©゙doubtnut

MATHS

BOOKS - CENGAGE MATHS (HINGLISH)

VECTORS

1. A line makes an angle θ both with x-axis and y-axis. A possible range of θ is
A. $\left[0, \frac{\pi}{4}\right]$
B. $\left[0, \frac{\pi}{2}\right]$
C. $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
D. $\left[\frac{\pi}{6}, \frac{\pi}{3}\right]$
2. A line segment has length 63 and direction ratios
are $3,-2,6$. The components of the line vector are
A. $-27,18,54$
B. $27,-18,54$
C. $27,-18,054$
D. $-7,-18,-54$

Answer: B

- Watch Video Solution

3. If \vec{a}, \vec{b} and \vec{c} are position vectors of A, B, and C respectively of $\triangle A B C$ and if $|\vec{a}-\vec{b}|=4,|\vec{b}-\vec{c}|=2,|\vec{c}-\vec{a}|=3$, then the distance between the centroid and incenter of $\triangle A B C$ is
A. 1
B. $\frac{1}{2}$
C. $\frac{1}{3}$
D. $\frac{2}{3}$

Answer: C

- Watch Video Solution

4. Let O be an interior point of $\triangle A B C$ such that $\overline{O A}+2 \overline{O B}+3 \overline{O C}=0$. Then the ratio of a $\triangle A B C$ to area of $\triangle A O C$ is
A. 2
B. $\frac{3}{2}$
C. 3
D. $\frac{5}{2}$

Answer: C

5. In a three-dimensional coordinate system, P, Q, and R are images of a point $A(a, b, c)$ in the $x-y, y-z a n d z-x$ planes, respectively. If G is the centroid of triangle $P Q R$, then area of triangle $A O G$ is (O is the origin) a. 0 b. $a^{2}+b^{2}+c^{2}$ c. $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)$ d. none of these
A. 0
B. $a^{2}+b^{2}+c^{2}$
C. $\frac{2}{3}\left(a^{2}+b^{2}+c^{2}\right)$
D. none of these

Answer: A

- Watch Video Solution

6. ABCDEF is a regular hexagon in the $x-y$ plance with vertices in the anticlockwise direction. If $\vec{A} B=2 \hat{i}$, then $\vec{C} D$ is
A. $\hat{i}+\sqrt{3} \hat{j}$
B. $\hat{i}-\sqrt{3} \hat{j}$
C. $-\hat{i}+\sqrt{3} \hat{j}$
D. $\sqrt{3} \hat{i}-\hat{j}$

Answer: C

- Watch Video Solution

7. Let position vectors of point A, B and C of triangle $A B C$ represents be $\hat{i}+\hat{j}+2 \hat{k}, \hat{i}+2 \hat{j}+\hat{k}$ and $2 \hat{i}+\hat{j}+\hat{k}$. Let $l_{1}+l_{2}$ and l_{3} be the length of perpendicular drawn from the orthocenter ' O ' on the sides AB, BC and CA , then $\left(l_{1}+l_{2}+l_{3}\right)$ equals
A. $\frac{2}{\sqrt{6}}$
B. $\frac{3}{\sqrt{6}}$
C. $\frac{\sqrt{6}}{2}$
D. $\frac{\sqrt{6}}{3}$

Answer: C

- Watch Video Solution

8. If D, E and F are the mid-points of the sides $B C, C A$ and $A B$ respectively of a triangle $A B C$ and λ is scalar, such that $\overrightarrow{A D}+\frac{2}{3} \overrightarrow{B E}+\frac{1}{3} \overrightarrow{C F}=\lambda \overrightarrow{A C}$, then λ is equal to
A. $\frac{1}{2}$
B. 1
C. $3 / 2$
D. 2

Answer: A

9. If points $(1,2,3),(0,-4,3),(2,3,5)$ and $(1,-5,-3)$ are vertices of tetrahedron, then the point where lines joining the mid-points of opposite edges of concurrent is
A. $(1,-1,2)$
B. $(-1,1,2)$
C. $(1,1,-2)$
D. $(-1,1,-2)$

Answer: A

- Watch Video Solution

10. The unit vector parallel to the resultant of the vectors $2 \hat{i}+3 \hat{j}-\hat{k}$ and $4 \hat{i}-3 \hat{j}+2 \hat{k}$ is
A. $\frac{1}{\sqrt{37}}(6 \hat{i}+\hat{k})$
B. $\frac{1}{\sqrt{37}}(6 \hat{i}+\hat{j})$
C. $\frac{1}{\sqrt{37}}(6 \hat{i}+\hat{k})$
D. none of these

Answer: A

- Watch Video Solution

11. ABCDEF is a regular hexagon. Find the vector $\vec{A} B+\vec{A} C+\vec{A} D+\vec{A} E+\vec{A} F$ in terms of the vector $\vec{A} D$
A. 1
B. 2
C. 3
D. none of these

Answer: C

12. If $\vec{a}+\vec{b}+\vec{c}=0,|\vec{a}|=3,|\vec{b}|=5,|\vec{c}|=7$, then find the angle between \vec{a} and \vec{b}.
A. $\frac{\pi}{2}$
B. $\frac{\pi}{3}$
C. $\frac{\pi}{4}$
D. $\frac{\pi}{6}$

Answer: B

- Watch Video Solution

13. If sum of two unit vectors is a unit vector; prove that the magnitude of their difference is $\sqrt{3}$
A. $\sqrt{2}$
B. $\sqrt{3}$
C. 1
D. none of these

Answer: B

- Watch Video Solution

14. The position vectors of the points A, B, and C are $\hat{i}+2 \hat{j}-\hat{k}, \hat{i}+\hat{j}+\hat{k}$, and $2 \hat{i}+3 \hat{j}+2 \hat{k}$ respectively. If A is chosen as the origin, then the position vectors B and C are
A. $\vec{i}+2 \hat{k}, \hat{i}+\hat{j}+3 \hat{k}$
B. $\hat{j}+2 \hat{k}, \hat{i}+\hat{j}+3 \hat{k}$
C. $-\hat{j}+2 \hat{k}, \hat{i}-\hat{j}+3 \hat{k}$
D. $-\hat{j}+2 \hat{k}, \hat{i}+\hat{j}+3 \hat{k}$

Answer: D

D Watch Video Solution

15. Orthocenter of an equilateral triangle $A B C$ is the origin O. If $\overrightarrow{O A}=\vec{a}, \overrightarrow{O B}=\vec{b}, \overrightarrow{O C}=\vec{c}$, then $\overrightarrow{A B}+2 \overrightarrow{B C}+3 \overrightarrow{C A}=$
A. $3 \vec{c}$
B. $3 \vec{a}$
C. $\overrightarrow{0}$
D. $3 \vec{b}$

Answer: B

- Watch Video Solution

16. If the position vectors of P and Q are $\hat{i}+2 \hat{j}-7 \hat{k}$ and $5 \hat{i}-3 \hat{j}+4 \hat{k}$ respectively, the cosine of the angle between $\overrightarrow{P Q}$ and z -axis is
A. $\frac{4}{\sqrt{162}}$
B. $\frac{11}{\sqrt{162}}$
C. $\frac{5}{\sqrt{162}}$
D. $-\frac{5}{\sqrt{162}}$

Answer: B

- Watch Video Solution

17. The non zero vectors \vec{a}, \vec{b}, and \vec{c} are related byi $\vec{a}=8 \vec{b} n d \vec{c}=-7 \vec{b}$. Then the angle between \vec{a} and \vec{c} is (A) π (B) O (C) $\frac{\pi}{4}$ (D) $\frac{\pi}{2}$
A. $\frac{\pi}{4}$
B. $\frac{\pi}{2}$
C. π
D. 0

Answer: C

- Watch Video Solution

18. The unit vector bisecting $\overrightarrow{O Y}$ and $\overrightarrow{O Z}$ is
A. $\frac{\vec{i}+\vec{j}+\vec{k}}{\sqrt{3}}$
B. $\frac{\vec{i}-\vec{k}}{\sqrt{2}}$
C. $\frac{\vec{j}+\vec{k}}{\sqrt{2}}$
D. $\frac{-\vec{j}+\vec{k}}{\sqrt{2}}$

Answer: C

- Watch Video Solution

19. A unit tangent vector at $\mathrm{t}=2$ on the curve $x=t^{2}+2, y=4 t-5$ and $z=2 t^{2}-6 t$ is
A. $\frac{1}{\sqrt{3}}(\vec{i}+\vec{j}+\vec{k})$
B. $\frac{1}{3}(2 \vec{i}+2 \vec{j}+\vec{k})$
C. $\frac{1}{\sqrt{6}}(2 \vec{i}+\vec{j}+\vec{k})$
D. $\frac{1}{3}(\vec{i}+\vec{j}+\vec{k})$

- Watch Video Solution

20. If \vec{a} and \vec{b} are position vectors of A and B respectively, then the position vector of a point C in $\overrightarrow{A B}$ produced such that $\overrightarrow{A C}=2015 \overrightarrow{A B}$ is
A. $2014 \vec{a}-2015 \vec{b}$
B. $2014 \vec{b}+2015 \vec{a}$
C. $2015 \vec{b}+2014 \vec{a}$
D. $2015 \vec{b}-2014 \vec{a}$

Answer: D

- Watch Video Solution

21. Let $\vec{a}=(1,1,-1), \vec{b}=(5,-3,-3)$ and $\vec{c}=(3,-1,2)$. If \vec{r} is collinear with \vec{c} and has length $\frac{|\vec{a}+\vec{b}|}{2}$, then \vec{r} equals
A. $\pm 3 \vec{c}$
B. $\pm \frac{3}{2} \vec{c}$
C. $\pm \vec{c}$
D. $\pm \frac{2}{3} \vec{c}$

Answer: C

- Watch Video Solution

22. A line passes through the points whose position vectors are $\hat{i}+\hat{j}-2 \hat{k}$ and $\hat{i}-3 \hat{j}+\hat{k}$. The position vector of a point on it at unit distance from the first point is
A. $\frac{1}{5}(5 \hat{i} \hat{j}-7 \hat{k})$
B. $\frac{1}{5}(4 \hat{i}+9 \hat{j}-15 \hat{k})$
C. $(\hat{i}-4 \hat{j}+3 \hat{k})$
D. $\frac{1}{5}(\hat{i}-4 \hat{j}+3 \hat{k})$

Answer: A

- Watch Video Solution

23. Three points A, B, and C have position vectors $-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}$ and $7 \vec{a}-\vec{c}$ with reference to an origin O . Answer the following questions?

Which of the following is true?
A. $\overrightarrow{A C}=2 \overrightarrow{A B}$
B. $\overrightarrow{A C}=-3 \overrightarrow{A B}$
c. $\overrightarrow{A C}=3 \overrightarrow{A B}$
D. None of these

Answer: C

- Watch Video Solution

24. Three points A, B, and C have position vectors $-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}$ and $7 \vec{a}-\vec{c}$ with reference to an origin O . Answer the following questions?

Which of the following is true?
A. $2 \overrightarrow{O A}-3 \overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{0}$
B. $2 \overrightarrow{O A}+7 \overrightarrow{O B}+9 \overrightarrow{O C}=\overrightarrow{0}$
c. $\overrightarrow{O A}+\overrightarrow{O B}+\overrightarrow{O C}=\overrightarrow{0}$
D. None of these

Answer: A

D Watch Video Solution

25. Three points A, B, and C have position vectors $-2 \vec{a}+3 \vec{b}+5 \vec{c}, \vec{a}+2 \vec{b}+3 \vec{c}$ and $7 \vec{a}-\vec{c}$ with reference to an origin O . Answer the following questions?
B divided $A C$ in ratio
A. 2:1
B. 2: 3
C. 2: -3
D. 1: 2

Answer: B

- Watch Video Solution

Dpp 24

1. $\vec{a}=2 \vec{i}+\vec{j}+\vec{k}, \vec{b}=b_{1} \hat{i}+b_{2} \hat{j}+b_{3} \hat{k}$,
$\vec{a} \times \vec{b}=5 \hat{i}+2 \hat{j}-12 \hat{k}, \vec{a} \cdot \vec{b}=11$, then $b_{1}+b_{2}+b_{3}=$
A. 3
B. 5
C. 7
D. 9

Answer: B

- Watch Video Solution

2. If $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ are unit vectors such that $\vec{a} \cdot \vec{b}=\frac{1}{2}, \vec{c} \cdot \vec{d}=\frac{1}{2}$ and angle between $\vec{a} \times \vec{b}$ and $\vec{c} \times \vec{d}$ is $\frac{\pi}{6}$ then the value of $\left|\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{d}\end{array}\right] \vec{c}-\left[\begin{array}{lll}\vec{a} & \vec{b} & \vec{c}\end{array}\right] \vec{d}\right|=$
A. $3 / 2$
B. $3 / 4$
C. $3 / 8$
D. 2

D Watch Video Solution

3. If $\vec{a}, \vec{b}, \vec{d}, \vec{d}$ be vectors such that
$[\vec{a} \vec{b} \vec{c}]=2$
and
$(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})+(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{d})+(\vec{c} \times \vec{a}) \times(\vec{b}$
Then the value of μ is
A. 0
B. 1
C. 3
D. 4

Answer: D
4. Let $(\hat{p} \times \vec{q}) \times(\hat{p} . \vec{q}) \vec{q}$
$=\left(x^{2}+y^{2}\right) \vec{q}+(14-4 x-6 y) \vec{p}$
Where \hat{p} and \hat{q} are two non-collinear vectors \vec{p} is unit vector and x, y are scalars. Then the value of $(x+y)$ is
A. 4
B. 5
C. 6
D. 7

Answer: B

- View Text Solution

5. If $\vec{a}, \vec{b}, \vec{c}$ are three on-coplanar vectors such that $\vec{a} \times \vec{b}=\vec{c}, \vec{b} \times \vec{c}=\vec{a}, \vec{c} \times \vec{a}=\vec{b}$, then the value of $|\vec{a}|+|\vec{b}|+|\vec{c}|$ is
A. $1 / 3$
B. 1
C. 3
D. 6

Answer: C

- Watch Video Solution

6. Let \widehat{a} and \hat{b} be two unit vectors such that $\hat{a} . \hat{b}=\frac{1}{3}$ and $\vec{a} \times \vec{b}=\vec{c}$, Also $\vec{F}=\alpha \widehat{a}+\beta \hat{b}+\lambda \hat{c}$,
where, α, β, λ are scalars. If $\alpha=k_{1}(\widehat{F} . \widehat{a})-k_{2}(\widehat{F} . \hat{b})$ then the value of $2\left(k_{1}+k_{2}\right)$ is
A. $2 \sqrt{3}$
B. $\sqrt{3}$
C. 3
D. 1

- Watch Video Solution

7. Let \vec{a} and \vec{c} be unit vectors inclined at $\pi / 3$ with each other. If $(\vec{a} \times(\vec{b} \times \vec{c})) \cdot(\vec{a} \times \vec{c})=5$, then $[\vec{a} \vec{b} \vec{c}]$ is equal to
A. -10
B. -5
C. -20
D. none of these

Answer: A

- Watch Video Solution

8. if $\vec{a}=\hat{i}+\hat{j}+2 \hat{k}, \vec{b}=\hat{i}+2 \hat{j}+2 \hat{k}$ and $|\vec{c}|=1$

Such that $[\vec{a} \times \vec{b} \vec{b} \times \vec{c} \vec{c} \times \vec{a}]$ has maximum value, then the value
of $|(\vec{a} \times \vec{b}) \times \vec{c}|^{2}$ is
A. 0
B. 1
C. $\frac{4}{3}$
D. none of these

Answer: A

- Watch Video Solution

9. If the angles between the vectors \vec{a} and \vec{b}, \vec{b} and \vec{c}, \vec{c} an \vec{a} are respectively $\frac{\pi}{6}, \frac{\pi}{4}$ and $\frac{\pi}{3}$, then the angle the vector \vec{a} makes with the plane containing \vec{b} and \vec{c}, is
A. $\cos ^{-1} \sqrt{1-\sqrt{2 / 3}}$
B. $\cos ^{-1} \sqrt{2-\sqrt{3 / 2}}$
C. $\cos ^{-1} \sqrt{\sqrt{3 / 2}-1}$
D. $\cos ^{-1} \sqrt{\sqrt{2 / 3}}$

Answer: B

- Watch Video Solution

10. Let \vec{a}, \vec{b} and \vec{c} be three vectors having magnitudes 1,1 and 2 resectively. If $\vec{a} \times(\vec{a} \times \vec{c})+\vec{b}=\overrightarrow{0}$ then the acute angel between \vec{a} and \vec{c} is
A. $\pi / 4$
B. $\pi / 6$
C. $\pi / 3$
D. $\pi / 2$

Answer: B

- Watch Video Solution

11. If $\vec{a}, \vec{b}, \vec{c}$ are non coplanar vectors and $\vec{p}, \vec{q}, \vec{r}$ are reciprocal vectors, then $(l \vec{a}+m \vec{b}+n \vec{c}) \cdot(l \vec{p}+m \vec{q}+n \vec{r})$ is equal to
A. $l^{2}+m^{2}+n^{2}$
B. $|m+m n+n|$
C. 0
D. None of these

Answer: A

- Watch Video Solution

12. Let $\vec{a}=\hat{i}-3 \hat{j}+4 \hat{k}, \vec{B}=6 \hat{i}+4 \hat{j}-8 \hat{k}, \vec{C}=5 \hat{i}+2 \hat{j}+5 \hat{k}$ and a vector \vec{R} satisfies $\vec{R} \times \vec{B}=\vec{C} \times \vec{B}, \vec{R} \cdot \vec{A}=0$, then the value of $\frac{|\vec{B}|}{|\vec{R}-\vec{C}|}$ is
A. 1
B. 2
C. 3
D. 4

Answer: B

D Watch Video Solution

13. The volume of the parallelepiped whose coterminous edges are represented by the vectors $2 \vec{b} \times \vec{c}, 3 \vec{c} \times \vec{a}$ and $4 \vec{a} \times \vec{b}$ where $\vec{a}=(1+\sin \theta) \hat{i}+\cos \theta \hat{j}+\sin 2 \theta \hat{k}$
$\vec{b}=\sin \left(\theta+\frac{2 \pi}{3}\right) \hat{i}+\cos \left(\theta+\frac{2 \pi}{3}\right) \hat{j}+\sin \left(2 \theta+\frac{4 \pi}{3}\right) \hat{k}$,
$\vec{c}=\sin \left(\theta-\frac{2 \pi}{3}\right) \hat{i}+\cos \left(\theta-\frac{2 \pi}{3}\right) \hat{j}+\sin \left(2 \theta-\frac{4 \pi}{3}\right) \hat{k}$ is 18 cubic
units, then the values of θ, in the interval $\left(0, \frac{\pi}{2}\right)$, is/are
A. $\frac{\pi}{9}$
B. $\frac{2 \pi}{9}$
C. $\frac{\pi}{3}$
D. $\frac{4 \pi}{9}$

Answer: A::B::D

D Watch Video Solution

14. Let \vec{a} and \vec{b} be two non- zero perpendicular vectors. A vector \vec{r} satisfying the equation $\vec{r} \times \vec{b}=\vec{a}$ can be
A. $\vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
B. $2 \vec{b}-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
C. $|\vec{a}||\vec{b}|-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$
D. $|\vec{b}||\vec{b}|-\frac{\vec{a} \times \vec{b}}{|\vec{b}|^{2}}$

Answer: A::B::C::D

15. If $\vec{a}, \vec{b}, \vec{c}$ are three non-zero vectors, then which of the following statements) is/are true?
А. $\vec{a} \times(\vec{b} \times \vec{c}), \vec{b} \times(\vec{c} \times \vec{a}),(\vec{c} \times \vec{a}), \vec{c} \times(\vec{a} \times \vec{b})$
form a right handed system
B. $\vec{c},(\vec{a} \times \vec{b}) \times \vec{c}, \vec{a} \times \vec{b}$ from a right handed system
c. $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}<0$ if $\vec{a}+\vec{b}+\vec{c}=\overrightarrow{0}$
D. $\frac{(\vec{a} \times \vec{b}) \cdot(\vec{b} \times \vec{c})}{(\vec{b} \times \vec{c}) \cdot(\vec{a} \times \vec{c})}=-1$ if $\vec{a}+\vec{b}+\vec{c}=0$

Answer: B::C::D

- Watch Video Solution

16. Vectors $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors and \vec{c} is equally inclined to both \vec{a} and \vec{b}. Let

$$
\vec{a} \times(\vec{b} \times \vec{c})+\vec{b} \times(\vec{c} \times \vec{a})
$$

$$
=\left(4+x^{2}\right) \vec{b}-\left(4 x \cos ^{2} \theta\right) \vec{a}
$$

then \vec{a} and \vec{b} are non-collinear vectors, $x>0$
A. $x=2$
B. $\theta=0^{\circ}$
C. $\theta=x$
D. $x=4$

Answer: A: B::C

- Watch Video Solution

17. If \vec{a} and \vec{b} are unequal unit vectors such that $(\vec{a}-\vec{b}) \times[(\vec{b}+\vec{a}) \times(2 \vec{a}+\vec{b})]=\vec{a}+\vec{b}$, then angle θ between \vec{a} and \vec{b} can be
A. $\frac{\pi}{2}$
B. 0
C. π
D. $\frac{\pi}{4}$

Answer: A::C

- Watch Video Solution

18. $\vec{a}=2 \hat{i}+\hat{j}+2 \hat{k}, \vec{b}=\hat{i}-\hat{j}+\hat{k}$ and non zero vector \vec{c} are such that $(\vec{a} \times \vec{b}) \times \vec{c}=\vec{a} \times(\vec{b} \times \vec{c})$.
Then vector \vec{c} may be given as
A. $4 \hat{i}+2 \hat{j}+4 \hat{k}$
B. $4 \hat{i}-2 \hat{j}+4 \hat{k}$
C. $\hat{i}+\hat{j}+\hat{k}$
D. $\hat{i}-4 \hat{j}+\hat{k}$

Answer: A

19. Volume of parallelogram whose adjacent sides are given by $\vec{a}, \vec{b}, \vec{b} \times \vec{c}$ is,
A. 18
B. 54
C. 12
D. 36

Answer: D

- View Text Solution

20. A vector along the bisector of angle between the vectors \vec{b} and \vec{c} is,
A. $(2+\sqrt{3}) \hat{i}+(1-\sqrt{3}) \hat{j}+(2+\sqrt{3}) \hat{k}$
B. $(2+\sqrt{3}) \hat{i}+(1-\sqrt{3}) \hat{j}-(2+\sqrt{3}) \hat{k}$
C. $(2+\sqrt{3}) \hat{i}-(1-\sqrt{3}) \hat{j}-(2+\sqrt{3}) \hat{k}$
D. $(2+\sqrt{3}) \hat{i}-(1-\sqrt{3}) \hat{j}+(2+\sqrt{3}) \hat{k}$

Answer: A

- View Text Solution

Question Bank

1. If \vec{a}, \vec{b} and \vec{c} are mutually perpendicular unit vectors such that $x \vec{a}-y \vec{b}+\vec{c}-2 \hat{i}=\overrightarrow{0}, x, y \in R$, then the value of $x^{2}+y^{2}$ is

- View Text Solution

2. Let \vec{a} and \vec{b} be two vectors such that $|\vec{a}|=1$ and $\vec{a} \cdot(\vec{b} \times(\vec{a} \times \bar{b}))=8$. If the angle between \vec{a} and \vec{b} is $\operatorname{cosec} \sqrt{-1}$, then magnitude of \vec{b} is

- View Text Solution

3.

Given

$$
f^{2}(x)+g^{2}(x)+h^{2}(x) \leq 9 \quad \text { and }
$$ $U(x)=3 f(x)+4 g(x)+10 h(x)$, where $f(x), g(x)$ and $h(x)$ are continuous $\forall x \in R$. If maximum value of $U(x)$ is \sqrt{N}, then find N.

- View Text Solution

4. Vectors \vec{a} and \vec{b} make an angle $\theta=\frac{2 \pi}{3}$. If $|\vec{a}|=1,|\vec{b}|=2$ then $(\vec{a}+3 \vec{b}) \times(3 \vec{a}-\bar{b})^{2}=$

- View Text Solution

5. If \vec{a} and \vec{b} are non zero, non collinear vectors, and the linear combination $(2 x-y) \vec{a}+4 \vec{b}=5 \vec{a}+(x-2 y) \vec{b}$ holds for real x and y then $x+y$ has the value equal to

- View Text Solution

6. Let $\vec{u}, \vec{v}, \vec{w}$ be such that $|\vec{u}|=1,|\vec{v}|=2,|\vec{w}|=3$. If the projection of \vec{v} along i is equal to that of \vec{w} along \bar{u} and vectors \vec{v}, \vec{w} are perpendicular to each other then $|\vec{u}-\vec{v}+\vec{w}|$ equals

- View Text Solution

7. Given three vectors \vec{a}, b and \bar{c} each two of which are non collinear.

Further if $(\vec{a}+\vec{b})$ is collinear with $\vec{c},(\vec{b}+\vec{c})$ is collinear with \vec{a} and $\quad|\vec{a}|=|\vec{b}|=|\vec{c}|=\sqrt{2}$. Then the absolute value of $\vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{c}+\vec{c} \cdot \vec{a}:$

D View Text Solution

8. Let $\vec{u}=\hat{i}+\hat{j}, \vec{v}=\hat{i}-\hat{j}$ and $\vec{w}=\cap i+\cap 2 j+\cap 3 k$. If n is a unit vector such that $\vec{u} \cdot \widehat{n}=0$ and $\vec{v}+\widehat{n}=0$, then $|\vec{w} \cdot \widehat{n}|$ is equal to
9. If the three points with posifion vectors $(1, a, b),(a, 2, b)$ and $(a, b, 3)$ are collinear in space, then the value of $a+b$ is

- View Text Solution

10. The number of vectors of unit length perpendicular to vectors $\vec{a}=(1,1,0)$ and $\vec{b}=(0,1,1)$ is

- View Text Solution

11. If \vec{p} and \vec{q} are two diagonals of a quadrilateral such that $|\vec{p}-\vec{q}|=\vec{p} \cdot \vec{q},|\vec{p}|=1,|\vec{q}|=\sqrt{2}$, then the area of quadrilateral is equal to

- View Text Solution

12. If \bar{a}, \vec{b} are any two perpendicular vectors of equal magnitude and

$$
|3 \vec{a}+4 \vec{b}|+|4 \vec{a}-3 \vec{b}|=20 \text {, then }|\vec{a}| \text { cquals }
$$

- View Text Solution

13. The perpendicular distance of the point whose position vector is $(1,3,5)$ from the line $\bar{r}=\hat{i}+2 \hat{j}+3 \hat{k}+\lambda(\hat{i}+2 \hat{j}+2 \hat{k})$ is equal to

- View Text Solution

14. If two sides of a triangle $A B C$ are represented by vectors \vec{a} and $(\vec{a} \times \vec{b}) \times \vec{a}$ then maximum value of $(\sin 2 A+\sin 2 B+\sin 2 C)$, is

- View Text Solution

15. If $|\vec{a}|=|\vec{b}|=|\vec{c}|=2$ and $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \times \vec{a}=2$, then $[\vec{a} \vec{b} \vec{c}] \cos 45^{\circ}$ is equal to

- View Text Solution

16. Let $\vec{a}=-\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}+\hat{k}$ and vector \vec{c} satisfying conditions
(i) $[\vec{a} \vec{b} \vec{c}]=0$
(ii). $\vec{b} \cdot \vec{c}=0$
(iii) $\vec{a} \cdot \vec{c}=7$

Then the value of $\frac{2}{7}|\bar{c}|^{2}$ is equal to

- View Text Solution

17. If three points $(2 \vec{p}-\vec{q}+3 \vec{r}),(\vec{p}-2 \vec{q}+\alpha \vec{r})$ and $(\beta \vec{p}-5 \vec{q})$ (where $\vec{p}, \vec{q}, \vec{r}$ are non-coplanar vectors) are collinear, then the value of $\frac{1}{\alpha+\beta}$ is

- View Text Solution

18. If $|\vec{\alpha}|=|\vec{\beta}|=|\vec{\alpha}+\vec{\beta}|=4$, then the value of $|\vec{\alpha}-\vec{\beta}|$ is
19. If $\vec{a}, \vec{b}, \vec{c}$ are unit vectors such that $\bar{a}+\sqrt{2} \vec{b}+\vec{c}=0$ then the value of $[2 \vec{a}+3 \vec{b}-2 \vec{c} m i d]$ (where [.] denotes greatest integer function) will be

- View Text Solution

20. Let \vec{a} and \vec{b} be two unit vectors then maximum value of $\frac{|\vec{a}+\vec{b}|^{2}-|\vec{a}-\vec{b}|^{2}}{|\vec{a}+|^{2}}$ is equal to
$|\vec{a}+\vec{b}|^{2}+|\vec{a}-\bar{b}|^{2}$

D View Text Solution

21. If the vectors $(1-x) \hat{i}+\hat{j}+\hat{k}, \hat{i}+(I-y) \hat{j}+\hat{k}$ and $\hat{i}+\hat{j}+(1-z) \hat{k}$ are coplanar vectors, then value of $\frac{1}{x}+\frac{1}{y}+\frac{1}{z}$ is (x, y, z are non zero numbers)
22. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=\hat{l}-\hat{j}+\hat{k}, \vec{c}=\hat{i}+2 \hat{j}-\hat{k}$, then the value of $\left|\begin{array}{ccc}\vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} & \vec{a} \cdot \vec{c} \\ \vec{b} \cdot \vec{a} & \vec{b} \cdot \vec{b} & \vec{b} \cdot \vec{c} \\ \vec{c} \cdot \vec{a} & \vec{c} \cdot \vec{b} & \vec{c} \cdot \rightarrow\end{array}\right|=$
23. If $\bar{a}=3 \hat{i}-\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-3 \hat{j}-\hat{k}, \vec{c}$ and $\vec{d}=2 \hat{j}+\hat{k}$, then the value of $\vec{d} \cdot(\vec{a} \times \vec{b} \times(\vec{c} \times \vec{d}))$ equals

- View Text Solution

