©゙doubtnut India's Number 1 Education App

CHEMISTRY

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 6

Exercise

1. The value of the 'spin only magnetic moment for one of the following configuration is 2.84 BM . The correct one is
A. d^{5} (in strong ligand field)
B. d^{3} (in weak as well as in strong fields)
C. d^{4} (in weak ligand fields)
D. d^{4} (in strong ligand fields)

Answer:

- Watch Video Solution

2. An ether (A), $C_{5} H_{12} O$, when heated with excess of hot concentrated HI produced two alkyl halides which when treated with NaOH yielded compounds(B) and (C). Oxidation of(B) and(C) gave a propanone and an ethanoic acid respectively. The IUPAC name of the ether (A) is:
A. 2-ethoxypropane
B. ethoxypropane
C. methoxybutane
D. 2-methoxybutane

D Watch Video Solution

3. Hydrogen peroxide in its reaction with KIO_{4} and $\mathrm{NH}_{2} \mathrm{OH}$ respectively, is acting as a
A. Reducing agent, oxidising agent
B. Reducing agent, reducing agent
C. Oxidising agent, oxidising agent
D. Oxidising agent,reducing agent

Answer:

4. For the homogenous gaseous reaction $A \rightarrow 3 B$, if pressure after time t was P_{t} and after completion of reaction, pressure was P_{∞} then select correct relation
A. $k=\frac{1}{t} \ln \left(\frac{P_{\infty}}{3\left(P_{\infty}-P_{t}\right)}\right)$
B. $k=\frac{1}{t} \ln \left(\frac{2 P_{\infty}}{\left(P_{\infty}-P_{t}\right)}\right)$
C. $k=\frac{1}{t} \ln \left(\frac{3 P_{\infty}}{2 P_{\infty}-P_{t}}\right)$
D. $k=\frac{1}{t} \ln \left(\frac{2 P_{\infty}}{3\left(P_{\infty}-P_{t}\right)}\right)$

Answer:

- Watch Video Solution

5. In O_{2}^{-}, O_{2} and O_{2}^{-2} molecular species, the total number of antibonding electrons respectively are
A. $7,6,8$
B. 1,0,2
C. 6,6,6
D. $8,6,8$

Answer:

D Watch Video Solution
6. In the following reactions,
(i) $\mathrm{CH}_{3}-\stackrel{\mathrm{CH}_{3}}{\stackrel{\mathrm{CH}}{3}} \mathrm{CH}-\mathrm{CH}_{\mathrm{C}} \mathrm{CH}_{3} \xrightarrow{\mathrm{H}^{+} / \text {Heat }} \xrightarrow[\text { (Major) }]{\mathrm{A}}+\underset{\text { (Minor) }}{\mathrm{B}}$
(ii) $\mathrm{A} \xrightarrow[\text { inabsenceof peroxide }]{\mathrm{HBr} \text { dark }} \underset{\text { (Major) }}{\mathrm{C}}+\underset{\text { (Minor) }}{\mathrm{D}}$ the major products (A) and (C) are respectively:
A.

B.
(b) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
and $\mathrm{CH}_{3}-\underset{\mathrm{Br}}{\mathrm{CH}_{3}}$
C.
D.
(d) $\mathrm{CH}_{2}=\stackrel{\mathrm{CH}_{3}}{\mathrm{C}}-\mathrm{CH}_{2}-\mathrm{CH}_{3}$

Answer:

- Watch Video Solution

7. Potassium has a bcc structure with nearest neighour distance $4.52 \AA$ its atomic weight is 39 its density (in $\mathrm{kg} \mathrm{m}{ }^{-3}$) will be
A. 454
B. 804
C. 852
D. 910

Answer:

- Watch Video Solution

8. A 0.6 gm sample consisting of only $\mathrm{CaC}_{2} \mathrm{O}_{4}$ and $\mathrm{MgC}_{2} \mathrm{O}_{4}$ is heated at $500^{\circ} \mathrm{C}$ gets converted into CaCO_{3} and MgCO_{3}.

The sample then weighed 0.465 gm . If the sample had been heated to $900^{\circ} \mathrm{C}$ where the products are CaO and MgO , then what would the mixture of oxides weigh?
A. 0.12 g
B. 0.21 g
C. 0.252 g
D. 0.3 g

Answer:

D Watch Video Solution

9. Formation of polyethylene from calcium carbide takes place as follows
$\mathrm{CaC} 2+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{Ca}(\mathrm{OH})_{2}+\mathrm{C}_{2} \mathrm{H}_{2}$
$\mathrm{C}_{2} \mathrm{H}_{2}+\mathrm{H}_{2} \rightarrow \mathrm{C}_{2} \mathrm{H}_{2}$
$N\left(\mathrm{C}_{2} \mathrm{H}_{4}\right) \rightarrow\left(-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\right)_{n}$
The amount of polyethylene obtained from $64.1 \mathrm{kgCaC} \mathrm{C}_{2}$ is
A. 7 kg
B. 14 kg
C. 21 kg
D. 28 kg

Answer:

D Watch Video Solution

10. Which of the following, when mixed, will give a solution with $p H>7$?
A. $100 \mathrm{~mL} 0.1 \mathrm{MHCl}+100 \mathrm{~mL} 0.1 \mathrm{MKCl}$
B. $100 \mathrm{~mL} 0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}+100 \mathrm{~mL} 0.1 \mathrm{MNaOH}$
C. $100 \mathrm{~mL} 0.1 \mathrm{MCH}_{3} \mathrm{COOH}+100 \mathrm{~mL} 0.1 \mathrm{MKOH}$
D. $50 \mathrm{~mL} 0.1 \mathrm{MHCl}+50 \mathrm{~mL} 0.1 \mathrm{MCH} \mathrm{H}_{3} \mathrm{COONa}$

Answer:

D Watch Video Solution

11. Calculate the freezing point of a solution containing 8.1 g of HBr in 100 g of water, assuming the acid to be 90% ionized.
[Given : Molar mass $\mathrm{Br}=80 \mathrm{~g} / \mathrm{mol}, K_{f}$ water $=1.86 \mathrm{~K} \mathrm{~kg} / \mathrm{mol}$.
A. 0.85 K
B. -3.53 K
C. OK
D. -0.38 K

Answer:

D Watch Video Solution

12. Consider the following reactions:
$M X_{4}+X^{\prime}{ }_{2} \rightarrow M X_{4} X_{2}{ }^{\prime}$
If atomic number of M is 52 and X and X^{\prime} are halogens and X^{\prime} is more electonegative than X. The choose correct statemetn regarding given information:
A. Both X^{\prime} atoms occupy axial positions which are formed by overlapping of p and d-orbitals only
B. All $\mathrm{M}-\mathrm{X}$ bond lengths are identical in both $M X_{4}$ and $M X_{4} X^{\prime}{ }_{2}$ compounds
C. Central atom ' M ' does not use non-axial set of d-orbital in hybridization of final product.
D. Hybridization of central atom ' M ' remains same in both reactant and final product.

Answer:

D Watch Video Solution

13. A compound ' X ' on ozonolysis followed by reduction gives an aldehyde, $\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{O}$ and 2-butanone. Compound ' X ' is:
A. 3-methylpentene-2
B. 3-methylpentene-3
C. 3-methylhexene-3
D. 3-ethylpentene-3

Answer:

- Watch Video Solution

14. The correct order of magnetic moments (spin values in B.M.) among is:
A. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}>\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{CoCl}_{4}\right]^{2-}$
B. $\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}>\left[\mathrm{CoCl}_{4}\right]^{2-}$
C. $\left[\mathrm{MnCl}_{4}\right]^{2-}>\left[\mathrm{CoCl}_{4}\right]^{2-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
D. $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}>\left[\mathrm{CoCl}_{4}\right]^{2-}>\left[\mathrm{MnCl}_{4}\right]^{2-}$

D Watch Video Solution

15. The ammonia evolved from the treatment of 0.03 g of an organic compound for the estimation of nitrogen was passed in 100 mL of 0.1 M sulphuric acid. The axcess of the acid required 20 mL of $0,5 \mathrm{M}$ solution hydroxide solution for complete neutralisation. the organic compound is:
A. urea
B. benzamide
C. acetamide
D. thiourea

Answer:

- Watch Video Solution

16. In an electrolysis experiment, current was passed for $5 h$ through two cells connected in series. The first cell contains a solution of gold and second contains copper sulphate solution. In the first cell, 9.85 g of gold was deposited. If the oxidation number of gold is +3 , find the amount of copper deposited at the cathode of the second cell. Also calculate the magnitude of the current in ampere, (Atomic weight of $A u$ is 197 and atomic weight of $C u$ is 63.5).
A. $4.95 \mathrm{~g}, 0.8 \mathrm{~A}$
B. $5.5 \mathrm{~g}, 0.9 \mathrm{~A}$
C. $4.76 \mathrm{~g}, 0.8 \mathrm{~A}$
D. $5.85 \mathrm{~g}, 0.5 \mathrm{~A}$

Answer:

- Watch Video Solution

17. Based on the given diagram, which of the following statements regarding the homogenous solution of two volatile liquids are correct?

$X_{A}=1$

$$
x_{B}=1
$$

A. Only 1
B. 2 and 3
C. 1 and 3
D. All Statements are correct

Answer:

(D) Watch Video Solution

18. The rate constant for the decomposition of a certain substance is $2.80 \times 10^{-1} M^{-1} s^{-1} \quad$ at $30^{\circ} C$ and $1.38 \times 10^{-2} M^{-1} s^{-1}$ at $50^{\circ} C$. The Arrhenius parameters (A) of the reaction is:

$$
\left(R=8.314 \times 10^{-3} \mathrm{kJmol}^{-1} \mathrm{~K}^{-1}\right)
$$

A. $8.68 \times 10^{8} M^{-1} s^{-1}$
B. $2.16 \times 10^{7} M^{-1} s^{-1}$
C. $4.34 \times 10^{8} M^{-1} s^{-1}$
D. $3.34 \times 10^{8} M^{-1} s^{-1}$

Answer:

D Watch Video Solution

19. Which of the following combination will produce H_{2} gas ?
A. Fe metal and cone. HNO_{3}
B. Cu metal and cone. HNO_{3}
C. Zn metal and $\mathrm{NaOH}(\mathrm{aq})$
D. Au metal and $\mathrm{NaCN}(\mathrm{aq})$ in the presence of air

Answer:

20. For the following molecules:
$\mathrm{PCl}_{5}, \mathrm{Br}_{3}, \mathrm{ICl}_{2}^{-}, \mathrm{XeF}_{5}^{-}, \mathrm{NO}_{3}^{-}, \mathrm{XeO}_{2} \mathrm{~F}_{2}, \mathrm{PCl}_{4}^{+}, \mathrm{CH}_{3}^{+}$
Calculate the value of $\frac{a+b}{c}$
$\mathrm{a}=$ Number of species having $s p^{3} \mathrm{~d}$-hybridisation
$b=$ Number of species which are planar
c= Number of species which are non-planar
A. 2
B. 4
C. 3
D. 5

Answer:

21. Which of the following expression is correct for packing fraction of NaCl if the ions along with face are diagonally removed?
A. $\frac{\frac{13}{3} \pi r_{-}^{3}+\frac{16}{3} \pi r_{+}^{3}}{8\left(r_{+}+r_{-}\right)^{3}}$
B. $\frac{\frac{13}{3} \pi r_{-}^{3}+\frac{4}{3} \pi r_{+}^{3}}{8\left(r_{+}+r_{-}\right)^{3}}$
C. $\frac{\frac{16}{3} \pi r_{-}^{3}+\frac{13}{3} \pi r_{+}^{3}}{8\left(r_{+}+r_{-}\right)^{3}}$
D. $\frac{\frac{4}{3} \pi r_{-}^{3}+\frac{13}{3} \pi r_{+}^{3}}{8\left(r_{+}+r_{-}\right)^{3}}$

Answer:

22. Two metals X and Y form covalent halides.Both halides can act as Lewis acids and a catalyst in Friedel Crafts reaction. Halide of X is polymer in the solid state and a dimer in the vapour state which decomposes to monomer at 1200 K . However, halide of Y is a dimer in vapour state and becomes ionic in polar solvent. X and Y are respectively
A. Be, Al
B. Al, Be
C. Be,Ca
D. Mg, Ca

Answer:

 and CsO_{2}, the total number of paramagnetic compounds isA. 2
B. 3
C. 4
D. 5

Answer:

(D) Watch Video Solution

24. A mixture of $\mathrm{CuSO} \mathrm{O}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ and $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$ was heated until all the water was driven-off. if 5.0 g of mixture
gave 3 g of anhydrous salts, what was the percentage by mass of $\mathrm{CuSO} \mathrm{S}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ in the original mixture?
A. 65.86
B. 70.86
C. 75.45
D. 79.25

Answer:

D Watch Video Solution

25. For the reaction
$A g(C N)_{2}^{\ominus} \Leftrightarrow A g^{\oplus}+2 C N^{\ominus}$, the K_{c} at $25^{\circ} C$ is 4×10^{-19}
Calculate $\left[A g^{\oplus}\right]$ in solution which was originally $0.1 M$ in $K C N$ and $0.03 M$ in AgNO_{3}.
A. 75×10^{-13}
B. 75×10^{-12}
C. 7.5×10^{-12}
D. 7.5×10^{-13}

Answer:

