

MATHS

BOOKS - NAGEEN MATHS (HINGLISH)

APPLICATIONS OF INTEGRALS

Solved Example

1. Find the area of the region bounded by the line y =

2x, X - axis and ordinate x = 2.

2. Find the area of the circle $x^2+y^2=a^2$ with radius a

A. $\pi a^2 sq$. units

B. $\pi a^3 sq$. units

C. $\pi a^4 sq$. units

D. $\pi a^5 sq$. units

Answer: A

3. Find the area of the region bounded by $x^2 = 4y$, y = 2, y = 4 and the y-axis in the first quadrant.

4. Find the area bounded by the curve y=x(x-1)(x-2) and the x-axis.

5. Find the area of the region bounded by the curve y=|x+1|, lines x=-4, x=2 and X-axis.

A. 5

B. 7

 $\mathsf{C.}\,6$

D. 9

Answer: D

Watch Video Solution

6. Find the area of the region included between the parabolas $y^2=4axandx^2=4ay, wherea>0.$

7. Find the area bounded by the parabola $y^2=4ax$ and the line y=2ax.

8. Find by integration the area of the region bounded by the curve $y=2x-x^2$ and the x-axis.

9. Find the area of the region in the first quadrant enclosed by the x-axis, the line y=x, and the circle

 $x^2 + y^2 = 32.$

10. Find the ratio of the areas of the portion between the circle $x^2+y^2=a^2$ and straight line $x=rac{a}{2}$

11. In the adjoining, OABO is the region of the ellipse $9x^2+y^2=36$ which lies in first quadrant. If $OA=2, OB=6, \,$ then find the area of the region

bounded by chord AB and arc AB.

A. $(3\pi - 8)sq$. units.

B. $(3\pi - 7)sq$. units.

C. $(3\pi - 6)sq$. units.

D. $(3\pi-9)sq$. units.

Answer: C

Watch Video Solution

12. Using integration find the area of region bounded by the triangle whose vertices are (1, 0), (2, 2) and (3, 1).

Exercise 8 A

1. Using intergration, find the area of the region bounded by the line y=mx, X-axis and x=2.

2. Find the area of the region bounded by the line y=3x+2, the x-axis and the ordinates x=1 and x=-1.

3. Find the area bounded by the line y=x, the x-axis and the ordinates x=-1 and x=2

4. Find the area of the region bounded by the ellipse

$$rac{x^2}{a^2} + rac{y^2}{b^2} = 1$$

Watch Video Solution

5. Find the area of the portion of an ellipse $4x^2+9y^2=36$, which is surrounding by the positive direction of x and y-axes.

6. Using integration, find the area of the region bounded by the curve $y^2=9x$ and lines x=1 and x=4.

7. Using intergration, find the area of the region bounded by the curve $y^2=x,\,x=1,\,x=4$ and X-axis.

8. Using intergration, find the area of the region bounded by the lines y=|x+1|, x=-3, x=1 and X-axis.

9. Find the area of that region bounded by the curve $y=\cos\!x,\;$ X-axis, x=0 and $x=\pi.$

10. Find the area of that region of the parabola $y^2=4ax$ which lies between X-axis, x=2a and the latus rectum.

11. Find the area of the region bounded by the curve $y=x^2$ and the line y=4.

12. Find the area bounded by the curve $y^2=4ax$ and the lines y=2a and y-axis.

13. Find the area of the parabola $y^2=4ax$ bounded by its latus rectum.

14. Using integration, find the area of the region bounded by the parabola $y^2=4x$ and the line

x = 4.

Watch Video Solution

15. Find the area enclosed by the parabola $4y=3x^2$ and the line2y=3x+12.

A. 27 sq. units.

B. 17 sq. units.

C. 26 sq. units.

D. 28 sq. units.

Answer: A

Marak Walaa Caladian

16. The area between $x=y^2$ and x=4 is divided into two equal parts by the line x=a, find the value of a.

A.
$$a = 4^{4/3}$$

B.
$$a = 4^{3/2}$$

C.
$$a = 4^{1/3}$$

D.
$$a = 4^{2/3}$$

Answer: D

17. Find the area of the region bounded by: the parabola $y=x^2$ and the line y=x

Watch Video Solution

18. Find the area bounded by the curves $y^2=9x$ and $x^2=9y$.

A. 26 sq. units.

B. 27 sq. units.

C. 28 sq. units.

D. 29 sq. units.

Answer: B

19. Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B(4, 5) and C(6, 3).

20. Using integration, find the area of the triangle whose vertices are (1, 0), (4, 0) and (4, 4).

21. Using integration find the area of the triangular region whose sides have equations $y=2x+1,\ y=3x+1 \ \text{and} \ x=4$

22. Find the area of the region $ig\{(x,y): 0\leq y\leq x^2+1, 0\leq y\leq x+1, 0\leq x\leq 2ig\}.$

23. Find the area of the region bounded by the curves $y^2=x+1$ and $y^2=-x+1$.

- A. $\frac{5}{3}$ sq. units.
- B. $\frac{7}{3}$ sq. units.
- C. $\frac{8}{3}$ sq. units.
- D. $\frac{10}{3}$ sq. units.

Answer: C

24. Find the area of the region bounded by the curves $x^2+y^2=4$ and $(x-2)^2+y^2=4$.

25. Find the smaller area enclosed between linex, if $y=\{x, \quad {
m if} \ \ x\geq 0 \ {
m and} \ -x, \quad {
m if} \ \ x<0 \ {
m and}$ curve $4x^2+9y^2=36$

26. The equation of the common tangent to the parabolas $y^2=4ax$ and $x^2=4by$ is given by

27. Using definite integration, find the area of the smaller region bounded by the ellipse $9x^2+16y^2=144$ and x=2.

28. The circle $x^2+y^2=4a^2$ is divided into two parts by the line $x=\frac{3a}{2}$. Find the ratio of areas of these two parts.

Watch Video Solution

Exercise 8 B Multiple Choice Questions

1. Find the area bounded by the parabola $y^2=4ax$ and the line y=2ax.

A. 3a sq. units

B. $\frac{1}{3a}$ sq. units

C. $\frac{2}{3a}$ sq. units

D. None of these

Answer: B

Watch Video Solution

2. Examples: Find the area bounded by the parabola

 $y^2 = 4ax$ and its latus rectum.

A. $\frac{8a^2}{3}$ sq. units

B. $2a^2$ sq. units

C. $\frac{4a^2}{3}$ sq. units

D. None of these

Answer: A

Watch Video Solution

3. Find the area of the region included between the parabolas $y^2=4ax$ and $x^2=4ay, wherea>0$.

A.
$$\frac{16a^2}{3}$$
 sq. units

B.
$$\frac{8a^2}{3}$$
 sq. units

C.
$$\frac{4a^2}{3}$$
 sq. units

D. None of these

Answer: A

Watch Video Solution

- **4.** Area of the ellipse $rac{x^2}{a^2}+rac{y^2}{b^2}=1$ is πab
 - A. $\frac{1}{4}\pi ab$ sq. units
 - B. $\frac{1}{2}\pi ab$ sq. units
 - C. πab sq. units
 - D. None of these

Answer: C

5. The vertices of a triangle are (1, 0), (4, 0) and (4, 4).

Its area is:

- A. 4 sq. units
- B. 6 sq. units
- C. 8 sq. units
- D. None of these

Answer: B

6. The area of the region bounded by the circle

$$x^2+y^2=1$$
 and the line $x+y=1$ is :

A.
$$\left(rac{\pi}{4}-rac{1}{2}
ight)$$
 sq. units

B.
$$\frac{\pi}{4}$$
 sq. units

C.
$$\frac{1}{2}$$
 sq. units

D. None of these

Answer: A

7. Find the area of the region bounded by the curve

$$y^2 = 4x$$
 and the line $x = 3$.

- A. $4\sqrt{3}$ sq. units
- B. $8\sqrt{3}$ sq. units
- C. $10\sqrt{3}$ sq. units
- D. None of these

Answer: B

8. Find the area of the region bounded by: the parabola $y=x^2$ and the line y=x

A. 1 sq. unit

B. $\frac{1}{2}$ sq. unit

C. $\frac{1}{4}$ sq. unit

D. None of these

Answer: B

9. Find the area of the region bounded by: the parabola $y=x^2$ and the line y=x

- A. $\frac{9}{2}$ sq. units
- B. $\frac{9}{4}$ sq. units
- C. $\frac{9}{8}$ sq. units
- D. 9 sq. units

Answer: A

10. Find the area enclosed by the parabola $4y=3x^2$ and the line 2y=3x+12.

- A. 18 sq. units
- B. 24 sq. units
- C. 27 sq. units
- D. None of these

Answer: C

1. Examples: Find the area of the region bounded by

the curve $y^2=2y-x$ and the y-axis.

- A. $\frac{2}{3}$ sq. units
- B. $\frac{4}{3}$ sq. units
- C. 2 sq. units
- D. None of these

Answer: B

2. Find the area of the region bounded by

$$y = x^2 + 1, y = x, x = 0$$
 and $y = 2$.

- A. $\frac{21}{2}$ sq. units
- B. $\frac{15}{2}$ sq. units
- C. 9 sq. units
- D. None of these

Answer: A

3. The area of region bounded by circles

$$x^2 + y^2 = 1$$
 and $(x - 1)^2 + y^2 = 1$ is :

- A. $\frac{2\pi}{3}$ sq. units
- B. $\frac{\sqrt{3}}{2}$ sq. units
- C. $\left(\frac{2\pi}{3}-\frac{\sqrt{3}}{2}\right)$ sq. units
- D. None of these

Answer: C

View Text Solution

4. The area of the region bounded by $y=\left|x-1\right|$ and y=1 is

A. 1 sq. unit

B. 2 sq. units

C. 3 sq. units

D. None of these

Answer: A

5. The area bounded by the curves

$$y=xe^x,y=xe^{-x}$$
 and the line $x=1$ is

A.
$$\frac{1}{e}$$
 sq. units

B.
$$\frac{2}{e}$$
 sq. units

C.
$$\left(1-rac{1}{e}
ight)$$
 sq. units

D. None of these

Answer: B

6. The area bounded by the x-axis and the curve

$$y=4x-x^2-3$$
 is

- A. $\frac{125}{6}$ sq. units
- B. $\frac{125}{3}$ sq. units
- C. $\frac{125}{4}$ sq. units
- D. $\frac{125}{2}$ sq. units

Answer: A

7. The area of the region bounded by the curve $y=x{\sin}x, \; ext{x-axis}, x=0 ext{ and } x=2\pi ext{ is :}$

- A. 2π sq. units
- B. 3π sq. units
- C. 4π sq. units
- D. 5π sq. units

Answer: C

8. The area of the loop of the curve

$$ay^2=x^2(a-x)$$
 is $4a^2squnits$ (b) $rac{8a^2}{15}squnits$ $rac{16a^2}{9}squnits$ (d) None of these

A.
$$\frac{4a^2}{15}$$
 sq. units

B.
$$\frac{7a^2}{15}$$
 sq. units

C.
$$\frac{8a^2}{15}$$
 sq. units

D. None of these

Answer: C

9. The area of the region bounded by the curve

$$y=\sin\!2x,\,$$
 y-axis and $y=1$ is :

A. 1 sq. unit

B.
$$\frac{1}{2}$$
 sq. unit

C.
$$\frac{1}{4}$$
 sq. unit

D.
$$\left(rac{\pi}{4}-rac{1}{2}
ight)$$
 sq. uint

Answer: B

10. Find the area common to the circle

and the

parabola

$$y^2 = 6ax, a > 0.$$

 $x^2 + y^2 = 16a^2$

A.
$$\frac{a^2}{3} \left(4\pi + \sqrt{3}\right)$$
 sq. units

B.
$$\frac{2a^2}{\sqrt{3}}\left(1+4\frac{\pi}{\sqrt{3}}\right)$$
 sq. units

C.
$$\frac{2a^2}{3} \left(4\pi + \sqrt{3}\right)$$
 sq. units

D. None of the above

Answer: B

1. Find the area of the region bounded by the curve

 $y^2=x$ and the lines x=1, x=4 and the x-axis.

Watch Video Solution

2. Find the area of the region bounded by $y^2=9x,$

x=2, x=4 and the x-axis in the first quadrant.

3. Find the area of the region bounded by $x^2=16y,\;y=1,\;y=4$ and the y-axis in the first quadrant.

4. Find the area of the region bounded by the ellipse

$$\frac{x^2}{16} + \frac{y^2}{9} = 1.$$

5. Find the area of the region bounded by the ellipse

$$\frac{x^2}{4} + \frac{y^2}{9} = 1$$

Watch Video Solution

6. Find the area of the region in the first quadrant enclosed by x-axis, line $x=\sqrt{3}y$ and the circle $x^2+y^2=4$.

7. Find the area of the smaller part of the circle $x^2+y^2=a^2$ cut off by the line $x=rac{a}{\sqrt{2}}$

Watch Video Solution

8. The area between $x=y^2$ and x=4 is divided into two equal parts by the line x=a, find the value of a.

9. Find the area of the region bounded by the parabola $y=x^2$ and y=|x| .

Watch Video Solution

10. Using integration, find the area bounded by the curve $x^2 = 4y$ and the line x = 4y - 2.

Watch Video Solution

11. Find the area of the region bounded by the curve $y^2 = 4x$ and the line x = 3.

12. Area lying in the first quadrant and bounded by the circle $x^2+y^2=4$ and the lines x=0 and x=2 is

A.
$$\pi$$

$$\mathsf{B.}\;\frac{\pi}{2}$$

$$\operatorname{C.}\frac{\pi}{3}$$

D.
$$\frac{\pi}{4}$$

Answer: A

13. Area of the region bounded by the curve $y^2=4x$, y-axis and the line y=3 is (A) 2 sq. units (B) $\frac{9}{4}$ sq. units (C) $6\sqrt{3}$ sq. units (D) none of these

- A. 2
- B. $\frac{9}{4}$
- C. $\frac{9}{3}$ D. $\frac{9}{2}$

Answer: B

1. Find the area of the circle $4x^2+4y^2=9$ which is interior to the parabola $x^2=4y$.

Watch Video Solution

2. Find the area bounded by curves

$$(x-1)^2 + y^2 = 1$$
 and $x^2 + y^2 = 1$.

3. Find the area of the region bounded by the curves

$$y = x^2 + 2$$
, $y = x$, $x = 0$ and $x = 3$.

4. Using integration find the area of region bounded by the triangle whose vertices are (1,0),(1,3) and (3,2).

5. Using integration find the area of the triangular region whose sides have equations $y=2x+1,\;y=3x+1$ and x=4

Watch Video Solution

6. Smaller area enclosed by the circle $x^2+y^2=4$ and the line x+y=2is(A) $2(\pi-2)$ (B) $\pi-2$ (C) $2\pi-1$ (D) $2(\pi+2)$

A.
$$2(\pi - 2)$$

B. $\pi-2$

C. $2\pi - 1$

D.
$$2(\pi + 2)$$

Answer: B

- **7.** Area lying between the curves $y^2=4x$ and y=2x is(A) $\frac{2}{3}$ (B) $\frac{1}{3}$ (C) $\frac{1}{4}$ (D) $\frac{3}{4}$
 - A. $\frac{2}{3}$
 - B. $\frac{1}{3}$
 - c. $\frac{1}{4}$
 - $D. \frac{3}{4}$

Answer:

Watch Video Solution

Miscellaneous Exercise

1. Find the area under the given curves and given

lines:(i) $y=x^2, x=1, x=2$ and x-axis(ii) $y=x^4$,

x = 1, x = 5and x-axis

2. Find the area between the curves y=x and $y=x^2$.

3. Find the area of the region lying in the first quadrant and bounded by $y=4x^2$, x=0, y=1 and y=4.

- **4.** Sketch the graph of y=|x+3| and evaluate $\int\!-60|x+3|dx.$
 - Watch Video Solution

- **5.** Find the area between the x-axis and the curve $y=\sin x$ from x=0 to $x=2\pi$
 - Watch Video Solution

6. Find the area enclosed between the parabola $y^2=4ax$ and the line y=mx.

7. Find the area enclosed by the parabola $4y=3x^2$ and the line2y=3x+12.

8. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ and the line $\frac{x}{3} + \frac{y}{2} = 1$

9. Find the area of the smaller region bounded by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ and the line $\frac{x}{a} + \frac{y}{b} = 1$

Watch Video Solution

10. Find the area of the region enclosed by the parabola $x^2=y$, the line y=x+2 and the x-axis.

11. Using the method of integration find the area bounded by the curve |x|+|y|=1[Hint: The required region is bounded by lines x+y=1, x-y=1, x+y=1 and -x-y=1].

12. Find the area bounded by curves $ig\{(x,y)\!:\!y\geq x^2 \ ext{and} \ y=|x|ig\}$

13. Using the method of integration find the area of the triangle ABC, coordinates of whose vertices are A(2, 0), B (4, 5) and C (6, 3).

Watch Video Solution

the region bounded by lines:

14. Using the method of integration find the area of

$$2x + y = 4, 3x - 2y = 6$$
 and $x - 3y + 5 = 0$

- **15.** Find the area of the region
- $ig\{(x,y)\!:\!y^2\leq 4x, 4x^2+4y^2\leq 9ig\}$
 - Watch Video Solution

- **16.** The area (in square units) bounded by the curve $y=x^3$, the x-axis and the ordinates at x=-2 and x=1 is
 - A. 9
 - $\mathsf{B.}\,\frac{-15}{4}$
 - c. $\frac{15}{4}$

D.
$$\frac{17}{4}$$

Answer: D

Watch Video Solution

and the ordinates x=1 is given by

17. The area bounded by the curve y=xert xert , x-axis

[Hint :
$$y=x^2$$
 if $x > 0$ and $y=-x^2$ if

B.
$$\frac{1}{3}$$

$$x < 0$$
].

D.
$$\frac{4}{3}$$

Answer: C

Watch Video Solution

18. The area of the circle $x^2+y^2=16$ exterior to the parabola $y^2=6x$ is

A.
$$rac{4}{3}ig(4\pi-\sqrt{3}ig)$$

B.
$$rac{4}{3}ig(4\pi+\sqrt{3}ig)$$

C.
$$\frac{4}{3} (8\pi - \sqrt{3})$$

D.
$$\frac{4}{3}ig(8\pi+\sqrt{3}ig)$$

Answer: C

Watch Video Solution

19. Find the area bounded by the y-axis,

$$y=\cos x, andy=\sin xwhen0\leq x\leq rac{\pi}{2}$$
 .

A.
$$2(\sqrt{2-1})$$

B.
$$\sqrt{2} - 1$$

C.
$$\sqrt{2} + 1$$

D.
$$\sqrt{2}$$

Answer: B

