

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

ELLIPSE AND HYPERBOLA

Question Bank

1. Let P be any point on ellipse $3x^2 + 4y^2 = 12$ and S, S^1 are its foci then the

locus of the centroid of triangle PSS^1 is a

conic C whose length of latus rectum is

2. A triangle is formed by the points A(0,0), B(3,0) and C(3,4). A and C are foci of ellipse and B lies on the ellipse. If arca of ellipse is $\frac{7\pi}{2}\sqrt{P}(P \in N)$, then the value of P

is

3. An ellipse with focii (1,4) and (lpha,eta) touches x -axis at (5,0). Then value of (lpha-eta) is

4. The minimum value of the segment of a

tangent to the ellipse $rac{x^2}{12321}+rac{y^2}{1234321}=1$ intercepted by thè

coordinate axes is

5. The area of the triangle formed by a tangent to the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$ and the coordinate axes is always greater than or equal to

View Text Solution

6. Let PQ is a tangent to the ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ meeting the positive x&y axis at points P&Q respectively. Point R divides

PQ internally in the ratio 2:1. If locus of R is

$$rac{a^2}{x^2}+rac{4b^2}{y^2}=\lambda$$
 , then λ is equal to

View Text Solution

7. If a tangent of slope m at a point of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ passes through (2a, 0) and if e denotes the eccentricity of ellipse, then $3m^2 + e^2$ is

8. If the eccentricity of the ellipse $rac{x^2}{a^2}+2+rac{y^2}{a^2}+5=1$ be $rac{1}{\sqrt{3}}$, then length of

latus rectum of ellipse is

10. Let P be a point in the first quadrant lying on the ellipse $\frac{x^2}{8} + \frac{y^2}{18} = 1$. Let AB be the tangent at P to the ellipse meeting the x -axis at A and y axis at B. If O is the origin, then the minimum, possible area of ΔOAB is (in square units)

11. If maximum distance of any point on the curve $5x^2 + 4y^2 + xy - 2 = 0$ from its centre be L and $L = rac{a}{\sqrt{b} - \sqrt{2}}$, then (b-a) is

12. A tangent.is drawn to the curve, $\frac{x^2}{16} + \frac{y^2}{9} = 1$ at the point *P* meeting the coordinate axis in *T* and *t*. If *OY* is the perpendicular from the origin on the tangent then find the value of the product (Tt)(PY)

13. The maximum and minimum distance of point (3, -1) from the ellipse $x^2 + 4y^2 - 4x + 8y - 8 = 0$ is M and m respectively, where $M^\beta + m^3$ is

View Text Solution

14. If the circle $x^2 + y^2 - 2x - 4y + k = 0$ and director circle of ellipse $\frac{x^2}{4} + y^2 = 1$ intersects orthogonally then k equals

15. Least value of modulus of slope of a line for which the line may touch the hyperbola $\frac{x^2}{a^2} - \frac{y^2}{l}(a^3 + a^2 + a)^2 = 1$ is (a is nonzero real number)

View Text Solution

16. A normal to the hyperbola $x^2 - 4y^2 = 4$ has equal intercepts on positive x and y axes. If this normal touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then $3(a^2 + b^2)$ -is equal to

View Text Solution

18. Let
$$AB$$
 is the latus rectum of the hyperbola $rac{x^2}{a^2}-rac{y^2}{b^2}=1$ such that triangle

19. If e and e_1 are the eccentricities of the hyperbolas xy=5 and $x^2-y^2=18$, then $e^2+e_1^2$ is

21. Let H: y(3y + 4x) = -4 is a hyperbola and y = mx + c is its conjugate axis. Length of latus rectum of H is L, eccentricity e.and (x_1, y_1) is one. vertex with $y_1 > 0$, then $4e^2$ is equal to

22. A tangent to the circle $x^2+y^2=4$ intersects the hyperbola $x^2-2y^2=2$ at Pand Q. If locus of mid-point of PQ is. $\left(x^2-2y^2\right)^2=\lambda\left(x^2+4y^2
ight)$, then λ equals

View Text Solution

23. If equation of common tangent to parabola $y^2-8x=0$ and hyperbola $y^2-3x^2+3=0$ is

$$2x+rac{cy}{\sqrt{2}}+1=0(c\in R)$$
 then absolute

value of ' c '

View Text Solution

24. If the set of values of λ for which two distinct tangents are drawn from a point $(2,\lambda)$ to the curve $x=4\sqrt{1+rac{y^2}{9}}$ is a_1,a_2

then $|a_1-a_2|$ is equal to

25. A normal to the hyperbola $\frac{x^2}{6} - \frac{y^2}{2}$ has equal intercepts on positive x and y -axis. If this normal touches the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, then find the value of $a^2 + \frac{b^2}{4}$.

View Text Solution

26. If
$$rac{\left(3x-4y-1
ight)^2}{100}-rac{\left(4x+3y-1
ight)^2}{225}=1$$

, then length of latusrectum of hyperbola is

27. The eccentricity of the conic section represented by $\left(x+y
ight)^2-4=x^2+y^2$ is

View Text Solution

