# đず doubtnut 

India's Number 1 Education App

## CHEMISTRY

## BOOKS - KVPY PREVIOUS YEAR

## MOCK TEST 7

Exercise

1. One mole of calciium phosphide on reaction
with excess water gives
A. one mole of phosphine
B. two moles of phosphoric acid
C. two moles of phosphine
D. one mole of phosphorus pentoxide

## Answer:

## D Watch Video Solution

2. Coagulation value of the electrolytes $A l C l_{3}$ and NaCl for $A s_{2} S_{3}$ sol are 0.093 and 52
respectively. How many times $A l C l_{3}$ has

## greater coagulating power than NaCl ?

A. 930
B. 520
C. 560
D. None of these

Answer:

## - Watch Video Solution

3. The enthalpy of neutralisation of a weak acid in 1 M solution with a strong base is $-56.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$ / If the enthalpy of ionization of the acid is $1.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and enthalpy of neutralization of the strong acid with a strong base is -57.3 kJ equiv $^{-1}$, what is the $\%$ ionization of the weak acid in molar solution
(assume the acid to be monobasic)?
A. 10
B. 15
C. 20
D. 25

## Answer:

## D Watch Video Solution

4. A metal gives two chlorides 'A' and ' B '.'A' gives black precipitate with $\mathrm{NH}_{4} \mathrm{OH}$ and 'B' gives white ppt. With KI ' B ' gives a red precipitate soluble in excess of KI.'A' and 'B' are respectively :
A. $H g_{2} \mathrm{Cl}_{2}$ and $\mathrm{HgCl}_{2}$
B. $\mathrm{HgCl} l_{2}$ and $Z n C l_{2}$
C. $\mathrm{ZnCl}_{2}$ and $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$
D. None of these

## Answer:

## D Watch Video Solution

5. An alkyl halide with molecular formula
$C_{6} H_{13} B r$ on dehyrohalogenation gives two isomeric alkenes X and Y with molecular formula $C_{6} H_{12}$. On reductive ozonolysis X and

Y gives four compounds $\mathrm{CH}_{3} \mathrm{COCH}_{3}$,
$\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CHO}$ and $\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHCHO}$. The alkyl halide is
A. 2-bromohexane
B. 2, 2-dimethyl-1-bromobutane
C. 4-bromo-2-methylpentane
D. 3-bromo-2-methylpentane

## Answer:

D Watch Video Solution
6. The correct order of $o^{-}$bond lengths in
$\mathrm{ClO}^{-}, \mathrm{ClO}_{2}^{-}, \mathrm{ClO}_{3}^{-}$and $\mathrm{ClO}_{4}^{-}$is
A. $\mathrm{ClO}_{4}^{-}=\mathrm{ClO}_{3}^{-}=\mathrm{ClO}_{2}^{-}=\mathrm{ClO}^{-}$
B. $\mathrm{ClO}^{-}<\mathrm{ClO}_{2}^{-}<\mathrm{ClO}_{3}^{-}<\mathrm{ClO}_{4}^{-}$
C. $\mathrm{ClO}_{4}^{-}<\mathrm{ClO}_{3}^{-}<\mathrm{ClO}_{2}^{-}<\mathrm{ClO}^{-}$
D. $\mathrm{ClO}_{3}^{-}<\mathrm{ClO}_{4}^{-}<\mathrm{ClO}_{2}^{-}<\mathrm{ClO}^{-}$

## Answer:

## D Watch Video Solution

7. The compound $P, Q$ and $S$

were separately subjected to nitration using
$\mathrm{HNO}_{3} / \mathrm{H}_{2} \mathrm{SO}_{4}$ mixture. The major product formed in each case respectively is
A.
B.

## C.

(c)


D.
(d)



## Answer:

## D Watch Video Solution

8. Which fo the following statements are correct concerning redox propreties ?
(i) The reducing power of hydrogen halides increases from hydrogen chloride to hydrogen iodide.
(ii) The oxidizing power of halogens decreases from chlorine to iodine.
(iii) A metal M for which $E^{\ominus}$ for the halfreaction
$M^{n+}+n e^{-} \Leftrightarrow M$
is very negative will be a good reducing agent.
A. (i),(ii) and(iii)
B. (i) and (ii)
C. (i) only
D. (ii) and (iii)

## Answer:

## D Watch Video Solution

9. 

An
1\%
solution
of
$K C I(I), N a C I(I I), B a C I_{2}(I I I)$ and urea
(IV), have their osmotic pressure at the same
temperature in the ascending order (molar masses of $\mathrm{NaCI}, \mathrm{KCI}, B a C I_{2}$ and urea are respectively $\quad 58.5,74.5,208.4,60 \mathrm{gmol}^{-1}$

Assume $100 \%$ ionization of the electrolytes at this temperature

A. IIt III ItII ItIV

B. IIIIt I ItII ItIV

C. IIIIt IV ItI ItII
D. IIt III ItIV ItII

Answer:
10. Given
(a) $\quad n=5, m_{i}=+1$
$n=2, l=1, m_{i}=-1, m_{s}=-1 / 2$

The maximum number of electron(s) in an
atom that can have the quanturm numbers as
given in (a) and (b) are respectively:
A. 25 and 1
B. 8 and 1
C. 2 and 4

## D. 4 and 1

## Answer:

## D Watch Video Solution

11. A decapeptide (Mol. Wt. 769) on complete hydrolysis gives glycine (Mol. Wt. 75), alanine and phenylalanine.

Glycine contributes $47.0 \%$ to the total weight of the hydrolysed products. The number of glycine units. Present in the decapeptide is.
A. 3
B. 5
C. 6
D. 4

## Answer:

## D Watch Video Solution

12. Amongst $\mathrm{LiCl}, \mathrm{RbCl}, \mathrm{BeCl}_{2}$ and $\mathrm{MgCl}_{2}$,
the compounds whith the greatrest and the
least ionic character respecitely are :
A. LiCl and RbCl
B. $M g \mathrm{Cl}_{2}$ and $\mathrm{BeCl}_{2}$
C. RbCl and $\mathrm{BeCl}_{2}$
D. $R b C l$ and $M g C l_{2}$

Answer:

D Watch Video Solution
13. $A$ monotomic ideal gas undergoes $a$ process in which the ratio of p to V at any
instant is constant and equals to 1 . what is the molar heat capacity of the gas?
A. $\frac{3 R}{2}$
B. 2 R
C. 0
D. $\frac{5 R}{2}$

Answer:
( Watch Video Solution
14. Which one of the following pairs of substances on reaction will not not evolve $\mathrm{H}_{2}$ gas?
A. Iron and $\mathrm{H}_{2} \mathrm{SO}_{4}(a q)$
B. Iron and steam
C. Copper and $\mathrm{HCl}(\mathrm{g})$
D. Sodium and ethyl alcohol

## Answer:

D Watch Video Solution
15. The elecron affinity of chlorine is 3.7 eV .

How much energy in kcal is released when $2 g$
chlorine is completely converted to $\mathrm{Cl}^{-}$ion in
a gaseous state ?
$\left(1 e V=23.06 k c^{c a l \mathrm{~mol}^{-10}}\right)$.
A. 4.8 kcal
B. 7.2 kcal
C. 8.2 kcal
D. 2.4 kcal

## - Watch Video Solution

16. $A \rightarrow B+C$ is a first order reaction

| Time | T | $\infty$ |
| :--- | :---: | :---: |
| Volume of reagent | $\mathrm{V}_{2}$ | $\mathrm{~V}_{3}$ |

Reagent reacts with all A, B and C and have ' $n$ '
factors in the ratio of $1: 2: 3$ with the reagent.

Find k .

$$
\begin{aligned}
& \text { A. } k=\frac{1}{t} \ln \left(\frac{n_{2}}{n_{2}-n_{1}}\right) \\
& \text { B. } k=\frac{1}{t} \ln \left(\frac{2 n_{2}}{n_{2}-n_{1}}\right) \\
& \text { C. } k=\frac{1}{t} \ln \left(\frac{4 n_{2}}{n_{2}-n_{1}}\right)
\end{aligned}
$$

$$
\text { D. } k=\frac{1}{t} \ln \left(\frac{4 n_{2}}{5\left(n_{2}-n_{1}\right)}\right)
$$

## Answer:

## D Watch Video Solution

17. Among the given compound choose the two that yeild same carbocation on ionization

(A)

(B)

(C)

(D)
A. A,C
B. B,D
C. $A, B$
D. B,C

## Answer:

## - Watch Video Solution

18. Calculate the pH at the equivalence point when a solution of $0.01 \mathrm{M} \mathrm{CH} 3 \mathrm{COOH}_{3}$ is titrated with a solution of $0.01 \mathrm{M} \mathrm{NaOH} . p K_{a}$ of $\mathrm{CH}_{3} \mathrm{COOH}$ is 4.74 .
A. 10.50
B. 8.22
C. 7.52
D. 2.0

Answer:

## D Watch Video Solution

19. A salt which gives $\mathrm{CO}_{2}$ with hot $\mathrm{H}_{2} \mathrm{SO}_{4}$ and also decolourises acidified $\mathrm{KMnO}_{4}$ on warming is
A. bicarbonate
B. carbonate
C. oxalate
D. acetate

## Answer:

## - Watch Video Solution

20. For the octahedral complexes of $\mathrm{Fe}^{3+}$ in
$S C N^{-}$(thiocyanato -S) and in $C N^{-}$ligand
environments, the difference between the spin
only magnetic moments in Bohr magnetons
(when approximated to the nearest integer) is
[atomic number of $F e=26$ ]
A. 4.2
B. 3.5
C. 2.5
D. 5.2

## Answer:

D Watch Video Solution
21. In the following reactions, the Pb compounds $A$ and $B$ are respectively.

A. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{PbO} \mathrm{O}_{2}$ and $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
B. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
C. $\mathrm{PbO}_{2}$ and $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$
D. $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ and $\mathrm{PbO} O_{2}+\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$

## - Watch Video Solution

22. 

Consider
the
$A g\left|A g B r(s) B r^{-} \| A g C l(s) C l^{-}\right| A g$ at 298 K the solubility product of AgCl and AgBr are $1 \times 10^{-10}$ and $5 \times 10^{-13}$ respectively. What should be the ratio of concentration of $B r^{-}$ and $\mathrm{Cl}^{-}$by which emf of the cell becomes zero?
A. $150 / 1$
B. $1 / 150$
C. $1 / 180$
D. $1 / 200$

## Answer:

## D Watch Video Solution

23. The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is [ $a_{0}$ is Bohr radius] :

$$
\text { A. } \frac{h^{2}}{4 \pi^{2} m a_{0}^{2}}
$$

$$
\begin{aligned}
& \text { B. } \frac{h^{2}}{16 \pi^{2} m a_{0}^{2}} \\
& \text { C. } \frac{h^{2}}{32 \pi^{2} m a_{0}^{2}} \\
& \text { D. } \frac{h^{2}}{64 \pi^{2} m a_{0}^{2}}
\end{aligned}
$$

## Answer:

## D Watch Video Solution

24. Consider the following list of regents:

Acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$, alkaline $\mathrm{KMnO}_{4}, \mathrm{CuSO}{ }_{4}$,
$\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{CI}_{2}, \mathrm{O}_{3}, \mathrm{HNO}_{3}$, and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$. The
total number of reagents that can oxidis aqueous $I^{\Theta}$ ion $I_{2}$ is
A. 1
B. 4
C. 2
D. 3

Answer:

D Watch Video Solution
25. The degree of dissociation is 0.4 at 400 K
and 1.0 atm for the gaseous reaction
$P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
assuming ideal behaviour of all gases,
calculate the density of equilibrium mixture at
400 K and 1.0 atm (relative atomic mass of P is
31.0 and of Cl is 35.5).
A. 5.0
B. 4.5
C. 2.5
D. 3.5

## Answer:

## D Watch Video Solution

26. Geometrical shapes of the complex formed by the reaction of $N i^{2+}$ with $C l^{\Theta}, C N^{\Theta}$ and $\mathrm{H}_{2} \mathrm{O}$ are :
A. octahedral,tetrahedral and square
planar
B. tetrahedral,square

## octahedral

C. square planar, tetrahedral and
octahedral
D. tetrahedral, octahedral and square
planar

## Answer:

D Watch Video Solution

