©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS (HINGLISH)

ELECTROMAGENTIC INDUCTION

Question Bank

1. A flat, circular coil of radius 10 cm has 100 turns of wire. Auniform magnetic field exists in a direction perpendicular to the plane of the coil. This ficld is increasing at the rate of $0.1 \frac{\mathrm{~T}}{\mathrm{~s}}$. Calculate the magnitude of emf induced (in volt) in the coil.
2. A wire loop of area $0.2 m^{2}$ has a resistance of 20 ohm . (A) magnetic field, normal to the loop, initially has a magnifude of $0.25 T$ and is reduced to zero at a uniform rate in $10^{-4} s$. Estimate the resulting current in ampere.

- Watch Video Solution

3. A long solenoid has 1000 turns. When a current of $4 A$ flows through it, the magnetic flux linked with each tum of the solenoid is $4 \times 10^{-3}(w b)$. The self-inductance (in henry) of the solenoid is

- Watch Video Solution

4. A condacting circular loop is placed in a uniform magnetic field $0.04 T$ with its plane perpendicular to the magnetic field. The radius of the loop starts shrinking at $2 m \frac{m}{s}$. The indaced emf in the loop whicn the redius is $2 c m$ is $y \pi$ microvolt, then find y.
5. A coil having 30 tums of wire, each of area' $10 \mathrm{~cm}^{2}$, is placed with its plane at rigiht angle to a magnetic ficld of $0.1 T$. When the coil is suddenly withdrawn from the field, a gaivanometer in series with the coil indicates that a charge of $10^{-5} \mathrm{C}$ passes around the circuit. What is the combined resistânce (in ohm) of the coil and the galvanometer?

- Watch Video Solution

6. A metal dise of radins 0.1 m spins about a horizontal axis lyinig in the magnetic meridian' at a speed of 5 revis. If the horizontal componeat of the earth's.field is $B=2 \times 10^{-5} W \frac{b}{m^{2}}$, the potential difference between the centre and the outer edge of the disc is $z \times 10^{-6} V$ Find z.

- Watch Video Solution

7. In a coil of resistance 10 ohm , the induced current developed by changing magnetic flux through it is shown in figure as a function of time. The magnitade of change in flux (in weber) through the coil is '(\#\#CEN_KSR_PHY_JEE_CO23_EO1_007_Q01\#\#)'

- View Text Solution

8. A body enters in an MRI machine in $10 s$. If the magnctic field is $1.5 T$ and circumference of the MRI mechine is $0.9 m$, then find out the magnitude of emf induced (in milli volt) in the body.

- Watch Video Solution

9. A long solenoid of radius 2 cm has $100 \frac{\mathrm{turns}}{\mathrm{cm}}$ and carries a current of 5 A . A coil of radius 1 cm having 100 tums and a total resistance of 20 ohm is placed inside the solenoid coraxially, The coil is cornected to a galwanometer and the current in the solenoid is reversed in direction. If
the charge flown through the galvanometer is $k \times 10^{-\infty} C$, then find k. (Take $\pi^{2}=10$)

- Watch Video Solution

10. In an R-I circuit, $R=4 o h m, L=0.5(H)$ and emf of cell $=6 V$. Thew or $k d o \neq(\in m j) \in$ chang \in gthecurrentom 0.80 A to $0.81 A$ through the circuit is

- View Text Solution

11. A long solenoid of diameter $0.1 m$ has 2×10^{4} turns per metre. At the centre of the solenoid, a coil of 100 turns and radius 0.01 m is placed with its axis coinciding with the solenoid axis. The current in the solenoid reduces at a constant rate to $0 A$ from $4 A$ in 0.05 .If the resistance of the coil is $10 \pi^{2} o h m$, the total charge (in μC) flowing through the coil during this time is
12. A small piece of metal ($\mu_{r}=20$) of volume $10 \mathrm{~cm}^{3}$ has a uniform magnetie field $4 \mathrm{~T} \in$ sideit, Thémag \neq tice \neq igys \rightarrow red \in them η lis (alpha)/(pi) J_(3)thenf \in dalpha:

- View Text Solution

13. A solenoid having 500 turns and length $2 m$ has radius of 2 cm . Then self-inductance (in milithenry) of solenoid is

- Watch Video Solution

14. A simple electric motor has an armature resistance of 1Ω and runs from a dc source of 12 volt. When running unloaded it draws a current of 2 amp . When a certain load is connected, its speed becomes one-half of its unloaded value. The new value of current drawn
15. In an ac dynamo, the peak value of emf is 60 V . The induced emf (in V) in the position when the armature makes an angle of 30° with the magnetic ficld perpendicular to the coil, will be

- Watch Video Solution

16. An electric motor operating on a 60 V dc supply draws a currrent of 10 A . If the effeciency of the motor is 50%, the resistance of its winding is

- Watch Video Solution

17. The time constunt of an $L-R$ circuit is $10 s$. When a resistance of 10 ohm is connected in series in a previous circuit, then the time constant becomes. $2 s$. The self-inductance (in henry) of the circuit is
18. A square of side L meters lies in the $x-y$ plane in a region where tbe magnctic fleld is given by $\vec{B}=B_{0}(2 \hat{i}+3 \hat{j}+4 \hat{k})$ tesla ${ }_{-}(3)$ where B_{0} is a constant. If the magnitude of flux passing through the square is $y B_{a} L^{2}$ weber, then find the value of y.

- Watch Video Solution

19. A $10(\sim V)$ battery, conmected to $50 h m$ resistance coil having inductance 10
throughaswitch, drivesacons \tan tcarrent \in the \circ uit, Theswitchissadde
2 ms . Iftheavera $\geq e m f \in$ ducedacrossthecoilisvarepsilon
, thenf $\in d(\mathrm{E}) /(1000)^{\prime}$.

- View Text Solution

20. A wooden stick of length $3 l$ is rotated ahout an end with constant angular velocity ohm in a uniform magnetic ficld \underline{B} pérpendicular to the plane of motion. If the upper oaethird of its length is coated with copper,
the potential. difference across the whole length of the stick is $\frac{x B o h m l^{2}}{2}$. Find x.
'(\#\#CEN_KSR_PHY_JEE_CO23_EO1_O20_QO2\#\#)'

- View Text Solution

21. A physicist works in a laboratory where the magnetic field 'is $2 T$
. Shewearsa \neq cklaceofenclo \sin gare 0.01 $\mathrm{m}^{\wedge} 2$
\in suchawaytt hepla \neq ofthe \neq cklaceisn or \in al \rightarrow thefield and ishc
R=0.01 ohm. Becauseofpowerfailure, thefielddecays \rightarrow 1'T \in time $10^{\wedge}(-1) s^{\prime}$. Then what is the total beat produced (in joule) in her necklace?

- View Text Solution

22. The network shown in the figure is a part of a copmplete circuit. If at a certain instant, the current i is $5 A$ and decreasing at the rate of $10^{3} \frac{\mathrm{~A}}{\mathrm{~s}}$, then $V_{s}-V_{A}$ (in volt) is
'(\#\#CEN_KSR_PHY_JEE_CO23_EO1_022_Q03\#\#)'
23. A conducitng rod $A B$ of length $l=1 \mathrm{~m}$ moving at a velcity $v=4 \mathrm{~m} / \mathrm{s}$ making an angle 30° with its length. A uniform magnetic field $B=2 T$ exists in a direction perpendicular to the plane of motion. Then :

- Watch Video Solution

24. A wire is sliding on two parallel conducting rails placed at a separation of $1 m$ as shown in the figure."Magnetic field of $2 T$ exists in a direction perpendicular to the rails. The necessary force required to keep the wire moving with a constant velocity of $1 c \frac{m}{s}$ is $\pi \times 10^{-4} N$. Find n.
25. The below figure shows a circuit that contains threc identical resistors with resistance $R=9.0$ ohm each, two identical inductors with inductance $L=2.0 \mathrm{mH}$ each, and an ideal battery with emf $\varepsilon=18 \mathrm{~V}$.

The current i (in ampere) through the bettery just after the switch is closed,

- View Text Solution

26. A copper disc of radius 10 cm is rotating in magnetic field $B=0.4 G$ with $10 r e \frac{v}{s}$. What will be the potential differenee across the peripheral points of disc?

- Watch Video Solution

27. An inductor $(L=100 \mathrm{mH})$, a resistor ($R=100 \mathrm{ohm}$) and a battery ($E=100 \mathrm{~V}$) are. initially connected in series as shown in the figure. Afler a long time, the battery is disconnected after short-circuiting the points
A and B. The current in the circuit, $1 m s$ after the short-circuit, is $\frac{k}{4}$. Find k.

- Watch Video Solution

28. A loop made of straight edegs has six corners at $A(0,0,0), B(L, O, 0) C(L, L, 0), D(0, L, 0) E(0, L, L)$ and $F(0,0, L)$. Where L is in meter. A magnetic field $B=B_{0}(\hat{i}+\hat{k}) T$ is present in the region. The flux passing through the loop $A B C D E F A$ (in that order) is

- Watch Video Solution

29. A rectangular loop of sides 8 cm and 2 cm with a small cut is moving out of a region of uniform magnetic field of magnitude 0.3 T directed normal to the loop. The velocity of the loop is $1 \mathrm{cms}^{-1}$ in the direction normal 'to the (i) longer side, (ii) shorter side of the loop. If the ratio of voltage induced in case (i) to case (ii) is α and the ratio of time for which voltage induced in case (ti) to case (i) is β, then calculate ($\alpha \times \beta$).
30. In the given circuit, the ratio of $(t)_{1}$ to i_{2} is $\frac{x}{y}$, where i_{1} is the initial (at $t=0$) current and i_{2} is steady state (at $t=\infty$) current through the battery. Find $(x+y)$.
'(\#\#CEN_KSR_PHY_JEE_CO23_EO1_030_Q09\#\#)'

- View Text Solution

31. A rectangle loop with a sliding connector of length $l=1.0 m$ is situated in a uniform magnetic field $B=2 T$ perpendicular to the plane of loop. Resistance of connector is $r=2 \Omega$. Two resistance of 6Ω and 3Ω are connected as shown in figure. the external force required to keep the
connector moving with a constant velocity $v=2 \mathrm{~m} / \mathrm{s}$ is

- Watch Video Solution

32. An inductor coil stores 32 J of magnetic field energy and dissiopates energy as heat at the rate of 320 W when a current of 4 A is passed through it. Find the time constant of the circuit when this coil is joined across on ideal battery.

- Watch Video Solution

33. A time varying voltage $\mathrm{V}=2 \mathrm{t}$ (Volt) is applied across and ideal inductor of inductance $L=2 \mathrm{H}$ as shown in Fig. Then (assume current to be zero at t
$=0$)

2 H

- Watch Video Solution

34. The ratio of time constant in charging and discharging in the circuit shown in the figure is $\frac{x}{y}$. Find $(x+y)$
'(\#\#CEN_KSR_PHY_JEE_CO23_EO1_O34_Q12\#\#)'

- View Text Solution

35. The magnetic flux through a stationary loop with a resistanoe R varies during interval of time T as $\phi=$ at ($T-\mathrm{t}$). If the heat generated during this time, neglecting the inductance of the loop, is $\frac{a^{2} T^{3}}{p R}$, then find p.
36. As shown in the figare, wire $P Q$ has negligible resistance. B, the magnetic field, is coming out of the paper, θ is a fixed angle mede by $P Q$ travelling smoothly over two condiucting parallel wires separated by a distance d, If the current in the wirc for the configuration is $I=\frac{x d V B}{4 R}$, then find x.
'(\#\#CEN_KSR_PHY_JEE_CO23_EO1_036_Q13\#\#)'

- View Text Solution

37. There are two coils A and B separated by some distance. If a curreat of 2 A flows through A, a magnetic flux of $10^{-2} W b$ passes through B (no current through B). If no current passes through A and 'a current of 1 A.passes through B, then what is the flux (in $(m W b)$) through A ?

- View Text Solution

38. The induced emf in the loop, if the long wire carries a current of 50 A and the loop has an instantaneous velocity $v=10 \frac{\mathrm{~m}}{\mathrm{~s}}$ at the location $x=0,2 m$ as shown in figure is e microvolt. Caluclate 3ε (Take $a=0.1 m$) '(\#\#CEN_KSR_PHY_JEE_CO23_EO1_038_Q14\#\#)'

- View Text Solution

39. A small square loop of wire of side l is placed inside a large square loop of wire of side ($L \gg l$). The loops are coplanar and their centres coincide. If the mutual inductance of the system is $p \sqrt{q} \frac{\mu_{0}}{\pi} \frac{l^{2}}{L}$, then find $(p+q)$.

- View Text Solution

40. A square wire of length L_{1} mass m and resistance R slides without friction on parallel conducting resistanceless rails. The rails are interconinected at the bottom by resistanceless rails so that the wire and the rails form a closed rectangular loop. The plane of the rails is inclined
at an angle θ with the horizontal and a vertical uniform magnetic field B exists within the frame. If the wire acquires a steady velocity of magnitude $v=\frac{k m g R \sin \theta}{6 B^{2} l^{2}}, \cos ^{2} \theta$
'(\#\#CEN_KSR_PHY_JEE_CO23_EO1_040_Q15\#\#)'
