

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

Quadratic Equations, Inequalities, Modulus and Logarithms

Question Bank

1. Let a, b, c, d are positive integers such that $\log_a b = rac{3}{2}$ and $\log_e d = rac{5}{4}$. If (a-c)=9, find the

2. Find the largest natural number ' a ' for which the maximum value of $f(x) = a - 1 + 2x - x^2$ is smaller than the minimum value of $g(x) = x^2 - 2ax + 10 - 2a.$

3. If a positive real number x satisfy the condition $x^5 - x^3 + \ x = 1$ then the minimum value of x^6 is equal to

4. If the quadratic equations $3x^2 + ax + 1 = 0$ and $2x^2 + bx + 1 = 0$ have a common root, then the value of the expression $5ab - 2a^2 - 3b^2$ is

5. The value of the expression $x^4 - 8x^3 + 18x^2 - 8x + 2$ when $x = \frac{\cot(\pi)}{12}$ is View Text Solution

6. If λ_1 and λ_2 be two values of λ for which the expression $x^2 + (2 - \lambda)x + \lambda - \frac{3}{4}$ becomes a perfect square, then calculate the value of $(\lambda_1^2 + \lambda_2^2)$.

7. If k be an integer and p is a prime such that the quadratic equation $x^2 + kx + p = 0$ has two distinct positive integer solutions find the value of -(k + p).

View Text Solution

8. If the equation $x^3 + kx^2 + 3 = 0$ and $x^2 + kx + 3 = 0$ have a common root, then the absolute of k.

9. Number of possible integral values of m in (-10, 10] for which the quadratic equation $x^2 \div (m+6)|x| + 2m + 8 = 0$ has two distinct solutions.

View Text Solution

10. The greatest integral value of k for which the equation (2 - x)(x + 1) = k has non-négative roots, is If $ax^2 + bx + c = 0$ and $bx^2 + cx + a = 0, a, b, c \neq 0$ have a common root, then value $\left(\frac{a^3 + b^3 + c^3}{abc}\right)^2$ is

12. Let
$$lpha$$
 and eta are the roots of $x^2-10x+2k^2+2k=0$ and $lpha,\gamma$ are the roots of $x^2-(3k+2)x+k^3+3=0$ (where

 $k\in I$). If $lpha,\gamma$ and eta are in A.P., then the value of $lpha+eta^2+\gamma^3$ is

View Text Solution

13. Let r_1,r_2 and r_3 be the solutions of the equation $x^3-2x^2+4x+5074=0$, then the yalue of absolute value of $(r_1\div 2)(r_2+2)(r_3+2)$

14. If
$$f(x) = rac{{{(x + 3)}^{201}{(x - 1)}^{102}{(x - 5)}^{305}}}{{{x}^{5}{{(3x + 4)}^{503}}}},$$

then sum of integral values of x for which $f(x) \leq 0.$

15. The equation $lpha x^3 - 2(lpha+1)x^2 + 4lpha x = 0$

has real roots and α is any positive integer, then

the sum of the roots of the equation is

16. If $f(x) = ax^2 + bx + c$, $a, b, c \in I$ and `f(1)=0,50 lt f(7) lt 60 and 70 lt f(8) lt 80 then f(-1) (is equal to)

View Text Solution

17. If $\log_a \left(ax^2+5x+c
ight)\leq 0\,orall x\in R$ and $\log_a 5+\log_5 a\leq -2$ then minimum integral value of 4 a c is

18. If α, β be the roots of $x^2 + x + 2 = 0$ and γ, δ be the roots of $x^2 + 3x + 4 = 0$, then $(\alpha + \gamma)(\alpha + \delta)(\beta + \gamma)(\beta + \delta)$ is equal to

View Text Solution

19. The number of integral value(s) of a so that the graph of $y = 16x^2 + 8(a+5)x - 7a - 5$ is

always above the x -axis is

20. Number of integral values of a such that the quadratic equation $x^2 + ax + a + 1 = 0$ has integral roots is

View Text Solution

21. If $P(x) = x^2 + ax + 1$. If P(x) is a negative integer for only one real x, then number of values of a is

$$A = rac{\left({{{\log }_2}\,3}
ight)^3 - \left({{{\log }_2}\,6}
ight)^3 - \left({{{\log }_2}\,12}
ight)^3 + \left({{{\log }_2}\,24}
ight)^3 }{6}$$

If

then the value of $(2^{(A)})$ is equal to

View Text Solution

22.

24. If
$$\alpha, \beta, \gamma$$
 are roots of equation
 $x^3 - 2x^2 - 1 = 0$ and $T_n = \alpha^n + \beta^n + \gamma^n$,
then value of $\frac{T_{11} - T_8}{T_{10}}$ is
View Text Solution

25. The minimum value of the expression $x^2 - kx + lpha$ is 6 which is obtained at x = 3. Find the value of $rac{lpha}{3}$.

26. If
$$\alpha,\beta$$
 are the roots of the equation $x^2 - 3x - 15 = 0$, and $f(n) = \alpha^n + \beta^n$, then $\frac{f(8) - 3f(7) + f(6)}{2f(6)}$ is equal to

View Text Solution

27. If $a, b, c, d \in Q$ (Rational number), such that

two roots of the equation $x^4+ax^3+bx^2+cx+d=0$ are $\sqrt{3}\pm 2$, then |a|+|b|+|c|+|d| is equal to

28. If x + y + z = 5 and xy + yz + zx = 3,

then the greatest value of (-x) is

29. Number of values of x satisfying the pair of quadratic equations $x^2 - px + 20 = 0$ and $x^2 - 20x + p = 0$ for some $p \in R$, is

30. If
$$\left(y^2-5x
ight)\left(x^2+2x+4
ight)<2$$
, for all $x\in R$, then number of integers in the range of y is

31. Number of integral value(s) of 'x ' satisfying

the equation

|2x+1|+|5-2x|=6, is