©゙doubtnut

PHYSICS

BOOKS - CENGAGE PHYSICS (HINGLISH)

Moving charges and magnetism

Question Bank

1. Two circulat coils of radii ratio $1: 2$ and turn ratio 4 : 1 , respectively, are connected in series, The ratio of value of magnetic field at their centre is

- Watch Video Solution

2. Find the radius of a circular orbit of an electron of energy 5 keV in a field of $10^{-7} T$.
3. A toroid has a core (non-ferromagnetic) of inner racius $25^{\circ} \mathrm{cm}$ and outer radius 26 cm , around which 3,500 tums ofe wire are wound. If the cument in the wire is 11 A , then what is the magpetic field (in tesla) inside the core of the toroid?

(Watch Video Solution

4. In hydrogen atom, the electron is making $6.6 \times 10^{15} \mathrm{rev} / \mathrm{s}$ around the nucleus in an orbit of radius $0.528 \forall$. The magnetic moment is $x \times 10^{23}(A m)^{2}$. Find the value of x.

- View Text Solution

5. An electric current is flowing in a circular wire of radius 10 cm . At what distance (in cm) from the centre on the axis of the circular wire will the magnetic field be $\frac{1}{8}$ th of its value at the centre? (Take $\sqrt{2}=1.41, \sqrt{3}=1.73)$

(D) Watch Video Solution

6. Five hundred turns of a wire are wound oa, a thin tubc 1 m long. If the wire carries a current of 5A , determine the field (in mT) in the tube.

Watch Video Solution

7. A steady current I goes through a wire loop $P Q R$ having shape of a right angle triangle with $P Q=3 x, P R=4 x$ and $Q R=5 x$. If the magnitude of the magnetic field at P due to this loop is $k\left(\frac{\mu_{0} I}{48 \pi x}\right)$, find the value of K.

- Watch Video Solution

8. A proton is projected with a speed of $2 \times 10^{5} \mathrm{~m} / \mathrm{s}$ at an angle 60° to x -axis. If a uniform magnetic field of 0.1 T is 'applied along y-axis, then the path of proton is helical with time period $a \times 10^{-5} s$. (Takepi=3.14).
9. An electron (mass $=9.1 \times 10^{-31} \mathrm{~kg}$, charge $=1.6 \times 10^{-19} \mathrm{C}$) experiences no deflection if subjected to an electric field of $3.2 \times 10^{5} \frac{\mathrm{~V}}{\mathrm{~m}}$, and $a m a g \neq$ ticfieldsof2.0xx10^(-3) $\mathrm{Wb} / \mathrm{m}^{\wedge}(2)^{\prime}$. Both the fields are normal to the path of electron and to each other. If the electric field is removed, then the electron will revolve in an orbit of radius

- Watch Video Solution

10. A long straight solid conductor of radius $5(\sim \mathrm{~cm})$ carries a current of 2

A waich is uniformly distributed over its circular cross-section. If the magnetic field induction at a distunce of 3 cm from the axis of the conductor is $y \times 10^{-6} T$, then find the value of y.

- Watch Video Solution

11. A uniform magnetic ficld B ы $B_{0} j$ exists in space. A particle of mass m and charge q is projected towards negative x-axis with speed v from the a point $(d, 0,0)$. If the maximum value of v for which the particle does not hit y^{-z} plane is $\frac{4 B_{0} q d}{\alpha m}$, then calculate α.

- Watch Video Solution

12. Current $i=2.5 A$ flows along the circular coil whose equation is given by $x^{2}+y^{2}=9\left(\mathrm{x}\right.$ and y^{\prime} are in cm$)$. Find the magnetic field in (Tesla) at a point ($0,0,4$).

- View Text Solution

13. An α-particle of 1 MeV energy moves in circular path in uniform magnetic field. The kinetic energy (in MeV) of proton in the same magnetic field for circular path of double radius is
14. A particle of charge $-16 \times 10^{-19} \mathrm{C}$ moving with velocity $10 \mathrm{mg}^{-1}$ along the x-axis enters a region where magnetic field B is along the y axis and electric field of magnitude $10^{4}(\mathrm{~V} / \mathrm{m})$ is along the negalive z -axis If the charged particle contintes moving along the x-axis, then the magnitude of $B\left(\frac{W b}{(m)^{2}}\right)$ is

D View Text Solution

15. Two moving coil galvanometers X and Y are connected in series and a current passes through them. Their readings are found to be full scale for X and half scale for Y. Given that their scales are identical and their restoring springs of same strength, but that $X^{\prime} s$ coil is twice as large in area and has twice the number of tums compared with Y s coils, Calculate the ratio of magnetic field strength of X 's magnet to that of Y° s magnet.

- View Text Solution

16. Copper has 8.0×10^{28} conduction clectrons per metre'. A copper wire

. Ifthedr if tvelocityofeec \leq ctrons \in thewire $-i s 1.56 \mathrm{xx} \quad 10^{\wedge}(-\mathrm{n})$ $\frac{m}{s}$, then $f \in d n$.

- View Text Solution

17. A block of mass m and charge q is released on a long, smooth inclined surface. The magnetie field B is constant, uniform, horizontal and paraillel to the surfice as shown. If the time from start when the block loses contact with the surface is $\frac{m \cot \theta}{k a B}$, then find k.

- View Text Solution

18. The deflection in a moving coil galvanometer is reduced to half, when it is shunted with a resistance 40Ω. The resistance of the galvanometer is
19. A particle of charge q and mass m starts moving from the origin with a velocity $\vec{v} \dot{e} q v_{0} \hat{j}$ under the action of an electric field $\vec{E}=E_{5} \bar{i}$ and magnetic field $\vec{B}=B_{0} \vec{i}$ The speed of the particle will become $2 v_{0}$ aftet a time $t=\frac{\sqrt{x} m w_{0}}{q E_{0}}$. Find the value of x.

- Watch Video Solution

20. A particle of mass m and charge q enters a region of magnetic field (as shown) with speed v. There is a region in which the magnetic field is absent (as shown). The particleafter entering this region collides elastically with a riggid wall. The time after which the velocity of the purticle becomes anti-parallel to its initial velocity is. $\frac{m}{\alpha q B}(\pi+\beta)$. Find $(\alpha+\beta)$.

- View Text Solution

