©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

ELLIPSE AND HYPERBOLA

Question Bank

1. Let P be ány point on ellipse
$3 x^{2}+4 y^{2}=12$ and S, S^{1} are its foci then the
locus of the centroid of triangle $P S S^{1}$ is a conic C whose length of latus rectum is

D View Text Solution

2. A triangle is formed by the points
$A(0,0), B(3,0)$ and $C(3,4) . A$ and C are foci of ellipse and B lies on the ellipse. If arca of ellipse is $\frac{7 \pi}{2} \sqrt{P}(P \in N)$, then the value of P is
3. An ellipse with focii $(1,4)$ and (α, β) touches x-axis at $(5,0)$. Then value of $(\alpha-\beta)$ is

- View Text Solution

4. The minimum value of the segment of a
tangent to the ellipse
$\frac{x^{2}}{12321}+\frac{y^{2}}{1234321}=1$ intercepted by thè coordinate axes is

D View Text Solution

5. The area of the triangle formed by a tangent
to the ellipse $\frac{x^{2}}{25}+\frac{y^{2}}{9}=1$ and the coordinate axes is always greater than or equal to

D View Text Solution

6. Let $P Q$ is a tangent to the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ meeting the positive $x \& y$ axis at points $P \& Q$ respectively. Point R divides
$P Q$ internally in the ratio $2: 1$. -If locus of R is $\frac{a^{2}}{x^{2}}+\frac{4 b^{2}}{y^{2}}=\lambda$, then λ is equal to

- View Text Solution

7. If a tangent of slope m at a point of the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ passes through $(2 a, 0)$ and if e denotes the eccentricity of ellipse, then $3 m^{2}+e^{2}$ is
8. If the eccentricity of the ellipse $\frac{x^{2}}{a^{2}}+2+\frac{y^{2}}{a^{2}}+5=1$ be $\frac{1}{\sqrt{3}}$, then length of latus rectum of ellipse is

D View Text Solution

9.

Area
of
the
ellipse
$(2 x+3 y-5)^{2}+4(-3 x+2 y+1)^{2}=52$ is
equal to

D View Text Solution
10. Let P be a point in the first quadrant lying on the ellipse $\frac{x^{2}}{8}+\frac{y^{2}}{18}=1$. Let $A B$ be the tangent at P to the ellipse meeting the x-axis at A and y axis at B. If O is the origin, then the minimum, possible area of $\triangle O A B$ is (in square units)

D View Text Solution

11. If maximum distance of any point on the curve $5 x^{2}+4 y^{2}+x y-2=0$ from its centre be L and $L=\frac{a}{\sqrt{b}-\sqrt{2}}$, then $(b-a)$ is
12. A tangent.is drawn to the curve, $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ at the point P meeting the coordinate axis in T and t. If $O Y$ is the perpendicular from the origin on the tangent then find the value of the product $(T t)(P Y)$

D View Text Solution

13. The maximum and minimum distance of
point $(3,-1)$ from the ellipse
$x^{2}+4 y^{2}-4 x+8 y-8=0$ is M and m
respectively, where $M^{\beta}+m^{3}$ is

D View Text Solution

14. If the circle $x^{2}+y^{2}-2 x-4 y+k=0$
and director circle of ellipse $\frac{x^{2}}{4}+y^{2}=1$ intersects orthogonally then k equals
15. Least value of modulus of slope of a line for which the line may touch the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{l}\left(a^{3}+a^{2}+a\right)^{2}=1$ is $(a$ is nonzero real number)

D View Text Solution

16. A normal to the hyperbola $x^{2}-4 y^{2}=4$
has equal intercepts on positive x and y axes.

If this normal touches the ellipse
$\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then $3\left(a^{2}+b^{2}\right)$-is equal to

- View Text Solution

17. Let any double ordinate $P N P$ of the
hyperbola $\frac{x^{2}}{25}-\frac{y^{2}}{16}=1$ be produced both sides to meet the asymptotes in Q and Q, then $P Q . P^{1} Q$ is equal to

D View Text Solution

18. Let $A B$ is the latus rectum of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ such that triangle
$O A B$ is equilateral where ${ }^{\wedge} 4 O$ is origin and under this condition eccentricity of the hyperbola is given as $\frac{1+\sqrt{p}}{2 \sqrt{q}}$ (where p, q are numbers) then $p-q$ is

D View Text Solution

19. If e and e_{1} are the eccentricities of the
hyperbolas $x y=5$ and $x^{2}-y^{2}=18$, then $e^{2}+e_{1}^{2}$ is
20. Let the focus of conic $\frac{(y+x)^{2}}{16}-\frac{(y-x)^{2}}{8}=1$ is at (a, b) then $\frac{a^{2}+b^{2}}{4}$ is

D View Text Solution

21. Let $H: y(3 y+4 x)=-4$ is a hyperbola and $y=m x+c$ is its conjugate axis. Length of latus rectum of H is L, eccentricity e.and $\left(x_{1}, y_{1}\right)$ is one. vertex with $y_{1}>0$, then $4 e^{2}$ is equal to
22. A tangent to the circle $x^{2}+y^{2}=4$ intersects the hyperbola $x^{2}-2 y^{2}=2$ at P and Q. If locus of mid-point of $P Q$ is. $\left(x^{2}-2 y^{2}\right)^{2}=\lambda\left(x^{2}+4 y^{2}\right)$, then λ equals

D View Text Solution

23. If equation of common tangent to parabola $y^{2}-8 x=0$ and hyperbola $y^{2}-3 x^{2}+3=0$
$2 x+\frac{c y}{\sqrt{2}}+1=0(c \in R) \quad$ then \quad absolute value of ' c '

D View Text Solution

24. If the set of values of λ for which two distinct tangents are drawn from a point
$(2, \lambda)$ to the curve $x=4 \sqrt{1+\frac{y^{2}}{9}}$ is a_{1}, a_{2}
then $\left|a_{1}-a_{2}\right|$ is equal to

D View Text Solution
25. A normal to the hyperbola $\frac{x^{2}}{6}-\frac{y^{2}}{2}$ has equal intercepts on positive x and y-axis. If this normal touches the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$, then find the value of $a^{2}+\frac{b^{2}}{4}$.

D View Text Solution

26. If $\frac{(3 x-4 y-1)^{2}}{100}-\frac{(4 x+3 y-1)^{2}}{225}=1$
, then length of latusrectum of hyperbola is

D View Text Solution

27. The eccentricity of the conic section represented by $(x+y)^{2}-4=x^{2}+y^{2}$ is

D View Text Solution

28. The maximum distance between the
tangents drawn to the hyperbola
$9 x^{2}-16 y^{2}=144$ at $P(\theta)$ and $Q(\pi-\theta)$ is

- View Text Solution

