© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS (HINGLISH)

Current Electricity

Question Bank

1. The current (in ampere) through a copper wire
having cross sectional area $2 \mathrm{~mm}^{2}$ Given:

$$
\begin{aligned}
& E=8.5 \times 10^{-3} \frac{V}{m} \\
& \rho=1.7 \times 10^{-8} \mathrm{ohmm}
\end{aligned}
$$

- View Text Solution

2. In the circuit shown in the figure, key K_{1} is open. The charge on capacitor C in steady state is q_{1}. Now the key is closed and at steacty state charge on C is q_{2} If the ratio of charges $\frac{q_{1}}{q_{2}}=c \frac{m}{n}$, then find $(m n)$.
(\#\#CEN_KSR_PHY_JEE_CO2O_E01_002_Q01\#\#)
3. Find out the potential difference (in volt) between points A and B, as shown in the figure '(\#\#CEN_KSR_PHY_JEE_CO20_E01_003_Q02\#\#)'

- View Text Solution

4. In the circait saown below, the inggnitude of
current (in ampere) that flows from'a to b when
switch S is closed, is
'(\#\#CEN_KSR_PHY_JEE_CO2O_E01_004_Q03\#\#)'
5. First a set of n equal resistors of R each are connected in series to a battery of emf E and internal resistance R. A current I is observed to
flow. Then, the n resistors are connected in parallel to the same battery. It is observed that the current is increased 10 times. What is ' n '?

D Watch Video Solution

6. Equivalent resistance (in ohm) between points A and B will be
'(\#\#CEN_KSR_PHY_JEE_CO2O_E01_006_Q04\#\#)'

- View Text Solution

7. In the figure shown, the potentiometer wire of length $l=100 \mathrm{~cm}$ and resistance $9 o \mathrm{hm}$ is joined
to a cell
of emf
$E_{1}=10 \mathrm{~V}$ and \int emalresistancer_(1)=1 ohm
. $A \neg$ hercellofemfE_(2)=5
and \int ernalresis \tan cer_(2) $=2$
ohm
$i s c o \cap$ ectedasshown. Thegalvanometer G willshownodef \leq ctionwhenthe $\leq n>h(\in c m)$
$A C^{\prime}$ is
'(\#\#CEN_KSR_PHY_JEE_CO2O_EO1_007_Q05\#\#)'
8. A room has an $A C$ which. runs for $5 h$ a day at
a voltage of 220 V . The wiring of the room consists of.Cu of 1 mm radius and a length of 10 m . The power consumption per day is 10 commercial units. What percentage of it goes in the joule heating of wires?
$\left(\rho_{\text {cal }}=1.7 \times 10^{-8}\right.$ ohmm $)$.

- View Text Solution

9. In the figure show, if the equivalent resistance between points A and B is x then find $5 x$. (Given:
$R=2 o h m)$
'(\#\#CEN_KSR_PHY_JEE_CO2O_E01_009_Q06\#\#)'

- View Text Solution

10. Four ammeters with identical internal resistance r and a resistor R are conmected to a current source as given. If reading of A_{1} and A_{2} is $3 A$ and $5 A$, respectively, then the rcading of
A_{4} (in ampere) is
'(\#\#CEN_KSR_PHY_JEE_CO20_E01_010_Q07\#\#)'

- View Text Solution

11. The deflection of a moving coil galvanometer
falls from 60 divisions to 12 divisions for the same value of current in the circuit, when a shunt of $120 h m$ is connected. If the resistance
(in ohm) of the galvanometer is G, then find the
value of $\left(\frac{G}{6}\right)^{\frac{1}{3}}$.

View Text Solution

12. For the armangement of the potentiometer shown in the figure, the balance point is obtained at a distance $75(\sim \mathrm{~cm})$ fróm A when the key k is open. The second balarice point is obtained at $60(\sim c m)$ from A when the key k is
closed. Find the internal resistance (in ohm) of the battery E_{1}
'(\#\#CEN_KSR_PHY_JEE_CO2O_E01_012_Q08\#\#)'

D View Text Solution

13. A resistance of 2Ω is connected across one gap of a metre-bridge(the length of the wire is 100 cm) and an unknown resistance, greater than 2Ω, is connected across the other gap.

When these resistances are interchanged, the balance points shifts by 20 cm . Neglecting any corrections, the unknown resistance is

(D) Watch Video Solution

14. The circuit given below shows seven ideatical bulbs (A to G) connected through a bettery of
emf $200(\sim V)$. The bulbis are rated as
$200 \mathrm{~V}, 100 \mathrm{~W}$. The power dissipated in the bulb
which glows brightest is given by P watt. Find the value of $\frac{2}{3} \sqrt{P}$.
'(\#\#CEN_KSR_PHY_JEE_CO2O_E01_014_Q09\#\#)'

D View Text Solution

15. Theemfofcellis $9 V$ andits intemal resistance
is unknown. The resistances of the meters are also unknown. When the switch S is closed, the measured current increases to twice of previous
value and the reading of voltmeter decreases to
half of the original value. The ratio $\frac{R_{V}}{R}$, where R_{V} is the resistance of the voltmeter, is
'(\#\#CEN_KSR_PHY_JEE_CO20_E01_015_Q10\#\#)'

- View Text Solution

16. In the given circuit diagram, if ideal ammeter is connected between points A and B, its reading is $5 A$. if ammeter of resistance $30 h m$ is connected between A and B, its reading is 3 A . Reading of ideal voltmeter is $\frac{90}{n}$ volt, if it is connected between A and B. Find the value of'n.
'(\#\#CEN_KSR_PHY_JEE_CO2O_E01_016_Q11\#\#)'

- View Text Solution

17. Find the potential difference
$\left|\operatorname{left} V_{s}-V_{A} r i g h t\right|$ (in volt) between the plates
of the capacitor C shown in the figure, if the
sources have emfs $E,=4 V$ and $E_{2}=1 V$ and
the resistances
are equal to
$R_{1}=10 \mathrm{ohm}, R_{2}=20 \mathrm{ohm}$ and $R_{3}=30 \mathrm{ohm}$.

The internal resistances of the sources are neglectable

D View Text Solution

18. For the circuit showing, all wires have șame resistance and equivalent resistance between points A and B is R. Now, if the keys are closed, then the equivalent resistance becomes $\frac{x R}{3}$, Find x .
'(\#\#CEN_KSR_PHY_JEE_CO2O_E01_018_Q13\#\#)'

D View Text Solution

19. The potential (in volt) of point P in the given diagram will be
'(\#\#CEN_KSR_PHY_JEE_CO2O_E01_019_Q14\#\#)'

- View Text Solution

20. In the circuit shown, the electromotive force of the battery is 9 V and its internal resistance is
$150 h m$. The two identical voltmeters can be considered ideal: Let V_{1} and V_{1}^{\prime} be the reading of Ist voltmeter when switch is open and closed, respectively. Similarly, let V_{2} and V_{2}^{\prime} be the
reading of 2 nd voltmeter when switch is open
and -closed, respectively. Then $\frac{V_{2}^{\prime}-V_{2}}{V_{1}-V_{1}{ }^{\prime}}=$
'(\#\#CEN_KSR_PHY_JEE_CO20_EO1_020_Q15\#\#)'

FIGURE

- View Text Solution

21. In a circuit shown, voltmeter reads 3 V and
the ammeter reads $2 A$. The emf E (in volt) is
'(\#\#CEN_KSR_PHY_JEE_CO2O_E01_021_Q16\#\#)'

- View Text Solution

22. In the circuit shown, the batteries have emf $E_{(t)}=E_{2}=1 \quad(V), E_{3}=2.5 V \quad$ and \quad the resistance $R_{1}=10 \mathrm{ohm}, R_{2}=20 \mathrm{ohm}$

Capacitance $C=10 \mu F$. The magnitude of charge (in μC) on the left plate of the capacitor
C at steady state is
'(\#\#CEN_KSR_PHY_JEE_CO2O_EO1_022_Q17\#\#)'

D View Text Solution

23. $A B$ and $C D$ are two uniform resistance wires
of lengths 100 cin and 80 cm , respectively, The connections are shown in the figure. The cell of
emf 5 V is ideal while the other cell of emf E bas
an intemal resistance of 2 ohm . A length of 20 cm of wire CD is balanced by 40 cm of wire $A B$. Find the emf E (in volt), if the reading of the ideal ammeter is 2 A . The other connecting wires have negligible resistance.
'(\#\#CEN_KSR_PHY_JEE_CO2O_EO1_023_Q18\#\#)'

- View Text Solution

24. 50 V battery is supplying' current of $10 A$
when connected to a resistor. If the efficiency of
battery at this current is 25%, then the internal resistance (in ohm) $6 f$ the battery is

- View Text Solution

25. A capacitor of capacitance $5 \mu F$ is connected to a source of constant emf of 200 V through a resistance of $300(\mathrm{ohm})$ for a long time, as shown in the figure. Then the switch was shifted to contact 1 from contact 2 . The amount of heat generated in the 500 ohm resistance is H joule. Find the value of 3200 H .
'(\#\#CEN_KSR_PHY_JEE_CO2O_EO1_025_Q19\#\#)'
26. If galvanometer shows no deflection in the given circuit, the vatue of E (in volt) is (All batteries are ideal)
'(\#\#CEN_KSR_PHY_JEE_CO2O_EO1_026_Q20\#\#)'

- View Text Solution

27. Find the charge (in μC ') on the capacitor of value $2 \mu F$ in the figure shown at steady state.
'(\#\#CEN_KSR_PHY_JEE_CO2O_EO1_027_Q21\#\#)'
28. In the given potentio-meter circuit, the resistance of uniform cross - section potentiometer wire $A B$ of length: $1 m$ is 10 ohm .

When the variable resistance R is $100 h m$, the balance point is obtained for length l as shown,

If the variable resistance is doubled, the new balance length is $(k l)$. Find (k).
'(\#\#CEN_KSR_PHY_JEE_CO2O_EO1_O28_Q22\#\#)'
29. The value of maximum power (in watt) delivered to R is
'(\#\#CEN_KSR_PHY_JEE_CO20_E01_029_Q23\#\#)'

- View Text Solution

30. A cylindrical solid of length $1 m$ and radius
$1 m$ is connected across a source of emf 10 V and negligible internal resistance shown in the figure. The resistivity of the rod as a function of $x(x$ meastred from left end) is given by $p=b x$ (where b is a positive constant). Find the electric
field (in SI unit) at point P at a distance 10 cm from left end.
'(\#\#CEN_KSR_PHY_JEE_CO20_E01_030_Q24\#\#)'

- View Text Solution

31. In the given circuit, the voltmeter records 5 V .

The resistance (in ohm) of the voltmeter is :
'(\#\#CEN_KSR_PHY_JEE_CO2O_EO1_031_Q25\#\#)'

- View Text Solution

32. Calculate the time constant (in second), of the circuit.
'(\#\#CEN_KSR_PHY_JEE_CO2O_E01_032_Q26\#\#)'

- View Text Solution

33. For the shown circuit, find the effective resistance (in ohms) between the points A and
B. (Given: $R=5 o h m$)
'(\#\#CEN_KSR_PHY_JEE_CO2O_E01_033_Q27\#\#)'
34. Find n, if the total power dissipated in the circuit is $6 n$ watts.
'(\#\#CEN_KSR_PHY_JEE_CO2O_E01_034_Q28\#\#)'

- View Text Solution

35. Ideal batterics, two capacitors and five resistors are connected the a circuit as shown.

Find the ratio of current in branch $B C$ to that in branch $G D$ at time $t=1 \mathrm{~s}$.
'(\#\#CEN_KSR_PHY_JEE_CO2O_E01_035_Q29\#\#)'
36. In the figure, $A B$ is a wire of uniform crosssection and resistance $8 r . A$ is an ideal ammeter
with a resistance r in series. The cells are of emf
E and $2 E$ and internal resis. tance r and zero, respectively. Jockey J can be moved freely on wire $A B$ making contact on wire at C. Length of
$A B$ wire is $1 m$. Consider ammeter to be capable of measuring current in cither direction of flow. '(\#\#CEN_KSR_PHY JEE_CO20_E01_036_Q30\#\#)'

Find the length of $A C$ (in cm) when ammeter shows minimum reading.
37. In the circuit shown, find the value of current
I (in ampere).
'(\#\#CEN_KSR_PHY_JEE_CO2O_E01_037_Q31\#\#)'

- View Text Solution

38. Two potentiometer wires w_{1} and w_{2} of equal length l, connected to a battery of emf e_{a} and intemal resistance 1 ohm through two switches s_{1} and s_{x}. A battery'of emf ε is balanced on
these potentiometer wires one by one. The potentiometer wire w_{1} is of resistance 20 hm and balancing length is $\frac{I}{2}$ on it, when only s_{1} is closed and s_{2} is open. On closing s_{2} and opening s_{1}, the balancing length on w_{2} is found to be $\frac{2 l}{3}$, If the resistance of potentiometer wire w_{2} is given by α oleum, then find 6α. '(\#\#CEN_KSR_PHY_JEE_CO20_E01_038_Q32\#\#)'

D View Text Solution

39. A series $R C$ circuit is formed using a resistance R, a capacitor without dielectric
having a capacitance $C=2 F$ and a battery of emf $E=3 V$. The circuit is completed and it, is allowed to attain the steady state. After this, at $t=0$, half the thickness of the capacitor is filled with a dielectric of constant $K=2$ as shown in
the figure. The system is again allowed to attain a steudy state. What will be the heat generated
(in joulc) in the capacitor between $f=0$ and $t=\infty ?$
'(\#\#CEN_KSR_PHY_JEE_CO20_E01_039_Q33\#\#)'

FIGURE
40. An uncharged capacitor of capacitance C is
connected in the circuit diagram as shown and
switch S is closed at $t=0$. If the current in branch $B C$ as a function of time is given by: $I=I_{0}$ (ampere) $e^{\frac{4}{i m \mu s}}$, then find the numerical value of $I_{0} \tau$.
'(\#\#CEN_KSR_PHY_JEE_CO20_E01_040_Q34\#\#)'

- View Text Solution

