©"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS (HINGLISH)

Electrostatic Potential and

Capacitance

Question Bank

1. A positively charged oil droplet remains in
the electric field between two horizontal plates, separated by a distance 1 cm . If the charge on the drop is $3: 3 \times 10^{-3} C$ and the mass of the droplet is $10^{14} \mathrm{~kg}$, then what is the potential difference (in volt) between the plates? (Take $g=9.9 m s^{2}$)
2. A hexagon of side 8 cm has a charge $4 \mu C$ at each of its vertices. The potential at the centre of the hexagon is

- Watch Video Solution

3. Three charges $+q,+q$ and Q are located at
the vertices of a right-angled isosceles triangle. If the total interaction energy is zero,
then $Q=-\frac{q}{p \sqrt{r}}$, Find $(p+r)$.
'(\#\#CEN_KSR_PHY_JEE_CO19_EO1_003_Q01\#\#)'
4. Minimum number of capacitors each of $8 \mu F$ and 250 V used to make a composite capacitor of $16 \mu F$ and 1000 V are

D Watch Video Solution

5. An atrangement of source charges produces electric. potential $\bar{V}=5000 t^{2}$ along the x axis, where V is in volt and x is in metre. If a charge particle of mass \lg and char $\geq 1 \mathrm{nC}$ is
present in this field and its turning points are at $\pm 8.0 \mathrm{~cm}$, then what is the particie's maximum speed (in mm/s).

D View Text Solution

$\begin{array}{cc}6 . & \text { An } \\ (-30 \hat{i}+20 j)\{V\}\{m\}^{-\{t\}} & \text { exists in space. }\end{array}$
If the potential at the origin is zero, then find the potential (in volt) at ($5 \mathrm{~m}, 3 \mathrm{~m}$).

D View Text Solution

7. Two charges $+2 q$ and $-3 q$ are fixed at coordinates ($4 \mathrm{~m}, 0,0$) and ($9 \mathrm{~m}, 0,0$) , respectively.

The distance 'between two points on x-axis
(in m) where the potential is zero is z. Then the value of $\frac{z}{2}$ is (Assume standard reference.point)

- View Text Solution

8. There is an electric field E in x-direction. If the work done on moving a charge of $0.2 C$ through a distance of 2 w m along a line
making a angle 60° with x -axis is 4 J , then what is the value of E ?

D Watch Video Solution

9. Two insulating plates, shown in the figure, are thi uniformly .charged in such a way that the potentia difference between them is
$V_{3}-V_{1}=20 V$ (i.e., plate 2 is at a higher potential). The plates are separated by distanc $\mathrm{d}=0.1 \mathrm{~m}$ and can be treated as infinitely large.

Al clectron is roleased from rest on the inner
surface of plate 1 . Its speed when it hits plate 2
is $\quad 2.65 \times 10^{n} \frac{m}{s}$
Find
n
$\left(q=1.6 \times 10^{-19} C, m_{0}=9.11 \times 10^{-11} \mathrm{~kg}\right)$
'(\#\#CEN_KSR_PHY_JEE_CO19_E01_009_Q02\#\#)'
figure

D View Text Solution

10. In the given circuit, if charge on $6 \mu F$ capacitor is $10 \mu C$, thenthechar $\geq(\in \operatorname{muC}$)on 4 mu F` capacitor will be
'(\#\#CEN_KSR_PHY_JEE_CO19_E01_010_Q03\#\#)'
11. In the circuit shown in the figure, initially switch S is open. When the switch is closed, the charge passing through the switch is μC in the direction A to B .
'(\#\#CEN_KSR_PHY_JEE_CO19_EO1_011_Q04\#\#)'

- View Text Solution

12. In the given circuit, switch $S_{W_{1}}$ is closed and $S_{W_{2}}$ is open. After a long time, $S_{w_{1}}$ is
opened and $S_{W_{2}}$ is closed. Calculate the ratio of charge on capacitor B to that on capacitor A.
'(\#\#CEN_KSR_PHY_JEE_CO19_E01_012_Q05\#\#)'

D View Text Solution

13. In the given network, if potential difference
between p and q is $2 V$ and $C_{2}=3 C_{1}$, then find the potential difference (in volt) between a and b.
'(\#\#CEN_KSR_PHY JEE_CO19_E01_013_Q06\#\#)'
14. In the circuit shown below,
$C_{1}=6 \mu F, C_{2}=3 \mu F$ and battery. $E=20 V$.
The switch $S_{\{1\}}$ is first closed. It is then opened and. afterwards S_{2} is closed. What is the charge (in μC)on $\mathrm{C}\{2\}$?
'(\#\#CEN_KSR_PHY_JEE_CO19_EO1_014_Q07\#\#)'

- View Text Solution

15. Two identical thin rings, each of radius R, are coaxially placed a distance R apart. Q_{1} and
Q_{2} are respectively the charges uniformly spread on the two rings. The work done in moving a charge q fróm the centre of one ring to that of the other is $\frac{(\sqrt{x}-y) q\left(Q_{2}-Q_{1}\right)}{4 \sqrt{2} \pi \varepsilon_{0} R}$.

Find $(x-y)$
16. An electron is released from a distance

120 cm from a stationary point charge $+2 \times 10^{-9} \mathrm{C}$. The speed of the cloctron when it is 18 cm frotn the point charge is $5.467 \times 10^{n} \frac{m}{s}$. Find n

D View Text Solution

17. A capacitor is filled with an insulator and a certain potential difference is applied to its pltaes. The energy stored in the capacitor is U.

Now the capacitor is disconnected from the source and the insulator is pulled out of the capacitor. The work performed against the forces of electric field in pulling out the insulator is $4 U$. Then dielectric constant of the insulator is.

D Watch Video Solution

18. Find the equivalent capacitance (in μF) of
the circuit between points A and B. (Given:
$C=5 \mu F)$.
'(\#\#CEN_KSR_PHY JEE_CO19_E01_018_Q08\#\#)'

D View Text Solution

19. Consider the arrangemient of three plates
X, Y and Z, each of the area A and separation d. The eaergy stored when the
plates are fully charged is $\frac{p \varepsilon_{\{n\}} A V^{2}}{4 d}$. Find p.
'(\#\#CEN_KSR_PHY_JEE_CO19_E01_019_Q09\#\#)'
20. The equivalent capacitance for the network
shown in the figure is $\frac{k}{7} p F$. Find k.
'(\#\#CEN_KSR_PHY_JEE_CO19_E01_020_Q10\#\#)'

D View Text Solution

21. Three dielectrics of relative primitivities
$\varepsilon_{\eta}=6, \varepsilon_{\frac{r}{2}}=2$ and $\varepsilon_{\frac{r}{3}}=3$ are introduced in
a parallel plate capacitor of plate area A and separation d, as shown in the figure. If the effective capacitance between points P and Q
is $\frac{x \varepsilon_{0} A}{d}$, then $\frac{5}{7} x$ will be
'(\#\#CEN_KSR_PHY_JEE_CO19_EO1_021_Q11\#\#)'

D View Text Solution

22. The equivalent capacitance between points
A and B shown in the figare is $\frac{n \varepsilon_{0} A}{d}$. Find n.
'(\#\#CEN_KSR_PHY_JEE_CO19_EO1_O22_Q12\#\#)'

D View Text Solution

23. A parallel plate cepacitor is made of two
dielectric blocks in series. One of the blocks
has thickness d_{1} and dielectric constant k, and
the ather has thickness d_{2}, and dielectric constant k_{2} as showni in the figure, This arrangement can be thought as a dielestric slab of thickness $d=\left(d_{1}+d_{2}\right)$ and effective dielectic eonstant k. Then k is (Given:
$\left.\left.\{k\}_{1}=2, k_{2}=3, d_{1}=d_{2}+4 c m\right\}\right)$
'(\#\#CEN_KSR_PHY_JEE_CO19_E01_023_Q13\#\#)'
