©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS
 (HINGLISH)

KINETIC THEORY

Question Bank

1. Air is filled at $60 \circ \mathrm{C}$ in a vessel of open
T so that $\frac{1}{4}$ part of air escapes. The value of $\mathrm{T}\left(\right.$ in $\left.{ }^{0}\right)$ is

- Watch Video Solution

2. At a pressure of 24×10^{5} dyne $/ \mathrm{cm}^{2}$, the volume of $(O)_{2}$ is 10 litre and its mass is $20 g$.

The rms veloçity (in m / s) is
3. A vessel contains 1 mole of 0 , gas (molar mass $=32$) at a temperature T. The pressure of the gas is P. An identical vessel containing one mole of He gas (molar mass $=4$) at a temperature $2 T$, has a pressure of $n P$. Find u.

D View Text Solution

4. The given figure shows two flasks connected to each other. The volumo of flask 1 is twice
that of flask 2. The system is filled with an
ideal gas at temperatare $100 K$ and $200 K$ respectively, in the flasks. If the mass of the gas in flask 1 be m, then the mass of the gas in flesk 2 in equilibriam is $\left(\frac{m}{x}\right)$. Find x. '(\#\#CEN_KSR_PHY_JEE_C13_E01_004_Q01\#\#)'

D View Text Solution

5. A closed vessel contains a mixture of two diatomic gases A and B, Molar mass of A is

16times than of B and mass of gas A contained in the vessel is 2 times that of B. If
the pressure exerted by B is x times of that exerted by A, then find the value of x.

D Watch Video Solution

6. The molar specific heat of the process
$V \propto T^{4}$ for $(\mathrm{CH})_{4}$ gas at room temperature
is $y R$. Find y. (Here $R=$ Universal gas constant)
7. One mole. of an ideal gas undergoes a process $P=\frac{P_{0}}{1+\left(\frac{V_{0}}{V}\right)^{2}}$. Here P_{0} and V_{0} are
constants. The change in temperature of the gas when volume is changed from $V=V_{0}$ to $V=2 V_{0}$ is $\frac{x P_{0} V_{0}}{10 R}$. Find x. (Here $R=$ Universal gas constant)

D View Text Solution

8. The given figure shows a parabolic graph between T and $\frac{1}{V}$ for' a mixture of a.gas
undergoing an adiabatic process. The ratio of $v_{(m s)}$ to the speed of sound in the mixture is k. Find $2 k^{2}$.
'(\#\#CEN_KSR_PHY_JEE_C13_E01_008_Q02\#\#)'

D View Text Solution

9. A gaseous mixture enclosed in a vessel of volume V consists of one gram mole of gas A
with $\gamma=\frac{C_{P}}{C_{F}}=\frac{5}{3}$ and another gas B with $\gamma=\frac{7}{5}$ at a certain temperature T. The gram molecular weights of the gases A and B are 4
and 132 , respectively. The gases A and B do not react with cach other and are assumed to be ideal. The gaseous mixture follows the equation $P Y^{\frac{19}{13}}=$ Constant, in adiabatic process. Find the inumber of gram moles of the gas B in the gaseous mixture.

D View Text Solution

10. 2 moles of $H e$ are mixed with 2 moles of
H_{2} in a closed adiabatic container. Initially the mixture occupies 3 liters at $27 \stackrel{o}{C}$. The volume is
suddenly decreased to $\left(\frac{3}{2}\right)$ liters. Find γ for
the mixture. $\left(H_{2}\right)$. and He can be treted as ideal gases

Diew Text Solution

11. A vessel is partitioned in two equal halves
by a fixed diathermic separator. Two different ideal gases are. filled in left (L) and right (R) halves. The rms speed of the molecules in L part is equal to the mean speed of molecules in the R part. If the ratio of the mass of a
molecule in L part to that of a molecule in R
part is $\frac{x^{\circ} \pi}{y}$. then find $|x-y|$.
'(\#\#CEN_KSR_PHY JEE_C13_E01_011_Q03\#\#)'

D View Text Solution

12. At pressure P and absolute temperature
T_{1} a mass M of an ideal gas fills a closed container of volume (V). An additional mass
$2 M$ of the same gas is added into the container and the volume is then reduced to
V it T $\frac{\sigma}{3}$ and the temperature to $\frac{T}{3}$. If now the pressure of the gas is $n P$, then find n.

- Watch Video Solution

13. Assume a sample of an ideal gas in a vessel.

The velocities of molecules in the sample are between $2 \frac{\mathrm{~m}}{\mathrm{~s}}$ to $5 \frac{\mathrm{~m}}{\mathrm{~s}}$. If the velocity of molecules (v) and the number of molecules
(n) are related as $n=7 y-v^{2}-10$, then the most probable velocity (in $\frac{m}{s}$) in the sample is (Here v is measured in $\frac{m}{s}$).
14. Pressure (P) versus temperature (T) graph of an ideal gas is shown in the figure.

Density of the gas at point A is ρ_{0} and at B is ρ. Find $\frac{\rho}{\rho_{0}}$.
'(\#\#CEN_KSR_PHY_JEE_C13_EO1_014_Q04\#\#)'

D View Text Solution

15. A $P-V$ graph for an ideal 'gas
undergoing polytropic process $P Y^{m}=$

Constant is sbown below. Find the value of m.
'(\#\#CEN_KSR_PHY_JEE_C13_E01_015_Q05\#\#)'

D View Text Solution

16. A gas has molar heat capacity
$C=37.35 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$ in the process $P T=$

Constant. Find the number of degree of freedom of molecules in the gas.
17. A mixture of ideal gages N_{2} and (He) are taken in the mass ratio of $14: 1$, respectively.

Molar heat capacity of the mixture at constant pressure is $\frac{x R}{6}$. What is the value of x ?

- View Text Solution

18. $P-V$ diagram of an ideal diatomic gas is a straight line passing through origin. The molar heat capacity of the gas in the process
is $x R$. Find x (Here R - Universal gas constant)
19. One mole of a diatomic gas undergoes 'a process $P=\frac{P_{0}}{1+\left(\frac{V}{V_{0}}\right)^{s}}$ where P_{0}, V_{0} are
constants. The translational kinetic energy of the gas when $V=V_{0}$ is given by $\frac{\alpha P_{0} V_{0}}{\beta}$, Find $(\alpha+\beta)$.
20. A container has an ideal gas at pressure P
in thermal equilibrium. Assuming the mass of
a molecule is m and all the molecules are moving with same speed v in random directions, the expression for number of collisions per second which the molecules make with unit area of container's wall is $\frac{\sqrt{x} P}{m v}$, Find $(x+y)$.
21. A diatomic gas of molecular weight $30 \frac{\mathrm{~g}}{\mathrm{~m}} \mathrm{ol}$
is filled in a container at 300 K . It is moving with a velocity of $100 \frac{\mathrm{~m}}{\mathrm{~s}}$. If it is suddenly stopped, the rise in temperature of gas is $\left(\frac{10 x}{R}\right) K$, where R is universal gas constant

Find the value of x in $\mathrm{J} / \mathrm{mol}$.

- View Text Solution

22. A cubical box of side of $1 m$ contains helium
gas (atomic weight 4) at a pressure of $100 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$.

During" an observation time of $1 s$, an atom traveling with the root-mean-square speed parallel to one of the edges of the cube, was found to make 500 hits with a particular wall, without any collision with other atoms.

Evaluate the temperature (in K) of the gas, (Take
$\left.k=1.38 \times 10^{-23} \frac{J}{K}\right)$
and

- View Text Solution

23. The ratio of translational to rotational kinetic energies at $100 K$ temperature is $3: 2$.

The internal energy (in J) of one mole gas at that temperature is $\left(R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$

D View Text Solution

24. Two containers are filled with ideal gases at
the same temperature. In the container on the left is a gas of molar mass $2 M$, volume $2 V$, and number of moles $\cdot 2 n$. In the container on
the right is a gas of molar mass M, voluine V, arid moles n. The ratio of the pressure of the gas on the left to- the pressure of the gas on the right container is
'(\#\#CEN_KSR_PHY_JEE_C13_E01_024_Q06\#\#)'

D View Text Solution

25. Two conducting movable smooth pistons are kept inside a tion-conducting, ediabatic. container with initial positions as shown. Gas is present in the three parts A, B and C
having initial pressures as shown. Now.the pistons are released. The final equilibrium position length of part A is found to be $\frac{L}{x}$. Find x.
'(\#\#CEN_KSR_PHY_JEE_C13_E01_025_Q07\#\#)'

D View Text Solution

26. A closed container of volume $0.02 m^{3}$
contains a mixture of neon and argon gases at
a temperature of $27 \stackrel{o}{C}$ and pressure of
$I \times 10^{5} \mathrm{Nm}^{2}$. The total mass of the mixture is

28 g . If the gram molecular weights of neon and argon are 20 and 40 , respectively, then find the mass $(\in p)$ of argon gas in the container. Assume gases to be ideal.
$\left(\right.$ GivenR $\left.=8.314 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$

D View Text Solution

27. An air bubble doubles in radius on rising
from the bottom of a lake to its surface. If the atmospheric pressure is equal to that due to a column of 10 m of water, then what will be the
depth (in m) of the lake? (Assume that surface tension is negligible.)

D View Text Solution

28. $5 g$ of helium having rms speed of molecules us $1000 \frac{m}{s}$ and 24 g of oxygen having rms speed of molecules as $1000 \frac{m}{s}$, are introduced into a thermally isolated vessel.

The rms speed (in m / s) of oxygen when
thermal equilibrium is attained is (Neglect the heat capacity of the vessel.)
29. One mole of diatomic gas is being heated in a closed tank from $300^{\prime}(K)$ up to $1000(\sim K)$
. During the process, part of the molecules dissociate. Aț $1000(\sim K)$, the energy of the diatomic molecules are only half of that of the whole gas. The ratio of gas pressure $\left(\frac{P_{\text {final }}}{P_{\text {initial }}}\right.$ is $\frac{m}{n}$. Find $(m-n)$. (The oscillation of the molecules are not to be taken in account.)

D View Text Solution

30. An ideal gas is present in a massive metal
cylinder of height $h=1 m$, closed on top by a moving piston. A weight is gently put on the top of the piston. The piston immediately drops by $x=2.5 \mathrm{~cm}$, Over a long time it was
seen that the piston comes down another
$x^{t}=1 \mathrm{~cm}$. Determine the degree of freedom
for the molecules of the gas. Room temperature is constant, gas does not leak out. Use binomial approximation.
31. Three insulated vessels of equal volumes V are connected by thin tubes that can transfer
gas but do not transfer heat. Initially all the vessels are filled with the same type of gas at a temperature T_{0} and pressure P_{0}. Then the
temperature in the first vessel is doubled and
the temperature in the second vessel is
tripled. The temperature in the thin vessel
remains unchanged. If initial pressure is 77 cm
of Hg , then find the final pressure (in cm of Hg
) in the system.

View Text Solution

