are such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$, then
prove that $\arg \left(\frac{z_{2}}{z_{1}}=\arg \left(\frac{z_{2}-z_{3}}{z_{1}-z_{3}}\right)^{2}\right.$

- Watch Video Solution

87. If the triangle fromed by complex numbers z_{1}, z_{2} and z_{3} is equilateral then prove that $\frac{z_{2}+z_{3}-2 z_{1}}{z_{3}-z_{2}}$ is purely imaginary number

- Watch Video Solution

88. Show that the equation of a circle passings through the origin and having intercepts a and b on real and imaginary axis, respectively, on the argand plane is $\operatorname{Re}\left(\frac{z-a}{z-i b}\right)=0$

- Watch Video Solution

89. The triangle formed by $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ has its circumcentre at origin .If the perpendicular form A to $B C$ intersect the circumference at z_{4} then the value of $z_{1} z_{4}+z_{2} z_{3}$ is

- Watch Video Solution

90. Let vertices of an acute-angled triangle are $A\left(z_{1}\right), B\left(z_{2}\right)$, andC $\left(z_{3}\right)$ if the origin O is he orthocentre of the triangle, then prove that $z_{1}(z)_{2}+(z)_{1} z_{2}={ }_{2}(z)_{3}+(z)_{2} z_{3}=z_{3}(z)_{1}+(z)_{3} z_{1}$
91. If z_{1}, z_{2}, z_{3} are three complex numbers such that $5 z_{1}-13 z_{2}+8 z_{3}=0$, then prove that $\left|z_{1}(z)_{1} 1 z_{2}(z)_{2} 1 z_{3}(z)_{3} 1\right|=0$

- Watch Video Solution

92. If $z=z_{0}+A\left(z-(z)_{0}\right)$, where A is a constant, then prove that locus of z is a straight line.

- Watch Video Solution

93. $z_{1} a n d z_{2}$ are the roots of $3 z^{2}+3 z+b=0$. if $O(0),\left(z_{1}\right),\left(z_{2}\right)$ form an equilateral triangle, then find the value of b

- Watch Video Solution

94. Let z_{1}, z_{2} and z_{3} be three complex number such that
$\left|z_{1}-1\right|=\left|z_{2}-1\right|=\left|z_{3}-1\right|$ and $\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)=\frac{\pi}{6}$
then prove that $z_{2}^{3}+z_{3}^{3}+1=z_{2}+z_{3}+z_{2} z_{3}$.

- Watch Video Solution

95. Let the complex numbers z_{1}, z_{2} and z_{3} be the vertices of an equailateral triangle. If z_{0} is the circumcentre of the triangle, then prove that $z_{1}^{2}+z_{2}^{2}+z_{3}^{2}=3 z_{0}^{2}$.

- Watch Video Solution

96. In the Argands plane what is the locus of $z(\neq 1)$ such that
$\arg \left\{\frac{3}{2}\left(\frac{2 z^{2}-5 z+3}{2 z^{2}-z-2}\right)\right\}=\frac{2 \pi}{3}$.
97. If $\left(\frac{3-z_{1}}{2-z_{1}}\right)\left(\frac{2-z_{2}}{3-z_{2}}\right)=k(k>0)$, then prove that points $A\left(z_{1}\right), B\left(z_{2}\right), C(3)$, andD(2) (taken in clockwise sense) are concyclic.

- Watch Video Solution

98. If z_{1}, z_{2}, z_{3} are complex numbers such that $\left(2 / z_{1}\right)=\left(1 / z_{2}\right)+\left(1 / z_{3}\right)$, then show that the points represented by $z_{1}, z_{2}(), z_{3}$ lie one a circle passing through e origin.

- Watch Video Solution

99. $A\left(z_{1}\right), B\left(z_{2}\right), C\left(z_{3}\right)$ are the vertices of he triangle $A B C$ (in anticlockwise). If $\angle A B C=\pi / 4$ and $A B=\sqrt{2}(B C)$, then prove that $z_{2}=z_{3}+i\left(z_{1}-z_{3}\right)$

- Watch Video Solution

100. If one of the vertices of the square circumscribing the circle $|z-1|=\sqrt{2}$ is $2+\sqrt{3}$ u. Find the other vertices of square

- Watch Video Solution

101. Let $z_{1}=10+6 i$ and $z_{2}=4+6 i$ If z is any complex number such that the argument of $\frac{\left(z-z_{1}\right)}{\left(z-z_{2}\right)}$ is $\frac{\pi}{4}$, then prove that $|z-7-9 i|=3 \sqrt{2}$.

- Watch Video Solution

102. Complex numbers of z_{1}, z_{2}, z_{3} are the vertices A, B, C respectively, of on isosceles right-angled triangle with right angle at C. show that $\left(z_{1}-z_{2}\right)^{2}=2\left(z_{1}-z_{3}\right)\left(z_{3}-z_{2}\right)$

- Watch Video Solution

103. Let $z_{1}, z_{2} a n d z_{3}$ represent the vertices A, B, and C of the triangle $A B C$, respectively, in the Argand plane, such that $\left|z_{1}\right|=\left|z_{2}\right|=5$. Prove that $z_{1} \sin 2 A+z_{2} \sin 2 B+z_{3} \sin 2 C=0$.

- Watch Video Solution

104. $\mathrm{F} a=\cos (2 \pi / 7)+$ is $\in(2 \pi / 7)$, then find the quadratic equation whose roots are $\alpha=a=a^{2}+a^{4}$ and $\beta=a^{3}=a^{5}+a^{7}$.

- Watch Video Solution

105. If ω is an imaginary fifth root of unity, then find the value of $l o e_{2}\left|1+\omega+\omega^{2}+\omega^{3}-1 / \omega\right|$

- Watch Video Solution

106. If $1, \alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \ldots, \alpha_{s}$ are ninth roots of unity (taken in counter clockwise sequence in the Argard plane). Then find the value of $\left|\left(2-\alpha_{1}\right)\left(2-\alpha_{3}\right),\left(2-\alpha_{5}\right)\left(2-\alpha_{7}\right)\right|$.

- Watch Video Solution

107. find the sum of squares of all roots of the equation.
$x^{8}-x^{7}+x^{6}-x^{5}+x^{4}-x^{3}+x^{2}-x+1=0$

- Watch Video Solution

108. Find roots of the equation $(z+1)^{5}=(z-1)^{5}$.

- Watch Video Solution

109. If the roots of $(z-1)^{n}=i(z+1)^{n}$ are plotted in ten Argand plane, then prove that they are collinear.
110. Let $1, z_{1}, z_{2}, z_{3}, \ldots, z_{n-1}$ be the nth roots of unity. Then prove that $\left(1-z_{1}\right)\left(1-z_{2}\right) \ldots\left(1-z_{n-1}\right)=n$.

Also,deduce
$\sin . \frac{\pi}{n} \sin . \frac{2 \pi}{\pi} \sin . \frac{3 \pi}{n} \ldots \sin . \frac{(n-1) \pi}{n}=\frac{\pi}{2^{n-1}}$

- Watch Video Solution

111. if $\omega a n d \omega^{2}$ are the nonreal cube roots of unity and $[1 /(a+\omega)]+[1 /(b+\omega)]+[1 /(c+\omega)]=2 \omega^{2}$ and $\left[1 /(a+\omega)^{2}\right]+\left[1 /(b+\omega)^{2}\right]+\left[1 /(c+\omega)^{2}\right]=2 \omega$, then find the value of $[1 /(a+1)]+[1 /(b+1)]+[1 /(c+1)]$

- Watch Video Solution

112. If $z_{1} a n d z_{2}$ are complex numbers and $u=\sqrt{z_{1} z_{2}}$, then prove that $\left|z_{1}\right|+\left|z_{2}\right|=\left|\frac{z_{1}+z_{2}}{2}+u\right|+\left|\frac{z_{1}+z_{2}}{2}-u\right|$

(D) Watch Video Solution

113. If a is a complex number such that $|a|=1$, then find thevalue of a, so that equation $a z^{2}+z+1=0$ has one purely imaginary root.

- Watch Video Solution

114. Let z and z_{0} be two complex numbers. It is given that $|z|=1$ and that numbers $z, z_{0}, z \bar{z}_{0} 1$, and 0 are represented in a Argand diagram by the points P, P_{0}, Q, A and the origin respectively. Show that the triangles $P O P_{0}$ and AOQ are congruent . Hence, or otherwise, prove that $\left|z-z_{0}\right|=\left|z \bar{z}_{0}-1\right|$

- View Text Solution

115. Let a, b, andc be any three nonzero complex number. If $|z|=1$ and $^{\prime} z^{\prime}$ satisfies the equation $a z^{2}+b z+c=0$, prove that
$a a=c c a n d|a||b|=\sqrt{a c(b)^{2}}$

- Watch Video Solution

116. Let x_{1}, x_{2} are the roots of the quadratic equation $x^{2}+a x+b=0$, where a, b, are complex numbers and y_{1}, y_{2} are the roots of the quadratic equation $y^{2}+|a| y y+|b|=0$. If $\left|x_{1}\right|=\left|x_{2}\right|=1$, then prove that $\left|y_{1}\right|=\left|y_{2}\right|=1$

- Watch Video Solution

117. If $\alpha=(z-i) /(z+i)$ show that, when z lies above the real axis, α will lie within the unit circle which has centre at the origin. Find the locus of α as z travels on the real axis form $-\infty$ to $+\infty$

- Watch Video Solution

118. If $|z| \leq 1$ and $|w|<1$, then shown that $|z-w|^{2}<(|z|-|w|)^{2}+(\operatorname{argz}-\arg w)^{2}$

Watch Video Solution

119. Prove that the distance of the roots of the equation $\left|\sin \theta_{1}\right| z^{3}+\left|\sin \theta_{2}\right| z^{2}+\left|\sin \theta_{3}\right| z+\left|\sin \theta_{4}\right|=3 o m z=0$ is greater than $2 / 3$.

- Watch Video Solution

120. If $|z-(4+3 i)|=1$, then find the complex number z for each of the following cases:
(i) $|z|$ is least
(ii) $|z|$ is greatest
(iii) $\arg (z)$ is least
(iv) $\arg (z)$ is greatest
121. If a, b, c, and u, v, w are complex numbers repersenting the vertices of two triangle such that they are similar, then prove that $\frac{a-c}{a-b}=\frac{u-w}{u-v}$

- Watch Video Solution

122. Let z_{1} and z_{2} be the root of the equation $z^{2}+p z+q=0$ where the coefficient p and q may be complex numbers. Let A and B represent z_{1} and z_{2} in the complex plane. If $\angle A O B=\alpha \neq 0$ and 0 and $O A=O B$, where O is the origin prove that $p^{2}=4 q \cos ^{2}\left(\frac{\alpha}{2}\right)$

- Watch Video Solution

123. The altitude form the vertices A, B and C of the triangle $A B C$ meet its circumcircle at D,E and F, respectively . The complex number representing the points D, E, and F are z_{1}, z_{2} and z_{3}, respectively. If $\left(z_{3}-z_{1}\right) /\left(z_{2}-z_{1}\right)$ is purely real, then show that triangle $A B C$ is right-angled at A.
124. Let A, B, C, D be four concyclic points in order in which $A D: A B=C D: C B$. If $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are representing by complex numbers $\mathrm{a}, \mathrm{b}, \mathrm{c}$ respectively find the complex number associated with point D .

- Watch Video Solution

125. If $n \geq 3$ and , $\alpha_{1}, \alpha_{2} \ldots \ldots ., \alpha_{n-1}$ are nth roots of unity, then find the sum $\sum 1 \leq i \leq j \leq n-1 \alpha_{i} l p h a_{j}$

- Watch Video Solution

Exercise 3.1

1. Is the following computation correct? If not give the correct
computation: $[\sqrt{(-2)} \sqrt{(-3)}]=\sqrt{(-2)-3}=\sqrt{6}$
2. Find the value of $\frac{i^{592}+i^{590}+i^{588}+i^{586}+i^{584}}{i^{582}+i^{580}+i^{578}+i^{576}+i^{574}}-1$
A. -2
B. 0
C. 2
D. -1

Answer: A

3. The value of $i^{1+3+5++}(2 n+1)$ is, If \mathbf{n} is odd.
A. i
B. 1
C. -1
D. $-i$

Answer: B

D Watch Video Solution

4. Find the value of $x^{4}+9 x^{3}+35 x^{2}-x+4$ for $x=-5+2 \sqrt{-4}$.

D Watch Video Solution

Exercise 3.2

1. प्रश्न 11 से 13 तक कि सम्मिश्र संख्याओं में प्रत्येक का गुणात्मक प्रतिलोम ज्ञात कीजिए। 4-3i
2. Express the following complex numbers in $a+i b$ form: $\frac{(3-2 i)(2+3 i)}{(1+2 i)(2-i)}$
(ii) $\frac{2-\sqrt{-25}}{1-\sqrt{-16}}$

D Watch Video Solution

3. Find the least positive integer n such that $\left(\frac{2 i}{1+i}\right)^{n}$ is a positive integer.
A. $n=6$
B. $n=5$
C. $n=8$
D. $n=4$

Answer: C

- Watch Video Solution

4. If one root of the equation $z^{2}-a z+a-1=0 i s(1+i)$, wherea is a complex number then find the root.

- Watch Video Solution

5. Prove that quadrilateral formed by the complex numbers which are roots of the equation $z^{4}-z^{3}+2 z^{2}-z+1=0$ is an equailateral trapezium.

- Watch Video Solution

6. If Z^{5} is a non-real complex number, then find the minimum value of $\frac{I m z^{5}}{I m^{5} z}$

- Watch Video Solution

7. Find the real numbers x and y, if $(x-i y)(3+5 i)$ is the conjugate of
A. $x=-2, y=2$
B. $x=-3, y=3$
C. $x=3, y=-3$
D. $x=-4, y=1$

Answer: C

- Watch Video Solution

8. If z_{1}, z_{2}, z_{3} are three nonzero complex numbers such that $z_{3}=(1-\lambda) z_{1}+\lambda z_{2}$ where $\lambda \in R-\{0\}, \quad$ then prove that points corresponding to $z_{1}, z_{2} a n d z_{3}$ are collinear .

- Watch Video Solution

9. If n_{1}, n_{2} are positive integers, then
$(1+i)^{n_{1}}+\left(1+i^{3}\right)^{n_{1}}+\left(1+i_{5}\right)^{n_{2}}+\left(1+i^{7}\right)^{n_{2}}$ is real if and only if:
10. If $(a+b)-i(3 a+2 b)=5+2 i$, then find a and b
A. $a=12, b=-17$
B. $a=-12, b=-17$
C. $a=12, b=17$
D. $a=-12, b=17$

Answer: D

- Watch Video Solution

2. Find all non zero complex numbers z satisfying $\bar{z}=i z^{2}$
3. If a, b, c are nonzero real numbers and $a z^{2}=b z+c+i=0$ has purely imaginary roots, then prove that $a=b^{2}$.

- Watch Video Solution

4. If the sum of square of roots of equation $x^{2}+(p+i q) x+3 i=0$ is 8 , then find $|p|+|q|$, where p and q are real.
A. 3
B. 1
C. 4
D. 2

Answer: C

- Watch Video Solution

6. Simplify: $\frac{\sqrt{5+12 i}+\sqrt{5-12 i}}{\sqrt{5+12 i}-\sqrt{5-12 i}}$

Watch Video Solution

7. If $\sqrt{x+i y}= \pm(a+i b)$, then find $\sqrt{x-i y .}$

- Watch Video Solution

Exercise 3.4

1. if α and β are imaginary cube root of unity then prove $(\alpha)^{4}+(\beta)^{4}+(\alpha)^{-1} \cdot(\beta)^{-1}=0$

- Watch Video Solution

2. If ω is a complex cube roots of unity, then find the value of the $(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)\left(1+\omega^{8}\right) . .$. to $2 n$ factors.

- Watch Video Solution

3. Write the comple number in $a+i b$ form unsing cube roots of unity: (a)
$\left(-\frac{1}{2}+\frac{\sqrt{3}}{2} i\right)^{1000}(b)$ If $z=\frac{(\sqrt{3}+i)^{17}}{(1-i)^{50}}$ (c) $(i+\sqrt{3})^{100}+(i+\sqrt{3})^{100}+2^{100}$

- Watch Video Solution

4. If $z+z^{-1}=1$, then find the value of $z^{100}+z^{-100}$.

- Watch Video Solution

5. Find the common roots of $x^{12}-1=0$ and $x^{4}+x^{2}+1=0$
6. if α, β, γ are the roots of $x^{3}-3 x^{2}+3 x+7=0$ then $\frac{\alpha-1}{\beta-1}+\frac{\beta-1}{\gamma-1}+\frac{\gamma-1}{\alpha-1}$

- Watch Video Solution

7. Prove that $t^{2}+3 t+3$ is a factor of $(t+1)^{n+1}+(t+2)^{2 n-1}$ for all intergral values of $n \in N$.

- Watch Video Solution

Exercise 3.5

1. Find the pricipal argument of each of the following:
(a) $-1-i \sqrt{3}$
(b) $\frac{1+\sqrt{3} i}{3+i}$
(c) $\sin \alpha+i(1-\cos \alpha), 0>\alpha>\pi$
(d) $(1+i \sqrt{3})^{2}$
2. Find the modulus, argument, and the principal argument of the complex numbers. (i) $(\tan 1-i)^{2}$

- Watch Video Solution

3. If $\frac{3 \pi}{2}<\alpha<2 \pi$, find the modulus and argument of $(1-\cos 2 \alpha)+i \sin 2 \alpha$.

- Watch Video Solution

4. Find the principal argument of the complex number $\frac{\sin (6 \pi)}{5}+i\left(1+\frac{\cos (6 \pi)}{5}\right)$.

- Watch Video Solution

5. If $z=r e^{i \theta}$, then prove that $\left|e^{i z}\right|=e^{-r s} \delta h \eta$.
6. Find the complex number z satisfying $\operatorname{Re}\left(z^{2} 0=0,|z|=\sqrt{3}\right.$.

- Watch Video Solution

7. If $|z-i \operatorname{Re}(z)|=|z-\operatorname{Im}(z)|$, then prove that z, lies on the bisectors of the quadrants.

- Watch Video Solution

8. Find the locus of the points representing the complex number z for which $|z+5|^{2}=|z-5|^{2}=10$.

- Watch Video Solution

9. Solve: $+z^{2}+|z|=0$.
10. Let $z=x+i y$ be a complex number, where $x a n d y$ are real numbers. Let AandB be the sets by defined $A=\{z:|z| \leq 2\}$ andB $=\{z:(1-i) z+(1+i) z \geq 4\}$. Find the area of region $A \cup B$

D Watch Video Solution

11. Real part of $\left(e^{e}\right)^{l \theta}$ is

- Watch Video Solution

12. Prove that $z=i^{i}$, wherei $=\sqrt{-1}$, is purely real.

- Watch Video Solution

1. For

$$
z_{1}=6 \sqrt{(1-i) /(1+i \sqrt{3})}, z_{2}=6 \sqrt{(1-i) /(\sqrt{3}+i)},
$$

$z_{3}={ }^{6} \sqrt{ }(1+i) /(\sqrt{3}-i)$, prove that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|$

- Watch Video Solution

2. If $\sqrt{3}+i=(a+i b) /(c+i d)$, then find the value of $\tan ^{-1}(b / a) \tan ^{-1}(d / c)$

- Watch Video Solution

3. If z_{1}, z_{2} and z_{3}, z_{4} are two pairs of conjugate complex numbers then
$\arg \left(\frac{z_{1}}{z_{4}}\right)+\arg \left(\frac{z_{2}}{z_{3}}\right)=$

Watch Video Solution
4. Find the modulus, argument, and the principal argument of the complex numbers. $(\tan 1-i)^{2}$ i-1

$$
i\left(1-\frac{\cos (2 \pi)}{5}\right)+s \in n \frac{2 \pi}{5}
$$

- Watch Video Solution

5. If $(1+i)(1+2 i)(1+3 i) 1+m)=(x+i y)$, then show that $2 \times 5 \times 10 \times \times\left(1+n^{2}\right)=x^{2}+y^{2}$

- Watch Video Solution

6. If $a+i b=\frac{(x+i)^{2}}{2 x+1}$, prove that $a^{2}+b^{2}=\frac{(x+i)^{2}}{(2 x+1)^{2}}$

- Watch Video Solution

7. Let z be a complex number satisfying the equation $\left(z^{3}+3\right)^{2}=-16$, then find the value of $|z|$

(Watch Video Solution

8. If θ is real and z_{1}, z_{2} are connected by $z 12+z 22+2 z_{1} z_{2} \cos \theta=0$, then prove that the triangle formed by vertices $O, z_{1} a n d z_{2}$ is isosceles.

- Watch Video Solution

9. If $\left|z_{1}-z_{0}\right|=z_{2}-z_{1}=\pi / 2$, then find z_{0}

- Watch Video Solution

10. Show that $\left|\frac{z-2}{z-3}\right|=2$ represents a circle. Find its centre and radius.

(Watch Video Solution

1. Express the following in $a+i b$ form: (a) $\frac{(\cos \alpha+i \sin \alpha)^{4}}{(\sin \beta+i \cos \beta)^{5}}$

$$
\begin{equation*}
\left(\frac{1+\cos \phi+i \sin \phi}{1+\cos \phi-i \sin \phi}\right)^{n} \text { (c) } \frac{(\cos \alpha+i \sin \alpha)(\cos \beta+i \sin \beta)}{(\cos \gamma+i \sin \gamma)(\cos \delta+i \sin \delta)} \tag{b}
\end{equation*}
$$

D Watch Video Solution

2. Find the value of following expression: $\left[\frac{1-\frac{\cos \pi}{10}+i \frac{\sin \pi}{10}}{1-\frac{\cos \pi}{10}-i \frac{\sin \pi}{10}}\right]^{10}$

- Watch Video Solution

3. If $i z^{4}+1=0$, then prove that z can take the value $\cos \pi / 8+$ is $\in \pi / 8$.

- Watch Video Solution

4. Prove that $(a)(1+i)^{n}+(1-i)^{n}=2^{\frac{n+2}{2}} \cdot \cos \left(\frac{n \pi}{4}\right)$, where n is a positive integer. (b) $(1+i \sqrt{3})^{n}+\left(1-i \sqrt{3}^{n}=2^{n+1} \cos \left(\frac{n \pi}{3}\right)\right.$, where n is a positive integer

Watch Video Solution

5. If $z=(a+i b)^{5}+(b+i a)^{5}$, then prove that $\operatorname{Re}(z)=\operatorname{Im}(z)$, wherea, $b \in R$

- Watch Video Solution

6. If $\cos \alpha+\cos \beta+\cos \gamma=0$ and alos $\sin \alpha+\sin \beta+\sin \gamma=0$, then prove that. (a) $\cos 2 \alpha+\cos 2 \beta+\cos 2 \gamma=\sin 2 \alpha+\sin 2 \beta+\sin 2 \gamma=0$
$\sin 3 \alpha+\sin 3 \beta+\sin 3 \gamma=3 \sin (\alpha+\beta+\gamma)$
$\cos 3 \alpha+\cos 3 \beta+\cos 3 \gamma=3 \cos (\alpha+\beta+\gamma)$
7. a, b, c are three complex numbers on the unit circle $|z|=1$, such that $a b c=a+b+\cdot$ Then find the value of $|a b+b c+c a|$

(Watch Video Solution

2. Let z be not a real number such that $\left(1+z+z^{2}\right) /\left(1-z+z^{2}\right) \in R$, then prove tha $|z|=1$.

(Watch Video Solution

3. If z_{1}, z_{2}, z_{3} are distinct nonzero complex numbers and $a, b, c \in R^{+}$such that $\frac{a}{\left|z_{1}-z_{2}\right|}=\frac{b}{\left|z_{2}-z_{3}\right|}=\frac{c}{\left|z_{3}-z_{1}\right|}$ Then find the value of $\frac{a^{2}}{\left|z_{1}-z_{2}\right|}+\frac{b^{2}}{\left|z_{2}-z_{3}\right|}+\frac{c^{2}}{\left|z_{3}-z_{1}\right|}$

- Watch Video Solution

4. If z_{1} and z_{2} are two complex numbers such that $\left|z_{1}\right|<1<\left|z_{2}\right|$, then prove that $\left|\left(1-z_{1} \bar{z}_{2}\right) /\left(z_{1}-z_{2}\right)\right|<1$

- Watch Video Solution

5. if $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then prove that $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)$ if $\left|z_{1}-z_{2}\right|=\left|z_{1}\right|+\left|z_{2}\right|$, then prove that $\arg \left(z_{1}\right)=\arg \left(z_{2}\right)=\pi$

- Watch Video Solution

6. For any complex number z, find the minimum value of $|z|+|z-2 i|$

- Watch Video Solution

7. If is any complex number such that $|z+4| \leq 3$, then find the greatest value of $|z+1|$
8. $Z \in C$ satisfies the condition $|Z|>3$. Then find the least value of $\left|Z+\frac{1}{Z}\right|$

(Watch Video Solution

9. If a, b, c are nonzero complex numbers of equal moduli and satisfy $a z^{2}+b z+c=0$, hen prove that $(\sqrt{5}-1) / 2 \leq|z| \leq(\sqrt{5}+1) / 2$.

- Watch Video Solution

10. If $|z| \leq 4$ then find the maximum value of $|i z+3-4 i|$

- Watch Video Solution

11. Let $z_{1}, z_{2}, z_{3}, \ldots \ldots z_{n}$ be the complex numbers such that
$\left|z_{1}\right|=\left|z_{2}\right|=\ldots .=\left|z_{n}\right|=1$. Itbgt If $z=\left(\sum_{k=1}^{n} Z_{k}\right)\left(\sum_{k=1}^{n} \frac{1}{z_{k}}\right)$ then prove that (a) z is a real number (b) $0<z \leq n^{2}$

- Watch Video Solution

Exercise 3.9

1. If $\omega=z /[z-(1 / 3) i]$ and $|\omega|=1$, then find the locus of z.

- Watch Video Solution

2. If $\operatorname{Im}\left(\frac{z-1}{e^{\theta i}}+\frac{e^{\theta i}}{z-1}\right)=0$, then find the locus of z.

- Watch Video Solution

3. For three non-colliner complex numbers Z, Z_{1} and Z_{2} prove that
$\left|Z-\frac{Z_{1}+Z_{2}}{2}\right|^{2}+\left|\frac{Z_{1}-Z_{2}}{2}\right|=\frac{1}{2}\left|Z-Z_{1}\right|^{2}+\frac{1}{2}\left|Z-Z_{2}\right|^{2}$

- View Text Solution

4. If $|z-1|+|z+3| \leq 8$, then prove that z lies on the circle.

- Watch Video Solution

5. If $z=\frac{3}{2+\cos \theta+I \sin \theta}$, then prove that z lies on the circle.

Watch Video Solution

6. How many solutions system of equations, $\arg (z+3-2 i)=-\pi / 4$ and $|z+4|-|z-3 i|=5$ has ?
7. Prove that equation of perpendicular bisector of line segment joining complex numbers z_{1} and z_{2} is $z\left(\bar{z}_{2}-\bar{z}_{1}\right)+\bar{z}\left(z_{2}+z_{1}\right)+\left|z_{1}\right|^{2}-\left|z_{2}\right|^{2}=0$

- Watch Video Solution

8. If complex number z lies on the curve $|z-(-1+i)|=1$, then find the locus of the complex number $w=\frac{z+i}{1-i}, i=\sqrt{-1}$.

- Watch Video Solution

Exercise 3.10

1. If $z_{1} z_{2}, z_{3}$ and z_{4} taken in order vertices of a rhombus, then proves that
$\operatorname{Re}\left(\frac{z_{3}-z_{1}}{z_{4}-z_{2}}\right)=0$

- Watch Video Solution

2. Find the locus of point z if z, i, andiz, are collinear.

- Watch Video Solution

3. If $|z|=2$ and $\frac{z_{1}-z_{3}}{z_{2}-z_{3}}=\frac{z-2}{z+3}$, then prove that z_{1}, z_{2}, z_{3} are vertices of a right angled triangle.

- Watch Video Solution

4. Three vertices of triangle are complex number α, β and γ. Then prove that the perpendicular form the point α to opposite side is given by the equation $\operatorname{Re}\left(\frac{z-\alpha}{\beta-\gamma}\right)=0$ where z is complex number of any point on the perpendicular.

- Watch Video Solution

5. Prove that the complex numbers z_{1}, z_{2} and the origin form an equilateral triangle only if $z_{1}^{2}+z_{2}^{2}-z_{1} z_{2}=0$.

- Watch Video Solution

6. The center of a regular polygon of n sides is located at the point $z=0$, and one of its vertex z_{1} is known. If z_{2} be the vertex adjacent to z_{1}, then z_{2} is equal to

- Watch Video Solution

7. If one vertices of the triangle having maximum area that can be inscribed in the circle $|z-i|=5$ is $3-3 i$, then find the other verticles of the traingle.

- Watch Video Solution

8. Consider the circle $|z|=r$ in the Argand plane, which is in fact the incircle of trinagle $A B C$. If contact points opposite to the vertices A, B, C are $A_{1}\left(z_{1}\right), B_{1}\left(z_{2}\right)$ and $C_{1}\left(z_{3}\right)$, obtain the complex numbers associate with the vertices $\mathrm{A}, \mathrm{B}, \mathrm{C}$ in terms of z_{1}, z_{2} and z_{3}.

- Watch Video Solution

9. P is a point on the argand diagram on the circle with OP as diameter two points taken such that $\angle P O Q=\angle Q O R=0$ If O is the origin and P, Q, R are are represented by complex z_{1}, z_{2}, z_{3} respectively then show that $z_{2}^{2} \cos 2 \theta=z_{1} z_{3} \cos ^{2} \theta$

- Watch Video Solution

10. The center of the arc represented by $\arg \left[\frac{z-3 i}{z-2 i+4}\right]=\frac{\pi}{4}$
11. If α is complex fifth root of unity and $\left(1+\alpha+\alpha^{2}+\alpha^{3}\right)^{2005}=p+q \alpha+r \alpha^{2}+s \alpha^{3}$ (where $\mathrm{p}, \mathrm{q}, \mathrm{r}, \mathrm{s}$ are real), then find the value of $p+q+r+s$.

- Watch Video Solution

2. Find the number of roots of the equation $z^{15}=1$ satisfying $|\arg z|<\pi / 2$.

- Watch Video Solution

3. If z is nonreal root of $[-1]^{\frac{1}{7}}$ then, find the value of $z^{86}+z^{175}+z^{289}$

- Watch Video Solution

4. Given α, β, respectively, the fifth and the fourth non-real roots of units, then find the value of $(1+\alpha)(1+\beta)\left(1+\alpha^{2}\right)\left(1+\beta^{2}\right)\left(1+\alpha^{4}\right)\left(1+\beta^{4}\right)$

- Watch Video Solution

5. If the six roots of $x^{6}=-64$ are written in the form $a+i b$, where a and b are real, then the product ofthose roots for which $a<0$ is

- Watch Video Solution

6. If $z_{r}: r=1,2,3, \ldots . .50$ are the roots of the equaiton $\sum_{r=0} z^{r}=0$, then find 50 the value of $\sum_{r=1} 1 /\left(z_{r}-1\right)$

- Watch Video Solution

1. If $a<0, b>0$, then $\sqrt{a} \sqrt{b}$ equal to
A. $-\sqrt{|a| b}$
B. $\sqrt{|a| b}$ i
C. $\sqrt{|a| b}$
D. none of these

Answer: B

- Watch Video Solution

2. Consider the equation $10 z^{2}-3 i z-k=0$, wherez is a following complex variable and $i^{2}=-1$. Which of the following statements ils true? For real complex numbers k, both roots are purely imaginary. For all complex numbers k, neither both roots is real. For all purely imaginary numbers k , both roots are real and irrational. For real negative numbers k, both roots are purely imaginary.
A. For real positive numbers k , both roots are purely imaginary
B. For all complex numbers k, neither root is real .
C. For real negative numbers k, both roots are real and irrational .
D. For real negative numbers k, both roots are purely imaginary.

Answer: D

- Watch Video Solution

3. The number of solutions of the equation $z^{2}+z=0$ where z is a a complex number, is
A. 1
B. 2
C. 3
D. 4

Answer: D

4. If center of a regular hexagon is at the origin and one of the vertices on the Argand diagram is $1+2 i$, then its perimeter is $2 \sqrt{5}$ b. $6 \sqrt{2}$ c. $4 \sqrt{5}$ d. $6 \sqrt{5}$
A. $2 \sqrt{5}$
B. $6 \sqrt{5}$
C. $4 \sqrt{5}$
D. $6 \sqrt{5}$

Answer: D

- Watch Video Solution

5. If x and y are complex numbers, then the system of equations
$(1+i) x+(1-i) y=1,2 i x+2 y=1+i$ has
A. unique solution
B. no solution
C. infinte number of solutions
D. none of theses

Answer: C

D Watch Video Solution

6. The point $z_{1}=3+\sqrt{3} i$ and $z_{2}=2 \sqrt{3}+6 i$ are given on la complex plane.

The complex number lying on the bisector of the angel formed by the vectors z_{1} and z_{2} is
A. $z=\frac{(3+2 \sqrt{3})}{2}+\frac{\sqrt{3}+2}{2} i$
B. $z=5+5 i$
C. $z=-1-i$
D. none of these

Watch Video Solution

7. The polynomial $x^{6}+4 x^{5}+3 x 64+2 x^{3}+x+1$ is divisible by \qquad where w is the cube root of units $x+\omega$ b. $x+\omega^{2}$ c. $(x+\omega)\left(x+\omega^{2}\right)$ d. $(x-\omega)\left(x-\omega^{2}\right)$ where ω is one of the imaginary cube roots of unity.
A. $x+\omega$
B. $x+\omega^{2}$
C. $(x+\omega)\left(x+\omega^{2}\right)$
D. $(x+\omega)\left(x-\omega^{2}\right)$

Answer: D

- Watch Video Solution

8. Dividing $f(z)$ by $z-i$, we obtain the remainder i and dividing it by $z+i$, we get the remainder $1+\mathrm{i}$, then remainder upon the division of $f(z)$ by $z^{2}+1$ is
A. $\frac{1}{2}(z+1)+i$
B. $\frac{1}{2}(i z+1)+i$
C. $\frac{1}{2}(i z-1)+i$
D. $\frac{1}{2}(z+i)+1$

Answer: B

- Watch Video Solution

9. The complex number $\sin (x)+i \cos (2 x)$ and $\cos (x)-i \sin (2 x)$ are conjugate to each other for
A. $x=n \pi, n \in Z$
B. $x=0$
C. $x=(n+1 / 2) \pi, n \in Z$
D. no value of x
10. If the equation $z^{4}+a_{1} z^{3}+a_{2} z^{2}+a_{3} z+a_{4}=0$ where $a_{1}, a_{2}, a_{3}, a_{4}$ are real coefficients different from zero has a pure imaginary root then the expression $\frac{a_{1}}{a_{1} a_{2}}+\frac{a_{1} a_{4}}{a_{2} a_{3}}$ has the value equal to
A. 0
B. 1
C. -2
D. 2

Answer: B

- Watch Video Solution

11. If $z_{1}, z_{2} \in C, z_{1}^{2} \in R, z_{1}\left(z_{1}^{2}-3 z_{2}^{2}\right)=2$ and $z_{2}\left(3 z_{1}^{2}-z_{2}^{2}\right)=11$, then the value of $z_{1}^{2}+z_{2}^{2}$ is
A. 10
B. 12
C. 5
D. 8

Answer: C

D Watch Video Solution

12. If $a^{2}+b^{2}=1$ then $\frac{1+b+i a}{1+b-i a}=$
A. $a+i b$
B. $a+i a$
C. $b+i a$
D. $b+i b$

Answer: C
13. If $z(1+a)=b+i$ canda $a^{2}+b^{2}+c^{2}=1$, then $\left[(1+i z) /(1-i z)=\frac{a+i b}{1+c} b\right.$. $\frac{b-i c}{1+a}$ c. $\frac{a+i c}{1+b}$ d. none of these
A. $\frac{a+i b}{1+c}$
B. $\frac{b-i c}{1+a}$
C. $\frac{a+i c}{1+b}$
D. none of these

Answer: A

- Watch Video Solution

14. If a and b are complex and one of the roots of the equation $x^{2}+a x+b=0$ is purely real whereas the other is purely imaginary, then

$$
\text { A. } a^{2}-(\bar{a})^{2}=4 b
$$

B. $a^{2}-(\bar{a})^{2}=2 b$
C. $b^{2}-(\bar{a})^{2}=2 a$
D. $b^{2}-(\bar{b})^{2}=2 a$

Answer: A

- Watch Video Solution

15. If $z=(\lambda+3)+i \sqrt{\left(5-\lambda^{2}\right)}$; then the locus of z is
A. ellispe
B. semicircle
C. parabola
D. none of these

Answer: B

16. Let $z=1-t+i \sqrt{t^{2}+t+2}$, where t is a real parameter.the locus of the z in argand plane is
A. a hyperbola
B. an ellipse
C. a striaght line
D. none of these

Answer: A

- Watch Video Solution

17. If z_{1} and z_{2} are the complex roots of the equation $(x-3)^{3}+1=0$, then $z_{1}+z_{2}$ equal to
A. 1
B. 3
C. 5
D. 7

Answer: D

- Watch Video Solution

18. Which of the following is equal to $\sqrt[3]{-1}$?
$\sqrt{3}+\sqrt{-1}$
A.

2
B. $\frac{-\sqrt{3}+\sqrt{-1}}{\sqrt{-4}}$
$\sqrt{3}-\sqrt{-1}$
C. $\frac{\sqrt{-4}}{\sqrt{-4}}$
D. $-\sqrt{-1}$

Answer: B

19.

If $x^{2}+x+1=0$ then the value of

$$
\left(x+\frac{1}{x}\right)^{2}+\left(x^{2}+\frac{1}{x^{2}}\right)^{2}+\ldots+\left(x^{27}+\frac{1}{x^{27}}\right)^{2} \text { is }
$$

A. 27
B. 72
C. 45
D. 54

Answer: D

- Watch Video Solution

20. Sum of common roots of the equations $z^{3}+2 z^{2}+2 z+1=0$ and $z^{1985}+z^{100}+1=0$ is
A. -1
B. 1
C. 0
D. 1

Answer: A

- Watch Video Solution

21. If $5 x^{3}+M x+N, M, N \in R$ is divisible by $x^{2}+x+1$, then the value of $M+N$ is
A. 5
B. 4
C. -4
D. -5

Answer: D

22. If $z=x+$ iyand $x^{2}+y^{2}=16$, then the range of $||x|-|y||$ is $[0,4] \mathrm{b}$.

$[0,2]$ c. [2, 4] d. none of these

A. $[0,4]$
B. [0, 2]
C. $[2,4]$
D. none of these

Answer: A

- Watch Video Solution

23. If z is a complex number satisfying the equaiton $z^{6}-6 z^{3}+25=0$, then the value of $|z|$ is
A. $5^{1 / 3}$
B. $25^{1 / 3}$
C. $125^{1 / 3}$
D. $625^{1 / 3}$

Answer: A

- Watch Video Solution

24. If $8 i z+12 z^{2}-18 z+27 i=0$, then $|z|=\frac{3}{2}$ b. $|z|=\frac{2}{3} c \cdot|z|=1$ d. $|z|=\frac{3}{4}$
A. $|z|=\frac{3}{2}$
B. $|z|=\frac{3}{4}$
C. $|z|=1$
D. $|z|=\frac{3}{4}$

Answer: A

Watch Video Solution
25. Let $z_{1} a n d z_{2}$ be complex numbers such that $z_{1} \neq z_{2}$ and $\left|z_{1}\right|=\left|z_{2}\right|$ If z_{1} has positive real part and z_{2} has negative imaginary part, then $\frac{z_{1}+z_{2}}{z_{1}-z_{2}}$ may be zero (b) real and positive real and negative (d) purely imaginary
A. purely imaginary
B. real and positive
C. real and negative
D. none of these

Answer: A

- Watch Video Solution

26. $\left|z_{1}\right|=\left|z_{2}\right|$ and $\arg \left(\frac{z_{1}}{z_{2}}\right)=\pi$, then $z_{1}+z_{2}$ is equal to
A. 0
B. purely imaginary
C. purely real
D. none of these

Answer: A

- Watch Video Solution

27. If for complex numbers z_{1} and $z_{2}, \arg \left(z_{1}\right)-\arg \left(z_{2}\right)=0$ then $\left|z_{1}-z_{2}\right|$ is equal to
A. $\left|z_{1}\right|+\left|z_{2}\right|$
B. $\left|z_{1}\right|-\left|z_{2}\right|$
c. $\left|\left|z_{1}\right|-\left|z_{2}\right|\right|$
D. 0

Answer: C

- Watch Video Solution

28. If $\left|\frac{z_{1}}{z_{2}}\right|=1$ and $\arg \left(z_{1} z_{2}\right)=0$, then
A. $z_{1}=z_{2}$
B. $\left|z_{2}\right|^{2}=z_{1} z_{2}$
C. $z_{1} z_{2}=1$
D. more than 8

Answer: B

D Watch Video Solution

29. Suppose A is a complex number and $n \in N$, such that $A^{n}=(A+1)^{n}=1$, then the least value of n is 3 b. 6 c .9 d .12
A. 3
B. 6
C. 9
D. 12

Answer: B

- Watch Video Solution

30. Let z, w be complex numbers such that $\bar{z}+i \bar{w}=0$ and $\operatorname{argzw}=\pi$ Then argz equals
A. 4
B. 6
C. 8
D. more than 8

Answer: C

31. Let z, w be complex numbers such that $\bar{z}+i \bar{w}=0$ and $\operatorname{argzw}=\pi$ Then argz equals
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. $\frac{3 \pi}{4}$
D. $\frac{5 \pi}{4}$

Answer: C

- Watch Video Solution

32. If $z=(3+7 i)(a+i b)$ where $a, b \in \in Z-\{0\}$, is purely imaginary, then the minimum value of $|z|$ is
A. 74
B. 45
C. 58

D. 65

Answer: C

- Watch Video Solution

33. If $(\cos \theta+i \sin \theta)(\cos 2 \theta+i \sin 2 \theta) \ldots .(\cos n \theta+i \sin n \theta)=1$ then the value of θ is :
A. $4 m \pi$
B. $\frac{2 m \pi}{n(n+1)}$
C. $\frac{4 m \pi}{n(n+1)}$
D. $\frac{m \pi}{n(n+1)}$

Answer: C

34. Given $z=(1+i \sqrt{3})^{100}$, then $[R E(z) / I M(z)]$ equals 2^{100} b. 2^{50} c. $\frac{1}{\sqrt{3}}$ d. $\sqrt{3}$
A. 2^{100}
B. 2^{50}
C. $\frac{1}{\sqrt{3}}$
D. $\sqrt{3}$

Answer: C

- Watch Video Solution

35. The expression $\left[\frac{1+\sin \left(\frac{\pi}{8}\right)+i \cos \left(\frac{\pi}{8}\right)}{1+\sin \left(\frac{\pi}{8}\right)-i \cos \left(\frac{\pi}{8}\right)}\right]^{8}$ is equal is
A. 1
B. -1
C. i
D. $-i$

Answer: B

- Watch Video Solution

36. The number of complex numbers z satisfying $|z-3-i|=|z-9-i| a n d|z-3+3 i|=3$ are a. one b. two c. four d. none of these
A. one
B. two
C. four
D. none of these

Answer: A

37. $P(z)$ be a variable point in the Argand plane such that $|z|=m \in \operatorname{i\mu m}\{|z-1,|z+1|\}$, thenz $+z$ will be equal to a. -1 or 1 b. 1 but not equal to-1 c. -1 but not equal to 1 d . none of these
A. -1 or 1
B. 1 but not equal to -1
C. -1 but not equal to 1
D. none of these

Answer: A

- Watch Video Solution

38. if $\left|z^{2}-1\right|=|z|^{2}+1$ then z lies on
A. a circle
B. a parabola
C. an ellipse
D. none of these

Answer: D

- Watch Video Solution

39. If $z=x+i y\left(x, y \in R, x \neq-\frac{1}{2}\right)$, the number of values of z satisfying $|z|^{n}=z^{2}|z|^{n-2}+z|z|^{n-2}+1 .(n \in N, n>1)$ is
A. 0
B. 1
C. 2
D. 3

Answer: B

40. Number of solutions of the equation $z^{3}+\frac{3(\bar{z})^{2}}{|z|}=0$ where z is a complex number is
A. 2
B. 3
C. 6
D. 5

Answer: D

- Watch Video Solution

41. Number of ordered pairs(s) (a, b) of real numbers such that $(a+i b)^{2008}=a-i b$ holds good is
A. 2008
B. 2009
C. 2010
D. 1

Answer: C

- Watch Video Solution

42. The equation $a z^{3}+b z^{2}+\bar{b} z+\bar{a}=0$ has a root α, where $\mathrm{a}, \mathrm{b}, \mathrm{z}$ and α belong to the set of complex numbers. The number value of $|\alpha|$
A. is $1 / 2$
B. is 1
C. is 2
D. can't be determined

Answer: B

- Watch Video Solution

43. If $k>0,|z|=w=k$, and $\alpha=\frac{z-\bar{w}}{k^{2}+z \bar{w}}$, then $\operatorname{Re}(\alpha)(A) 0$ (B) $\frac{k}{2}$ (C) k (D) None of these
A. 0
B. $k / 2$
C. k
D. none of these

Answer: A

- Watch Video Solution

44. $z_{1} a n d z_{2}$ are two distinct points in an Argand plane. If $a\left|z_{1}\right|=b\left|z_{2}\right|($ wherea, $b \in R)$, then the point $\left(a z_{1} / b z_{2}\right)+\left(b z_{2} / a z_{1}\right)$ is a point on the line segment $[-2,2]$ of the real axis line segment $[-2,2]$ of the imaginary axis unit circle $|z|=1$ the line with $\operatorname{argz}=\tan ^{-1} 2$
A. line segment [- 2, 2] of the real axis
B. line segment [-2,2] of the imaginary axis
C. unit circle $|z|=1$
D. the line with $\arg z=\tan ^{-1} 2$

Answer: A

- Watch Video Solution

45. If z is a comple number such that $-\frac{\pi}{2}<\arg z \leq \frac{\pi}{2}$, then which of the following inequalities is ture?
A. $|z-\bar{z}| \leq|z|(\operatorname{argz}-\arg \bar{z})$
B. $|z-\bar{z}| \geq|z|(\operatorname{argz}-\arg \bar{z})$
C. $|z-\bar{z}|<(\operatorname{argz}-\arg \bar{z})$
D. None of these

Answer: A

46. If $\cos \alpha+2 \cos \beta+3 \cos \gamma=\sin \alpha+2 \sin \beta+3 \sin \gamma y=0$, then the value of $\sin 3 \alpha+8 \sin 3 \beta+27 \sin 3 \gamma$ is
A. $\sin (a+b+\gamma)$
B. $3 \sin (\alpha+\beta+\gamma)$
C. $18 \sin (\alpha+\beta+\gamma)$
D. $\sin (\alpha+\beta+\gamma)$

Answer: C

- Watch Video Solution

47. If α, β be the roots of the equation $u^{2}-2 u+2=0$ and if $\cot \theta=x+1$,
then $\frac{(x+\alpha)^{n}-(x+\beta)^{n}}{\alpha-\beta}$ is equal to
(a) $\binom{\sin n \theta}{\sin ^{n} \theta}$
(b) $\binom{\cos n \theta}{\cos ^{n} \theta}$
$\left.\left((\sin n \theta), \cos ^{n} \theta\right)\right)\left(\right.$ d) $\binom{\cos n \theta}{\sin \theta^{n} \theta}$
A. $\frac{\sin n n \theta}{\sin ^{n} \theta}$
B. $\frac{\cos n \theta}{\cos ^{n} \theta}$
C. $\frac{\sin n \theta}{\cos ^{n} \theta}$
D. $\frac{\cos ^{n} \theta}{\sin ^{n} \theta}$
48. If $z=i \log (2-\sqrt{-3})$, then $\cos z=$
A. -1
B. $-1 / 2$
C. 1
D. 2

Answer: D

- Watch Video Solution

50. If $|z|=1$, then the point representing the complex number $-1+3 z$ will lie on a. a circle b. a parabola c. a straight line d. a hyperbola
A. a circle
B. a straight line
C. a parabola
D. a hyperbola

Answer: A

- Watch Video Solution

51. The locus of point z satisfying $\operatorname{Re}\left(\frac{1}{z}\right)=k$, wherek is a nonzero real number, is a . a straight line b. a circle c . an ellipse d . a hyperbola
A. a stringht line
B. a circle
C. an ellispe
D. a hyperbola

Answer: B

52. If z is complex number, then the locus of z satisfying the condition $|2 z-1|=|z-1|$ is perpendicular bisector of line segment joining $1 / 2$ and 1 circle parabola none of the above curves
A. perpeciular bisector of line segment joining $1 / 2$ and 1
B. circle
C. parabola
D. none of the above curves

Answer: B

- Watch Video Solution

53. The greatest positive argument of complex number satisfying
$|z-4|=\operatorname{Re}(z)$ is $\frac{\pi}{3}$ b. $\frac{2 \pi}{3}$ c. $\frac{\pi}{2}$ d. $\frac{\pi}{4}$
A. $\frac{\pi}{3}$
B. $\frac{2 \pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{\pi}{4}$

Answer: D

D Watch Video Solution

54. If tandc are two complex numbers such that $|t| \neq|c|,|t|=1$ and $z=(a t+b) /(t-c), z=x+$ iy Locus of z is (where a, b are complex numbers) a. line segment b. straight line c. circle d. none of these
A. line segment
B. straight line
C. circle
D. none of these

Answer: C

55. If $z^{2}+z|z|+\left|z^{2}\right|=0$, then the locus z is a. a circle b. a straight line c. a pair of straight line d. none of these
A. a circle
B. a straight line
C. a pair of straing line
D. none of these

Answer: C

- Watch Video Solution

56. Let C_{1} and C_{2} are concentric circles of radius 1 and $\frac{8}{3}$ respectively having centre at $(3,0)$ on the argand plane. If the complex number z satisfies the inequality $\log _{\frac{1}{3}}\left(\frac{|z-3|^{2}+2}{11|z-3|-2}\right)>1$, then
A. z lies outside C_{1} but inside C_{2}
B. z line inside of both C_{1} and C_{2}
C. z line outside both C_{1} and C_{2}
D. none of these

Answer: A

- Watch Video Solution

57. If $\left.|z-2-i|=|z| \sin \left(\frac{\pi}{4}-\arg z\right) \right\rvert\,$, where $i=\sqrt{-1}$, then locus of z, is
A. a pair of straing lines
B. circle
C. parabola
D. ellispe

Answer: C

58. If $|z-1| \leq 2$ and $\left|\omega z-1-\omega^{2}\right|=a \quad$ (wherewisacube $\sqrt[o]{f}$ funity $)$, then
complete set of values of a is $0 \leq a \leq 2$ b. $\frac{1}{2} \leq a \leq \frac{\sqrt{3}}{2}$ C. $\frac{\sqrt{3}}{2}-\frac{1}{2} \leq a \leq \frac{1}{2}+\frac{\sqrt{3}}{2}$ d. $0 \leq a \leq 4$
A. $0 \leq a \leq 2$
B. $\frac{1}{2} \leq a \leq \frac{\sqrt{3}}{2}$
C. $\frac{\sqrt{3}}{2}-\frac{1}{2} \leq a \leq \frac{1}{2}+\frac{\sqrt{3}}{2}$
D. $0 \leq a \leq 4$

Answer: D

- Watch Video Solution

59. If $\left|z^{2}-3\right|=3|z|$, then the maximum value of $|z|$ is 1 b . $\frac{3+\sqrt{21}}{2} \mathrm{c}$. $\sqrt{21}-3$
A. 1
B. $\frac{3+\sqrt{21}}{2}$
C. $\frac{\sqrt{21}-3}{2}$
D. none of these

Answer: B

D Watch Video Solution

60. If $|2 z-1|=|z-2| a n d z_{1}, z_{2}, z_{3}$ are complex numbers such that $\mid z_{-} 1$ (alpha)|< alpha,|z_2-beta||z|d. >2|z|`
A. $<|z|$
B. $<2|z|$
C. $>|z|$
D. $>2|z|$

Answer: B

61. If z_{1} is a root of the equation
$a_{0} z^{n}+a_{1} z^{n-1}++a_{n-1} z+a_{n}=3$, where $\left|a_{i}\right|<2 f$ or $i=0,1,, n$, then $|z|=\frac{3}{2}$
b. $|z|<\frac{1}{4}$ c. $|z|>\frac{1}{4}$ d. $|z|<\frac{1}{3}$
A. $\left|z_{1}\right|>\frac{1}{2}$
B. $\left|z_{1}\right|<\frac{1}{2}$
C. $\left|z_{1}\right|>\frac{1}{4}$
D. $|z|<\frac{1}{2}$

Answer: A

- Watch Video Solution

62. If $|z|<$
A. less than 1
B. $\sqrt{2}+1$
C. $\sqrt{2-1}$
D. none of these

Answer: A

- Watch Video Solution

63. Let $\left|Z_{r}-r\right| \leq r$, for all $r=1,2,3 \ldots, n$. Then $\left|\sum_{r=1}^{n} z_{r}\right|$ is less than
A. n
B. 2 n
C. $n(n+1)$
D. $\frac{n(n+1)}{2}$

Answer: C

64. All the roots of the equation $11 z^{10}+10 i z^{9}+10 i z-11=0$ lie
A. inside $|z|=1$
B. one $|z|=1$
C. outside $|z|=1$
D. cannot say

Answer: B

- Watch Video Solution

65. Let $\lambda \in R$. If the origin and the non-real roots of $2 z^{2}+2 z+\lambda=0$ form the three vertices of an equilateral triangle in the Argand lane, then λ is
A. 1
B. $\frac{2}{3}$
C. 2
D. -1

Answer: B

- Watch Video Solution

66. The roots of the equation $t^{3}+3 a t^{2}+3 b t+c=0 a r e z_{1}, z_{2}, z_{3}$ which represent the vertices of an equilateral triangle. Then $a^{2}=3 b \mathrm{~b} . b^{2}=a \mathrm{c}$.
$a^{2}=b$ d. $b^{2}=3 a$
A. $a^{2}=3 b$
B. $b^{2}=a$
C. $a^{2}=a$
D. $b^{2}=3 a$

Answer: C

- Watch Video Solution

67. The roots of the cubic equation $(z+a b)^{3}=a^{3}, a \neq 0$ represents the vertices of an equilateral triangle of sides of length
A. $\frac{1}{\sqrt{3}}|a b|$
B. $\sqrt{3}|a|$
C. $\sqrt{3}|b|$
D. $|a|$

Answer: B

Watch Video Solution
68. If $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=1$ and $z_{1}+z_{2}+z_{3}=0$ then the area of the triangle whose vertices are z_{1}, z_{2}, z_{3} is
A. $3 \sqrt{3 / 4}$
B. $\sqrt{3 / 4}$
C. 1

D. 2

Answer: A

- Watch Video Solution

69. Let z and ω be two complex numbers such that $|z| \leq 1,|\omega| \leq 1$ and
$|z+i \omega|=\left|z_{1}-z_{2}\right|$ is equal to
A. $\frac{2}{3}$
B. $\frac{\sqrt{5}}{3}$
C. $\frac{3}{2}$
D. $\frac{2 \sqrt{5}}{3}$

Answer: C

70. Let $z_{1}, z_{2}, z_{3}, z_{4}$ are distinct complex numbers satisfying $|z|=1$ and $4 z_{3}=3\left(z_{1}+z_{2}\right)$, then $\left|z_{1}-z_{2}\right|$ is equal to
A. 1 or i
B. i or $-i$
C. 1 or i
D. i or -1

Answer: D

- Watch Video Solution

71. $z_{1}, z_{2}, z_{3}, z_{4}$ are distinct complex numbers representing the vertices of a quadrilateral $A B C D$ taken in order. If $z_{1}-z_{4}=z_{2}-z_{3}$ and $\arg \left[\left(z_{4}-z_{1}\right) /\left(z_{2}-z_{1}\right)\right]=\pi / 2$, the quadrilateral is
A. rectangle
B. rhombus
C. square
D. trapezium

Answer: A

- Watch Video Solution

72. If $k+\left|k+z^{2}\right|=|z|^{2}\left(k \in R^{-}\right)$, then possible argument of z is
A. 0
B. π
C. $\pi / 2$
D. none of these

Answer: C

73. If z_{1}, z_{2}, z_{3} are the vertices of an equilational triangle $A B C$ such that $\left|z_{1}-i\right|=\left|z_{2}-i\right|=\left|z_{3}-i\right|$, then $\left|z_{1}+z_{2}+z_{3}\right|$ equals to
A. $3 \sqrt{3}$
B. $\sqrt{3}$
C. 3
D. $\frac{1}{3 \sqrt{3}}$

Answer: C

- Watch Video Solution

74. If z is a complex number having least absolute value and $|z-2+2 i|=\mid$, then $z=$
A. $(2-1 / \sqrt{2})(1-i)$
B. $(2-1 / \sqrt{2})(1+i)$
C. $(2+1 / \sqrt{2}(1-i)$
D. $(2+1 / \sqrt{2})(1+i)$

Answer: A

- Watch Video Solution

75. If z is a complex number lying in the fourth quadrant of Argand plane and $|[k z /(k+1)]+2 i|>\sqrt{2}$ for all real value of $k(k \neq-1)$, then range of $\arg (z)$ is $\left(\frac{\pi}{8}, 0\right)$ b. $\left(\frac{\pi}{6}, 0\right)$ c. $\left(\frac{\pi}{4}, 0\right)$ d. none of these
A. $\left(-\frac{\pi}{8}, 0\right)$
B. $\left(-\frac{\pi}{6}, 0\right)$
C. $\left(-\frac{\pi}{4}, 0\right)$
D. None of these

Answer: C

76. If $\left|z_{2}+i z_{1}\right|=\left|z_{1}\right|+\left|z_{2}\right|$ and $\left|z_{1}\right|=$ 3and $\left|z_{2}\right|=4$, then the area of $A B C$, if affixes of A, B, andCarez z_{1}, z_{2}, and $\left[\left(z_{2}-i z_{1}\right) /(1-i)\right]$ respectively, is $\frac{5}{2}$ b. 0 c. $\frac{25}{2}$ d. $\frac{25}{4}$
A. $\frac{5}{2}$
B. 0
C. $\frac{25}{2}$
D. $\frac{25}{4}$

Answer: D

- Watch Video Solution

77. If a complex number z satisfies $|2 z+10+10 i| \leq 5 \sqrt{3}-5$, then the least principal argument of z is: (a) $-\frac{5 \pi}{6}$ (b) $\frac{11 \pi}{12}$ (c) $-\frac{3 \pi}{4}$ (d) $-\frac{2 \pi}{3}$
A. $-\frac{5 \pi}{6}$
B. $-\frac{11 \pi}{12}$
C. $-\frac{3 \pi}{4}$
D. $-\frac{2 \pi}{3}$

Answer: A

- Watch Video Solution

78. If 'z, lies on the circle $|z-2 i|=2 \sqrt{2}$, then the value of $\arg \left(\frac{z-2}{z+2}\right)$ is the equal to
A. $\frac{\pi}{3}$
B. $\frac{\pi}{4}$
C. $\frac{\pi}{6}$
D. $\frac{\pi}{2}$

Answer: B

79. z_{1} and z_{2}, lie on a circle with centre at origin. The point of intersection of the tangents atz z_{1} and z_{2} is given by
A. $\frac{1}{2}\left(\bar{z}_{1}+\bar{z}_{2}\right)$
B. $\frac{2 z_{1} z_{2}}{z_{1}+z_{2}}$
C.
D.

Answer: B

- Watch Video Solution

80. If $\arg \left(\frac{z_{1}-\frac{z}{|z|}}{\frac{z}{|z|}}\right)=\frac{\pi}{2}$ and $\left|\frac{z}{|z|}-z_{1}\right|=3$, then $\left|z_{1}\right|$ equals to
A. $\sqrt{26}$
B. $\sqrt{10}$
C. $\sqrt{3}$
D. $2 \sqrt{2}$

Answer: B

- Watch Video Solution

81. The maximum area of the triangle formed by the complex coordinates
z, z_{1}, z_{2} which satisfy the relations $\left|z-z_{1}\right|=\left|z-z_{2}\right|$ and $\left|z-\frac{z_{1}+z_{2}}{2}\right| \leq r$,where $r>\left|z_{1}-z_{2}\right|$ is
A. $\frac{1}{2}\left|z_{1}-z_{2}\right|^{2}$
B. $\frac{1}{2}\left|z_{1}-z_{2}\right| r$
C. $\frac{1}{2}\left|z_{1}-z_{2}\right|^{2} r^{2}$
D. $\frac{1}{2}\left|z_{1}-z_{2}\right|^{2}$

Answer: B

82. Consider the region S of complex numbers a such that $\left|z^{2}-a z+1\right|=1$, where $|z|=1$. Then area of S in the Argand plane is
A. $\pi+8$
B. $\pi+4$
C. $2 \pi+4$
D. $\pi+6$

Answer: A

- Watch Video Solution

83. The complex number associated with the vertices A, B, C of $\triangle A B C$ are $e^{i \theta}, \omega, \bar{\omega}$, respectively [where $\omega, \bar{\omega}$ are the com plex cube roots of unity and $\cos \theta>\operatorname{Re}(\omega)]$, then the complex number of the point where angle bisector of A meets cumcircle of the triangle, is
A. $e^{i \theta}$
B. $e^{-i \theta}$
C. $\omega, \bar{\omega}$
D. $\omega+\bar{\omega}$

Answer: D

- Watch Video Solution

84. If pandq are distinct prime numbers, then the number of distinct imaginary numbers which are pth as well as qth roots of unity are. $\min (p, q)$ b. min (p, q) c. 1 d. zero
A. $\min (p, q)$
B. $\max (\mathrm{p}, \mathrm{q})$
C. 1
D. zero

Answer: D

D Watch Video Solution

85. Given z is a complex number with modulus 1 . Then the equation $[(1+i a) /(1-i a)]^{4}=z$ has all roots real and distinct two real and two imaginary three roots two imaginary one root real and three imaginary
A. all roots real and distinct
B. two real and tw imaginary
C. three roots real and one imaginary
D. one root real and three imaginary

Answer: A

- Watch Video Solution

86. The value of z satisfying the equation $\log z+\log z^{2}++\log z^{n}=0$ is
A. $\cos . \frac{4 m \pi}{n(n+1)}+i \sin \frac{4 m \pi}{n(n+1)}, m=0,1,2, \ldots$
B. $\cos \frac{4 m \pi}{n(n+1)}-i \sin . \frac{4 m \pi}{n(n+1)}, m=0,1,2, \ldots$
C. $\sin . \frac{4 m \pi}{n}+i \cos . \frac{4 m \pi}{n}, m=0,1,2, \ldots$
D. 0

Answer: A

- Watch Video Solution

87. If $n \in N>1$, then the sum of real part of roots of $z^{n}=(z+1)^{n}$ is
equal to $\frac{n}{2}$ b. $\frac{(n-1)}{2}$ c. $\frac{n}{2}$ d. $\frac{(1-n)}{2}$
A. $\frac{n}{2}$
B. $\frac{(n-1)}{2}$
C. $-\frac{n}{2}$
D. $\frac{(1-n)}{2}$

Watch Video Solution

88. Which of the following represents a points in an Argand pane, equidistant from the roots of the equation $(z+1)^{4}=16 z^{4}$? $(0,0) b$. $\left(-\frac{1}{3}, 0\right)$ c. $\left(\frac{1}{3}, 0\right)$ d. $\left(0, \frac{2}{\sqrt{5}}\right)$
A. $(0,0)$
B. $\left(-\frac{1}{3}, 0\right)$
C. $\left(\frac{1}{3}, 0\right)$
D. $\left(0, \frac{2}{\sqrt{5}}\right)$

Answer: C

- Watch Video Solution

89. Let a be a complex number such that $|a|<1$ and $z_{1}, z_{2} \ldots$. be vertices of a polygon such that $z_{k}=1+a+a^{2}+a^{3}+a^{k-1}$.

Then, the vertices of the polygon lie within a circle.
A. $\left|z-\frac{1}{1-a}\right|=\frac{1}{|a-1|}$
B. $\left|z+\frac{1}{a+1}\right|=\frac{1}{|a+1|}$
C. $\left|z-\frac{1}{1-a}\right|=|a-1|$
D. $\left|z+\frac{1}{1-a}\right|=|a-1|$

Answer: A

- Watch Video Solution

Exercise (Multiple)

1. If $z=\omega, \omega^{2}$ where ω is a non-real complex cube root of unity, are two vertices of an equilateral triangle in the Argand plane, then the third
vertex may be represented by $z=1 \mathrm{~b} \cdot \mathrm{z}=0 \mathrm{c} \cdot \mathrm{z}=-2 \mathrm{~d} \cdot \mathrm{z}=-1$
A. $z=1$
B. $z=0$
C. $z=-2$
D. $z=-1$

Answer: A::C

- Watch Video Solution

2. If $\operatorname{amp}\left(z_{1} z_{2}\right)=0$ and $\left|z_{1}\right|=\left|z_{2}\right|=1$, then $z_{1}+z_{2}=0$ b. $z_{1} z_{2}=1$ c. $z_{1}=z_{2}$
d. none of these
A. $z_{1}+z_{2}=0$
B. $z_{1} z_{2}=1$
C. $z_{1}=\bar{z}_{2}$
D. none of these

- Watch Video Solution

3. If $\sqrt{5-12 i}+\sqrt{5-12 i}=z$, then principal value of argz can be $\frac{\pi}{4}$ b. $\frac{\pi}{4}$ c. $\frac{3 \pi}{4}$ d. $-\frac{3 \pi}{4}$
A. $-\frac{\pi}{4}$
B. $\frac{\pi}{4}$
C. $\frac{3 \pi}{4}$
D. $-\frac{3 \pi}{4}$

Answer: A::B::C::D

- Watch Video Solution

4. Values $(s)(-i)^{1 / 3}$ is/are $\frac{\sqrt{3}-i}{2}$ b. $\frac{\sqrt{3}+i}{2}$ c. $\frac{-\sqrt{3}-i}{2}$ d. $\frac{-\sqrt{3}+i}{2}$
A. $s \frac{\sqrt{3}-i}{2}$
B. $\frac{\sqrt{3}+i}{2}$
C. $\frac{-\sqrt{3}-i}{2}$
D. $\frac{-\sqrt{3}+i}{2}$

Answer: A::C

- Watch Video Solution

5. If $a^{3}+b^{3}+6 a b c=8 c^{3} \& \omega$ is a cube root of unity then: a, b, c are in $A P$
(b) a, b, c, are in HP $a+b \omega-2 c \omega^{2}=0 a+b \omega^{2}-2 c \omega=0$
A. a, c, b are in A.P
B. a, c, b are in H.P
C. $a+b \omega-2 c \omega^{2}=0$
D. $a+b \omega^{2}-2 c \omega=0$

D Watch Video Solution

6. Let z_{1} and z_{2} be two non -zero complex number such that $\left|z_{1}+z_{2}\right|=\left|z_{1}\right|=\left|z_{2}\right|$. Then $\frac{z_{1}}{z_{2}}$ can be equal to (ω is imaginary cube root of unity).
A. $1+\omega$
B. $1+\omega^{2}$
C. ω
D. ω^{2}

Answer: C::D

- Watch Video Solution

7. If $p=a+b \omega+c \omega^{2}, q=b+c \omega+a \omega^{2}$, and $r=c+a \omega+b \omega^{2}$, where $a, b, c \neq 0$ and ω is the complex cube root of unity , then .
A. If p, q, r lie on the circle $|z|=2$, the trinagle formed by these point is equilateral.
B. $p^{2}+q^{2}+r^{2}=a^{2}+b^{2}+c^{2}$
C. $p^{2}+q^{2}+r^{2}=2(p q+q r+r p)$
D. none of these

Answer: A:C

- View Text Solution

8. Let $P(x)$ and $Q(x)$ be two polynomials.Suppose that $f(x)=P\left(x^{3}\right)+x Q\left(x^{3}\right)$ is divisible by $x^{2}+x+1$, then
A. $P(x)$ is divisible by $(x-1)$,but $Q(x)$ is not divisible by $x-1$
B. $Q(x)$ is divisible by $(x-1)$, but $P(x)$ is not divisible by $x-1$
C. Both $\mathrm{P}(\mathrm{x})$ and $\mathrm{Q}(\mathrm{x})$ are divisible by $\mathrm{x}-1$
D. $f(x)$ is divisible by $x-1$

Answer: C::D

- Watch Video Solution

9. If α is a complex constant such that $a z^{2}+z+\alpha=0$ has a ral root, then $\alpha+\alpha=1 \alpha+\alpha=0 \alpha+\alpha=-1$ the absolute value of the real root is 1
A. alph $+\bar{\alpha}=1$
B. $\alpha+\bar{\alpha}=0$
C. $\alpha+\bar{\alpha}=-1$
D. the absolute value of the real root is 1

Answer: A::C::D

10. If $z^{3}+3+2 i(z+(-1+i a)=0$ has on ereal roots, then the value of a lies in the interval $(a \in R)(-2,1)$ b. $(-1,0) c .(0,1)$ d. $(-2,3)$
A. $(2,-1)$
B. ($-1,0$)
C. $(0,1)$
D. $(-2,3)$

Answer: A::B::D

- Watch Video Solution

11. Given that the complex numbers which satisfy the equation $\left|z z^{3}\right|+\left|z z^{3}\right|=350$ form a rectangle in the Argand plane with the length of its diagonal having an integral number of units, then area of rectangle is 48 sq. units if $z_{1}, z_{2}, z_{3}, z_{4}$ are vertices of rectangle, then $z_{1}+z_{2}+z_{3}+z_{4}=0$ rectangle is symmetrical about the real axis $\arg \left(z_{1}-z_{3}\right)=\frac{\pi}{4}$ or $\frac{3 \pi}{4}$
A. area of rectangle is 48 sq units.
B. if $z_{1}, z_{2}, z_{3}, z_{4}$ are vertices of rectangle, then $z_{1}+z_{2}+z_{3}+z_{4}=0$
C. rectangle is symmetrical about the real axis .
D. None of these

Answer: A::B::C

- Watch Video Solution

12. If the points $A(z), B(-z)$, andC(1-z) are the vertices of an equilateral triangle $A B C$, then sum of possible z is $1 / 2$ sum of possible z is 1 product of possible z is $1 / 4$ product of possible z is
A. sum of possible z is $1 / 2$
B. sum of possible z is
C. product of possible z is $1 / 4$
D. product of possibble z is $1 / 2$.

D Watch Video Solution

13. If $|z-3|=\min \{|z-1|,|z-5|\}$, then $\operatorname{Re}(z)$ equals to
A. 2
B. $\frac{5}{2}$
C. $\frac{7}{2}$
D. 4

Answer: A::D

- Watch Video Solution

14. If z_{1}, z_{2} are tow complex numbers $\left(z_{1} \neq z_{2}\right)$ satisfying $\left|z_{1}^{2}-z_{2}^{2}\right|=\left|\bar{z}_{1}^{2}+\bar{z}_{2}^{2}-2 \bar{z}_{1} \bar{z}_{2}\right|$, then
A. $\frac{z_{1}}{z_{2}}$ is purely imaginary
B. $\frac{z_{1}}{z_{2}}$ is purely real
C. $\left|\operatorname{argz}_{1}-\operatorname{argz}_{2}\right|=\pi$
D. $\left|\operatorname{argz}_{1}-\operatorname{argz}_{2}\right|=\frac{\pi}{2}$

Answer: A::D

- Watch Video Solution

15. If $z_{1}=a+i b$ and $z_{2}=c+i d$ are complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=1$ and $\operatorname{Re}\left(z_{1} \bar{z}_{2}\right)=0$, then the pair ofcomplex nunmbers $\omega=a+i c$ and $\omega_{2}=b+i d$ satisfies
A. $\left|\omega_{1}\right|=1$
B. $\left|\omega_{2}\right|=1$
C. $\operatorname{Re}\left(\omega_{1} \bar{\omega}_{2}\right)=0$
D. $\operatorname{Im}\left(\omega_{1} \bar{\omega}_{2}\right)=0$

- Watch Video Solution

16. Let z_{1} and z_{2} be complex numbers such that $z_{1} \neq z_{2}$ and $\left|z_{1}\right|=\left|z_{2}\right|$ If z_{1}
has positive real part and z_{2} has negative imaginary part, then $\frac{z_{1}+z_{2}}{z_{1}-z_{2}}$ may be zero (b) real and positive real and negative (d) purely imaginary
A. zero
B. real and positive
C. real and negative
D. purely imaginary

Answer: A::D

D Watch Video Solution

17. If $\left|z_{1}\right|=\sqrt{2},\left|z_{2}\right|=\sqrt{3}$ and $\left|z_{1}+z_{2}\right|=\sqrt{(5-2 \sqrt{3})}$ then arg $\left(\frac{z_{1}}{z_{2}}\right)$ (not neccessarily principal)
A. $\frac{3 \pi}{4}$
B. $\frac{2 \pi}{3}$
C. $\frac{5 \pi}{4}$
D. $\frac{5}{2}$

Answer: A: C

- Watch Video Solution

18. Let four points $z_{1}, z_{2}, z_{3}, z_{4}$ be in complex plane such that $\left|z_{2}\right|=1$,
$\left|z_{1}\right| \leq 1$ and $\left|z_{3}\right| \leq 1$. If $z_{3}=\frac{z_{2}\left(z_{1}-z_{4}\right)}{\bar{z}_{1} z_{4}-1}$, then $\left|z_{4}\right|$ can be
A. 2
B. $\frac{2}{5}$
C. $\frac{1}{3}$
D. $\frac{5}{2}$

Answer: B::C

D Watch Video Solution

19. A rectangle of maximum area is inscribed in the circle $|z-3-4 i|=1$. If one vertex of the rectangle is $4+4 i$, then another adjacent vertex of this rectangle can be $2+4 i$ b. $3+5 i$ c. $3+3 i$ d. $3-3 i$
A. $2+4 i$
B. $3+5 i$
C. $3+3 i$
D. 3-3i

Answer: B::C

20. If $\left|z_{1}\right|=15 a d n\left|z_{2}-3-4 i\right|=5$, then $\quad\left(\left|z_{1}-z_{2}\right|\right)_{m \in}=5 \quad$ b.
$\left(\left|z_{1}-z_{2}\right|\right)_{m \in}=10 \mathrm{c} .\left(\left|z_{1}-z_{2}\right|\right)_{\max }=20 \mathrm{~d} .\left(\left|z_{1}-z_{2}\right|\right)_{\max }=25$
A. $\left|z_{1}-z_{2}\right|_{\text {min }}=5$
B. $\left|z_{1}-z_{2}\right|_{\text {min }}=10$
c. $\left|z_{1}-z_{2}\right|_{\text {min }}=20$
D. $\left|z_{1}-z_{2}\right|_{\text {min }}=25$

Answer: A: D

- Watch Video Solution

21. $P\left(z_{1}\right), Q\left(z_{2}\right), R\left(z_{3}\right)$ and $S\left(z_{4}\right)$ are four complex numbers representing the vertices of a rhombus taken in order on the comple plane, then which one of the following is/are correct?
A. $\frac{z_{1}-z_{4}}{z_{2}-z_{3}}$ is purely real
B. $a m p \frac{z_{1}-z_{4}}{z_{2}-z_{4}}=a m p \frac{z_{2}-z_{4}}{z_{3}-z_{4}}$
C. $\frac{z_{1}-z_{3}}{z_{2}-z_{4}}$ is pureluy imaginary
D. is not necessary that $\left|z_{1}-z_{3}\right| \neq\left|z_{2}-z_{4}\right|$

Answer: A::B::C::D

- Watch Video Solution

22. If $\arg (z+a)=\pi / 6$ and $\arg (z-a)=2 \pi / 3\left(a \in R^{+}\right)$, then
A. $|z|=a$
B. $|z|=2 a$
C. $\arg (\mathrm{z})=\frac{\pi}{2}$
D. $\arg (z)=\frac{\pi}{3}$

Answer: A::D

23. If a complex number z satisfies $|z|=1$ and $\arg (z-1)=\frac{2 \pi}{3}$, then (ω is complex imaginary number)
A. $z^{2}+z$ is purely imaginary number
B. $z=-\omega^{2}$
C. $z=-\omega$
D. $|z-1|=1$ then,

Answer: A::B::D

D View Text Solution

24. If $|z-1|=1$, then
A. $\arg ((z-1-i) / z)$ can be equal to $-\pi / 4$
B. $(z-2) / z$ is purely imaaginary number
C. $(z-2) / z$ is purely real number
D. if $\arg (z)=\theta$, where $z \neq 0$ and θ is acute, then $1-2 / z=i \tan \theta$

Answer: A::B::D

- Watch Video Solution

25. If $z_{1}=5+12 i$ and $\left|z_{2}\right|=4$, then
A. maximum $\left(\left|z_{1}+i z_{2}\right|\right)=17$
B. minimum $\left(\left|z_{1}+(1+i) z_{2}\right|\right)=13-4 \sqrt{2}$
C. minimum $\left|\frac{z_{1}}{z_{2}+\frac{4}{z_{2}}}\right|=\frac{13}{4}$
D. maximum $\left|\frac{z_{1}}{z_{2}+\frac{4}{z_{2}}}\right|=\frac{13}{3}$
26. Let z_{1}, z_{2}, z_{3} be the three nonzero comple numbers such that
$z_{2} \neq 1, a=\left|z_{1}\right|, b=\left|z_{2}\right|$ and $c=\left|z_{3}\right|$. Let $\left|\begin{array}{ccc}a & b & c \\ b & c & a \\ c & a & b\end{array}\right|=0$ Then
A. $\arg \left(\frac{z_{3}}{z_{2}}\right)=\arg \left(\frac{z_{3}-z_{1}}{z_{2}-z_{1}}\right)$
B. ortho centre of triangle formed by z_{1}, z_{2}, z_{3} is $z_{1}+z_{2}+z_{3}$
C. if trinagle formed by z_{1}, z_{2}, z_{3} is $z_{1}+z_{2}+z_{3}$ is $\frac{3 \sqrt{3}}{2}\left|z_{1}\right|^{2}$
D. if triangle formed by z_{1}, z_{2}, z_{3} is equlateral, then $z_{1}+z_{2}+z_{3}=0$

Answer: A::B::D

- View Text Solution

27. z_{1} and z_{2} are the roots of the equaiton $z^{2}-a z+b=0$ where $\left|z_{1}\right|=\left|z_{2}\right|=1$ and a, b are nonzero complex numbers, then
A. $|a| \leq 1$
B. $|a| \leq 2$
C. $2 \arg (a)=\arg (b)$
D. $\operatorname{agra}=2 \arg (b)$

Answer: B::C

D Watch Video Solution

28. If $\left|\left(z-z_{1}\right) /\left(z-z_{2}\right)\right|=3$, where z_{1} and z_{2} are fixed complex numbers and z is a variable complex complex number, then z lies on a
A. circle with z_{1} as its interior point
B. circle with z_{2} as its interior point
C. circle with z_{1} as its exterior point
D. circle with z_{2} as its exterior point
29. If $z=x+i y$, then he equation $|(2 z-i) /(z+1)|=m$ represents a circle, then m can be $1 / 2 \mathrm{~b} .1 \mathrm{c} .2 \mathrm{~d} .{ }^{\prime} 3$
A. $1 / 2$
B. 1
C. 2
D. 3

Answer: A::B::C

- Watch Video Solution

30. System of equaitons $|z+3|-|z-3|=6$ and $|z-4|=r$ where $r \in R^{+}$has
A. one solution if $r>1$
B. one solution if $r>1$
C. two solutions if $r=1$
D. at leat one solution

Answer: A::C::D

- View Text Solution

31. Let the equaiton of a ray be $|z-2|-|z-1-i|=\sqrt{2}$. If the is strik the $y-$ axis, then the equation of relfected ray (including or excluding the point of incidence) is .
A. $\arg (z-2 i)=\frac{\pi}{4}$
B. $|z-2 i|-|z-1-i|=\sqrt{2}$
C. $\arg (z-2 i)=\frac{3 \pi}{4}$
D. $|z-1 i|-|z-1-3 i|=2 \sqrt{2}$

Answer: A: B

32. Given that the two curves $\arg (z)=\frac{\pi}{6} \operatorname{and}|z-2 \sqrt{3} i|=r$ intersect in two distinct points, then $[r] \neq 2$ b. ${ }^{\circ}$
A. $[r] \neq 2$ where [.] represents greatest integer
B. $0<r<3$
C. $r=6$
D. $3<r<2 \sqrt{3}$

Answer: A: D

- Watch Video Solution

33. On the Argand plane, let $z_{1}=-2+3 z, z_{2}=-2-3 z$ and $|z|=1$. Then
A. z_{1} moves on circle with centre at $(-2,0)$ and radius 3
B. z_{1} and z_{2} describle the same locus
C. z_{1} and z_{2} move on differenet circles
D. $z_{1}-z_{2}$ moves on a circle concetric with $|z|=1$

Answer: A::B::D

- Watch Video Solution

34.

Let

$$
S=\left\{z: x=x+i y, y \geq 0,\left|z-z_{0}\right| \leq 1\right\},
$$

$\left|z_{0}\right|=\left|z_{0}-\omega\right|=\left|z_{0}-\omega^{2}\right|, \omega$ and ω^{2} are non-real cube roots of unity.
Then
A. $z_{0}=-1$
B. $z_{0}=-1 / 2$
C. if $z \in S$, then least value of $|z|$ is 1
D. $\left|\arg \left(\omega-z_{0}\right)\right|=\pi / 3$

Answer: A::D

35. If P andn Q are represented by the complex numbers z_{1} and z_{2} such that $\left|1 / z_{2}+1 / z_{1}\right|=\left|1 / z_{2}-1 / z_{1}\right|$, then
A. $\triangle O P Q$ (where O is the origin) is equilateral.
B. $\triangle O P Q$ is right angled
C. the circumcentre of $\triangle O P Q$ is $\frac{1}{2}\left(z_{1}+z_{2}\right)$
D. the circumcentre of $\triangle O P Q$ is $\frac{1}{2}\left(z_{1}-z_{2}\right)$

Answer: B::C

- Watch Video Solution

36. Loucus of complex number satifying are $\arg [(z-5+4 i) /(z+3-2 i)]=-\pi / 4$ is the are of a circle
A. whose radius is $5 \sqrt{2}$
B. whose radius is 5
C. whose length (of arc) is $\frac{15 \pi}{\sqrt{2}}$
D. whose centre is $-2-5 i$

Answer: A::B::C

- View Text Solution

37. Equation of tangent drawn to circle $|z|=r$ at the point $A\left(z_{0}\right)$, is
A. $\operatorname{Re}\left(\frac{z}{z_{0}}=1\right.$
B. $z \bar{z}_{0}+z_{0} \bar{z}=2 r^{3}$
C. $\operatorname{Im}\left(\frac{z}{z_{0}}=1\right.$
D. $\operatorname{Im}\left(\frac{z_{0}}{z}\right)=1$

Answer: A: B

38. If n is a natural number >2, such that $z^{n}=(z+1)^{n}$, then
A. roots of equation lie on a straight line parallel to the y-axis
B. roots of equaiton lie on a straight line parallel to the x-axis
C. sum of the real parts of the roots is $-[(n-1) / 2]$
D. none of these

Answer: A::C

- Watch Video Solution

9. $1+\sqrt{5}$
10. If $\mid z-(1 / z)=1$, then $(|z|)_{\max }=\frac{}{2}$
b. $(|z|)_{m} \in=\frac{\sqrt{5}-1}{2}$
c.
$(|z|)_{\max }=\frac{\sqrt{5}-2}{2}$ d. $(|z|)_{m \in}=\frac{\sqrt{5}-1}{\sqrt{2}}$
A. $|z|_{\max }=\frac{1+\sqrt{5}}{2}$
B. $|z|_{\min }=\frac{\sqrt{5}-1}{2}$
C. $|z|_{\text {max }}=\frac{\sqrt{4}-2}{2}$
D. $|z|_{\text {min }}=\frac{\sqrt{5}-1}{2}$

Answer: A::B

- Watch Video Solution

40. If $1, z_{1}, z_{2}, z_{3}, \ldots \ldots, z_{n-1}$ be the nth roots of unity and ω be a non-real $n-1$
complex cube root of unity then the product $\prod_{r=1}\left(\omega-z_{r}\right)$ can be equal to
A. 0
B. 1
C. -1
D. $1+\omega$

Answer: A::B::C

41. Let z be a complex number satisfying equation $z^{p}-z^{-q}$, wherep, $q \in N$, then if $p=q$, then number of solutions of equation will be infinite. if $p=q$, then number of solutions of equation will be finite. if $p \neq q$, then number of solutions of equation will be $p+q+1$. if $p \neq q$, then number of solutions of equation will be $p+q$
A. if $p=q$, then number of solution of equation will infinte.
B. if $p=q$, then number of solutions of equaiton will finite
C. if $p \neq q$, then number of solutions of equaiton will $p+q+1$.
D. if $p \neq q$, then number of solutions of equaiton will be $p+q$

Answer: A: B

- Watch Video Solution

42. Which of the following is ture?
A. The number of common roots of $z^{144}=1$ and $z^{24}=1$ is 24
B. The number of common roots of $z^{360}=1$ and $z^{315}=1$ is 45
C. The number of roots common to $z^{24}=1, z^{20}=1$ and $z^{56}=1$ is 4
D. The number of roots common to $z^{27}=1, z^{125}=1$ and $z^{49}=1$ is 1

Answer: A::B::C::D

- Watch Video Solution

43. If from a point P representing the complex number z_{1} on the curve $|z|=2$, two tangents are drawn from P to the curve $|z|=1$, meeting at points $Q\left(z_{2}\right)$ and $R\left(z_{3}\right)$, then :
A. complex number $\left(z_{1}+z_{2}+z_{3}\right) / 3$ will be on the curve $|z|=1$
B. $\left(\frac{4}{\bar{z}_{1}}+\frac{1}{\bar{z}_{2}}+\frac{1}{\bar{z}_{3}}\right)\left(\frac{4}{z_{1}}+\frac{1}{z_{2}}+\frac{1}{z_{3}}\right)=9$
C. $\arg \left(\frac{z_{2}}{z_{3}}\right)=\frac{2 \pi}{3}$
D. orth ocenre and circumcenter of $\triangle P Q R$ wil coincide

- Watch Video Solution

44. A complex number z is rotated in anticlockwise direction by an angle α and we get z^{\prime} and if the same complex number z is rotated by an angle α in clockwise direction and we get z^{\prime} ' then
A. $z^{\prime}, z^{\prime} . z^{\prime \prime}$ are in G.P
B. $z^{\prime}, z^{\prime}, z^{\prime \prime}$ are H.P
C. $z^{\prime}+z^{\prime}{ }^{\prime}=2 z \cos \alpha$
D. $z^{\prime 2}+z^{\prime \prime 2}=2 z^{2} \cos 2 \alpha$

Answer: A::C::D

- Watch Video Solution

45. z_{1}, z_{2}, z_{3} and z_{1}, z_{2}, z_{3} are nonzero complex numbers such that $z_{3}=(1-\lambda) z_{1}+\lambda z_{2}$ and $z_{3}=(1-\mu) z_{1}+\mu z_{2}$, then which of the following statements is/are ture?
A. If $\lambda, \mu \in R-\{0\}$, then z_{1}, z_{2} and z_{3} are colliner and z_{1}, z_{2}, z_{3} are colliner separately.
B. If λ, μ are complex numbers, where $\lambda=\mu$, then triangles formed by points z_{1}, z_{2}, z_{3} and $z^{\prime}{ }_{1}, z^{\prime}{ }_{2}, z^{\prime}{ }_{3}$ are similare.
C. If λ, μ are distinct complex numbers, then points z_{1}, z_{2}, z_{3} and $z^{\prime}{ }_{1}, z^{\prime}{ }_{2}, z_{3}$ are not connectd by any well defined gemetry.
D. If $0<\lambda<1$, then z_{3} divides the line joining z_{1} and z_{2} internally and if $\mu>1$, then z_{3} divides the following of $z^{\prime}{ }_{1}, z^{\prime}{ }_{2}$ extranlly

Answer: A::B::C::D

- View Text Solution

46. Given $z=f(x)+i g(x) w h e r e f, g:(0,1) 0,1$ are real valued functions. Then which of the following does not hold good? $z=\frac{1}{1-i x}+i \frac{1}{1+i x}$ b. $z=\frac{1}{1+i X}+i \frac{1}{1-i X} c . z=\frac{1}{1+i X}+i \frac{1}{1+i X}$ d. $z=\frac{1}{1-i X}+i \frac{1}{1-i X}$
A. $z=\frac{1}{1-i x}+i\left(\frac{1}{1+i x}\right)$
B. $z=\frac{1}{1+i x}+i\left(\frac{1}{1-i x}\right)$
C. $z=\frac{1}{1+i x}+i\left(\frac{1}{1+i x}\right)$
D. $z=\frac{1}{1-i x}+i\left(\frac{1}{1-i x}\right)$

Answer: A::C::D

- Watch Video Solution

47. Let a, b, c be distinct complex numbers with $|a|=|b|=|c|=1$ and z_{1}, z_{2} be the roots of the equation $a z^{2}+b z+c=0$ with $\left|z_{1}\right|=1$. Let P and Q represent the complex numbers z_{1} and z_{2} in the Argand plane with $\angle P O Q=\theta, o^{\circ}<180^{\circ}$ (where O being the origin).Then
A. $b^{2}=a c$
B. $P Q=\sqrt{3}$
C. $\theta=\frac{\pi}{3}$
D. $\theta=\frac{2 \pi}{3}$

Answer: A::B::D

- Watch Video Solution

48. If $a, b, c, d \in R$ and all the three roots of $a z^{3}+b z^{2}+c Z+d=0$ have negative real parts, then
A. $a b>0$
B. $b v>0$
C. $a d>0$
D. $b c-a d>0$
49. If $\frac{3}{2+e^{i \theta}}=a x+i b y$, then the locous of $P(x, y)$ will represent
A. ellipse of $a=1, b=2$
B. circle if $a=b=1$
C. pair of straight line if $a=1, b=0$
D. None of these

Answer: A::B::C

- Watch Video Solution

Exercise (Comprehension)

1. Consider the complex number $z=(1-i \sin \theta) /(1+i \cos \theta)$.

The value of θ for which z is purely real are
A. $n \pi-\frac{\pi}{4}, n \in I$
B. $\pi n+\frac{\pi}{4}, n \in I$
C. $n \pi, n \in I$
D. None of these

Answer: A

D Watch Video Solution

2. Consider the complex number $z=(1-i \sin \theta) /(1+i \cos \theta)$.

The value of θ for which z is purely imaginary are
A. $n \pi-\frac{\pi}{4}, n \in I$
B. $\pi n+\frac{\pi}{4}, n \in I$
C. $n \pi, n \in I$
D. no real values of θ
3. Consider the complex number $z=(1-i \sin \theta) /(1+i \cos \theta)$.

The value of θ for which z is unimodular give by
A. $n \pi \pm \frac{\pi}{6}, n \in I$
B. $n \pi \pm \frac{\pi}{3}, n \in I$
C. $n \pi \pm \frac{\pi}{4}, n \in I$
D. no real values of θ

Answer: C

- Watch Video Solution

4. Consider the complex number $z=(1-i \sin \theta) /(1+i \cos \theta)$.

If agrument of z is $\pi / 4$, then

$$
\text { A. } \theta=n \pi, n \in I \text { only }
$$

B. $\theta=(2 n+1), n \in$ Ionly
C. both $\theta=n \pi$ and $\theta=(2 n+1) \frac{\pi}{2}, n \in I$
D. none of these

Answer: D

- Watch Video Solution

5. Consider the complex numbers z_{1} and z_{2} Satisfying the relation $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|+\left|z_{2}\right|^{2}$ Complex number $z_{1} \bar{z}_{2}$ is
A. purely real
B. purely imaginary
C. zero
D. none of theses

Answer: B

6. Consider the complex numbers z_{1} and z_{2} Satisfying the relation $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|+\left|z_{2}\right|^{2}$

Complex number z_{1} / z_{2} is
A. purely real
B. purely imaginary
C. zero
D. none of these

Answer: B

- Watch Video Solution

7. Consider the complex numbers z_{1} and z_{2} Satisfying the relation $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|+\left|z_{2}\right|^{2}$
One of the possible argument of complex number $i\left(z_{1} / z_{2}\right)$
A. $\frac{\pi}{2}$
B. $-\frac{\pi}{2}$
C. 0
D. none of these

Answer: C

- Watch Video Solution

8. Consider the complex numbers z_{1} and z_{2} Satisfying the relation $\left|z_{1}+z_{2}\right|^{2}=\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}$ Possible difference between the argument of z_{1} and z_{2} is
A. 0
B. π
C. $-\frac{\pi}{2}$
D. none of these

Answer: C

- Watch Video Solution

9. Let z be a complex number satisfying $z^{2}+2 z \lambda+1=0$, where λ is a parameter which can take any real value.

The roots of this equation lie on a certain circle if
A. $-1<\lambda<1$
B. $\lambda>1$
C. $\lambda<1$
D. none of these

Answer: A

10. Let z be a complex number satisfying $z^{2}+2 z \lambda+1=0$, where λ is a parameter which can take any real value.

One root lies inside the unit circle and one outside if
A. $-1<\lambda<1$
B. $\lambda>1$
C. $\lambda<1$
D. none of these

Answer: B

- Watch Video Solution

11. Let z be a complex number satisfying $z^{2}+2 z \lambda+1=0$, where λ is a parameter which can take any real value.

For every large value of λ the roots are approximately.
A. $-2 \lambda, 1 / \lambda$
B. $-\lambda,-1 / \lambda$
C. $-2 \lambda,-\frac{1}{2 \lambda}$
D. none of these

Answer: C

- View Text Solution

12. The roots of the equation $z^{4}+a z^{3}+(12+9 i) z^{2}+b z=0$ (where a and b are complex numbers) are the vertices of a square. Then The value of $|a-b|$ is
A. $5 \sqrt{5}$
B. $\sqrt{130}$
C. 12
D. $\sqrt{175}$

Answer: B

13. The roots of the equation $z^{4}+a z^{3}+(12+9 i) z^{2}+b z=0$ (where a and b are complex numbers) are the vertices of a square. Then The area of the square is
A. 25 sq.units
B. 20 sq.units
C. 5 sq.unit
D. 4 sq .units

Answer: C

- Watch Video Solution

14. Consider a quadratic equaiton $a z^{2}+b z+c=0$, where a, b, c are complex number.

The condition that the equation has one purely imaginary root is
A. $(c \bar{a}-a \bar{c})^{2}=(b \bar{c}+c \bar{b})(a \bar{a}-\bar{a} b)$
B. $(c \bar{c}-a \bar{c})^{2}=(b \bar{c}-c \bar{a})^{2}(a \bar{b}+\bar{a} b)$
C. $(c \bar{a}-a \bar{c})^{2}=(b \bar{c}+c \bar{b})(a \bar{b}+a \bar{b})$
D. None of these

Answer: A

- View Text Solution

15. Consider a quadratic equaiton $a z^{2}+b z+c=0$, where a, b, c are complex number. If equaiton has two purely imaginary roots, then which of the following is not ture.
A. $a \bar{b}$ is purely imaginary
B. $b \bar{c}$ is purely imaginary
C. $c \bar{a}$ is purely real
D. none of these

D Watch Video Solution

16. Consider a quadratic equaiton $a z^{2}+b z+c=0$, where a, b, c are complex number.

The condition that the equaiton has one purely real roots is
A. $(c \bar{a}-a \bar{c})^{2}=(b \bar{c}+c \bar{b})(a \bar{a}-\bar{a} b)$
B. $(c \bar{c}-a \bar{c})^{2}=(b \bar{c}-c \bar{a})^{2}(a \bar{b}+\bar{a} b)$
C. $(c \bar{a}-a \bar{c})^{2}=(b \bar{c}+c \bar{b})(a \bar{b}+a \bar{b})$
D. $(c \bar{a}-a \bar{c})^{2}=(b \bar{c}-c \bar{b})(a \bar{b}-\bar{a} b)$

Answer: D

- Watch Video Solution

17. Suppose z and ω are two complex number such that $|z+i \omega|=2$. Which of the following is ture about $|z|$ and $|\omega|$?
A. $|z|=|\omega|=\frac{1}{2}$
B. $|z|=\frac{1}{2},|\omega|,|\omega|=\frac{3}{4}$
C. $|z|=|\omega|=\frac{3}{4}$
D. $|z|=|\omega|=1$

Answer: D

- View Text Solution

18. Suppose z and ω are two complex number such that Which of the following is true for z and ω ?
A. $\operatorname{Re}(z)=\operatorname{Re}(\omega)=\frac{1}{2}$
B. $\operatorname{Im}(z)=\operatorname{Im}(\omega)$
C. $\operatorname{Re}(z)=\operatorname{Im}(\omega)$
D. $\operatorname{Im}(z)=\operatorname{Re}(\omega)$

Answer: D

- View Text Solution

19. Suppose z and ω are two complex number such that $|z| \leq 1,|\omega| \leq 1$ and $|z+i \omega|=|z-i \bar{\omega}|=2$ The complex number of ω can be
A. 1 or - i
B. -1
C. I or -i
D. ω or ω^{2} (where ω is the cube root of unity)

Answer: C

- Watch Video Solution

20. Consider the equaiton of line $a \bar{z}+a \bar{z}+a \bar{z}+b=0$, where b is a real parameter and a is fixed non-zero complex number.

The intercept of line on real axis is given by
A. $\frac{-2 b}{a+\bar{a}}$
B. $\frac{-b}{2(a+\bar{a})}$
C. $\frac{-b}{a+\bar{a}}$
D. $\frac{b}{a+\bar{a}}$

Answer: C

- View Text Solution

21. Consider the equaiton of line $a \bar{z}+a \bar{z}+a \bar{z}+b=0$, where b is a real parameter and a is fixed non-zero complex number.

The intercept of line on imaginary axis is given by
A. $\frac{b}{\bar{a}-a}$
B. $\frac{2 b}{\bar{a}-a}$
C. $\frac{b}{2(\bar{a}-a)}$
D. $\frac{b}{a-\bar{a}}$

Answer: D

D View Text Solution

22. Consider the equation of line $a \bar{z}+\bar{a} z+b=0$, where b is a real parameter and a is fixed non-zero complex number.

The locus of mid-point of the line intercepted between real and imaginary axis is given by
A. $a z-a z=0$
-
B. $a z+a z=0$
C. $a z-a z+b=0$
D. $a z-a z+2 b=0$

D View Text Solution

23. Consider the equation $a z+b z+c=0$, where $\mathrm{a}, \mathrm{b}, \mathrm{c} \in \mathrm{Z}$

If $|a| \neq|b|$, then z represents
A. circle
B. straight line
C. one point
D. ellispe

Answer: C

- Watch Video Solution

24. Consider the equation $a z+b z+c=0$, where $a, b, c \in Z$

If $|a|=|b|$ and $\bar{a} c \neq b \bar{c}$, then z has
A. infnite solutions
B. no solutions
C. finite solutions
D. cannot say anything

Answer: B

- Watch Video Solution

25. Consider the equation $a z+b z+c=0$, where $a, b, c \in Z$

If $|a|=|b| \neq 0$ and $a z+b \bar{c}+c=0$ represents
A. an ellipse
B. a circle
C. a point
D. a straight line

Answer: D

26. Complex numbers z satisfy the equaiton $|z-(4 / z)|=2$

The difference between the least and the greatest moduli of complex number is
A. 2
B. 4
C. 1
D. 3

Answer: A

- Watch Video Solution

27. Complex numbers z satisfy the equaiton $|z-(4 / z)|=2$

The value of $\arg \left(z_{1} / z_{2}\right)$ where z_{1} and z_{2} are complex numbers with the greatest and the least moduli, can be
A. 2π
B. π
C. $\pi / 2$
D. none of these

Answer: B

D Watch Video Solution

28. Complex numbers z satisfy the equaiton $|z-(4 / z)|=2$

Locus of z if $\left|z-z_{1}\right|=\left|z-z_{2}\right|$, where z_{1} and z_{2} are complex numbers with the greatest and the least moduli, is
A. line parallel to the real axis
B. line parallel to the imaginary axis
C. line having a positive slope
D. line having a negative slope

D View Text Solution

29. In an Agrad plane z_{1}, z_{2} and z_{3} are, respectively, the vertices of an isosceles trinagle $A B C$ with $A C=B C$ and $\angle C A B=\theta$. If z_{4} is incentre of triangle, then

The value of $A B \times A C /(I A)^{2}$ is
$\left(z_{2}-z_{1}\right)\left(z_{3}-z_{1}\right)$
A.

$$
\left(z_{4}-z_{1}\right)^{2}
$$

B. $\underline{\left(z_{2}-z_{1}\right)\left(z_{1}-z_{3}\right)}$
$\left(z_{4}-z_{1}\right)^{2}$
C. $\frac{\left(z_{4}-z_{1}\right)^{2}}{}$
$\left(z_{2}-z_{1}\right)\left(z_{3}-z_{1}\right)$
D. none of these

Answer: A

30. In an Agrad plane z_{1}, z_{2} and z_{3} are, respectively, the vertices of an isosceles trinagle $A B C$ with $A C=B C$ and $\angle C A B=\theta$. If z_{4} is incentre of triangle, then

The value of $\left(z_{4}-z_{1}\right)^{2}(\cos \theta+1) \sec \theta$ is
A. $\frac{\left(z_{2}-z_{1}\right)\left(z_{3}-z_{1}\right)}{\left(z_{4}-z_{1}\right)}$
B. $\left(z_{2}-z_{1}\right)\left(z_{3}-z_{1}\right)$
C. $\left(z_{2}-z_{1}\right)\left(z_{3}-z_{1}\right)^{2}$
D. $\frac{\left(z_{2}-z_{1}\right)\left(z_{1}-z_{3}\right)}{\left(z_{4}-z_{1}\right)^{2}}$

Answer: B

- Watch Video Solution

31. In an Agrad plane z_{1}, z_{2} and z_{3} are, respectively, the vertices of an isosceles trinagle $A B C$ with $A C=B C$ and $\angle C A B=\theta$. If z_{4} is incentre of
triangle, then
The value of $\left(z_{2}-z_{1}\right)^{2} \tan \theta \tan \theta / 2$ is
A. $\left(z_{1}+z_{2}-2 z_{3}\right)$
B. $\left(z_{1}+z_{2}-z_{3}\right)\left(z_{1}+z_{2}-z_{4}\right)$
C. $-\left(z_{1}+z_{2}-2 z_{3}\right)\left(z_{1}+z_{2}-2 z_{4}\right)$
D. $z_{4}=\sqrt{z_{2} z_{3}}$

Answer: C

- Watch Video Solution

32. $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ are the vertices of triangle ABC inscribed in the circle $|z|=2$,internal angle bisector of angle A meets the circumcircle again at $D\left(z_{4}\right)$.Point D is:
A. $z_{4}=\frac{1}{z_{2}}+\frac{1}{z_{3}}$
B. $\sqrt{\frac{z_{2}+z_{3}}{z_{1}}}$
C. $\sqrt{\frac{z_{2} z_{3}}{z_{1}}}$
D. $z_{4}=\sqrt{z_{2} z_{3}}$

Answer: D

D Watch Video Solution

33. $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ are the vertices of triangle ABC inscribed in the circle $|z|=2$,internal angle bisector of angle A meets the circumcircle again at $D\left(z_{4}\right)$.Point D is:
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{2}$
D. $\frac{2 \pi}{3}$

Answer: C

34. $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ are the vertices of triangle ABC inscribed in the circle $|z|=2$,internal angle bisector of angle A meets the circumcircle again at $D\left(z_{4}\right)$.Point D is:
A. H.M of z_{2} and z_{3}
B. A.M of z_{2} and z_{3}
C. G.M of z_{2} and z_{3}
D. none of these

Answer: C

- Watch Video Solution

MATRIX MATCH TYPE

1. The graph of the quadrationc funtion $y=a x^{2}+b x+c$ is as shown in the following figure.

Now,match the complex numbers given in List I with the corresponding arguments in List II.

- View Text Solution

2. Let z_{1}, z_{2} and z_{3} be the vertices of trinagle. Then match following lists.

D View Text Solution

3. Match following lists.
4. Complex number z satisfies the equation $||z-5 i|+m| z-12 i| |=n$. Then match the value of m and n in List I with the corresponding locus in List II.

- View Text Solution

5. Complex number z lies on the curve $S \equiv \operatorname{ar} \frac{g(z+3)}{z+3 i}=-\frac{\pi}{4}$

Now, match the locus in List I with its number of points of intersection with the curve S in List II.
A.
a b c d
(1) p q p r
a b c d
B.
(2) s r q p
a b c d
C.
(3) q p q r
a b c d
D.
(4) s p q r

Answer: A

View Text Solution

6. Consider sets $A=\left\{z \in C: z^{27}-1=0\right\}$ and $B=\left\{z \in C: z^{36}-1=0\right\}$

Now ,match the following lists.
a b c d
A.
(1) p q p r
a b c d
B.
(2) $\mathrm{r} q \mathrm{~s} \mathrm{p}$
C.
a b c d
c. (3) q p q r
a b c d
D.
(4) s p q r

Answer: B

- View Text Solution

7. Match the statements in List I with those in List II
[Note: Here z take the values in the complex place and $\operatorname{Im}(z)$ and $\operatorname{Re}(z)$
denote, repectively, the imaginary part and the real part of z].

- View Text Solution

8. Let $z_{k}=\cos \left(\frac{2 k \pi}{10}\right)-i \sin \left(\frac{2 k \pi}{10}\right), k=1,2, \ldots ., 9$

- View Text Solution

9. Match the statements/experssions given in List I with the values given in List II.
10. If $x=a+b i$ is a complex number such that $x^{2}=3+4$ iadnx ${ }^{3}=2+1 i$, where $i=\sqrt{-1}$, then $(a+b)$ equal to \qquad .

- Watch Video Solution

2. the complex numbers xandy satisfy $x^{3}-y^{3}=98 i a n d x-y=7$, thenxy $=a+i b$, wherea, $b, \in R$ The value of $(a+b) / 3$ equals \qquad .

Watch Video Solution

3. If $x=\omega-\omega^{2}-2$ then, the value of $x^{4}+3 x^{3}+2 x^{2}-11 x-6$ is (where ω is a imaginary cube root of unity)

- Watch Video Solution

4. Let $z=9+b i$, whereb is nonzero real and $i^{2}=-1$. If the imaginary part of $z^{2} a n d z^{3}$ are equal, then $b / 3$ is \qquad .
5. Modulus of nonzero complex number z satifying $\bar{z}+z=0$ and $|z|^{2}-4 i z=z^{2}$ is \qquad .

- Watch Video Solution

6. If the expression $(1+i r)^{3}$ is of the form of $s(1+i)$ for some real 's' where ' r ' is also real and $i=\sqrt{-1}$

- Watch Video Solution

7. If complex number $z(z \neq 2)$ satisfies the equation $z^{2}=4 z+|z|^{2}+\frac{16}{|z|^{3}}$,then the value of $|z|^{4}$ is \qquad .

- Watch Video Solution

8. The complex number z satisfies $z+|z|=2+8 i$. find the value of $|z|-8$

- Watch Video Solution

9. Let $|z|=2 a n d w-\frac{z+1}{z-1}$, wherez, $w, \in C$ (where C is the set of complex numbers). Then product of least and greatest value of modulus of w is \qquad .

- Watch Video Solution

10. If z is a complex number satisfying $z^{4}+z^{3}+2 z^{2}+z+1=0$ then the set of possible values of z is

- Watch Video Solution

11. Let $1, \omega, \omega^{2}$ be the cube roots of unity. The least possible degree of a polynomial with real coefficients having roots
$2 \omega,(2+3 \omega),\left(2+3 \omega^{2}\right),(2-\omega-\omega)$ is \qquad .

- Watch Video Solution

12. If ω is the imaginary cube roots of unity, then the number of pair of integers (a,b) such that $|a \omega+b|=1$ is \qquad .

- Watch Video Solution

13. Suppose that z is a complex number the satisfies $|z-2-2 i| \leq 1$. The maximum value of $|2 i z+4|$ is equal to \qquad .

- Watch Video Solution

14. If $|z+2-i|=5$ and maxium value of $|3 z+9-7 i|$ is M, then the value of M is \qquad .

- Watch Video Solution

15. Let $Z_{1}=(8+i) \sin \theta+(7+4 i) \cos \theta$ and $Z_{2}=(1+8 i) \sin \theta+(4+7 i) \cos \theta$ are two complex numbers. If $Z_{1} \cdot Z_{2}=a+i b$ where $a, b \in R$ then the largest value of $(a+b) \forall \theta \in R$, is

- Watch Video Solution

16. Let $A=\{a \in R\}$ the equation $(1+2 i) x^{3}-2(3+i) x^{2}+(5-4 i) x+a^{2}=0$ has at least one real root. Then the value of $\frac{\sum a^{2}}{2}$ is \qquad .

- Watch Video Solution

17. Find the minimum value of the expression $E=|z|^{2}+|z-3|^{2}+|z-6 i|^{2}$ (where $z=x+i y, x, y \in R$)

- Watch Video Solution

18. If z_{1} lies on $|z-3|+|z+3|=8$ such that $\arg z_{1}=\pi / 6$, then $37\left|z_{1}\right|^{2}=$
\qquad

- Watch Video Solution

19. If z satisfies the condition $\arg (z+i)=\frac{\pi}{4}$. Then the minimum value of $|z+1-i|+|z-2+3 i|$ is \qquad .

- View Text Solution

20. Let $\omega \neq 1$ be a complex cube root of unity. If
$\left(4+5 \omega+6 \omega^{2}\right)^{n^{2}+2}+\left(6+5 \omega^{2}+4 \omega\right)^{n^{2}+2}+\left(5+6 \omega+4 \omega^{2}\right)^{n^{2}+2}=0$, and
$n \in N$, where $n \in[1,100]$, then number of values of n is \qquad .

- Watch Video Solution

21. Let z be a non - real complex number which satisfies the equation
$z^{23}=1$. Then the value of $\sum_{22}^{k=1} \frac{1}{1+z^{8 k}+z^{16 k}}$

- Watch Video Solution

22. If z, z_{1} and z_{2} are complex numbers such that $z=z_{1} z_{2}$ and $\left|\bar{z}_{2}-z_{1}\right| \leq 1$, then maximum value of $|z|-\operatorname{Re}(z)$ is \qquad .

- Watch Video Solution

23. Let z_{1}, z_{2} and z_{3} be three complex numbers such that $z_{1}+z_{2}+z_{3}=z_{1} z_{2}+z_{2} z_{3}+z_{1} z_{3}=z_{1} z_{2} z_{3}=1$. Then the area of triangle formed by points $A\left(z_{1}\right), B\left(z_{2}\right)$ and $C\left(z_{3}\right)$ in complex plane is \qquad .

- Watch Video Solution

24. Let α be the non-real 5 th root of unity. If z_{1} and z_{2} are two complex 4
numbers lying on $|z|=2$, then the value of $\sum_{t=0}\left|z_{1}+\alpha^{t} z_{2}\right|^{2}$ is \qquad .

- Watch Video Solution

25. Let $z_{1}, z_{2}, z_{3} \in C$ such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=\left|z_{1}+z_{2}+z_{3}\right|=4$.

If $\left|z_{1}-z_{2}\right|=\left|z_{1}+z_{3}\right|$ and $z_{2} \neq z_{3}$, then values of $\left|z_{1}+z_{2}\right| \cdot\left|z_{1}+z_{3}\right|$ is
\qquad .

- View Text Solution

26. Let $A\left(z_{1}\right)$ and $B\left(z_{2}\right)$ be lying on the curve $|z-3-4 i|=5$, where $\left|z_{1}\right|$ is maximum. Now, $A\left(z_{1}\right)$ is rotated about the origin in anticlockwise direction through 90° reaching at $P\left(z_{0}\right)$. If A, B and P are collinear then the value of $\left(\left|z_{0}-z_{1}\right| \cdot\left|z_{0}-z_{2}\right|\right)$ is \qquad .
27. If z_{1}, z_{2}, z_{3} are three points lying on the circle $|z|=2$ then the minimum value of the expression $\left|z_{1}\right| z_{2}\left|\wedge 2+\left|z_{2}+z_{3}\right| \wedge 2+\right| z_{3}+z_{1}+^{2}=$

- Watch Video Solution

28.

Minimum
value
of
$\left|z_{1}+1\right|+\left|z_{2}+1\right|+\left|z_{1} z_{2}+1\right|$ if $\left[z_{1} \mid=1\right.$ and $\left|z_{2}\right|=1$ is \qquad .

- Watch Video Solution

29. If $\left|z_{1}\right|=2$ and $(1-i) z_{2}+(1+i) \bar{z}_{2}=8 \sqrt{2}$, then the minimum value of $\left|z_{1}-z_{2}\right|$ is \qquad .

- View Text Solution

30. Given that $1+2|z|^{2}=\left|z^{2}+1\right|^{2}+2|z+1|^{2}$, then the value of $|z(z+1)|$ is

JEE Main Previous Year

1. If $\left|z-\frac{4}{z}\right|=2$, then the maximum value of $|Z|$ is equal to (1) $\sqrt{3}+1$ (2) $\sqrt{5}+1(3) 2(4) 2+\sqrt{2}$
A. $\sqrt{3}+1$
B. $\sqrt{5}+1$
C. 2
D. $2+\sqrt{2}$

Answer: B

2. The number of complex numbers z such that $|z 1|=|z+1|=|z i|$ equals
(1) $1(2) 2(3) \infty(4) 0$
A. ∞
B. 0
C. 1
D. 2

Answer: C

- Watch Video Solution

3. Let α, β be real and z be a complex number. If $z^{2}+\alpha z+\beta=0$ has two distinct roots on the line $\operatorname{Re} z=1$, then it is necessary that : (1) $b \in(0,1)$
(2) $b \in(-1,0)(3)|b|=1(4) b \in(1, \infty)$
A. $\beta \in(1, \infty)$
B. $\beta \in(0,1)$
C. $\beta \in(-1,0)$
D. $|\beta|=1$

Answer: A

- Watch Video Solution

4. If $\omega(\neq 1)$ is a cube root of unity, and $(1+\omega)^{7}=A+B \omega$. Then (A, B) equals
A. ($-1,1$)
B. $(0,1)$
C. $(1,1)$
D. $(1,0)$

Answer: C

5. If $z \neq 1$ and $\frac{z^{2}}{z-1}$ is real, then the point represented by the complex number z lies (1) either on the real axis or on a circle passing through the origin (2) on a circle with centre at the origin (3) either on the real axis or on a circle not passing through the origin (4) on the imaginary axis
A. either on the real axis or on a circle passing thorugh the origin.
B. on a circle with centre at the origin.
C. either on the real axis or an a circle not possing through the origin .
D. on the imaginary axis .

Answer: A

- Watch Video Solution

6. If z is a complex number of unit modulus and argument q, then
$\arg \left(\frac{1+z}{1+\bar{z}}\right)$ equal (1) $\frac{\pi}{2}-\theta(2) \theta(3) \pi-\theta(4)-\theta$
A. $-\theta$
B. $\frac{\pi}{2}-\theta$
C. θ
D. $\pi-\theta$

Answer: C

D Watch Video Solution

7. If z is a complex number such that $|z| \geq 2$ then the minimum value of
$\left|z+\frac{1}{2}\right|$ is
A. is equal to $\frac{5}{2}$
B. lies in the interval $(1,2)$
C. is strictly gerater than $\frac{5}{2}$
D. is strictly greater than $\frac{3}{2}$ but less than $\frac{5}{2}$

Answer: B

8. If z_{1} and z_{2} are two complex numbers such that $\frac{z_{1}-2 z_{2}}{-}$ is unimodular

$$
2-z_{1} z_{2}
$$

whereas z_{1} is not unimodular then $\left|z_{1}\right|=$
A. Straight line parallel to x-axis
B. sraight line parallel to y-axis
C. circle of radius 2
D. circle of radius $\sqrt{2}$

Answer: C

- Watch Video Solution

9. A value of for which $\frac{2+3 i \sin \theta}{1-2 i \sin \theta}$ purely imaginary, is : (1) $\frac{\pi}{3}$ (2) $\frac{\pi}{6}$
$\sin ^{-1}\left(\frac{\sqrt{3}}{4}\right)(4) \sin ^{-1}\left(\frac{1}{\sqrt{3}}\right)$
A. $\frac{\pi}{6}$
B. $\sin ^{-1}\left(\frac{\operatorname{Sqrt}(3)}{4}\right)$
C. $\sin ^{-1}\left(\frac{1}{\sqrt{3}}\right.$
D. $\frac{\pi}{3}$

Answer: C

Watch Video Solution

10. Let ω be a complex number such that $2 \omega+1=z$ where $z=\sqrt{-3}$.

If $\left|1111-\omega^{2}-1 \omega^{2} 1 \omega^{2} \omega^{7}\right|=3 k$, thenk is equal to : -1 (2) 1 (3) $-z(4) z$
A. 1
B. z
C. -Z
D. -1

Answer: B

- Watch Video Solution

11. If $\alpha, \beta \in C$ are distinct roots of the equation $x^{2}+1=0$ then $\alpha^{101}+\beta^{107}$ is equal to
A. 2
B. -1
C. 0
D. 1

Answer: D

Watch Video Solution

1. Let $z=x+i y$ be a complex number where x and y are integers. Then, the area of the rectangle whose vertices are the roots of the equation $z z^{3}+z z^{3}=350$ is 48 (b) 32 (c) 40 (d) 80
A. 48
B. 32
C. 40
D. 80

Answer: A

- Watch Video Solution

2. Let z be a complex number such that the imaginary part of z is nonzero and $a=z 2+z+1$ is real. Then a cannot take the value (A) -1 (B) 13 (C) 12 (D) 34
A. -1
B. $\frac{1}{3}$
C. $\frac{1}{2}$
D. $\frac{3}{4}$

Answer: D

- Watch Video Solution

3. Let complex numbers α and $\frac{1}{\alpha}$ lies on circle $\left(x-x_{0}\right)^{2}\left(y-y_{0}\right)^{2}=r^{2}$ and $\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}=4 r^{2} \quad$ respectively. If $z_{0}=x_{0}+i y_{0}$ satisfies the equation $2\left|z_{0}\right|^{2}=r^{2}+2$ then $|\alpha|$ is equal to (a) $\frac{1}{\sqrt{2}}$ (b) $\frac{1}{2}$ (c) $\frac{1}{\sqrt{7}}$ (d) $\frac{1}{3}$
A. $1 / \sqrt{2}$
B. $1 / 2$
C. $1 / \sqrt{7}$
D. $1 / 3$

- Watch Video Solution

4. Let Z_{1} and Z_{2}, be two distinct complex numbers and let $w=(1-t) z_{1}+t z_{2}$ for some number " t " with o
A. $\left|z-z_{1}\right|+\left|z-z_{2}\right|=\left|z_{1}-z_{2}\right|$
B. $\left(z-z_{1}\right)=\left(z-z_{2}\right)$
C. $\left|\begin{array}{cc}z-z_{1} & \bar{z}-\bar{z}_{1} \\ z_{2}-z_{1} & \bar{z}_{2}-\bar{z}_{1}\end{array}\right|=0$
D. $\arg \left(z-z_{1}\right)=\arg \left(z_{2}-z_{1}\right)$

Answer: A::C::D

- Watch Video Solution

5. Let $w=\left(\sqrt{3}+\frac{l}{2}\right)$ and $P=\left\{w^{n}: n=1,2,3, \ldots ..\right\}$, Further
$H_{1}=\left\{z \in C: \operatorname{Re}(z)>\frac{1}{2}\right\}$ and $H_{2}=\left\{z \in c: \operatorname{Re}(z)<-\frac{1}{2}\right\}$ where c is set of all complex numbers. If $z_{1} \in P \cap H_{1}, z_{2} \in P \cap H_{2}$ and O represent the origin, then $\angle Z_{1} O Z_{2}=$
A. $\pi / 2$
B. $\pi / 6$
C. $2 \pi / 3$
D. $5 \pi / 6$

Answer: C::D

- Watch Video Solution

6. Let $\mathrm{a}, \mathrm{b} \in \mathrm{R}$ and $a^{2}+b^{2} \neq 0$. Suppose
$S=\left\{z \in C: z=\frac{1}{a+i b t}, t \in R, t \neq 0\right\}$, where $i=\sqrt{-1}$. If $z=x+i y$ and z in S , then (x, y) lies on
A. the circle with radius $\frac{1}{2 a}$ and centre $\left(\frac{1}{2 a}, 0\right)$ for $a>0 b e \neq 0$
B. the circle with radius $-\frac{1}{2 a}$ and centre $\left(-\frac{1}{2}, 0\right) a<0, b \neq 0$
C. the axis for $a \neq 0, b=0$
D. the y-axis for $a=0, b \neq 0$

Answer: A::C::D

- Watch Video Solution

7. Let $a, b, x a n d y$ be real numbers such that $a-b=1 a n d y \neq 0$. If the complex number $z=x+i y$ satisfies $\operatorname{Im}\left(\frac{a z+b}{z+1}\right)=y$, then which of the following is (are) possible value9s) of x ? $\mid-1-\sqrt{1-y^{2}}$ (b) $1+\sqrt{1+y^{2}}$
$-1+\sqrt{1-y^{2}}$ (d) $-1-\sqrt{1+y^{2}}$
A. $-1-\sqrt{1-y^{2}}$
B. $1+\sqrt{1+y^{2}}$
C. $1-\sqrt{1+y^{2}}$
D. $-1+\sqrt{1-y^{2}}$

Answer: A::D

- Watch Video Solution

8. For a non-zero complex number z, let $\arg (z)$ denote the principal argument with $\pi<\arg (z) \leq \pi$ Then, which of the following statement(s) is (are) FALSE? $\arg (-1,-i)=\frac{\pi}{4}$, where $i=\sqrt{-1} \quad$ (b) The function $f: R \rightarrow(-\pi, \pi]$, defined by $f(t)=\arg (-1+i t)$ for all $t \in R$, is continuous at all points of \mathbb{R}, where $i=\sqrt{-1}$ (c) For any two non-zero complex numbers z_{1} and $z_{2}, \arg \left(\frac{z_{1}}{z_{2}}\right)-\arg \left(z_{1}\right)+\arg \left(z_{2}\right)$ is an integer multiple of 2π (d) For any three given distinct complex numbers z_{1}, z_{2} and z_{3}, the locus of the point z satisfying the condition $\arg \left(\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)}\right)=\pi$, lies on a straight line
A. $\arg (-1-i)=\frac{\pi}{4}$, where $i=\sqrt{-1}$
B. The functionf: $R \rightarrow(-\pi, \pi]$, defined by $f(t)=\arg (-1+i t)$ for all
$t \in R$, is continous at all points of R , where $i=\sqrt{-1}$
C. For any tow non-zero complex number z_{1} and
$z_{2}, \arg \left(\frac{z_{1}}{z_{2}}-\arg \left(z_{1}\right)+\arg \left(z_{2}\right)\right.$ is an integer multiple of 2π
D. For any three given distinct complex numbers z_{1}, z_{2} and z_{3} the locus of the point z satisfying the condition $\left(\frac{\left(z-z_{1}\right)\left(z_{2}-z_{3}\right)}{\left(z-z_{3}\right)\left(z_{2}-z_{1}\right)}\right)=\pi$, lies on a strainght line.

Answer: A: B::D

- Watch Video Solution

9. Let s, t, r be non-zero complex numbers and L be the set of solutions $z=x+i y(x, y \in \mathbb{R}, i=\sqrt{-1})$ of the equation $s z+t z+r=0$, where $z=x-i y$. Then, which of the following statement(s) is (are) TRUE? If L has exactly one element, then $|s| \neq|t|$ (b) If $|s|=|t|$, then L has infinitely many
elements (c) The number of elements in $\ln n\{z:|z-1+i|=5\}$ is at most 2
(d) If L has more than one element, then L has infinitely many elements
A. If L has exactly one element, then $|s| \neq|t|$
B. If $|s|=|t|$ then L has infinitely many elements
C. The number of elements in $L \cap\{z:|z-1+i|=5\}$ is at most 2
D. If L has most than one elements, then L has infinitely many elements.

Answer: A::C::D

- Watch Video Solution

10.

Let

$$
S=S_{1} \cap S_{2} \cap S_{3}
$$

where
$s_{1}=\{z \in C:|z|<4\}, S_{2}=\left\{z \in C: \ln \left[\frac{z-1+\sqrt{3} i}{1-\sqrt{31}}\right]>0\right\}$ and $S_{3}=\{z \in C: R e$
A. $\frac{10 \pi}{3}$
B. $\frac{20 \pi}{3}$
C. $\frac{16 \pi}{3}$
D. $\frac{32 \pi}{3}$

Answer: B

- Watch Video Solution

11. Let $S=S_{1} \cap S_{2} \cap S_{3}$, where $S_{1}=\{z i n C:|z|<4\}$,
$S_{2}=\left\{z\right.$ inC:Im $\left.\left[\frac{z-1+\sqrt{3} i}{1-\sqrt{3 i}}\right]>0\right\}$ and $S_{3}=\{z \operatorname{zinC}: \operatorname{Rez}>0\}$
$\min z \in s|1-3 i-z|=$
A. $\frac{2-\sqrt{3}}{2}$
B. $\frac{2+\sqrt{3}}{2}$
C. $\frac{3-\sqrt{3}}{2}$
D. $\frac{3+\sqrt{3}}{2}$

Answer: C

12. Let ω be the complex number $\cos \left(\frac{2 \pi}{3}\right)+i \sin \left(\frac{2 \pi}{3}\right)$. Then the number of distinct complex cos numbers z satisfying
$\Delta=\left|\begin{array}{ccc}z+1 & \omega & \omega^{2} \\ \omega & z+\omega^{2} & 1 \\ \omega^{2} & 1 & z+\omega\end{array}\right|=0$ is

- Watch Video Solution

13. If z is any complex number satisfying $|z-3-2 i| \leq 2$ then the maximum value of $|2 z-6+5 i|$ is

- Watch Video Solution

14. For any integer k, let $\alpha_{k}=\frac{\cos (k \pi)}{7}+i \sin . \frac{k \pi}{7}$, where $I=\sqrt{-1}$. Value of the expression. $\frac{\sum_{k=1}^{12}\left|\alpha_{k+1}-\alpha_{k}\right|}{\sum_{k=1}^{3}\left|\alpha_{4 k-1}-\alpha_{4 k-2}\right|}$ is

- Watch Video Solution

Question Bank

1. It is given that complex numbers z_{1} and z_{2} satisfy $\left|z_{1}\right|=2$ and $\left|z_{2}\right|=3$.

If the included angle.of their corresponding vectors is 60° then $\left|\frac{z_{1}+z_{2}}{z_{1}-z_{2}}\right|$
can be expressed on $\frac{\sqrt{N}}{7}$ where N is natural number then N equals

- View Text Solution

2. If ω is any complex number such that $z \omega=|z|^{2}$ and $|z-\bar{z}|+|\omega+\bar{\omega}|=4$, then as ω varies, then the area of locus of z is
3. If m is the minimum value of $|z|+|2 z-\omega|$ where $|\omega|=1$, then $4 m$ is equal to

- View Text Solution

4. If (2-3i) is a root of the equation $x^{3}-b x^{2}+25 x \div d=0$ (where b and d are real and $i=\sqrt{-1}$, then value of b is equal to

- View Text Solution

5. If the area 'bounded by the locus of z satisfying $\arg (z)=0$, $\operatorname{Im}\left(\frac{1+\sqrt{3} i}{z}\right)=0$ and $\arg (z-2)=\frac{2 \pi}{3}$ is \sqrt{k}, then k is equal to

- View Text Solution

6. The circle $|z+3|=1$ touches $|z-\sqrt{7} i|=r$. Then sum of possible values.of r is

- View Text Solution

7. Let $i=\sqrt{-1}$. The absolute value of product of the real part of the roots of $z^{2}-z=5-5 i$ is

- View Text Solution

8. If $\left|z_{1}\right|=1,\left|z_{2}\right|=2,\left|z_{3}\right|=3$ and $\left|9 z_{1} z_{2}+4 z_{1} z_{3}+z_{2} z_{3}\right|=12$ then the value of $\left|z_{1}+z_{2}+z_{3}\right|$ is equal to

D View Text Solution

9. $\left[\frac{-1+i \sqrt{3}}{2}\right]^{6}+\left[\frac{-1-i \sqrt{3}}{2}\right]^{6}+\left[\frac{-1+i \sqrt{3}}{2}\right]^{5}+\left[\frac{-1-i \sqrt{3}}{2}\right]^{5}$ is equal to
10. Let $A=\left(a \in R \mid\right.$. the equation $(1+2 i) x^{3}-2(3+i) x^{2}+(5-4 i)$ $x+2 a^{2}=0$) has at least one real root. Find the value of $\sum a \in A a^{2}$.

- View Text Solution

11. If $|Z-i| \leq 2$ and $Z_{1}=5+3 i$, then the maximum value of $\left|i Z+Z_{1}\right|$ is

D View Text Solution

12. If P is the affix of z in the Argand diagram and P moves so that $\frac{z-i}{z-1}$ is always purely imaginary, then the locus of z is a circle whose radins is

- View Text Solution

13. The imaginary part of complex number z satisfying $l||Z-I-2 i|\rfloor \leq 1$ and having the least positive argument, is

- View Text Solution

14. Number of complex numbers z satisfying $z^{3}=\bar{z}$ is

- View Text Solution

15. Let $z=9+b i$ where b is non zero real and $i^{2}=-1$. If the imaginary part of z^{2} and z^{3} are equal, then b^{2} equals

- View Text Solution

16. The value of e (CiS)(-i)-operatorname(CiS)(i)) is equal to

- View Text Solution

17. Number of complex numbers z such that $|z|=1$ (and) $\left|\begin{array}{l}z \\ \bar{z}\end{array}+\frac{\bar{z}}{z}\right|=1$ is
18. The straight line $(1+2 i) z+(2 i-1) \bar{z}=10 i$ on the complex plane, has intercept on the imaginary axis equal to

- View Text Solution

19. If m and n are the smallest positive integers satisfying the relation
$\left(2 C(i s) \frac{\pi}{6}\right)^{m}=\left(4 C(i s) \frac{\pi}{4}\right)^{n}$, then $(m+n)$ has the value equal to

- View Text Solution

20. $\left(\sqrt{3}(3)+\left(3^{\frac{5}{6}}\right)^{i}\right)^{3}$ is an integer where $i=\sqrt{-1}$. The absolute value of the integer is equal to

- View Text Solution

21. If $x=a+b i$ is a complex number such that $x^{2}=3+4 i$ and $x^{3}=2+11 i$ where $i=\sqrt{-1}$, then $(a+b)$ equal to

- View Text Solution

22. If the complex number z satisfies the condition $|z| \geq 3$, then the least
value of $\left|z+\frac{1}{Z}\right|$ is equal to

- View Text Solution

23. Number of roots of $z^{201}=7$ where $\operatorname{Re}(z)>0$ is

- View Text Solution

24. If $\left|\frac{z-1}{z-4}\right|=2$ and $\left|\frac{w-4}{w-1}\right|=2$, then the value of $|z-w|_{\max }+|z-w|_{\min }$ is
25. If ω be a non-real cube root of unity, then the absolute value of $\cos \left[\left((1-\omega)\left(1-\omega^{2}\right)+(2-e)\left(2-\omega^{2}\right) \ldots+\left(2017-(0)\left(2017-\omega^{2}\right)\right) \cdot \frac{\pi}{2017}\right]\right.$ is

- View Text Solution

26. If $0 \leq \operatorname{argz} \leq \frac{\pi}{4}$, then the least value of $\sqrt{2}|2 z-4 i|$ is

- View Text Solution

27. If $z_{1} \neq 0$ and z_{2} be two complex numbers such that z_{2} is a purely imaginary number, then $\left|\frac{2 z_{1}+3 z_{2}}{2 z_{1}-3 z_{2}}\right|$ is equal to

- View Text Solution

28. If $|z-1|=2$ and $|w-\vec{i}|=3$, where $(i=\sqrt{-1})$ then the maximum value of $|z-w|$ is $a+\sqrt{2}$ then the value of a is

- View Text Solution

29. If z_{1}, z_{2}, z_{3} are the roots of the equation $z^{3}-z^{2}(1+3 i)+z(3 i-2)+2=0$, then $\operatorname{Im}\left(z_{1}\right)+\operatorname{Im}\left(z_{2}\right)+\operatorname{Im}\left(z_{3}\right)$ is

- View Text Solution

30. Modulus of non-zero complex number z satisfying $z+\bar{z}=0,|z|-4 z i=z^{2}$ is

- View Text Solution

