

CHEMISTRY

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 5

Exercise

1. Equivalent weight of MnO_4^{Θ} in acidic neutral and basic media are in ratio of:

A. 3:5:15

B. 5:3:1

C.5:1:3

D. 3:15:5

- **2.** $\left[Co(NH_3)_4(NO_2)_{92}\right]Cl$ exhibits _____.
 - A. linkage isomerism, ionization isomerism and geometrical isomerism
 - B. ionization isomerism, geometrical isomerism and optical isomerism
 - C. linkage isomerism, geometrical isomerism and optical isomerism
 - D. linkage isomerism, ionization isomerism and optical isomerism

Answer:

3. The increasing order of the boiling points for the following compounds is :

(I) C_2H_5OH (II) C_2H_5Cl

(III) $C_2H_5CH_3$ (IV) $C_2H_5OCH_3$

A.
$$(III) < (IV) < (II) < (I)$$

$$\mathsf{B.}\left(IV\right)<\left(III\right)<\left(I\right)<\left(II\right)$$

$$\mathsf{C.}\left(II\right)<\left(III\right)<\left(IV\right)<\left(I\right)$$

$$\mathsf{D.}\,(III) < (II) < (I) < (IV)$$

Answer:

Watch Video Solution

4. Hyperconjugation is more pronounced in

A. 2-methylpropene

B. but-2-ene

C. 2, 3-dimethylbut-2-ene

D. 2-methylbut-2-ene

Watch Video Solution

5. Ice and water are placed in a closed container at a pressure of 1 atm and 273.15 K temperature . If pressure of the system is increased by 2 atm keeping temperature constant the correct observation would be

A. The liquid phase disappears completely

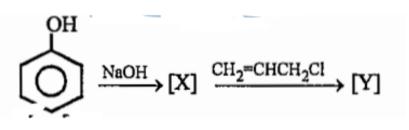
- B. The amount of ice decreases
- C. The solid phase (ice) disappears completely
- D. Volume of the system increases

Answer:

6. The value of the 'spin only magnetic moment for one of the following configuration is 2.84 BM. The correct one is

A. d^5 (in strong ligand field)

B. d^3 (in weak as well as in strong fields)


C. d^4 (in weak ligand fields)

D. d^4 (in strong ligand fields)

Answer:

7.

Watch Video Solution

Here[Y] is a

A. single compound

- B. mixture of two compounds
- C. mixture of three compounds
- D. no reaction is possible

Watch Video Solution

8. Gradual addition of KI solution to $Bi(NO_3)_3$ solution initially produces a dark brown precipitate which dissolves in excess of KI to give a clear yellow solution. Write chemical equation for the above reactions.

A. I_2

 $\mathsf{B.}\,KI_3$

 $\mathsf{C}.\operatorname{Bi}(OH)_2$

D. $Bi(OH)(NO_3)_2$

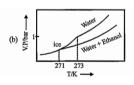
9. If the average life time of an excited state of hydrogen is of the order of 10^{-6} s estimate how may orbits an electron makes, whenit is the state n=2 and before it suffers a transition to state n=1 (Bohr radius $r_0 = 5.3 \times 10^{11}$ m)

A. $2.28 imes 10^6$

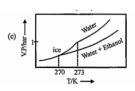
 ${ t B.22.8 imes10^6 imes10^6$

 ${\sf C}.\,8.23 imes10^6$

D. $2.82 imes10^6$


Answer:

Watch Video Solution


10. Pure water freezes at 273 K and 1 bar. The addition of 34.5 g of ethanol to 500 g of water changes the freezing point of the solution. Use the freezing point depression constant of water as 2 K $kgmol^{-1}$. The figures shown below represent plots of vapour pressure (V.P.) versus temperature (T). [molecular weight of ethanol is $46gmol^{-1}$ Among the following, the option representing change in the freezing point is

A.

Β.

C.

D.

11. The major products obtained from the following sequence of reactions are:

$$(CH_3)CHCH_2N(CH_2CH_3)_2 \xrightarrow{CH_3I} Ag_2O \xrightarrow{heat} Products$$

A. $(CH_3)_2 CHCH_2 NH_2 + H_2 C = CH_2$

B. $(CH_3)_2NCH_2CH_3 + H_2C = C(CH_3)_2$

C.

(c) CH_3 (CH₃)₂CHCH₂-N-CH₂CH₃+H₂C=CH₂

D.
$$\left(CH_3
ight)_3 \overset{+}{N}CH_2CH_3I^- + H_2C = CH_2$$

Answer:

12. The root mean square velocity of an ideal gas to constant pressure varies with density (d) as

A. d^2

B. d

 $\mathsf{C}.\,\sqrt{d}$

D. $1/\sqrt{d}$

Answer:

13. During the process of digestion, the proteins present in food materials are hydrolysed to amino acids. The two enzymes involved in the

process are:

 $\xrightarrow{\text{Enzyme}(A)} \text{Poly}$

Polypeptides

 $\xrightarrow[Enzyme (B)]{} Amino acids$

A. Diastase and lipase

- B. Pepsin and trypsin
- C. Invertase and zymase
- D. Amylase and maltase

Answer:

14. To an acidic solution of an anion, a few drops of $Kmno_4$ solution are added. Which of the following, if present, will not decolourise the $KMnO_4$ solution?

- A. $I^{\,-}$
- B. CO_3^{2-}
- $\mathsf{C}.\,S^{2\,-}$
- $\mathsf{D.}\,NO_2^{\,-}$

Watch Video Solution

15. Select pair of compounds in which both have different hybridization but have same molecular geometry :

A. BF_3, BrF_3

- B. ICI_2^{-} , $BeCl_2$
- $C. BCl_3, PCl_3$

 $D. PCl_3, NCl_3$

Answer:

16. Which one of the following compounds would have the highest heat

of hydrogenation ?

A. $CH_2 = CH_2$

- $\mathsf{B}.\,CH_3-CH_2-CH=CH_2$
- $C. CH_3CH = CHCH_3$
- D. $(CH_3)_2 C = C(CH_3)_2$

Answer:

Watch Video Solution

17. The rate constant, the activation energy and the Arrhenius parameter of a chemical reactions at $25^{\circ}C$ are $3.0 \times 10^{-4}s^{-}$, 104.4 kJ mol⁻¹ and $6 \times 10^{14}s^{-1}$ respectively. The value of the rate constant as $T \to \infty$ is

A. $2.0 imes10^{18}s^{-1}$

B. $6.0 imes10^{14}s^{-1}$

C. Infinity

D. $3.6 imes10^{30}s^{-1}$

18. For a 'C'M concentarted solution of a weak electrolyte $A_x B_y \alpha$ (degree

of dissociation) is

A.
$$lpha=\sqrt{K_{eq}/c(x+y)}$$

B. $lpha=\sqrt{K_{eq}c/(xy)}$
C. $lpha=\left(K_{eq}/c^{x+y-1}x^2y^2
ight)^{1/x+y}$
D. $lpha=\left(K_{eq}/cxy
ight)$

Answer:

19. 3g of actived chacoal was added to 50mL of acetic acid solution (0.06N) in a flask. After an hour it was filterred and the strength of the

filtrate was found to be 0.042N . The amount of acetic adsorbed (per gram of charcoal) is:

A. 42mg

B. 54mg

C. 18mg

D. 36mg

Answer:

Watch Video Solution

20. The standard state Gibbs free energies of formation of) C(graphite

and C(diamond) at T = 298 K are

 $\Delta_f G^\circ [ext{C(graphite)}] = 0 k J mol^{-1}$

 $\Delta_f G^\circ [ext{C(diamond)}] = 2.9 k J mol^{-1}$

The standard state means that the pressure should be 1 bar, and substance should be pure at a given temperature. The conversion of graphite [) C(graphite] to diamond [C(diamond)] reduces its volume by $2 \times 10^{-6} m^3 mol^{-1}$. If) C(graphite is converted to C(diamond) isothermally at T = 298 K, the pressure at which) C(graphite is in equilibrium with C(diamond), is

 $ig[ext{Useful information:} 1J = 1kgm^2s^{-2}, 1Pa = 1kgm^{-1}s^{-2}, 1 ext{bar} = 10^5Pa ig]$

A. 14501 bar

B. 58001 bar

C. 1450 bar

D. 29001 bar

Answer:

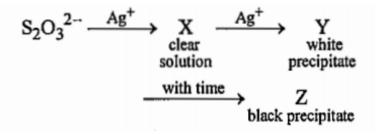
Watch Video Solution

21. Li forms a body-centred cubic lattice. If the edge of the cube is $3.5 \times 10^{-10}m$ and the density is $5.3 \times 10^2 kgm^{-3}$, calculate the percentage occupancy of Li metal.

A. 87.78%

B. 99.87%

C. 97.78%


D. 94.12%

Answer:

Watch Video Solution

22. In the following reaction sequence in aqueous solution, the species X,

Y and Z, respectively, are

A. $\left[Ag(S_2O_3)_2
ight]^{3-}, Ag_2S_2O_3, Ag_2S$

B.
$$\left[Ag(S_2O_3)_3
ight]^{5-}, Ag_2SO_3, Ag_2S$$

C.
$$\left[Ag(SO_3)_2
ight]^{3-}, Ag_2S_2O_3, Ag$$

D.
$$\left[Ag(SO_3)_3
ight]^{3-}, Ag_2SO_4, Ag$$

23. The gas phase decomposition of dimethyl ether follows first order kinetics.

$$CH_3-O-CH_3(g)
ightarrow CH_4(g)+H_2(g)+CO(g)$$

The reaction is carried out in a constant volume container at $500^{\circ}C$ and has a half life of 14.5 min . Initially, only dimethyl ether is present at a pressure 0.40atm. What is the total pressure of the system after 12 min ? (Assume ideal gas behaviour)

A. 0.75atm

B. 0.55atm

C. 0.68atm

D. 0.85atm

