

CHEMISTRY

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 7

Exercise

1. One mole of calciium phosphide on reaction with excess water gives

- A. one mole of phosphine
- B. two moles of phosphoric acid
- C. two moles of phosphine
- D. one mole of phosphorus pentoxide

Answer:

Watch Video Solution

2. Coagulation value of the electrolytes $AlCl_3$ and NaCl for As_2S_3 sol are 0.093 and 52

respectively. How many times $AlCl_3$ has greater coagulating power than NaCl?

- A. 930
- B. 520
- C. 560
- D. None of these

Answer:

3. The enthalpy of neutralisation of a weak acid in 1 M solution with a strong base is -56.1 kJ mol^{-1} / If the enthalpy of ionization of the acid is 1.5 kJ mol^{-1} and enthalpy of neutralization of the strong acid with a strong base is -57.3 kJ equiv^{-1} , what is the %ionization of the weak acid in molar solution (assume the acid to be monobasic)?

A. 10

B. 15

C. 20

D. 25

Answer:

Watch Video Solution

4. A metal gives two chlorides 'A' and 'B'.'A' gives black precipitate with NH_4OH and 'B' gives white ppt. With KI 'B' gives a red precipitate soluble in excess of KI.'A' and 'B' are respectively :

A. Hg_2Cl_2 and $HgCl_2$

B. $HgCl_2$ and $ZnCl_2$

C. $ZnCl_2$ and Hg_2Cl_2

D. None of these

Answer:

Watch Video Solution

5. An alkyl halide with molecular formula $C_6H_{13}Br$ on dehyrohalogenation gives two isomeric alkenes X and Y with molecular formula C_6H_{12} . On reductive ozonolysis X and

Y gives four compounds CH_3COCH_3 , CH_3CH_2CHO and $(CH_3)_2CHCHO$. The alkyl halide is

- A. 2-bromohexane
- B. 2, 2-dimethyl-1-bromobutane
- C. 4-bromo-2-methylpentane
- D. 3-bromo-2-methylpentane

Answer:

6. The correct order of o^- bond lengths in

$$ClO^-, ClO_2^-, ClO_3^-$$
 and ClO_4^- is

A.
$$ClO_4^- = ClO_3^- = ClO_2^- = ClO^-$$

$${\rm B.} \, ClO^-_{\, 2} \, < ClO^-_{\, 2} \, < ClO^-_{\, 3} \, < ClO^-_{\, 4}$$

$${\sf C.}\ ClO_4^- < ClO_3^- < ClO_2^- < ClO^-$$

$${\rm D.}\, ClO_3^- \, < ClO_4^- \, < ClO_2^- \, < ClO^-$$

Answer:

7. The compound P, Q and S

were separately subjected to nitration using $HNO_3\,/\,H_2SO_4$ mixture. The major product formed in each case respectively is

A.

В.

C

D.

Answer:

- **8.** Which fo the following statements are correct concerning redox propreties ?
- (i) The reducing power of hydrogen halides increases from hydrogen chloride to hydrogen iodide.
- (ii) The oxidizing power of halogens decreases from chlorine to iodine.
- (iii) A metal M for which $E^{\,\Theta}$ for the half-reaction

$$M^{n+} + ne^- \Leftrightarrow M$$

is very negative will be a good reducing agent.

temperature in the ascending order (molar masses of $NaCI, KCI, BaCI_2$ and urea are respectively $58.5, 74.5, 208.4, 60gmol^{-1}$

Assume 100% ionization of the electrolytes at this temperature

A. Ilt III ltII ltIV

B. IIIlt I ItII ItIV

C. IIIlt IV lti ltii

D. Ilt III ltIV ltII

Answer:

Watch Video Solution

10. Given

$$(\mathsf{a}) \hspace{1cm} n=5, m_i=\,+\,1 \hspace{1cm} (\mathsf{b})$$

$$n=2, l=1, m_i=-1, m_s=-1/2$$

The maximum number of electron(s) in an atom that can have the quantum numbers as given in (a) and (b) are respectively:

A. 25 and 1

B. 8 and 1

C. 2 and 4

D. 4 and 1

Answer:

Watch Video Solution

11. A decapeptide (Mol. Wt. 769) on complete hydrolysis gives glycine (Mol. Wt. 75), alanine and phenylalanine.

Glycine contributes $47.0\,\%$ to the total weight of the hydrolysed products. The number of glycine units. Present in the decapeptide is.

- **A.** 3
- B. 5
- C. 6
- D. 4

Answer:

Watch Video Solution

12. Amongst LiCl, RbCl, $BeCl_2$ and $MgCl_2$, the compounds whith the greatrest and the least ionic character respecitely are :

A. LiCl and RbCl

B. $MgCl_2$ and $BeCl_2$

C. RbCl and $BeCl_2$

D. RbCl and $MgCl_2$

Answer:

Watch Video Solution

13. A monotomic ideal gas undergoes a process in which the ratio of p to V at any

instant is constant and equals to 1. what is the molar heat capacity of the gas?

$$\lambda . \ \frac{3R}{2}$$

B. 2R

C. 0

D.
$$\frac{5R}{2}$$

Answer:

14. Which one of the following pairs of substances on reaction will not not evolve ${\cal H}_2$ gas?

- A. Iron and $H_2SO_4(aq)$
- B. Iron and steam
- C. Copper and HCI(g)
- D. Sodium and ethyl alcohol

Answer:

15. The electron affinity of chlorine is 3.~7eV. How much energy in kcal is released when 2g chlorine is completely converted to cl^- ion in a gaseous state ? $\left(1eV=23.~06kcal\mathrm{mol}^{-10}\right).$

A. 4.8 kcal

B. 7.2kcal

C. 8.2 kcal

D. 2.4kcal

Answer:

16. A \rightarrow B+ C is a first order reaction

Time	T	∞
Volume of reagent	V_2	V_3

Reagent reacts with all A, B and C and have 'n' factors in the ratio of 1: 2: 3 with the reagent.

Find k.

A.
$$k=rac{1}{t}\mathrm{ln}igg(rac{n_2}{n_2-n_1}igg)$$

$$\mathsf{B.}\,k = \frac{1}{t}\mathrm{ln}\bigg(\frac{2n_2}{n_2-n_1}\bigg)$$

C.
$$k=rac{1}{t}\mathrm{ln}igg(rac{4n_2}{n_2-n_1}igg)$$

D.
$$k=rac{1}{t}\mathrm{ln}igg(rac{4n_2}{5(n_2-n_1)}igg)$$

Answer:

Watch Video Solution

17. Among the given compound choose the two that yeild same carbocation on ionization

A. A,C

B. B,D

C. A,B

D. B,C

Answer:

Watch Video Solution

18. Calculate the pH at the equivalence point when a solution of 0.01 M CH_3COOH is titrated with a solution of 0.01 M NaOH. pK_a of CH_3COOH is 4.74.

- A. 10.50
- B. 8.22
- C. 7.52
- D. 2.0

Answer:

Watch Video Solution

19. A salt which gives CO_2 with hot H_2SO_4 and also decolourises acidified $KMnO_4$ on warming is

A. bicarbonate

B. carbonate

C. oxalate

D. acetate

Answer:

Watch Video Solution

20. For the octahedral complexes of Fe^{3+} in SCN^- (thiocyanato -S) and in CN^- ligand environments, the difference between the spin only magnetic moments in Bohr magnetons (when approximated to the nearest integer) is $\mbox{[atomic number of } Fe=26\,\mbox{]}$

- A. 4.2
- B. 3.5
- C. 2.5
- D. 5.2

Answer:

21. In the following reactions, the Pb compounds A and B are respectively.

A.
$$Pb(NO_3)_2 + PbO_2$$
 and $Pb(NO_3)_2$

B.
$$Pb(NO_3)_2$$
 and $Pb(NO_3)_2$

C.
$$PbO_2$$
 and $Pb(NO_3)_2$

D.
$$Pb(NO_3)_2$$
 and $PbO_2 + Pb(NO_3)_2$

Answer:

22. Consider the cell $Ag|AgBr(s)Br^{-}||AgCl(s)Cl^{-}|Ag$ at 298 K the solubility product of AgCl and AgBr are $1 imes 10^{-10}$ and $5 imes 10^{-13}$ respectively. What should be the ratio of concentration of $Br^$ and Cl^- by which emf of the cell becomes zero?

A. 150/1

B. 1/150

C. 1/180

D. 1/200

Answer:

Watch Video Solution

23. The kinetic energy of an electron in the second Bohr orbit of a hydrogen atom is $[a_0]$ is Bohr radius]:

A.
$$\dfrac{h^2}{4\pi^2 m a_0^2}$$

B.
$$\frac{h^2}{16\pi^2 m a_0^2}$$

C.
$$\frac{h^2}{32\pi^2ma_0^2}$$

D.
$$\displaystyle rac{h^2}{64\pi^2 m a_0^2}$$

Answer:

Watch Video Solution

24. Consider the following list of regents:

Acidified $K_2Cr_2O_7$, alkaline $KMnO_4$, $CuSO_4$,

 H_2O_2 , CI_2 , O_3 , HNO_3 , and $Na_2S_2O_3$. The

total number of reagents that can oxidis aqueous $I^{\,\Theta}$ ion I_2 is

- **A.** 1
- B. 4
- C. 2
- D. 3

Answer:

25. The degree of dissociation is 0.4 at 400K and 1.0 atm for the gaseous reaction

$$PCl_5 \Leftrightarrow PCl_3 + Cl_2$$

assuming ideal behaviour of all gases, calculate the density of equilibrium mixture at 400K and 1.0 atm (relative atomic mass of P is 31.0 and of Cl is 35.5).

A. 5.0

B. 4.5

C. 2.5

D. 3.5

Answer:

Watch Video Solution

26. Geometrical shapes of the complex formed by the reaction of Ni^{2+} with Cl^Θ , CN^Θ and H_2O are :

A. octahedral, tetrahedral and square planar

B. tetrahedral, square planar and

octahedral

C. square planar, tetrahedral and octahedral

D. tetrahedral, octahedral and square planar

Answer:

