©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS

 (HINGLISH)

 (HINGLISH)}

GRAVITATION

Question Bank

1. A body weighs W newton at the surface of
the earth. Its weight at a height equal to half
the radius of the earth will be $\frac{k W}{9}$. Find k.

D View Text Solution

2. The radii of two planets are R and $2 R$, respectively, and their densities are ρ and $\frac{\rho}{2}$, respectively. The ratio of acceleration due to gravity at their surfaces is $\frac{a}{h}$. Find $(a+b)$.

D View Text Solution

3. A body weighs 63 N on the surface of the earth. What is the gravitational force on it due to the earth at a height equal to half the radius of the earth ?

D Watch Video Solution

4. A geostationary satellite orbits the earth at
a height of nearly 36000 km from the surface of the earth. If the magnitude of potential đue to earth's gravity at the site of the satellite is
$\left(x \times 10^{6} r\right) \mathrm{Jkg}^{-1}$, then find the x. [Mass of
the earth $=6 \times 10^{24} \mathrm{~kg} \quad$ and
radius $=6400 \mathrm{~km}$ (approximately)]

D View Text Solution

5. A satellite moves in an elliptical orbit about
a planet. The maximum and minimum
velocities of the satellite are $3 \times 10^{4} \mathrm{~m} / \mathrm{s}$ and
$1 \times 10^{3} \frac{m}{s}$, respectively. If the minimum.
distance of the satellite from the planet is
$\frac{m}{n} \times 10^{3} \quad \mathrm{~km}$ then find $(m-n) . \quad$ (The
maximum distance of the satellite from the planet is $4 \times 10^{4} \mathrm{~km}$.

D View Text Solution

6. Assuming the radius of the earth to be $6.38 \times 10^{8} \mathrm{~cm}$, the gravitational constant to be $6.67 \times 10^{-8} \mathrm{~cm}^{3} g^{-1} \mathrm{~s}^{-2}$, acceleration due to gravity on the surface to be $980 c \frac{m}{s^{2}}$, find the mean density (in $\frac{g}{(\mathrm{~cm})^{3}}$) of the earth.
7. The distance between earth and moon is d and the mass of earth is 81 times that of the moon. If the location of. neutral point from
the centre of the earth on the line joining the centres of the earth and moon is $\frac{n d}{10}$, then find n.

D View Text Solution

8. If a new planet is discovered rotating around the sun with the orbital radius double
that of the earth, then whát will be its time period (in earth's 'days). (Take $\sqrt{2}=1.4$)

D View Text Solution

9. Assuming the earth to be a sphere of radius
R, if $g_{30^{\circ}}$ is the value of acceleration due to gravity at latitude of 30° and g at the equator, the value of $g-g_{3 e^{\circ}}$ is $\frac{p}{q} \omega^{2} R$, then find $(p+q)$.
10. Two șatellites A and B have ratio of masses as 3:1 in circular orbits of radii r and
$4 r$. The ratio of total mechanical energy of A to B is $\frac{m}{n}$. Find $(m+n)$.

D View Text Solution

11. A satellite S moves around a planet P in an elliptical orbit as shown in the figure. The ratio of the speed of the satellite at point a to that at point b is $\frac{x}{y}$, Find $(x-y)$.
'(\#\#CEN_KSR_PHY_JEE_C10_011_Q01\#\#)'
12. The maximum and minimum distances of a comet from the sun are $8 \times 10^{12} m$ and $1.6 \times 10^{12} \mathrm{~m}$, respectively. If its velocity whien it is nearest to the sun is $60 \mathrm{~m} / \mathrm{s}$, then what will be its velocity (in m / s). when it is farthest from the sun?
13. The escape velocity of a body from the earth's surface is v. If the escape velocity of the same body from a height equal to $7 R$ from the earth's surface is $v_{e} m \sqrt{n}$, then find $m n$.

D View Text Solution

14. If the potential energy of a 3 kg body at the
surface of a planet is $-54 J$, then its escape
velocity (in m / s) will be Escape-velocity of a
1 kg body on a planet is $100 \mathrm{~m} / \mathrm{s}$. The
magnitude of potential energy (in'joule) of the body at that planet is

D View Text Solution

15. Escape velocity of a body 1 kg mass on a planet is $100 m s^{-1}$. Gravitational potential energy of the body at that planet is

D Watch Video Solution

16. If the height at which the weight of a body
becomes $\left(\frac{1}{16} r\right)^{h}$ 'of its weight on the
surface of the earth (radius R) is $p R$, then
find p.

- View Text Solution

17. Find out energy required (in Giga Joule) to escape a space shuttle of 1000 kg mass from surface of earth. $\left(R_{e}=6400 \mathrm{~km}\right)$
18. If the angular momentum of a satellite of mass 400 kg moving around the earth in radius
$4 \times 10^{7} m$ is $y \times 10^{12} \mathrm{kgm}^{2} \mathrm{~s}^{-1}$, then find' y.
(Answer should be perfect integer)

D View Text Solution

19. A particle is thrown with escape velocity v_{e} from the surface of earth. Calculate its velocity at height 3 R :-
20. A body is projected vertically upward from.
the surface of the earth.with a velocity equal to half its escape velocity. If R is radius of the earth, then the maximum height attained by the,body is $\left(\frac{R}{n}\right)$. Find n.

D View Text Solution

21. The ratio of escape velocity at the earth
$\left(v_{e}\right)$ to the escape velocity at a planet $\left(v_{p}\right)$
whose radius and mean density are twice as
that of the earth is $\frac{x}{y \sqrt{z}}$. Find $(x+y+z)$

D View Text Solution

22. Escape velocity for a projectile at the earth's surface is $v_{e^{+}}$A body is projected from the earth's surface with velocity $2 \hat{v}_{e^{+}}$. The velocity of the body when it is at infinite distance from the centre of the earth is $\sqrt{x} v_{e}$.

Find x
23. The gravitational force between two identical uniform solid-gold spheres of radius r, each in contact, is proportional to r^{n}. Find n

D View Text Solution

24. At what height from the surface of earth
the gravitation potential and the value of g are $\quad-5.4 \times 10^{7} \mathrm{Jkg}^{-2} \quad$ and $\quad 6.0 \mathrm{~ms}^{-2}$
respectively ? Take the radius of earth as 6400km:

D Watch Video Solution

25. A particle is projected upward from the surface of the earth (radius R) with a kinetic energy equal to half the minimum value needed for it to escape. If the height it rises above the surface of the earth is $h=k R$, then find k.
26. A spherical cavity of radius $\frac{R}{2}$ is made in a sphere of radius R and mass M. The centre of the cavity is at a distance $\frac{R}{2}$ from the centre of the sphere. The intensity of gravitational field at the centre of cavity is $\frac{G M}{n R^{2}}$. Find n.

(D) View Text Solution

27. Calculate the energy needed for moving a mass of 4 kg from the centre of the earth to its
surfáce (in multiple of 10^{8} joule), if radius of
the earth is 6400 km and acceleration due to gravity at the surface of the earth is $g=10 \frac{m}{(s)^{2}}$.

D View Text Solution

28. On a hypothetical planet, satellite can only revolve in quantized energy level, i,e., magnitude of energy of a satellite is integer multiple of a fixed energy. If two successive orbits have radius R and $\frac{3 R}{2}$, what could be
maximum radius of the satellite in terms of R ?

D View Text Solution

29. A satellite is fired from the surface of the moon of mass M and radius R, with speed v_{0} at 30° with the vertical.The satellite reaches a maximum distance of $\frac{5 R}{2}$ from the centre of the moon. The value of v_{0} is $\sqrt{\frac{x G M}{y R}}$. Find $(x-y)$
30. The minimum speed should m be projected from point P in the presence of two fixed spherical masses M each at A and B is shown in the figure such that mass m should escape the gravitational attraction of A and B is $x \sqrt{\frac{G M}{a}}$. Find x.
'(\#\#CEN_KSR_PHY_JEE_C10_031_Q02\#\#)'

D View Text Solution

31. A particle is projected vertically upward the surface of the earth (radius R_{e}) with a speed equal to one-fourth of escape velocity. The maximum height attained by it from the surface of the earth is $\frac{R_{e}}{k}$. Find k.

D View Text Solution

32. A particle is projected from point A, which is at a distance $4 R$ from the centre of the earth, with speed v_{1} in a direction making 30°
with the line joining the centre of the earth
and point A, as shown. Find the speed v_{1} if particle passes grazing the surface of the earth. Consider gravitational interaction only between these two. Express you answer in the form $\frac{1000 X}{\sqrt{2}} \frac{\sim m}{s}$ and find value of X. (Use
$\left.\frac{G M}{R}=6.4 \times 10^{7} \frac{m^{2}}{s^{2}}\right)$
'(\#\#CEN_KSR_PHY_JEE_C10_033_Q03\#\#)'

D View Text Solution

33. Assuming that the earth hąs constant density, at what distance d (in $(k m)$) from the earth's surface the gravity above the earth is equal to that below the surface.

- View Text Solution

34. Two solid spherical planets of equal radii R
have masses $4 M$ and $9 M$. Their centres are scparated by a distance $6 R$. A projectile of mass m is sent from the planet of mass $4 M$
towards the heavier planet. If the distance r of
the point from the lighter planet where the gravitational 'force on the projectile is zero is $k R$, then calculate k.

D View Text Solution

35. Consider a nebula in the form of a ring of radius R and mass M. A star of mass m (m
36. The figure below shows a spherical shell of mass M-and radius R in a force-free region with an opening. A par'ticle of mass m is released from a distance R in front of the opening. If the speed with which the particle will hit the point C on the shell, opposite to
the opening, is $v=\sqrt{\frac{n G M}{4 R}}$, Find n '(\#\#CEN_KSR_PHY_JEE_C10_037_Q04\#\#)'

D View Text Solution

37. Two uniform solid spheres of equal radii R,
but mass M. and $4 M$ have a centre to centre
separation $6 R$, as shown in the figure. The two spheres are held fixed. A projectile of mass m
is projected from the surface of the sphere of mass M directly towards the center of the second sphere. If the minimum speed v of the projectile so that it reaches the surface of the second sphere is $\sqrt{\frac{x G M}{y R}}$, then find $(x,+y)$ '(\#\#CEN_KSR_PHY_JEE_C10_038_Q05\#\#)'
38. A body which is initially at rest at a height $h=6400 \mathrm{~km}$ above the surface of the earth of radius $R(6400 \mathrm{~km})$, falls freely towards the earth. If its velocity on reaching the surface of earth is $2^{N} \times 10^{3} \frac{\mathrm{~m}}{\mathrm{~s}}$, then calculate N. (Take $g=$ acceleration due to gravity on the surface of the earth $=10 \frac{m}{(s)^{2}}$)
39. Gravitational acceleration on the surface of
a planet is $\frac{\sqrt{6}}{g}$, where g is the gravitational acceleration on the surface of the earth. The average mass density of the planet is $\frac{2}{3}$ times that of the earth. If the escape speed on the surface of the earth is taken to 'be $11 \cdot(k m)(s)^{-1}$, then the escape speed (in km $\frac{k m}{s}$) on the surface of the planet will be

D View Text Solution

