©゙doubtnut

India's Number 1 Education App

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

SEQUENCE AND SERIES

Question Bank

1. Number of terms common to the two. sequences $17,21,25, \ldots, 417$ and 16,21,26, Idots, 466 is

- View Text Solution

2. If the value of $\sum_{r}=0^{50}(2 r+1)(-1)^{r}$ is a two digit number, then the sum of digits, is
3. Let $a, b, c \in R^{+}$and $2 a b^{3}+a^{2} b^{3}+b^{3}=243$. If $2 a+3 b+2$ assumes its least value, then $a+b$ is equal to

- View Text Solution

4. If $3+\frac{1}{4}(3 \div d)+\frac{1}{4^{2}}(3+2 d)+\ldots+$ upto $\infty=8$, then the value of d is

- View Text Solution

5. Evaluate: $\left[(2+1)\left(2^{2}+1\right)\left(2^{4}+1\right) l\left(2^{8}+1\right)\left(2^{16}+1\right)+\frac{1}{2^{32}}\right]$

- View Text Solution

6. If $2 p, p$ and $\left[p^{2}-14\right], p \in R-0$ are the first three terms of a G.P. in order, then find the $50^{t} h$ term of the sequence, $p, 3 p, 6 p, 10 p, \ldots$. [Note:
[y] denotes greatest integer function of y.]

- View Text Solution

7. Consider two positive numbers a and b. If arithmetic mean of a.and b exceeds their geometric mean by $\frac{3}{2}$ and geometric mean of a and b exceeds their harmonic mean by $\frac{6}{5}$, then the absolute value of $\left(a^{2}-b^{\square}\right)$ is equal to

- View Text Solution

8. The difference between the sum of the first k terms of the series $1^{3}+2^{3}+3^{3}+\ldots+n^{3}$ and the sum of the first k terms of $1+2+3 \div \ldots+n$ is 1980 . The value of k is

- View Text Solution

9. Let $\alpha, \beta, \gamma, \delta$
are
zeroes
of $P(x)=5 x^{4}+p x^{3}+q x^{2}+r \ldots x \div s(p, q, r, s \in R) \quad$ and $\quad \alpha, \gamma, \delta$ are zeroes of $Q(x)=x^{3}-9 x^{2} \div a x-24(\alpha<\beta<\gamma<\delta)$. If α, γ, δ (taken in that order) are in arithmetic progression and $\alpha, \beta, \gamma, \delta$ (taken in that order) are in harmonic progression, then find the value of $\left|P \frac{1}{Q}(1)\right|$

D View Text Solution

10. If $1^{3}+3^{3}+5^{3}+\ldots \frac{(2 k-1)^{3}}{2^{3}}+4^{3}+6^{3}+(2 k)^{3}=\frac{199}{242}$, then the value of $\frac{k}{5}$

- View Text Solution

11. Let $a_{1}, a_{2}, \ldots, a_{10}$ be in A.P. and $h_{1}, h_{2}, \ldots h_{10}$ be in H.P. If $a_{1}=h_{1}=2 a_{10}=h_{10}=3$ then $a_{4} h_{7}$ is

- View Text Solution

12. The sum of the first 10 terms of the series $\frac{7}{2^{2}} 5^{2}+\frac{13}{5^{2}} 8^{2}+\frac{19}{8^{2}} 11^{2}+\ldots$. is m / n the find the value of $(\mathrm{n}-12 \mathrm{~m})$.

- View Text Solution

13. The value of $\sum_{n}=2^{\infty} \frac{n}{1}+n^{2}\left(n^{2}-2\right)$ is equal to

- View Text Solution

14. Let $S=\sum_{k}=0^{\infty}{\frac{2^{k}}{7^{2}}}^{\wedge} k+1$ then $\frac{1}{S}$ is equal to

D View Text Solution

> 15. If $\begin{array}{cc}x=\log 2 & \text { and } \quad y=\log 3,\end{array}$ then $a+b x+c y=[\log 1+\log (1+3)+\log (1+3+5)+\ldots+\log (1+3+5$
, where a, b and c are poositive integers. The value of $2 a+3 b+5 c$ is équal to (where $\log a=\log _{10} a$)
16. Least value of n for which $3+6+9+\ldots$.. to n terms exceeds' 900 is k, then \sqrt{k} is equal to

- View Text Solution

17. narithmeticmeansA_1, A_2 .., A_n
are \in sertedbetween 7 and 49 sucht $\widehat{\sum}$ ofthesemeansis 364 . IftheG. M.
A_3 and A_6isk, then(k/4)' is equal to

- View Text Solution

18. If p, q, r are G.M. between positive number $a b$ and A is one arithmetic mean, then $\left(p^{2}+\frac{r^{2}}{A} q\right)$ is equal to

- View Text Solution

19. Let a, b, c, d be four numbers such that b, c, d are in G.P. with common ratio 3 and a, b, c are in $A . P$. with common difference 2 , then $a+b \div c+d$ is equal to

- View Text Solution

20.

$1+(1+2) \frac{1+3}{2^{2}}\left(1^{3}+2^{3}\right)+(1+2+3) \frac{1+3+5}{3^{2}}\left(1^{3}+2^{3}+3^{3}\right)+(1+$ upto 10 terms $=\frac{a}{b}$ where ab are relatively prime, then $a-b$ is equal to

D View Text Solution

21. If the first and third terms of a G.P. áre $a-2$ and $a+6$ respectively and arithmetic mean of these terms is 5 , then the ratio of third and first term is

- View Text Solution

22. If $\sqrt{3}, H, \sqrt{2}$ are in H.P., then the value of $\frac{H+\sqrt{2}}{H-\sqrt{2}+\frac{H+\sqrt{3}}{H-\sqrt{3}}}$ is

- View Text Solution

23. If $S_{n}=1+\frac{1}{3}+\frac{1}{3^{2}}+\ldots+\frac{1}{3^{n}}-1, n \in N$, then least value of n such that $3-2 S_{n}<\frac{1}{100}$, is

- View Text Solution

24. The value of $1.1+2.3+3.5+4.7+\ldots+$ upto 100 terms is equal to $100 \times 101 \times \frac{k}{6}$, then value of k is-

- View Text Solution

25. If $a b c d=1$ where a, b, c, d are positive reals then the minimum value of $a^{2}+b^{2}+c^{2}+d^{2}+a b \div a c+a d+b c+b d+c d$ is
26. $\sum_{k=1}^{360}\left(\frac{1}{k \sqrt{k}+1+(k+1) \sqrt{k}}\right)$ is the ratio of two relative prime positive integers m and n. The value of $(m+n)$ is equal to

- View Text Solution

27. If x, y, z are arbitrary positive real numbers satisfying the equation $4 x y+6 y z+8 z x=9$ and maximum possible value of $(x y z)$ is M, then $(2016 M)$ is

- View Text Solution

28. If a, b, c are non-zero real numbers, then the minimum value of the expression $\left(\frac{\left(a^{4}+3 a^{2}+1\right)\left(b^{4}+5 b^{2}+1\right)\left(c^{4}+7 c^{2}+1\right)}{a^{2} b^{2} c^{2}}\right.$ equals

- View Text Solution

29. The value of sum $\sum_{r=1}^{10}\left(2^{r}-1+8 r-3\right)$ is equal to

- View Text Solution

30. Let $a_{1}, a_{2}, a_{3}, \ldots, a_{21}$ be in arithmetic progression. If $\sum_{k-1}^{21} a_{k}=693$, then $\sum_{k-1}^{21} a_{2 r+1}$ equals

- View Text Solution

31. Let $S_{1}, S_{2}, S_{3}, S_{4}, S_{5}, \ldots . S_{n}$ are the sums of infinite geometric series whose first terms are $1,2,3,4,-5, \ldots n$ and whose common ratios are $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6} \ldots, \frac{1}{n}+1$ respectively. If $S_{1}^{2}+S_{3}^{2}+S_{5}^{2}+S_{7}^{2}+\ldots+S_{99}^{2}=100 k$, then find the value of k

D View Text Solution

32. The positive integral value of n such that $1.2^{1}+2.2^{2}+3.2^{3}+4.2^{4}+\ldots . .+n .2^{n}=2+2^{n}+5$, is

- View Text Solution

33. For any $x, y \in R, x y>0$ then the minimum value of. $\frac{2 x}{y^{3}}+\frac{x^{3} y}{3}+\frac{4 y^{2}}{9 x^{4}}$ equals

D View Text Solution

34. Let $. \mathrm{E}=\mathrm{x}^{\wedge}(2017)+\mathrm{y}^{\wedge}(2017)+\mathrm{z}^{\wedge}(2017)-2017 \mathrm{x} y \mathrm{z}$ (wherex, y, z ge $\left.0^{\wedge}\right)$, then the maximum value of -E is

- View Text Solution

35. The equation $x^{3}-6 x^{2}+p x-8=0$ has only positive real roots. The value of p is
36. If a, b, c are the first three non-zero terms of a geometric progression such that $a=2,2 b$ and $12 c$ forms another geometric progression with common ratio 5 , then the sum of the series $a+b+c+\ldots \infty$, is.
