©'doubtnut

PHYSICS

BOOKS - CENGAGE PHYSICS (HINGLISH)

WAVES

Question Bank

1. A string of length $1 m$ fixed at both ends is
vibrating in $3^{\text {rd }}$ overtone. Tension in string is
$200 N$ and linear mass density is 5 gmin.
Frequency of these vibrations is (in Hz).
2. You have a microwave generator that can produce microwaves at any frequency between 1

GHz and IO GHz . The microwave radiation enters a

10 cm long cylinder with reflective and caps, as shown in the figure. What frequency of the microwave generator (in GHz) will produce the lowest-order' standing wave with an antinode
(maximum) in the center of the cavity? Note that with reflectors at both ends, the electromagnetic
standing wave acts just like the standing wave on
a string that is tied at both ends. Take velocity of
waves as $3 \times 10^{8} \mathrm{~m} / \mathrm{s}$.
'(\#\#CEN_KSR_PHY_JEE_C17_E01_002_Q01\#\#)'

D View Text Solution

3. A point source of power 50π watts is producing sound waves. The velocity of sound is $330 \mathrm{~m} / \mathrm{s}$, density of air is $1.0 \mathrm{kgm}^{-3}$. Then at $r=\sqrt{330} \mathrm{~m}$ from the point source pressure amplitude is (in $N m^{-2}$). (Using $\pi=\frac{22}{7}$)
4. A wave is given by the equation $y=10 \sin 2 \pi(100 t-.02 x)+10 \sin 2 \pi(100 t+.02 x)$

The loop length of the stationary wave produced will be

- View Text Solution

5. To determine the sound propagation velocity in
air by ncoustic resonance techique one can use a
pipe with a piston and a sonic membrane closing one of its ends. If the distance between the adjacent positions of the piston at which
resonance is observed at a frequency
$f=1600 \mathrm{~Hz}$ is $\lambda=10 \mathrm{~cm}$, the velocity of sound
will be (in m / s).

D View Text Solution

6. Two sources of sound A and B, each having natural frequency 68 Hz lying on opposite sides of observer O. Both move with velocity $20 \mathrm{~m} / \mathrm{s}$ relative to stationary 0 . A mioves away from the observer while the B moves towards him. A wind
with a speed $20 \mathrm{~m} / \mathrm{s}$ is blowing in the direction
of motion of A. The beat frequency measured by,
the observer (in Hz) will be (speed of sound in air $340 \mathrm{~m} / \mathrm{s})$.

- View Text Solution

7. A wave with a frequency of 30 Hz travels' along a string at a speed of 36 meters per second and reflects off from a free end. How far (in m) is the
first node from the end of the string.

View Text Solution

8. The vibrations of a string of length 60 cm fixed at both cnds are represented by the equation.
$y=4 \sin \left(\frac{\pi x}{/}(15)\right) \cos (96 \pi t)$, where x and y are in cm and t in second. The maximum displacement (in cm) at $x=\frac{5}{2}(\mathrm{~cm})$ is

D View Text Solution

9. Organ pipe P_{1} closed at one end vibrating in its
first harmonic and another pipe P_{2} open at both cnds vibrating in its third harmonic are in
resonsnce with a given tuning. fork. The ratio of the length of P_{2} to that of P_{1} is

D View Text Solution

10. If the velocity of sound in hydrogen at $27^{\circ} \mathrm{C}$ is
$1200 \mathrm{~ms}^{-1}$, velocity of sound in oxygen (in $m s^{-1}$
) at the same temperature will be

D View Text Solution

11. When a transverse plene wave tfanverses a medium, judividual particles execute pcriodic
$y=4 \sin \frac{\pi}{/}(2)\left(2 t+\frac{x}{/}(8)\right)$.
The phase
difference (in degrec) for two position of same particle which are occupied by time intervals $0.4 s$ apart is

- View Text Solution

12. If the sound heard by observer, whose equation is given as $y=8 \sin (10 \pi t) \cos (200 \pi t)$ at $x=0$, then number of beat frequency heard by observer is $2 k$. Then the value of k is
13. Two electric trains run at the same speed of
$v=90 k \frac{m}{h} r$ along a straight track one after the
other with an interval of $l=2.0 \mathrm{~km}$ between
them. At the instant when they are located
symmetrically relative to point A at a distance of
$b=1.0 \mathrm{~km}$ from the track (figure) both trains
give a brief sound signal of the same frequency of
$v=50 \mathrm{~Hz}$. What will the number of beats beard
per second at point (A) when the vibrations
produced by the signals arrive at it? The speed of
sound is $\mathrm{v}=350 \mathrm{~m} / \mathrm{s}$. Round off to nearest integer.
'(\#\#CEN_KSR_PHY_JEE_C17_E01_014_Q03\#\#)'

- View Text Solution

14. If a string of lerigth l.fixed at both ends vibrates with a standing wave $y=A \sin \left(\frac{2 \pi}{/}(l) x\right) \sin (2 \pi t)$ in resonance.Then the minimum time after which energy is maximuru at mid-point of string will be (in s)

D View Text Solution

15. A string $A B$ of length $5 m$ and linear mass denity $1 \mathrm{kgm}^{-1}$ is clamped at both the ends with
a tension of 144 N . Find minimum frequency (in H
z) of transverse standing wave in string so that a node appears at a distance $3 m$ from end A.

D View Text Solution

16. Two identical strings of same length are clamped at both the eads. Both strings vibrate
'with same fundamental frequency. If tension in
one of the strings is increased by 21%, then 8
beats are produced per second. If fundamental
frequency of strings in initial state is $10 x H z . F \in d x^{\prime}$.
17. A police car moving at $40 \mathrm{~m} / \mathrm{s}$ chases a thief running away at speed of $30 \mathrm{~m} / \mathrm{s}$. The track is perpendicular to a stiff cliff as shown. The police man blows a hom at 40 Hz . If sound has a speed of $340 \mathrm{~m} / \mathrm{s}$, what is the beat frequency (in Hz) heard by the thief?
'(\#\#CEN_KSR_PHY_JEE_C17_EO1_018_Q04\#\#)'
18. A transverse wave is travelling on a string with
velocity v. The shape of string at $t=1 s$ is given
by $y=\frac{5}{/}\left(x^{2}+6 x+9\right)$ and at $f: 2 s$, it is given
by $y=\frac{5}{/}\left(x^{2}+12 x+36\right)$, then fill the value of
$(v+c)$, where c denotes the direction of motion of wave (+1 for positive x-direction $\&-1$ for -ve x-direction).

D View Text Solution

19. Fundamental frequency of a stretched sonometer wric is f_{0}. When its tension is
increased by 96% and length decreased by 35%, its fundamental frequency becomes $\eta_{1} f_{0}$. When its tension is decreased by 36% and its length is increased by 30%, its fundamental frequency becomes $\eta_{2} f_{0}$. The value of $\frac{\eta_{1}}{/}\left(\eta_{2}\right)$ is found to be $\frac{7}{/}(n)$. Find n.

D View Text Solution

20. A string of length l is fixed at both ends. It is vibrating in its $3^{r d}$ overtone with maximum amplitude $a=2 \sqrt{3}$ mun. Find the square of
amplitude $\left(\right.$ in $\left.(\min)^{2}\right)$ at a distance $\frac{l}{/}(3)$ from one end.

- View Text Solution

21. A uniform rope of length $12 m$ and having a mass 6 kg hangs" vertically froma rigid support. A block of mass. 2 kg is attached to the free end of rope. A transverse pulse of wavelength $0.06 m$ is prođuced at the lower end of rope. Its wavelength
when it reeches the top end of the rope is given by αm. Find 50α.
22. A progressive wave on a string having linear mass density ρ is represented by $y=A \sin \left(\frac{2 \pi}{/}(\lambda) x-\omega t\right)$ wherc y is in $(m m)$.

Find the total energy (in μJ) passing through origin from $t=0$ to $t=\frac{\pi}{/}(20)$.
[Take: $\rho=3 \times 10^{-2} \mathrm{~kg} / \mathrm{m} \quad, \mathrm{A}=1 \mathrm{~mm}$,
$\left.\omega=100 \mathrm{ra} \frac{\mathrm{d}}{\mathrm{s}}, \lambda=16 \mathrm{~cm}\right]$

D View Text Solution

23. A wire is made by welding together two metals
having different densitics. Figure shows a 2.00 m
long section of wire centered on the junction, but the wire extends much farther in both directions.

The wire is placed under 2250 N tension, thena 1500 Hz wave with an amplitude of 3.00 mm is sent down the wire. How many wavelengths
(complete cycles) of the wave are in this 2.00 m long section of the wire?
'(\#\#CEN_KSR_PHY_JEE_C17_E01_024_Q05\#\#)' figure

- View Text Solution

24. A gas is a mixture of two parts by volume of hyprogen and part by volume of nitrogen at $S T P$
. If the velocity of sound in hydrogen at $0^{\circ} C$ is
$1300 \mathrm{~m} / \mathrm{s}$. Find the velocity of sound in the gaseous mixure at $27^{\circ} C$.

D Watch Video Solution

25. Two identical wires, one made of iron and the other of aluminum are stretched along-side on a sonometer board by equal stretching forces,

Density of iron $=7.5 \mathrm{gm} / \mathrm{cc}$, dénsity.of aluminum
$=27 \frac{g}{]}$. The frequency of lowest harmonic for
which both wires vibrate in unison, given that tbe length of the wires is $1 m$, their diameters 1 mm and tension 75π is given as $\beta(k H z)$, Find the value of 12β.

D View Text Solution

26. A siren placed st a railway platform is emitting
sound of frequency $5 k \mathrm{~Hz}$. A passenger sitting in
a moving train A records a frequency of 5.5 kHz
while the train approaches the siren. During bis
retum joumey in a differeat train B he records a
frequency of 6.0 kHz while approaching the same
siren. Find the ratio of the velocity of train B to that of opera \rightarrow rname $($ tra $\in) A$.

D View Text Solution

27. The three identical loud speakcrs in figure play
a 170 Hz frequency tone in a room where speed of sound is $340 \mathrm{~m} / \mathrm{s}$. At point exactly infront of source S_{2} the amplitude of the wáve from each speaker is a. What is ratio of resultant intensity at P and intensity due to single speaker. '(\#\#CEN_KSR_PHY_JEE_C17_EO1_028_Q06\#\#)
28. Two loudspeakers are, diriven by a common oscillator and amplifier, are arranged as shown.

The frequency of the oscillator is graduallyincreased from-zero and the detector at D records a series of maxima and minima. If speed of sound is $330 \mathrm{~m} / \mathrm{s}$, then what is the frequency
(in Hz) at which the first time a maxima is heard. '(\#\#CEN_KSR_PHY_JEE_C17_E01_029_Q07\#\#)'

- View Text Solution

29. A sound source (S) emits frequency of 180 Hz
when moving towards a tigid wall with speed 5 m
/ s and an observer (O) is moving away from wall
with speed $5 \mathrm{~m} / \mathrm{s}$. Both source and observer
move on (z) straight line which is perpendicular
to the wall as shown in figure. Find the number of
beats, per second heard by the observer. (Speed of sound $355 \mathrm{~m} / \mathrm{s}$).
'(\#\#CEN_KSR_PHY_JEE_C17_E01_030_Q08\#\#)'

View Text Solution

30. As shown in the figure, two loudspeakers are located at point A and B. Both are vibrating in phase at a frequency (v) and P_{1} and P_{2} are their respective power outputs. Point C lies on a line
joining the two loudspeakers at a distance of d_{1}
from A and d_{2} from B. With both speakers
switched on what is the power (in $\frac{W}{m^{2}}$) at point
C. Take velocity of sound $=300 \mathrm{~ms}^{-1}$, frequency'
$v=100 H z, d_{t}=1 m$ and $d_{2}=1.5 m, P_{1}=8 \pi$
watts and $P_{2}=18 \pi$ watts. Also assume that
loudspeakers behave like isotropic sources. (emit sound uniformly in.all directions).
'(\#\#CEN_KSR_PHY_JEE_C17_E01_031_Q09\#\#)'

- View Text Solution

31. In a resonance column apparatus, first resonance is obtained whea the water filling beaker (of cylindrical shape) is just empty as shown. The water filling beaker is lowered đown and it is seen that second resionance is obtained when beaket is filled upto brim. The wavelength of sound is given by $\frac{\alpha}{/}(10 m)$. Find the value of α. '(\#\#CEN_KSR_PHY_JEE_C17_E01_033_Q10\#\#)'

View Text Solution

32. The fundamental freqủency of an open pipe would be independent of small variation in temperature at a temperature $T_{0}=\frac{7}{/}(14 \alpha)$, where α is the coefficient of linear expansion of the matcrial of the tube. Fill the value of η in OMR sheet.

D View Text Solution

33. Standing waves are set up in a string of length

240 cm clamped hiorizontatly at both ends. The separation between any two consecutive points where displacement amplitude is $3 \sqrt{2} \mathrm{~cm}$ is 20 cm .

The standing waves were set by two travelling waves of equal amplitude of 3 cm . The overtone in which the string is vibrating will be

D View Text Solution

34. Consider an elastic string stretched befween
two fixed ends A and B as sbown in figure. The
speed of transverse waves in the string is v and
its linear mass density is μ. The string is plucked and held in a triangular form with maximum height 'h<
'(\#\#CEN_KSR_PHY_JEE_C17_E01_035_Q11\#\#)'

- View Text Solution

35. A block string system is shown in the figure.

Mass of block A, B and C is $5 \mathrm{~kg}, 2 \mathrm{k}$, and $2 k g$ respectively. Mass of rod is given as 1 kg and its length is $1 m$. A wave transverse is transmitted in the rod in between the block B and C once in forward and once backward direction. Time for string wave to reach one end to other end in forward direction is $\frac{2}{/}(\sqrt{z})(\sqrt{x}-\sqrt{y}) \mathrm{sec}$. Find $(x+y+z)$
'(\#\#CEN_KSR_PHY_JEE_C17_EO1_036_Q12\#\#)'
36. In the given sonometer arrangentent, a mass
M can be hung from a string, that passes over a
light pulley. The string connected to a vibrator having constant frequency. When the value of M is either 16 kg or 25 kg standing waves are observed, however, no standing waves are observed with any mass between these values.

The largest mass for which standing waves could be observed is $n \times 10^{2} \mathrm{~kg}$ and frequendy of vibrator is $f(H z)$ then find the numerical value of $n \times f$ (mass per unit length for string is $10^{-3} \mathrm{~kg}$
/ m and length L=2 m).
'(\#\#CEN_KSR_PHY_JEE_C17_E01_037_Q13\#\#) A block string system is shown in the figure. Mass of block
A, B and C is $5 \mathrm{~kg}, 2 \mathrm{k}$, and $2 k g$ respectively. Mass of rod is given as 1 kg and its length is 1 m . A wave transverse is transmitted in the rod in between the block B and C once in forward and once backward direction. Time for string wave to reach one end to other end in forward direction is
$\frac{2}{/}(\sqrt{z})(\sqrt{x}-\sqrt{y})$ sec. Find $(x+y+z)$
'(\#\#CEN_KSR_PHY_JEE_C17_E01_036_Q12\#\#)'
37. Sound waves of frequendy 320 Hz are sent into
the top of a vertical tube containing water at a level that can be adjusted. Standing waves are produced at two successive water levels 44 can. and 74 cm from open cud. The distance of nearest displacement antinode from open cnd (in cm) is: '(\#\#CEN_KSR_PHY_JEE_C17_EO1_038_Q14\#\#)'

D View Text Solution

38. The diagram above shows the basic idea behind a disk siren. It consists of a disk in which there are 16 equally spaced hoies, all at the same
distance from its axle. When a jct of air is directed at the holes and the disc is rotated at a particular constant rate, the frequency of the note produced is 320 Hz . When a disk containing 24 holes is rotated at $\frac{4}{3}$ times the rate then frequency of note produced is 320 nHz . Find the value of n.
'(\#\#CEN_KSR_PHY_JEE_C17_E01_039_Q15\#\#)'

- View Text Solution

