©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - NAGEEN MATHS (HINGLISH)

VECTORS

Miscellaneous Exercise

1. Write down a unit vector in XY-plane, making
an angle of 30 with the positive direction of x axis.

- Watch Video Solution

2. Find the scalar components and magnitude of the vector joining the points $P\left(x_{1}, y_{1}, z_{1}\right)$ and $Q\left(x_{2}, y_{2}, z_{2}\right)$

- Watch Video Solution

3. A girl walks 4 km towards west, and then she walks 3 km in a direction 30° east of north and
stops. Determine the girls displacement from her initial point of departure.

D Watch Video Solution

4. If $\rightarrow a=\rightarrow b+\rightarrow c$, then is it true that
$|\rightarrow a|=|\rightarrow b|+|\rightarrow c| ? \quad$ Justify your answer.

D Watch Video Solution
5. Find the value of x for which $x(\hat{i}+\hat{j}+\hat{k})$
is a unit vector.

- Watch Video Solution

6. Find a vector of magnitude 5 units and parallel to the resultant of the vectors $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}$ and $\vec{b}=\hat{i}-2 \hat{j}+\hat{k}$

- Watch Video Solution

7. If $\vec{a}=\hat{i}+\hat{j}+\hat{k}, \vec{b}=2 \hat{i}-\hat{j}+3 \hat{k}$ and
$\vec{c}=\hat{i}-2 \hat{j}+\hat{k}$ find a unit vector parallel to the vector $2 \vec{a}-\vec{b}+3 \vec{c}$.

- Watch Video Solution

$$
\begin{aligned}
& \text { 8. Show that the points } \\
& A(1,-2,-8), B(5,0,-2) \operatorname{and} C(1,3,7)
\end{aligned}
$$

are collinear, and find the ratio in which B divides $A C$.
9. Find the position vector of a point R which divides the line joining two points P and Q whose position vectors are $(2 \vec{a}+\vec{b})$ and ($\vec{a}-3 \vec{b}$) respectively, externally in the ratio 1:2.Also, show that P is the mid-point of the line segment $R Q$.

- Watch Video Solution

10. The two adjacent sides of a parallelogram
are $2 \hat{i}-4 \hat{j}+5 \hat{k}$ and $\hat{i}-2 \hat{j}-3 \hat{k}$. Find the
unit vector parallel to its diagonal. Also, find
its area.
A. $13 \sqrt{5}$ sq. units
B. $6 \sqrt{5}$ sq. units
C. $11 \sqrt{2}$ sq. units
D. $11 \sqrt{5}$ sq. units

Answer: D
(Watch Video Solution
11. Show that the direction cosines of a vector equally inclined to the axes $O X, O Y$ and $O Z$ are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}$.

D Watch Video Solution

12.

$\rightarrow a=\hat{i}+4 \hat{j}+2 \hat{k}, \rightarrow b=3 \hat{i}-2 \hat{j}+7 \hat{k}$
and $\rightarrow c=2 \hat{i}-\hat{j}+4 \hat{k}$. Find a vector $\rightarrow d$
which is perpendicular to both $\rightarrow a$ and $\rightarrow b$ and $\rightarrow c . \rightarrow d=15$.
13. The scalar product of the vector
$\vec{a}=\hat{i}+\hat{j}+\hat{k}$ with a unit vector along the sum of the
vectors
$\vec{b}=2 \hat{i}+4 \hat{j}-5 \hat{k}$ and $\vec{c}=\lambda \hat{i}+2 \hat{j}+3 \hat{k}$ is equal to 1 . Find the value of λ and hence find the unit vector along $\vec{b}+\vec{c}$.

D Watch Video Solution

14. If $\vec{a}, \vec{b}, \vec{c}$ are mutually perpendicular vectors of equal magnitudes, show that the vector $\vec{a}+\vec{b}+\vec{c}$ is equally inclined to $\vec{a}, \vec{b}, a n d \rightarrow$

- Watch Video Solution

15.

Prove
that
$(\rightarrow a+\rightarrow b) \rightarrow a \dot{+} \rightarrow c|\rightarrow a|^{2}+|\rightarrow b|^{2}$
, if and only if $\rightarrow a, \rightarrow b$ are perpendicular,
given $\rightarrow a \neq \rightarrow 0, \rightarrow b \neq \rightarrow 0$
16. If θ is the angle between two vectors
\vec{a} and \vec{b}, then $\vec{a} \vec{b} \geq 0$ only when `o
A. $0<\theta<\frac{\pi}{2}$
B. $0 \leq \theta \leq \frac{\pi}{2}$
C. $0<\theta<\pi$
D. $0 \leq \theta \leq \pi$

Answer: B
17. Let \vec{a} and \vec{b} be two unit vectors and α be the angle between them, then $\vec{a}+\vec{b}$ is a unit vectors, if

$$
\begin{aligned}
& \text { A. } \alpha=\frac{\pi}{4} \\
& \text { B. } \alpha=\frac{\pi}{3} \\
& \text { C. } \alpha=\frac{\pi}{2} \\
& \text { D. } \alpha=\frac{2 \pi}{3}
\end{aligned}
$$

Answer: D
18.

The
value
of
$\hat{i} \cdot(\hat{j} \times \hat{k})+\hat{j} \cdot(\hat{i} \times \hat{k})+\hat{k} .(\hat{i} \times \hat{j})$
A. 0
B. -1
C. 1
D. 3

Answer: C

- Watch Video Solution

19. If is the angle between any two vectors \vec{a}
and \vec{b}, then $|\vec{a} \dot{\vec{b}}|=|\vec{a} \times \vec{b}|$ when θ is
equal to (a) O (B) $\frac{\pi}{4}$ (C) $\frac{\pi}{2}$ (d) π
A. 0
B. $\frac{\pi}{4}$
C. $\frac{\pi}{2}$
D. π

Answer: b

