©゙doubtnut

PHYSICS

BOOKS - CENGAGE PHYSICS (HINGLISH)

NUCLEI

Question Bank

1. The half lives of radioactive elements X and Y are 3 minute and 27 minute respectively. If the activities of both are same, then calculate the ratio of number of atoms of X and Y .
2. The radius of gemanium (Ge) moclide is measund w be

D View Text Solution

3. Initial ratio of active nuclei in two different sample is $2: 3$ their half lives are 2 hr and 3 hr respectively. Ratio of their activities at the end of 12 hr is :

- Watch Video Solution

4. The radii of NUCLEI of two atoms are in ratio $\frac{3}{2}$. Assuming them to be hydrogen like atom, the ratio of their orbital radius for (K) shell is $\mathrm{m} / \mathrm{n} . F \in d(\mathrm{~m}+\mathrm{n}) .\left(A s \sum\right.$ evmberofpro $\rightarrow n={ }^{\prime}$ Number of neutron for each atom)

5. The fraction of a radioactive material which reamins active

 after time t is $9 / 16$. The fraction which remains active after time $t / 2$ will be .
D Watch Video Solution

6. The power obtained in a reactor using U^{235} disintergration is 1000 kW . The mass decay of U^{235} per hour is

- Watch Video Solution

7. The half-life of a radioactive isotope X is 50 years. It decays to another element Y which is stable. The two elements X and
Y were found to be in the ratio of $1: 15$ in a sample of a given rock. The age of the rock was estimated to be

- Watch Video Solution

8. Obtain the amount of ()$_{27}^{60}(C o)$ (in $\mu(g)$) necessary to provide a radioactive source of $8.0(\sim m)(C i)$ strength. The half life of ()$_{27}^{60}(C o)$ is 5.3 years. (Give answer in integer value)

- View Text Solution

9. The binding energy per nucleon of $\underset{3}{\underset{\sim}{L}} i$ and $\underset{2}{\underset{\sim}{H}}$ enuclet are 5.60 MeV and 7.06 MeV , respectively. In the nuclear reaction ${ }_{3}^{7} i+\underset{1}{\underset{1}{H}} \rightarrow$ underset(4)overset(2) He, thevalueofe \neq rgyQ (in MeV) released is
10. In the process of nuclear fission of $1 g$ of uranium, the mass lost is 0.90 mg . The efficiency of fission reactor of power house is 20%. To obtain $400 M W$ power from the power house, how much uranium (in gram) is required per hour?

- View Text Solution

11. $200(\mathrm{MeV})$ of energy can be obtained per fission. In a reactor generating 1000 kW , the number of NUCLEI under going the fission per second is 3.125×10^{n}. Find n.

- View Text Solution

12. A nucleus of mass number 220 , initially at rest, emits an α particle. If the Q value of the reaction is 5.5 MeV , the energy (in MeV) of the emitted α-particle will be

- View Text Solution

13. A radioactive material decays by simulataneous emission of two particle from the with respective half - lives 1620 and 810
year. The time, in year, after which one - fourth of the material remains is

- Watch Video Solution

14. In an α-decay, the kinetic energy of α-particles is 48 MeV and Q value of the reaction is 50 MeV . The mass number of the
mother nucleus is (assume that daughter nucleus is in ground state)

- Watch Video Solution

15. The distance of closest approach of a certain nucleus is 7.2 fm and it has a charge of $1.28 \times 10^{-17} \mathrm{C}$. The number of neutrons inside the nucleus of an atom is

- Watch Video Solution

16. The activity of a fresh radioactive solution of volume 1 litre is

1200 Bq . A volume ΔV of the same liquid has an activity 120 Bq after three half lives. Then ΔV (in cc) must be
17. Two' radioactive samples X and Y having half life 3 years and 2 years, respectively, havẻ been decaying for many years. Today both samples have equal number of atoms. After how many years the number of atoms in the sample X will be twice of the number of atoms in the sample Y ?

- View Text Solution

18. Radioactive NUCLEI A and B with half lives T and 21 , respectively, disintegrate into C. At $t=0$, number of NUCLEI of each A and B is x. The number of NUCLEI of C when rate of disintegration of A and B are equal is αx.

- View Text Solution

19. Geiger counter reading of a radioactive sample is initially 6800 counts per minute. The same sample gives a reading of 425 counts per minute $10 h$ later. The half life of sample is α hours. Find 2α.

- View Text Solution

20. A sample of β active NUCLEI has a half life of 1.00 min .

Initially, there are $10^{13} \beta$ active NUCLEI. Assuming that all the β particles emitted leave the sample, what is the charge (in μC) acquired by the sample in 200 min ?

- View Text Solution

21. For a substance, the average life for α-emission is 3240 years and for β emission is 810 years. After how much time (in years) the one-fourth of the material remains by simultaneous emission? $(\ln 2=0.693)$ (Round of the answer to nearest integer.)

- View Text Solution

22. A nucleus with mass number 220 , initially at rest, emits an α-particle. If the Q value of reaction is 7.8 MeV and subsequently after the emission of α-particle, a photon of energy 1.2 MeV is also emitted, then the kinetic energy (in MeV) of α-particle is.
23. Consider the following 'fusion reaction: $\underset{1}{\underset{1}{H}}+$ underset(1)overset(2)H rarr $\stackrel{4}{H}$ e.
$20 M e V o f e \neq$ rgyisre \leq asedper fusionreaction and masssof 2 $\underset{1}{H}$ consumed per day is $0.1(\sim g)$, then what is the power of the reactor (in MW)? (Give answer in integer value)

D View Text Solution

24. A radioactive sample S_{1} having the activity A_{1} has twice the number of nucleic as another sample S_{2} of activity A_{2}. If $A_{2}=2 A_{1}$, then the ratio of half-life of S_{1} to the half-life of S_{2} is

- Watch Video Solution

25. Two radioactive elements R and S disintegrate as
$R \rightarrow P+\alpha, \lambda_{R}=4.5 \times 10^{-3}$ years $^{-1}$
$S \rightarrow Q+\beta l, \lambda_{S}=3 \times 10^{-3}$ years $^{-1}$
Starting with number of atoms of R and S in the ratio of 2:1 this ratio afte4r the lapse of three half lives of R will be

- Watch Video Solution

26. The radioactive sources A and B, initially containing the same number of radioactive atoms, have half lives of $2 h$ and $4 h$, respectively. At the end of $2 h$, their rates of disintegration are in the ratio $\sqrt{\frac{p}{q}}$. Find $(p+q)$.
27. A nucleus X, initially at rest, decays into a nucleus Y with the emission of an α-particle'and energy Q is released. If m is mass of α-particle and M that of rucleus Y, the energy of the emitted α-particle is given by $E_{\alpha}=\frac{Q M}{M+x m}$. Find the value of x.

- View Text Solution

28. The graph represents the decay of a newly prepared sample of radioactive nuclide X to a stable nuclide Y. The half life of X is τ. The growth curve for Y intersects the decay curve for X after time T. What is the time T in multiple of τ ?
'(\#\# CEN_KSR_PHY_JEE_CO30_E01_028_Q01\#\#)'

- View Text Solution

29. The threshold energy (in (MeV)) for the following nuclear reaction to proceed is

$$
\begin{aligned}
& \stackrel{4}{\mathrm{H}} e+\text { underset(7)overset(14)N } \operatorname{rarr} \underset{8}{\stackrel{17}{O}}+\text { underset(1)overset(1)H } \\
& A \rightarrow \text { mic, massofunderset(2)overset(4) } \mathrm{He}=4.00260 \mathrm{amu} \\
& A \rightarrow \text { micmassofunderset(7)overset(14) } \mathrm{N}=14.00307
\end{aligned}
$$

$A \rightarrow$ micmassofunderset(8)overset(17)Li $=16.99913(a \mu)$
Atomic mass of $\underset{1}{\stackrel{1}{H}}=1.00783(a \mu)$

- View Text Solution

30. Half life of a radioactive substance is 2.34 min . It is produced at'a constant rate of 10^{8} NUCLEI per second. How soon (in minute) after the beginning of production will its activity be equal to disintegration per second?
31. A radioactive sample has a half life of 40 s . When its activity is measured $80 s$ after the beginning, it is found to be $6.932 \times 10^{18} \mathrm{dps}$. During this time, total energy released is $6 \times 10^{8} \mathrm{~J}$. If the energy released per fission is $y \times 10^{-13}$ joule, then find $y .(\ln 2=0.6932)$

D View Text Solution

32. A moving neutron collides with stationary H -atom in ground state. As a result it excites and then de-excites. The corresponding radiation fail on a surface having work function σ. The minimum value of required kinetic energy for neutron is
E_{0} and possible minimum value of de-Broglie wavelength of emitted photoelectrons is λ_{0}. If the neutron hits stationary $(H e)^{+}$ion instead of stationary (H) atom, then the minimum
value of kinetic energy for neutron is E_{1} and the value of energy. transferred from neutron to H -atom is $\frac{x E_{0}}{y}$. Find $(x y)$.

- View Text Solution

33. One possible method for revealing the presence of concealed nuclear weapons is to detect the neutrons emitted in the spontaneous fission of ${ }^{240} u$ in the warhead. In an actual trial, a neutron detector of radius 1.0 m carried on a helicopter measured a neutrón flux of $50 s^{-1}$ at a distance of 100 m from a missile warhead. Estimate the mass of ${ }^{240} u$ (in kg) in the warhead. The mean life for spontaneous fission in $\stackrel{240}{P} u$ is $6 \times 10^{18} s$, and 2.5 neutrons on the average are emitted in each fission. (Avogadro's number $=6 \times 10^{23}$)
34. For a substance, the average life for α-emission is 1620 years and for β emission is 405 years. If after $(k \times 0.693)$ years, the one-fourth of the material remains by simultaneous emission, then find k

- View Text Solution

35. A radioactive sample decays by ' β-emission. In first 2 seconds, $n \beta$-particles are emitted and in next 2 seconds, $0.25 n \beta$-particles are emitted. The half life of radioactive NUCLEI (in second) is
36. The graph in the figure shows how the count-rate A of adioactive source as measured by a Geiger counter varies with time t. The relationship between A and t is $A=k e^{-0.1 t}$. Find k. (Assume $\ln 12=2.6)^{\text {' }}$
'(\#\# CEN_KSR_PHY_JEE_CO30_E01_036_Q02\#\#)'

- View Text Solution

37. Consider a nuclear fusion reaction $A+B \rightarrow C$. Nucleus A is moving with kinetic energy $=5 \mathrm{MeV}$ and collides with mucleus $\quad B$ moving with kinetic energy
$=3 M e V$ and f or $m s^{\prime} \nu c \leq u s \mathrm{C}$
\in excitedstate. $F \in d t h e k \in$ etice $\neq r g y(\in M e V)$ ofnúc $\leq u s$
Cjustafterits f or mationgivent \hat{i} tsexcitatione \neq rgyis 10.3
MeV. TakemassesofNUCLEIofA, B and Cas25.0 amu, 10.0 amu, 34.99 amu ', respectively. ($1 \mathrm{amu}=930 \mathrm{MeV}$)

D View Text Solution

38. The positions of $\underset{1}{\underset{D}{D}} \underset{2}{\underset{2}{H}}$ e and $\underset{3}{\underset{\sim}{L}}$ iare shown on the binding energy curve as shown in the figure. Find the energy released (in multiple of $2(\mathrm{MeV})$) in the fusion reaction, $\underset{1}{2}+$ underset(3)overset(7)Li rarr $\underset{2}{\stackrel{4}{H}} e+\underset{o}{n}$
'(\#\# CEN_KSR_PHY_JEE_CO30_E01_038_Q03\#\#)'

- View Text Solution

39. A radioactive sample contains two radionuclids A and B having décay constant λh^{-1} and $2 \lambda h^{-1}$. Initially, 25% of total decay comes from A. How long (in h) will it take before 75% of total decay comes from A. (Take $\lambda=\ln 3$)
40. Consider the following process of decays
$\stackrel{234}{U} \rightarrow \stackrel{230}{T_{90}} h+\stackrel{4}{\underset{2}{H}} e, T_{\frac{1}{2}}=250000$ years
$\stackrel{230}{T} h \rightarrow \underset{90}{226} a+\underset{8}{\underset{2}{H}} e, T_{\frac{1}{2}}=80000$ years
$\stackrel{88}{R} a \rightarrow \underset{222}{R} n+\underset{2}{\stackrel{4}{H}} e, T_{\frac{1}{2}}=1600$ years After above process has
occurred for a long time, a state is reached where every two
thorium atoms formed from $\underset{92}{\stackrel{234}{U}}$, one decomposes to form $\underset{88}{226} n$ 226
and for every two $\underset{88}{R a}$ formed, one decomposes to form underset(222)overset(86)Rn
. Calcatetheratioof $2 m b e r o f N U C L E I o f$ underset(90)overset(230)Th $\rightarrow \underset{88}{226}$ R a at this state.
41. The friction of a radioactive sample which remains active aftertime t is $\frac{9}{16}$. What friction remains active after $\frac{t}{2}$ time?

- Watch Video Solution

42. The power obtained in a reactor using U^{235} disintergration is 1000 kW . The mass decay of U^{235} per hour is (in μg)

- Watch Video Solution

43. The half life of a radioactive isotope X is 50 years. It decays to another element Y which is stable. The two elements X and Y were found to be in the ratio of 1: 15 in a sample of a given rock. The age (in years) of the rock was estimated to be
44. Obtain the amount of ()$_{27}^{60}(C o)$ (in $\mu(g)$) necessary to provide a radioactive source of $8.0(\sim m)(C i)$ strength. The half life of ()$_{27}^{60}(C o)$ is 5.3 years. (Give answer in integer value)

D Watch Video Solution

45. The binding energy per nucleon of $\cdot{ }_{3}^{7} \mathrm{Li}$ and.${ }_{2}^{4} \mathrm{He}$ nuclei are 5.60 MeV and 7.06 MeV , respectively. In the nuclear reaction
$\cdot{ }_{3}^{7} \mathrm{Li}+\cdot{ }_{1}^{1} \mathrm{H} \rightarrow \cdot{ }_{2}^{4} \mathrm{He}+\cdot{ }_{2}^{4} \mathrm{He}+Q$, the value of energy Q released is
46. In the process of nuclear fission of $1 g$ of uranium, the mass lost is 0.90 mg . The efficiency of fission reactor of power house is 20%. To obtain $400 M W$ power from the power house, how much uranium (in gram) is required per hour?

- Watch Video Solution

47. $200(\mathrm{MeV})$ of energy can be obtained per fission. In a reactor generating 1000 kW , the number of NUCLEI under going the fission per second is 3.125×10^{n}. Find n.

- Watch Video Solution

48. A nucleus of mass number 220 , initially at rest, emits an α particle. If the Q value of the reaction is 5.5 MeV , the energy
(in MeV) of the emitted α-particle will be

- Watch Video Solution

49. A radioactive material decays by simultaneous emission of two particles of half lives 1620 and 810 years. The time (in years) after which one-fourth of the material remains, is

- Watch Video Solution

50. In an α-decay, the kinetic energy of α particle is $48(\mathrm{MeV})$ and Q value of the reaction is 50 MeV . The mass number of the mother nucleus is (Assume that daughter nucleus is in ground state).
51. The nuclear radius of a certain nucleus is 7.2 fm and it has charge of $1.28 \times 10^{-17}(C)$. Find the number of neutrons inside the nucleus.

D Watch Video Solution

52. For a substance, the average life for α-emission is 3240 years and for β emission is 810 years. After how much time (in years) the one-fourth of the material remains by simultaneous emission? $(\ln 2=0.693)$ (Round of the answer to nearest integer.)

- Watch Video Solution

53. A nucleus with mass number 220 , initially at rest, emits an α-particle. If the Q value of reaction is 7.8 MeV and subsequently after the emission of α-particle, a photon of energy 1.2 MeV is also emitted, then the kinetic energy (in MeV) of α-particle is.

- Watch Video Solution

54. A radioactive sample S_{1} having the activity A_{1} has twice the number of NUCLEI as another sample S_{2} of activity A_{2} : If $A_{2}=2 A_{1}$, then the ratio of half life of S_{1} to the half life of S_{2} is

- Watch Video Solution

55. Two radioactive elements R and S disintegrate as $R \rightarrow P+\alpha, \lambda_{R}=4.5 \times 10^{-3} \quad$ years $\quad \wedge(-1)$
$S \rightarrow P+\beta, \lambda_{s}=3 \times 10^{-3}$ years ^(-1)
Starting with number of atoms of R and S in the ratio of $2: 1$, this ratio after the lapse of three half lives of R will be

- Watch Video Solution

56. The radioactive sources A and B, initially containing the same number of radioactive atoms, have half lives of $2 h$ and $4 h$, respectively. At the end of $2 h$, their rates of disintegration are in the ratio $\sqrt{\frac{p}{q}}$. Find $(p+q)$.
57. The graph represents the decay of a newly-prepared sample of radioactive nuclide X to a stable nuclide Y. The half-life of X is
t. The growth curve for Y intersects the decay curve for X after time T. What is the time T ?

D Watch Video Solution

58. For a substance, the average life for α-emission is 1620 years and for β emission is 405 years. If after $(k \times 0.693)$ years, the one-fourth of the material remains by simultaneous emission, then find k

- Watch Video Solution

59. A radioactive sample decays by ' β-emission. In first 2 seconds, $n \beta$-particles are emitted and in next 2 seconds, $0.25 n \beta$-particles are emitted. The half life of radioactive NUCLEI (in second) is

- Watch Video Solution

