©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS (HINGLISH)

Magnetism and Matter

Question Bank

1. A closely wound solenoid of 3000 turns and area of cross-section $2 \times 10^{-4} m^{2}$, carrying a current of $6 A$, is suspended through its center allowing it to turn in a horizontal plane. The magnetic moment (in $\left.(J)(T)^{-1}\right)$ associated with the solenoid is

- Watch Video Solution

2. At a given place on the earth's surface, the horizontal component of earth's magnetic field is $2 \times 10^{-9} T$ and resultant magnetic field is $4 \times 10^{-5} T$. The angle of dip (in degree) at this place is

- Watch Video Solution

3. At a certain place, the horizontal component of the earth's magnetic field is B_{0} and the angle of dip is 45°. If the total intensity of the field at that place is $\sqrt{\alpha} B_{0}$, then find α

- Watch Video Solution

4. At a certain location in Africa, compass point 12° west of geographic north. The north tip of magnetic needle of a dip circle placed in the plane of magnetic meridian points 60° above the horizontal. The horizontal component of the earth's field is measured to be $0.16(G)$. The magnitude of the earth's field at the location is
5. A dipole of magnetic moment $\vec{m}=(30 f)(A)(m)^{2}$ is placed along the y-axis in a, uniform magnetic field $\vec{B}=(2 \hat{i}+5 \hat{j}) \cdot(T)$. The torque acting 'on it is $(-\alpha \hat{k})$. Calculate α.

- Watch Video Solution

6. A vibration magnetometer placed in magnetic meridian has a small bar magnet. The magnet executes oscillations with a time period of 2 s in the earth's horizontal magnetic field of $24 \mu T$. When a horizontal field of $18 \mu T$ is produced opposite to the earth's field by placing a current carrying wire, the new time period of the magnet will be

- Watch Video Solution

7. A bar magnet is hung by a thin cotton thread in a uniform horizontal magnetic field and is in' equilibrium state. The energy required to rotate
it by 60° is W. Now the torque required to keep the magnet in this new: position is $\sqrt{k} W$. Find k.

- Watch Video Solution

8. The magnetic moment of a magnet of mass 75 g is $9 \times 10^{-3} \mathrm{Am}^{2}$. If the density of the material of magnet is $7.5 \times 10^{3} \mathrm{k} \frac{\mathrm{g}}{\mathrm{m}^{3}}$, then intensity of magnetization (in (A/ m^{2}) will be

- Watch Video Solution

9. The susceptibility of magnesium at 300 Kis1.2 xx 10^(-5) . Atwt̂emperature $(\in$ kelv \in)willitssusceptibilitybeequal $\rightarrow 1.44 \mathrm{xx}$ $10^{\wedge}(-5)$?

- View Text Solution

10. A circular coil of 25 turns and radius of 20 cm carrying a current of 1 A rests with its plane normal to an external field of magnitude $5.0 \times 10^{-2} T$. The coil is free to tum about-an axis in its plane perpendicular to the field direction. When the coil is turned slightly and released, it oscillates about its stable equilibrium with a frequency of $2 s^{-1}$. The moment of inertia of the coil about its axis of rotation is $\frac{x \times 10^{-2}}{16 \pi}{k g m^{2}}^{2}$. Find x

- Watch Video Solution

11. A short bar magnet has a magnetic moment of $0.4 J T^{-1}$ The magnitude of the magnetic field (in gauss) produced by the magnet at a distance of 20 cm from the center of the magnet on the equatorial line of the magnet is

- Watch Video Solution

12. Two identical magnetic dipoles of magnetic moment $2 A m^{2}$ are placed at a separation of $2 m$ with their axes perpendicular to each other in air. The resultant magnetic field at a midpoint between the dipoles is $x \sqrt{y} \times 10^{-7} T . F \in d(\mathrm{x}+\mathrm{y})$.

- Watch Video Solution

13. A permanent magnet in the shape of a thin cylinder of length 10 cm has magnetization $M=10^{6} \mathrm{Am}^{-1}$. Its magnetization current is 7 ampere, Find $\frac{I_{M}}{100}$.

- View Text Solution

14. The magnetic susceptibility of a paramagnetic substance at $-173^{\circ} \mathrm{C}$ is 1.5×10^{-2}. If its value at $-73^{\circ}(C)$ is $b \times 10^{-3}$ then find b.

- Watch Video Solution

15. The absolute magnetic permeability μ of a specimen of magnetic material is related to magnetic intensity H according to the relation as $\mu=\frac{0.6}{H}+8.0 \times 10^{-4} T A m^{-1}$. Find the value of H (in $A m^{-1}$) for which magnetic induction of $0.22 T$ can be produced.

- Watch Video Solution

16. The area of $B-H$ loop for a ferromagnetic material is $540 \mathrm{jm}^{-3}$. Ifthe \mid o|lutepermeabilityofeespaceis $4 \quad \mathrm{pi} \quad \mathrm{xx} \quad 10^{\wedge}(-7) \quad \mathrm{A}^{\wedge}(-1) \mathrm{m}^{\wedge}(-1)$ and theareaofthel-Hl ∞ poftheferromag \neq ticmaterialis(n)/(4 pi xx $\left.10^{\wedge}(-7)\right) \mathrm{A}^{\wedge} 2 \mathrm{~m}^{\wedge}(-2)$, thencalcaten.

- View Text Solution

17. A tangent galvanometer has a coil of 50 turns and a radius of 20 cm . The horizontal component of the earth's magnetic field is $B_{H}=3 \times 10^{-5} T$. Find the current which gives a diflection of $\left.45^{\circ}\right)$.
18. Relation between permeability' μ and magnetizing field H for a sample of iron is $\mu=\leq f t\left(\frac{0.4}{H}+12 \times 10^{-4}\right.$ right $)$ henery! meter, where unit of H is $(A m)$. Find value of $H\left((\in) \frac{A}{m}\right)$ for which magnetic induction of 1.0. $\frac{W b}{(m)^{2}}$ can, be produced.

- Watch Video Solution

19. When arod of magnetic material of size $10 \mathrm{~cm} \times 0.5 \mathrm{~cm} \times 0,2 \mathrm{~cm}$ is located in magnetizing field of $0.5 \times 10^{4} \frac{A}{m}$ then a magnetic moment of $5 \mathrm{Am}^{\wedge}(2)$ is induced in it. Find out the magnetic induction (in. $\frac{W b}{(m)^{2}}$) in the rod.

- Watch Video Solution

20. A solenoid has 10^{3} turns per unit length. On passing a current of 2 A , magnetic induction is measured to be $4 \pi \frac{W b}{(m)^{2}}$. Calculate the magnetic
susceptibility of the core.

- Watch Video Solution

21. A bar magnet of magnetic moment M and moment of inertia I (about center and perpendicular to length) is cat into two equal pieces, perpendicular to its length. Let T be the period of oscillations of the original magnet about an axis through the mid-point, perpendicular to length, in a magnetic field \vec{B}. If the similar period T for each piece is $\frac{T}{n}$, then calculate (n).

(Watch Video Solution

22. A magnet makes 40 oscillations per minute at a place having magnetic field of $0.1 \times 10^{-5} T$. At another place, " it take $2.5 s$ to complete one vibration. If the value of the earth's horizontal field at that place is $y \times 10^{-6} T$. then find y.
23. A puramagnetic sample shows a net magnetization of $8 \mathrm{~A} \mathrm{~m}^{\wedge}(-1)$ whenplaced \in anexternalmag \neq tiofieldof0. 6 Tatatemperatureof 4 K , Whenthesamesamp $\leq i s \pi a c e d \in$ anextermalmagncticfieldof0.2Tatat $16 \quad \mathrm{~K}$, themag \neq tizationwillbe $(\mathrm{alpha}) /\left(\right.$ beta) \quad (A) $\quad(\mathrm{m})^{\wedge}(-1) . F \in d$ (alpha+beta).

- View Text Solution

24. A solenoid of 500 turns $/ \mathrm{m}$ is carrying a current of $3 A$. Relative permeability of the core material of the solenoid is 5000 . If the ratio of the magnetization and the magnetic field inside the core is $\frac{m}{n} \times 10^{4}$, then find the value of $(m \pm n)$. Answer should be minimum positive integer. Take $\pi=3$)

- View Text Solution

25. A rod of magnetic material of cross section $0.25 \mathrm{~cm}^{2}$ is located in $4000 \frac{A}{m}$) magnetizing field. Magnetic flax passes through the rod is $25 \times 10^{6} \mathrm{~Wb}$. Find out magnetic susceptibility for the rod

- View Text Solution

26. Magnetic field of the earth is $0.3 G$. A magnet is oscillating with the rate of 5 oscillations $/ \mathrm{min}$. How much the magnetic field of the earth is increased, so that the number of oscillations becomes 10 per minute?

- Watch Video Solution

27. A magnetic dipole is under the influence of two magnetic fields. The angle between the field directions is 60° and one of the fields has a magnitude of $1.2 \times 10^{-1} T$. If the dipole comes to stable equilibrium at an angle of 30° with this field, then the magnitude of the field (in tesla) is $x \times 10^{2} T$. Find x,
28. The area of hysteresis loop. of a material is equivalent to $250 \frac{\mathrm{~J}}{\mathrm{~m}^{2}}$. When 10 kg material is magnetized by an alternating field of 50 Hz then energy lost in one hour will be beta joule. Find $\frac{\beta}{I 000}$). (Density of material is $\frac{7.5}{c} m^{2}$)

(Watch Video Solution

29. Density of iron is [Math Processing Error] and induced 'nagnetic field in iron is1T. The magnetic dipole tnoment of each iron atom is $y \leq x 10^{-34}\left(A m^{2}\right)$.Calculate \bar{y}.

D View Text Solution

30. A closely wound solenoid of 3000 turns and area of cross-section $2 \times 10^{-4} \mathrm{~m}^{2}$, carrying a current of $6 A$, is suspended through its centre
allowing it to turn in a horizontal plane. The magnetic moment (in $\left.(J)(T)^{-1}\right)$ associated with the solenoid is

- Watch Video Solution

31. At a given place on the earth's surface, the horizontal component of earth's magnetic field is $2 \times 10^{-5} T$ and resultant magnetic field is $4 \times 10^{-5} T$. The angle of dip (in degree) at this place is

- Watch Video Solution

32. At a certain place, the horizontal component of the earth's magnetic field is B_{0} and the angle of dip is 45°. If the total intensity of the field at that place is $\sqrt{\alpha} B_{0}$, then find α°

- Watch Video Solution

33. At a certain locatioa in Africa, compass point 12° west of geographic north. The north tip of magnetic needle of a dip circle placed in the plane of magnetic meridian points 60° above the horizontal. The horizontal component of the earth's field is measured to be $0.16(G)$. The magnitude of the earth's field (in gauss) at the location is

- Watch Video Solution

34. A dipole of magnetic moment $\vec{m}=(30 \hat{i})(A)(m)^{2}$ is placed along the y -axis in a, uniform magnetic field $\vec{B}=(2 \hat{i}+5 \hat{j}) \cdot(T)$. The torque acting on it is $(-\alpha \hat{k})$. Calculate α.

- Watch Video Solution

35. A vibration magnetometer placed in magnetic meridian has a small bar magnet. The magnet executes oscillations with a time period of 2 s in the earth's horizontal magnetic field of $16 \mu T$. When a horizontal field of
$10 \mu T$ is produced opposite to the earth's field by placing a current carrying wire, the new time period of the magnet will be

- Watch Video Solution

36. A bar magnet is hung by a thin cotton thread in a uniform horizontal magnetic field and is in' equilibrium state. The energy required to rotute it by 60° is W. Now the torque required to keep the magnet in this new: position is $\sqrt{k} W$. Find k.

- Watch Video Solution

37. The magnetic moment of a magnet of mass 150 g is $18 \times 10^{-3} A m^{2}$. If the density of the material of magnet is $15 \times 10^{3} k \frac{g}{\mathrm{~m}^{3}}$, then intensity of magnetization (in (A/ m^{2}) will be

- Watch Video Solution

38. The susceptibility of magnesium at 300 K is 1.2×10^{-5}. At what temperature (in kelvin) will its susceptibility be equal to 1.44×10^{-5} ?

Watch Video Solution

39. A short bar magnet has a magnetic moment of $0.4 J T^{-1}$ The magnitude of the magnetic field (ingauss) produced by the magnet at a distance of 20 cm from the centre of the magnet on the equatorial line of the magnet is

- Watch Video Solution

40. A permanert magnet in the shape of a thin cylinder of length 10 cm has magnetization $M=10^{6} \mathrm{Am}^{-1}$. Its magnetization current 7 ampere, Find $\frac{I_{M}}{100}$.

- Watch Video Solution

41. The magnetic susceptibility of a parmmgnetic substance at $-173^{\circ} \mathrm{C}$ is 1.5×10^{-2}. If its value at $-73^{\circ}(C)$ is $b \times 10^{-3}$ then find b.

- Watch Video Solution

42. A tangent galvanometer has a coil of 50 turns and a radius of 20 cm The horizontal component of the earth's magnetic field is $B_{H}=3 \times 10^{-5} T$. Find the current (in ampere) which gives a deflection of 45°. (Take $\pi=3$)

- Watch Video Solution

43. Relation between permeability' μ and magnetizing field H for a sample of iron is $\mu=\leq f t\left(\frac{0.4}{H}+12 \times 10^{-4}\right.$ right $)$ henery! meter, where unit of H is $(A m)$. Find value of $H\left((\in) \frac{A}{m}\right)$ for which magnetic induction of 1.0. $\frac{W b}{(m)^{2}}$ can, be produced.
44. When arod of magnetic material of size $10 \mathrm{~cm} \times 0.5 \mathrm{~cm} \times 0.2 \mathrm{~cm}$ is located in magnetizing field of $0.5 \times 10^{4} \frac{A}{m}$ then a magnetic moment of $5 A m^{2}$ is induced in it. Find out the magnetic induction (in. $\frac{W b}{(m)^{2}}$) in the rod.

- Watch Video Solution

45. A solenoid has 10^{3} turns per unit length. On passing a current of 2 A , magnetic induction is measured to be $4 \pi \frac{W b}{(m)^{2}}$. Calculate the magnetic susceptibility of the core.

- Watch Video Solution

46. A magnet makes 40 oscillations per minute at a place having magnetic field of $0.1 \times 10^{-5} T$. At another place, " it take 2.5 s to complete one vibration. If the value of the earth's horizontal field at that place is $y \times 10^{-6} T$. then find y.
47. A puramagnetic sample shows a net magnetization of $8 \mathrm{Am}^{-1}$ when placed in an external magnetio field of $0.6 T$ at a temperature of $4 K$, When the same sample is piaced in an external magnetic field of 0.2 T at a temperature of $16 K$, the magnetization will be $\frac{\alpha}{\beta}(A)(m)^{-1}$. Find $(\alpha+\beta)$.

- Watch Video Solution

48. A rod of magnetic material of cross section $0.25 \mathrm{~cm}^{2}$ is located in $\left(4000 \frac{A}{m}\right)$ magnetizing field. Magnetic flux passes through the rod is $25 \times 10^{6} \mathrm{~Wb}$. Find out magnetic susceptibility for the rod

- Watch Video Solution

49. Magnetic field of the earth is $0.3 G$. A magnet is oscillating with the rate of 5 oscillations $/ \mathrm{min}$. How much the magnetic field of the earth is
increased, so that the number of oscillations becomes 10 per minute?

- Watch Video Solution

50. A magnetic dipole is under the influence of two magnetic fields. The angle between the field directions is 60° and one of the fields has a magnitude of $1.2 \times 10^{-1} T$. If the dipole comes to stable equilibrium at an angle of 30° with this field, then the magnitude of the field (in tesla) is $x \times 10^{2} T$. Find x,
