

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

SEQUENCE AND SERIES

Question Bank

1. Number of terms common to the two. sequences 17,21 ,25, ..., 417 and

16,21,26, Idots, 466 is

View Text Solution

2. If the value of $\sum_r = 0^{50}(2r+1)(-1)^r$ is a two digit number, then

the sum of digits, is

3. Let $a, b, c \in R^+$ and $2ab^3 + a^2b^3 + b^3 = 243$. If 2a + 3b + 2 assumes its least value, then a + b is equal to

View Text Solution

4. If
$$3+rac{1}{4}(3\div d)+rac{1}{4^2}(3+2d)+\ldots+$$
 upto $\infty=8$, then the value

of d is

View Text Solution

5. Evaluate:
$$\left[(2+1)(2^2+1)(2^4+1)l(2^8+1)(2^{16}+1)+rac{1}{2^{32}}
ight]$$

View Text Solution

6. If 2p, p and $\left[p^2-14
ight], p\in R-0$ are the first three terms of a G.P. in order, then find the 50^th term of the sequence, $p, 3p, 6p, 10p, \ldots$ [Note:

$\left[y ight]$ denotes greatest integer function of y.]

7. Consider two positive numbers a and b. If arithmetic mean of a and b exceeds their geometric mean by $\frac{3}{2}$ and geometric mean of a and b exceeds their harmonic mean by $\frac{6}{5}$, then the absolute value of $(a^2 - b^{\Box})$ is equal to

View Text Solution

8. The difference between the sum of the first k terms of the series $1^3 + 2^3 + 3^3 + \ldots + n^3$ and the sum of the first k terms of $1 + 2 + 3 \div \ldots + n$ is 1980. The value of k is

9. Let
$$\alpha, \beta, \gamma, \delta$$
 are zeroes of $P(x) = 5x^4 + px^3 + qx^2 + r...x \div s(p, q, r, s \in R)$ and α, γ, δ are zeroes of $Q(x) = x^3 - 9x^2 \div ax - 24(\alpha < \beta < \gamma < \delta)$. If α, γ, δ (taken in that order) are in arithmetic progression and $\alpha, \beta, \gamma, \delta$ (taken in that order) are in harmonic progression, then find the value of $\left| P \frac{1}{Q}(1) \right|$

View Text Solution

10. If
$$1^3 + 3^3 + 5^3 + \dots \frac{(2k-1)^3}{2^3} + 4^3 + 6^3 + (2k)^3 = \frac{199}{242}$$
, then the value of $\frac{k}{5}$
View Text Solution

11. Let a_1,a_2,\ldots,a_{10} be in A.P. and $h_1,h_2,\ldots h_{10}$ be in H.P. If $a_1=h_1=2a_{10}=h_{10}=3$ then a_4h_7 is

12. The sum of the first 10 terms of the series

$$\frac{7}{2^2}5^2 + \frac{13}{5^2}8^2 + \frac{19}{8^2}11^2 + \dots$$
 is m/n the find the value of (n -12 m).
View Text Solution

13. The value of
$$\sum_n = 2^\infty rac{n}{1} + n^2 ig(n^2 - 2 ig)$$
 is equal to

View Text Solution

14. Let
$$S=\sum_k = 0^\infty rac{2^k}{7^2} \ \hat{} \ k+1$$
 then $rac{1}{S}$ is equal to

View Text Solution

15. If $x = \log 2$ and $y = \log 3$, then $a + bx + cy = [\log 1 + \log(1+3) + \log(1+3+5) + ... + \log(1+3+5+5)]$, where a, b and c are possitive integers. The value of 2a + 3b + 5c is équal to (where $\log a = \log_{10} a$)

16. Least value of n for which $3+6+9+\ldots$ to n terms exceeds 900 is k, then \sqrt{k} is equal to

18. If p, q, r are G.M. between positive number ab and A is one arithmetic

mean, then
$$\left(p^2+rac{r^2}{A}q
ight)$$
 is equal to

19. Let a, b, c, d be four numbers such that b, c, d are in G.P. with common ratio 3 and a, b, c are in A. P. with common difference 2, then $a + b \div c + d$ is equal to

20.

View Text Solution

21. If the first and third terms of a G.P. áre a - 2 and a + 6 respectively and arithmetic mean of these terms is 5, then the ratio of third and first term is

23. If
$$S_n=1+rac{1}{3}+rac{1}{3^2}+...+rac{1}{3^n}-1, n\in N$$
, then least value of n such that $3-2S_n<rac{1}{100}$, is

View Text Solution

24. The value of 1.1+2.3+3.5+4.7+...+ upto 100 terms is equal to $100 imes101 imesrac{k}{6}$, then value of k is-

View Text Solution

25. If abcd = 1 where a, b, c, d are positive reals then the minimum value

of
$$a^2+b^2+c^2+d^2+ab \div ac+ad+bc+bd+cd$$
 is

26.
$$\sum_{k=1}^{360}\left(rac{1}{k\sqrt{k}+1+(k+1)\sqrt{k}}
ight)$$
 is the ratio of two relative prime

positive integers m and n. The value of (m + n) is equal to

View Text Solution

27. If x, y, z are arbitrary positive real numbers satisfying the equation 4xy + 6yz + 8zx = 9 and maximum possible value of (xyz) is M, then (2016M) is

28. If a, b, c are non-zero real numbers, then the minimum value of the

expression
$$\left(\frac{\left(a^4 + 3a^2 + 1\right)\left(b^4 + 5b^2 + 1\right)\left(c^4 + 7c^2 + 1\right)}{a^2b^2c^2} \right)$$
 equals

31. Let $S_1, S_2, S_3, S_4, S_5, \dots, S_n$ are the sums of infinite geometric series whose first terms are $1, 2, 3, 4, -5, \dots n$ and whose common ratios are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \dots, \frac{1}{n} + 1$ respectively. If $S_1^2 + S_3^2 + S_5^2 + S_7^2 + \dots + S_{99}^2 = 100k$, then find the value of k

32. The positive integral value of
$$n$$
 such that
 $1.2^{1} + 2.2^{2} + 3.2^{3} + 4.2^{4} + \ldots + n.2^{n} = 2 + 2^{n} + 5$, is
View Text Solution

33. For any
$$x, y \in R, xy > 0$$
 then the minimum value of.
 $\frac{2x}{y^3} + \frac{x^3y}{3} + \frac{4y^2}{9x^4}$ equals

34. Let .E=x^(2017)+y^(2017)+z^(2017)-2017 x y z(*where*x, y, z ge 0) , then

the maximum value of -E is

35. The equation $x^3 - 6x^2 + px - 8 = 0$ has only positive real roots. The

value of p is

36. If a, b, c are the first three non-zero terms of a geometric progression such that a = 2, 2b and 12c forms another geometric progression with common ratio 5, then the sum of the series $a + b + c + .. \infty$, is.