đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - CENGAGE PHYSICS

(HINGLISH)

RAY OPTICS AND OPTICAL INSTRUMENTS

Question Bank

1. The diagram shows a mirror system. If after two reflections the image and the object O coincide with each other, then the value of radius of curvature (in metre) of the concave mirror is (Take $a=3 m$)
'(\#\#CEN_KSR_PHY_JEE_C26_E01_001_Q01\#\#)'

D View Text Solution

2. A lens has one surface as concave with
$R_{1}=2 m$ and the other as convex with
$R_{2}=3 m$. The magnitude of focal length (in m
) of lens is (If $\mu_{r}=1.5$)

- View Text Solution

3. The near vision of an average person is 25 cm
. To view an object with an angular magnification of 10 , what should be the power of the microscope?
4. A compound microscope consists of an
objective. lens of focal length $2(\sim c m)$ and eyepiece of focal length 6.25 cm separated by a distance of 15 cm . How far (in cm) from the objective lens should an object be placed in order to obtain the final image at the least distance of distinct vision?

D View Text Solution

5. As shown in the figure, one of the faces of the prism of retive angle 30° and retive index
$\mu=\sqrt{2}$, is silvered. At what angle of incidence
i (in degrees) the ray must fall on unsilvered surface, so that after retion and reflection it retrace its path?
'(\#\#CEN_KSR_PHY_JEE_C26_E01_005_Q02\#\#)'

D View Text Solution

6. The image produced by a concave mirror is one-quarter the size of object. If the object is moved 5 cm closer to the mirror, the image will
only be half the size of the object. The focal length of mirror is

D Watch Video Solution

7. A point object O can' move along vertical line
$A B$ as shown in the figure. At $t=0$, the image of the object is visible to D and then the object O is released from rest from point A : The time for which object is visible to D is T.

Find T^{2}. (Given $L=9.8 m$)
'(\#\#CEN_KSR_PHY_JEE_C26_E01_007_Q03\#\#)'
8. A vessel is quarter filled with a liquid of refractive index μ. The remaining parts of the vessel is filled with an immiscible liquid of refractive index $3 \mu / 2$. The apparent depth of the vessel is 50% of the actual depth. The value of μ is

D Watch Video Solution
9. A point object is placed at a distance of 62 cm from a concave mirror of focal length

20 cm . A slab of the thickness 6 cm and retive index $\mu=\frac{3}{2}$ is placed in between the object and the mirror at a distance $1.5(\mathrm{~cm})$ from the mirror. The distance (in cm) of the final image from the mirror is

D View Text Solution

10. The distance between the object and its real' image in convex lens is 90 cm . It has
happened in two positions of the lens whose difference is 30 cm . Then the focal length (in cm) of the lens is

D View Text Solution

11. An opaque cylindrical tank with an open top has a diameter of 6.00 m and is completely filled with water. When the setting sun reaches an angle of 37° above the horizon, sunlight ceases to illuminate any part of the bottom of the tank. The depth (in metre) of the tank is
12. O text (is the point object shown in the diagram.)If the mirror starts moving with velocity $\sqrt{3} \mathrm{~m} / \mathrm{s}$, then find velocity (in m / s) of the image.
'(\#\#CEN_KSR_PHY_JEE_C26_E01_012_Q04\#\#)'

- View Text Solution

13. Find the position (in cm and only magnitude) of the final image of the object for
the arrangement shown.
'(\#\#CEN_KSR_PHY_JEE_C26_E01_013_Q05\#\#)'

D View Text Solution

14. Focal length of objective of a compound microscope
$4 m m$ and theima $\geq i s f$ or medatadis \tan ceof

224 mm from it. If angular magnification is 550 ,
then focal length (in cm) of eyepiece for normal adjustment is
15. As shown in the figure, light ray P enters slab at an angle 60° with normal and inside the slab, light ray Q suffers total internal reflection. Find the minimum retive index of the slab.
'(\#\#CEN_KSR_PHY_JEE_C26_E01_015_Q06\#\#)'

- View Text Solution

16. A point object is moving with velocity
$6 i+j+2 k(\mathrm{~m} / \mathrm{s})$ in front of a plane mirror
whose refiecting side is $x z$-planc. If the mirror also moves with a velocity $\hat{i}-\hat{j}(\mathrm{~m} / \mathrm{s})$, then what is the speed (in m / s) of the image?
(Round-off the answer to nearest integer)

- View Text Solution

17. A lenśmaker has to đesign an achromatic combination of cffective power 0.5 D . If the two types of glasses tó be used (say A and B) have dispersive powers in the ratio $\omega_{A}: \omega_{B}=3: 5$,
then the magnitude of focal length (in cm) of the lens made from glass A is

- View Text Solution

18. The optical system consișt of a thin convex
lens of focal length 30 cm and a plane mirror

15 cm behind the lens. An object is placed

15 cm in front of the lens. The distance (in cm) of final image from the lens is

D View Text Solution

19. A simple telescope, consisting of an objective of focal length 60 cm and a single eye
lens of focal length 5 cm is focussed on a distant object is such a way that parallel rays comes out from the eye lens. If the object subtends an angle 2° at the objective, the angular width of the image.

- Watch Video Solution

20. In the shown figure, the focal length of equivalent system is $\frac{50 x}{13}$. Find the value of x.
'(\#\#CEN_KSR_PHY_JEE_C26_E01_020_Q07\#\#)'

- View Text Solution

21. A certain prism is found to produce a minimum of 38°. It produces a deviation of
44° when the angle of incident is either 42° or 62°. What is the angle of incidence when it is undergoing minimum deviation?

D Watch Video Solution

22. In the above figure, x is any instantaneous
position. The mirror is rotating about z-axis with angular velocity ω 'in anticlockwise direction and the object is moving with velocity
v along x-axis. If the magnitude of velocity of image is $a c \frac{m}{s}$ at the given instant, then find the value of $\frac{36 a}{31}$,
(Given:
$\left.\theta=30^{\circ}, \omega=1 \frac{r a d}{s}, v=1 c \frac{m}{s}, x=1 m\right)$
'(\#\#CEN_KSR_PHY_JEE_C26_EO1_O22_Q08\#\#)'

- View Text Solution

23. For the given figure, the radjus of curvature of each surface is $R=16 \mathrm{~cm}$. Rays of light parallel to the axis of lens from left of the lens traversing through the lens get focused at distance f from the lens. Find the value of magnitude of f. (μ represents retive index and lens is silvered as shown)
'(\#\#CEN_KSR_PHY_JEE_C26_E01_023_Q09\#\#)'

D View Text Solution

24. A pin is placed 10 cm in front of a convex lens of focal length 20 cm . The lens is made of material having retive index 1.5. The surface of the lens farther away from the pin is silvered and has a radius of curvature 22 cm . Determine the position (in cm and only magnițude) of the final image.

- View Text Solution

25. The principal section of a glass prism is an isosceles $\Delta(P Q R)$ with $P Q=P R$. The face
$P R$ is silvered. A ray is incident perpendicularly on face $P Q$ and after two reflections it emerges from base $Q R$, normal to it. The angle of the prism is given by $\frac{\pi}{\alpha}(r a d)$. Find the value of α.

- View Text Solution

26. The observer O sees the distance $A B$ as infinitely large. If retive index of liquid is μ_{1} and that of glass is μ_{2}, then $\frac{\mu_{1}}{\mu_{2}}$ is
'(\#\#CEN_KSR_PHY_JEE_C26_EO1_O26_Q10\#\#)'
27. An object moves with a uniform velocity $u_{0}=5 \frac{m}{s}$ along the axis of a concave spherical mirror of focal length $f=-10 \mathrm{~cm}$. If the object is at the centre of curvature C at certain instant, then the magnitude of acceleration of image at this instant is $a \frac{m}{(s)^{2}}$.

Find a.
'(\#\#CEN_KSR_PHY_JEE_C26_E01_027_Q11\#\#)'
28. Optical axis of a thin equi-convex lens is the x-axis. The co-ordinates of a point object and
its image are $(10 \mathrm{~cm}, 1 \mathrm{~cm})$ and
$(100 \mathrm{~cm},-2 \mathrm{~cm})$, respectively.

D View Text Solution

29. A light ray is incident on a transparent
sphere of index $=\sqrt{2}$, at an angle of incidence
$=45^{\circ}$, What is the deviation of a tiny fraction
of the ray, which enters the sphere, undergoes
two internal reflections and then refracts out into air?

- Watch Video Solution

30. A ray of light enters a glass sphere, and after three'total internal reflections it travels into original direction as shown in the figure. If
μ is the retive index of sphere, then the relation between μ and β is expressed as $\sin ^{2} x \beta+\mu^{2} \sin ^{2} \beta=1$. Find the value of x.
'(\#\#CEN_KSR_PHY_JEE_C26_E01_030_Q12\#\#)'
31. As shown in the figure, left half of the glass, sphere is surrounded with a medium having retive index 3 and the right half is surrounded with medium having retive index $\sqrt{3}$. A ray is incident on it at an angle of 60°. Find the total deviation' (in degree) as the ray comes out of the sphere.
'(\#\#CEN_KSR_PHY_JEE_C26_E01_031_Q13\#\#)'

D View Text Solution

32. An optical fibre of retive index n is surrounded by air. A light ray enters the end of
the fibre as shown in the figure. The largest value of ϕ permitted, if the ray incidents on the wall of the fibre at criticál angle for the fibre-air interface, is given by
$\sin \left(\frac{\phi}{2}\right)=\left(\frac{x n^{2}-4}{y}\right)^{\frac{1}{2}}$. Find $(x y)$.
'(\#\#CEN_KSR_PHY_JEE_C26_E01_032_Q14\#\#)'

D View Text Solution

33. In the figure shown, a point object O is plaiced in air. A spherical boundary of radius of curvature $1.0(\sim m)$ separates various media.
$A B$ is the principal axis. The retive index above
$A B$ is 1.6 and below $A B$ is 2.0. The separation(in m) between the images formed due to retion at spherical surface is '(\#\#CEN_KSR_PHY_JEE_C26_EO1_033_Q15\#\#)'

D View Text Solution

34. A very expensive diamond is polished into a perfect sphere of radius 5 cm . The back surface of the sphere is then covered with silver. If d is the distance of the source of light S from the surface of sphere, then the, image coincides with the source. If the index of retion of diamond is 2.4 , then $d=\ldots \ldots \ldots . x x 5 \mathrm{~cm}$.
'(\#\#CEN_KSR_PHY_JEE_C26_E01_034_Q16\#\#)'

D View Text Solution

35. The dispersive power of crown and flint glasses are 0.02 and 0.04 , respectively. An achromatic converging lens of focal length
$40(\sim c m)$ is made by keeping two lenses, one of crown glass and the other of flint glass, in contact with each other. The magnitude of product of focal lengths (in cm) of the two lenses are

D Watch Video Solution

36. Parallel beam is incident on a thin lens and radii 25 cm of each of the surfaces as shown. What should be the thickness t of a slab (in cm
) between the lens and the screen so that the final image is formed on the screen?
'(\#\#CEN_KSR_PHY_JEE_C26_EO1_036_Q17\#\#)'

- View Text Solution

37. A concave mirror of focal length 20 cm and a
convex lens of focal length $10(\sim c m)$ are kept with their optic axis parallel but separated by
0.5 mm as shown in the figure.The distance between the lens and the mirror is 10 cm . An object of height 3 min is placed on the optical axis of the lens at a distance of $15^{\circ} \mathrm{cm}$ from
the lens. Find the height of the image (in mm)
formed by the mirror after retion from the lens.
'(\#\#CEN_KSR_PHY_JEE_C26_E01_037_Q18\#\#)'

D View Text Solution

38. In the given figure, $A B C$ is a right angled isosceles prism kept in air. A ray of light is incident on it normally as shown in the figure.

Retive index of the prism is varying with time t as $\mu=(1+0.4 t)$, where t is in seconds. The angular velocity
ra $\frac{d}{s}$)oftheemer \geq ntray, attime $\mathrm{t}=1 \mathrm{~s}^{\prime}$ is
'(\#\#CEN_KSR_PHY_JEE_C26_EO1_038_Q19\#\#)'

- View Text Solution

39. A curved thick glass surface is silvered at curved face and is not silvered on plane surface. Object is placed at A as shown in the figure. Consider P (pole of the silyered surface) as origin. If x co-ordinate of final image is $2 n$ cm , then find n.
'(\#\#CEN_KSR_PHY_JEE_C26_E01_039_Q20\#\#)'

D View Text Solution

40. An equiconvex lens having $\mu=1.5$ and radius of curvature 10 cm is.cut into four equal
parts as shown in the diagram. Now two parts are used to form' the image as shown in the diagram Now considering O as origin $(0,0)$, if x and y co-ordinate of image is $(n c m, m c m)$, then the value of $(n \times m)$ is
'(\#\#CEN_KSR_PHY_JEE_C26_E01_040_Q21\#\#)'

D View Text Solution

