

PHYSICS

BOOKS - CENGAGE PHYSICS (HINGLISH)

Magnetism and Matter

Question Bank

1. A closely wound solenoid of 3000 turns and area of cross-section $2 \times 10^{-4} m^2$, carrying a current of 6A, is suspended through its center allowing it to turn in a horizontal plane. The magnetic moment (in $(J)(T)^{-1}$) associated with the solenoid is

2. At a given place on the earth's surface, the horizontal component of earth's magnetic field is $2 \times 10^{-9}T$ and resultant magnetic field is $4 \times 10^{-5}T$. The angle of dip (in degree) at this place is

3. At a certain place, the horizontal component of the earth's magnetic field is B_0 and the angle of dip is 45° . If the total intensity of the field at that place is $\sqrt{\alpha}B_0$, then find α

4. At a certain location in Africa, compass point 12° west of geographic north. The north tip of magnetic needle of a dip circle placed in the plane of magnetic meridian points 60° above the horizontal. The horizontal component of the earth's field is measured to be 0.16(G). The magnitude of the earth's field at the location is

5. A dipole of magnetic moment $\overrightarrow{m} = (30f)(A)(m)^2$ is placed along the y-axis in a, uniform magnetic field $\overrightarrow{B} = \left(2\hat{i} + 5\hat{j}\right)$. (T). The torque acting 'on it is $\left(-\alpha\hat{k}\right)$. Calculate α .

Watch Video Solution

6. A vibration magnetometer placed in magnetic meridian has a small bar magnet. The magnet executes oscillations with a time period of 2s in the earth's horizontal magnetic field of $24\mu T$. When a horizontal field of $18\mu T$ is produced opposite to the earth's field by placing a current carrying wire, the new time period of the magnet will be

Watch Video Solution

7. A bar magnet is hung by a thin cotton thread in a uniform horizontal magnetic field and is in' equilibrium state. The energy required to rotate

magnetization (in (A/ m^2) will be

Watch Video Solution

9. The susceptibility of magnesium at $300Kis1.2 \times 10^{(-5)}$. $Atwtemperature(\in kelv \in)willitssusceptibilitybeequal \rightarrow 1.44 \times 10^{(-5)}$?

View Text Solution

10. A circular coil of 25 turns and radius of 20cm carrying a current of 1A rests with its plane normal to an external field of magnitude $5.0 \times 10^{-2}T$. The coil is free to tum about-an axis in its plane perpendicular to the field direction. When the coil is turned slightly and released, it oscillates about its stable equilibrium with a frequency of $2s^{-1}$. The moment of inertia of the coil about its axis of rotation is $\frac{x \times 10^{-2}}{16\pi}kgm^2$. Find x

Watch Video Solution

11. A short bar magnet has a magnetic moment of 0.4 JT^{-1} The magnitude of the magnetic field (in gauss) produced by the magnet at a distance of 20cm from the center of the magnet on the equatorial line of the magnet is

12. Two identical magnetic dipoles of magnetic moment $2Am^2$ are placed at a separation of 2m with their axes perpendicular to each other in air. The resultant magnetic field at a midpoint between the dipoles is $x\sqrt{y} \times 10^{-7}T$. $F \in d(x+y)$.

Watch Video Solution

13. A permanent magnet in the shape of a thin cylinder of length 10cmhas magnetization $M = 10^6 Am^{-1}$. Its magnetization current is 7 ampere, Find $\frac{I_M}{100}$.

View Text Solution

14. The magnetic susceptibility of a paramagnetic substance at $-173\,^\circ C$

is $1.5 imes 10^{-2}$. If its value at $-73^\circ(C)$ is $b imes 10^{-3}$ then find b.

15. The absolute magnetic permeability μ of a specimen of magnetic material is related to magnetic intensity H according to the relation as $\mu = \frac{0.6}{H} + 8.0 \times 10^{-4} T A m^{-1}$. Find the value of H (in Am^{-1}) for which magnetic induction of 0.22T can be produced.

Watch Video Solution

16. The area of B - H loop for a ferromagnetic material is $540 jm^{-3}$. If the |o| lute permeability of cespace is 4 pi xx $10^{(-7)}$ A^(-1)m^(-1) and the area of the l-Hl ∞ pof the ferrom ag \neq tic material is (n)/(4 pi xx 10^{(-7)}) A^2 m^(-2), then calcaten`.

View Text Solution

17. A tangent galvanometer has a coil of 50 turns and a radius of 20cm. The horizontal component of the earth's magnetic field is $B_H = 3 \times 10^{-5} T$. Find the current which gives a diflection of 45°). **18.** Relation between permeability' μ and magnetizing field H for a sample of iron is $\mu = \leq ft \left(\frac{0.4}{H} + 12 \times 10^{-4} right \right)$ henery! meter, where unit of H is (Am). Find value of $H\left((\in) \frac{A}{m} \right)$ for which magnetic induction of 1.0. $\frac{Wb}{(m)^2}$ can, be produced.

Watch Video Solution

19. When arod of magnetic material of size $10cm \times 0.5cm \times 0, 2cm$ is located in magnetizing field of $0.5 \times 10^4 \frac{A}{m}$ then a magnetic moment of 5Am⁽²⁾ is induced in it. Find out the magnetic induction (in. $\frac{Wb}{(m)^2}$) in the rod.

Watch Video Solution

20. A solenoid has 10^3 turns per unit length. On passing a current of 2A, magnetic induction is measured to be $4\pi \frac{Wb}{(m)^2}$. Calculate the magnetic

Watch Video Solution

21. A bar magnet of magnetic moment M and moment of inertia I (about center and perpendicular to length) is cat into two equal pieces, perpendicular to its length. Let T be the period of oscillations of the original magnet about an axis through the mid-point, perpendicular to length, in a magnetic field \overrightarrow{B} . If the similar period T for each piece is $\frac{T}{n}$, then calculate (n).

Watch Video Solution

22. A magnet makes 40 oscillations per minute at a place having magnetic field of $0.1 \times 10^{-5}T$. At another place, " it take 2.5s to complete one vibration. If the value of the earth's horizontal field at that place is $y \times 10^{-6}T$. then find y.

23. A puramagnetic sample shows a net magnetization of '8 A m^(-1)
whenplaced ∈ anexternalmag ≠ tiofieldof0.6 Tatatemperatureof4K
, Whenthesamesamp ≤ isπaced ∈ anextermalmagneticfieldof0.2Tatat
16 K, themag ≠ tizationwillbe(alpha)/(beta) (A) (m)^(-1). F ∈ d
(alpha+beta)`.

24. A solenoid of 500 turns /m is carrying a current of 3A. Relative permeability of the core material of the solenoid is 5000. If the ratio of the magnetization and the magnetic field inside the core is $\frac{m}{n} \times 10^4$, then find the value of $(m \pm n)$. Answer should be minimum positive integer. Take $\pi = 3$)

View Text Solution

25. A rod of magnetic material of cross section $0.25cm^2$ is located in $4000\frac{A}{m}$ magnetizing field. Magnetic flax passes through the rod is 25×10^6 Wb. Find out magnetic susceptibility for the rod

26. Magnetic field of the earth is 0.3G. A magnet is oscillating with the rate of 5 oscillations/min. How much the magnetic field of the earth is increased, so that the number of oscillations becomes 10 per minute?

27. A magnetic dipole is under the influence of two magnetic fields. The angle between the field directions is 60° and one of the fields has a magnitude of $1.2 \times 10^{-1}T$. If the dipole comes to stable equilibrium at an angle of 30° with this field, then the magnitude of the field (in tesla) is $x \times 10^2 T$. Find x,

28. The area of hysteresis loop. of a material is equivalent to $250 \frac{J}{m^2}$. When 10kg material is magnetized by an alternating field of 50 Hz then energy lost in one hour will be beta joule. Find $\frac{\beta}{I000}$. (Density of material is $\frac{7.5}{c}m^2$)

29. Density of iron is *[Math Processing Error]* and induced 'nagnetic field in iron is1T. The magnetic dipole tnoment of each iron atom is $y \le x 10^{-34} (Am^2)$.Calculate \bar{y} .

View Text Solution

30. A closely wound solenoid of 3000 turns and area of cross-section $2 imes 10^{-4}m^2$, carrying a current of 6A, is suspended through its centre

allowing it to turn in a horizontal plane. The magnetic moment (in $(J)(T)^{-1}$) associated with the solenoid is

Watch Video Solution

31. At a given place on the earth's surface, the horizontal component of earth's magnetic field is $2 \times 10^{-5}T$ and resultant magnetic field is $4 \times 10^{-5}T$. The angle of dip (in degree) at this place is

Watch Video Solution

32. At a certain place, the horizontal component of the earth's magnetic field is B_0 and the angle of dip is 45° . If the total intensity of the field at that place is $\sqrt{\alpha}B_0$, then find α°

33. At a certain locatioa in Africa, compass point 12° west of geographic north. The north tip of magnetic needle of a dip circle placed in the plane of magnetic meridian points 60° above the horizontal. The horizontal component of the earth's field is measured to be 0.16(G). The magnitude of the earth's field (in gauss) at the location is

Watch Video Solution

34. A dipole of magnetic moment $\overrightarrow{m} = (30\hat{i})(A)(m)^2$ is placed along the y-axis in a, uniform magnetic field $\overrightarrow{B} = (2\hat{i} + 5\hat{j})$. (*T*). The torque acting on it is $(-\alpha \hat{k})$. Calculate α .

Watch Video Solution

35. A vibration magnetometer placed in magnetic meridian has a small bar magnet. The magnet executes oscillations with a time period of 2s in the earth's horizontal magnetic field of $16\mu T$. When a horizontal field of

 $10\mu T$ is produced opposite to the earth's field by placing a current carrying wire, the new time period of the magnet will be

Watch Video Solution

36. A bar magnet is hung by a thin cotton thread in a uniform horizontal magnetic field and is in' equilibrium state. The energy required to rotute it by 60° is W. Now the torque required to keep the magnet in this new: position is $\sqrt{k}W$. Find k.

Watch Video Solution

37. The magnetic moment of a magnet of mass 150 g is $18 \times 10^{-3} Am^2$. If the density of the material of magnet is $15 \times 10^3 k \frac{g}{m^3}$, then intensity of magnetization (in (A/ m^2) will be

38. The susceptibility of magnesium at 300K is 1.2×10^{-5} . At what temperature (in kelvin) will its susceptibility be equal to 1.44×10^{-5} ?

39. A short bar magnet has a magnetic moment of 0.4 JT^{-1} The magnitude of the magnetic field (ingauss) produced by the magnet at a distance of 20cm from the centre of the magnet on the equatorial line of the magnet is

Watch Video Solution

40. A permanert magnet in the shape of a thin cylinder of length 10cm has magnetization $M = 10^6 Am^{-1}$. Its magnetization current 7 ampere, Find $\frac{I_M}{100}$.

41. The magnetic susceptibility of a parmmgnetic substance at $-173^{\circ}C$ is 1.5×10^{-2} . If its value at $-73^{\circ}(C)$ is $b \times 10^{-3}$ then find b.

Watch Video Solution

42. A tangent galvanometer has a coil of 50 turns and a radius of 20 cm The horizontal component of the earth's magnetic field is $B_H = 3 \times 10^{-5} T$. Find the current (in ampere) which gives a deflection of 45° . (Take $\pi = 3$)

Watch Video Solution

43. Relation between permeability' μ and magnetizing field H for a sample of iron is $\mu = \leq ft \left(\frac{0.4}{H} + 12 \times 10^{-4} right \right)$ henery! meter, where unit of H is (Am). Find value of $H\left((\in) \frac{A}{m} \right)$ for which magnetic induction of 1.0. $\frac{Wb}{(m)^2}$ can, be produced.

44. When arod of magnetic material of size $10cm \times 0.5cm \times 0.2cm$ is located in magnetizing field of $0.5 \times 10^4 \frac{A}{m}$ then a magnetic moment of $5Am^2$ is induced in it. Find out the magnetic induction (in. $\frac{Wb}{(m)^2}$) in the rod.

Watch Video Solution

45. A solenoid has 10^3 turns per unit length. On passing a current of 2A, magnetic induction is measured to be $4\pi \frac{Wb}{(m)^2}$. Calculate the magnetic susceptibility of the core.

susceptionity of the core.

> Watch Video Solution

46. A magnet makes 40 oscillations per minute at a place having magnetic field of $0.1 \times 10^{-5}T$. At another place, " it take 2.5s to complete one vibration. If the value of the earth's horizontal field at that place is $y \times 10^{-6}T$. then find y.

47. A puramagnetic sample shows a net magnetization of $8Am^{-1}$ when placed in an external magnetio field of 0.6T at a temperature of 4K, When the same sample is placed in an external magnetic field of 0.2T at a temperature of 16K, the magnetization will be $\frac{\alpha}{\beta}(A)(m)^{-1}$. Find $(\alpha + \beta)$.

Watch Video Solution

48. A rod of magnetic material of cross section $0.25cm^2$ is located in $\left(4000\frac{A}{m}\right)$ magnetizing field. Magnetic flux passes through the rod is $25 \times 10^6 Wb$. Find out magnetic susceptibility for the rod

Watch Video Solution

49. Magnetic field of the earth is 0.3G. A magnet is oscillating with the rate of 5 oscillations/min. How much the magnetic field of the earth is

increased, so that the number of oscillations becomes 10 per minute?

Watch Video Solution

50. A magnetic dipole is under the influence of two magnetic fields. The angle between the field directions is 60° and one of the fields has a magnitude of $1.2 \times 10^{-1}T$. If the dipole comes to stable equilibrium at an angle of 30° with this field, then the magnitude of the field (in tesla) is $x \times 10^2 T$. Find x,