

CHEMISTRY

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 8

Exercise

1. Low spin complex of d^6 -cation in an octahedral field will have the following energy:

A.
$$rac{-12}{5}\Delta_0 + P$$

B. $rac{-12}{5}\Delta_0 + 3P$
C. $rac{-2}{5}\Delta_0 + 2P$
D. $rac{-2}{5}\Delta_0 + P$

2. The enthalpy change of the reaction $C_3H_8(g) + H_2(g) \rightarrow C_2H_6(g) + CH_4(g)$, at 25°, will be Given that: heat of combustion values under standard condition $\begin{array}{c|c} Compound \\ C(graphite) \\ \Delta H^{\circ}(kJ/mol) \\ -393.5 \end{array}$ $\begin{array}{c|c} H_2(g) \\ -285.8 \\ -890.0 \\ -1560.0 \\ -1560.0 \\ (The standard condition \\ (The standard conditio$

heat of formation of $C_3H_8(g)$ is -103.8kJ/mol)

A. 55.7kJ.mol

B. 5.57kJ/mol

 $\mathrm{C.}-55.7~\mathrm{kJ/mol}$

 $\mathsf{D.}-5.57\mathsf{kJ.mol}$

Answer:

3. The pH of blood stream is maintained by a proper balance of H_2CO_3 and $NaHCO_3$ concentrations. What volume of 5 M $NaHCO_3$ solution, shnould be mixed with 10 mL sample of blood, which is 2 M in H_2CO_3 in order to maintain a pH of $7.4(K_a f \text{ or } H_2CO_3 \text{in blood} = 7.8 \times 10^{-7})$

A. 75.0

B. 84.5

C. 78.36

D. 70.4

Answer:

Watch Video Solution

4. The number of eta-particles emitted during the change $_aX^c$ $ightarrow _dY^b + m_2He^4 + n_{-1}e^0$ is A. $rac{a-b}{4}$

$$\begin{array}{l} \mathsf{B}.\,d + \left[\frac{c-b}{2}\right] - a \\ \mathsf{C}.\,d + \left[\frac{a-b}{2}\right] - a \\ \mathsf{D}.\,d + \left[\frac{a-b}{2}\right] - c \end{array}$$

Answer: B

Watch Video Solution

5. An element is placed in second group and third group of the periodic table, bums in presence of oxygen to form a basic oxide. The electronic configuration of the element is

A.
$$1s^2 2s^2 2p^6 3s^2$$

B. $1s^2 2s^2 2p^6 3s^2 3p^6 4s^2$
C. $1s^2 2s^2 2p^6 3s^2 3p^6$
D. $1s^2 2s^2 2p^6 3s^2 3p^6 3d^5 4s^2$

6. A freshly obtained of SnO_2 is peptized by little of KOH to give a sol.

Particles may be represented as

A. $[SnO_2]K^+$

- $\mathrm{B.}\,[SnO_2]OH^{\,-}$
- C. $[SnO_2]Sn^{4+}$
- D. $[SnO_2] SnO_3^{2-}$

Answer:

Watch Video Solution

7. To prepare 3-ethylpentan-3-ol, the reactants needed are

A. $CH_3CH_2MgBr+CH_3COCH_2CH_3$

 $\mathsf{B.}\,CH_3MgBr+CH_3CH_2CH_2COCH_2CH_3$

С. $CH_3CH_2MgBr+CH_3CH_2COCH_2CH_3$

D. $CH_3CH_2CH_2MgBr+CH_3COCH_2CH_3$

Answer:

C	Watch	Video	So	lution

8. The follwing diagram indicates the energy levels of a certain atom when the system moves from 2E level to E, a photon of wavelength λ is emitted. The wavelength of photon produced during its transition from $\frac{4E}{3}$ level to E is

A. $\frac{\lambda}{3}$

B.
$$\frac{3\lambda}{3}$$

C. $\frac{4}{3}\lambda$
D. 3λ

Answer:

Watch Video Solution

9. KCl crystallises in the same type of lattice as does NaCl Given that $r_{Na^+}/r_{Cl^-} = 0.55$ and $r_{K^+}/r_{Cl^-} = 0.74$, the ratio of the side of unit cell for KCl to that of NaCl is

A. 1123

B. 0.891

C. 1414

D. 0.414

10. When phosphine is bubbled through a solution of nitrate ____ is precipitated.

A. Silver

B. Silver phosphide

C. Silver oxide

D. None of these

Answer:

11. The correct order of acidity for the following compounds is

A. I > II > III > IV

 $\mathsf{B}. III > I > II > IV$

 $\mathsf{C}.\,III > IV > II > I$

 $\mathsf{D}.\, I > III > IV > II$

Answer:

12. The equalitative sketches I, II and III given below show the variation of surface tension with molar concentration of three diferent aqueous solutions of KCl, CH_3OH and $CH_3(CH_2)_{11}OSO_3^-Na^+$ at room temperature.

The correct assignment of the sketches is

A. I:KCl II: CH_3OH III: $CH_3(CH_2)_{11}OSO_3^-Na^+$

B. I: $CH_3(CH_2)_{11}OSO_3^-Na^+$ II: CH_3 ,OH III:KCI

C. I:KCl II: $CH_3(CH_2)_{11}OSO_3^-Na^+$ III: CH_3 ,OH

D. I: CH_3 ,OH II :KCl III: $CH_3(CH_2)_{11}OSO_3^-Na^+$

13. Which of the following statements is not true?

- A. $\left[MnCl_4
 ight]^{2-}$ ion has tetrahedral geometry and is paramagnetic
- B. $\left[Mn(CN)_6
 ight]^{4-}$ ion has octahedral geometry and is diamagnetic
- C. $\left[CuCl_4
 ight]^{2-}$ has square planar geometry and is paramagnetic
- D. $\left[Ni(Ph_{3}P)_{2}Br_{3}
 ight]$ has trigonal bipyramidal geometry and one

unpaired electron.

Answer:

Watch Video Solution

14. The major product of the following reaction sequence is

Β.

C.

D.

Answer:

15. Experimentally it was found that a metal oxide in formula $M_{0.98}O$. Metal M is present as M^{2+} and M^{3+} in its oxide ,Fraction of the metal which exists as M^{3+} would be

A. 7.01%

B. 4.08%

C. 6.05%

D. 5.08%

Answer:

16.

$$\underbrace{(i) \text{ NaNH}_2, \text{ NH}_3}_{(ii) \text{ CH}_3\text{Br}} (A) \xrightarrow{H_2}_{\text{Linder catalyst}} (B);$$

Product (B) is:

A.

Β.

C.

D.

Answer:

17. Two grams of benzoic acid (C_6H_5COOH) dissolved in 25.0g of benzene shows a depression in freezing point equal to 1.62K. Molal

depression constant for benzene is $4.9Kkg^{-1}mol^{-1}$. What is the percentage association of acid if it forms dimer in solution?

A. 98

B. 100

C. 99.8

D. 99.2

Answer:

Watch Video Solution

18. Among the complex ions,

 $ig[Co(NH_2 - CH_2 - CH_2 - NH_2 -)_2 Cl_2ig) + , ig[CrCl_2(C_2O_4)_2ig]^{3-}, ig[Fe(H_2O)_4(C_2O_4)_2ig]^{2+} \ [Co(NH_2 - CH_2 - CH_2 - NH_2)_2(NH_3)Clig]^{2+} \ ext{and} \ ig[Co(NH_3)4(H_2O)Clig]^{2+}$

, the number of complex ion(s) that show(s) cis-trans isomerism is

C. 6

D. 1

Answer:

Watch Video Solution

19. An organic compound 'A' on treatment with ethyl alcohol gives a carboxylic acid 'B' and compound 'C'. Hydrolysis of 'C' under acidic conditions gives 'B' and 'D'. Oxidation of 'D' with $KMnO_4$ also gives 'B'. 'B' on heating with $Ca(OH)_2$ gives 'E' (molecular formula, C_3H_6O). 'E' does not give Tollent's test and does not reduce Fehling's solution but forms a 2,4- dinitrophenylhydrazone. The compound 'E' is:

A. $C_6H_5COCH_3$

B. CH_3COCH_3

 $\mathsf{C.}\, C_6H_5COC_6H_5$

D. CH_3CHO

Answer:

20.
$$N_2+3H_2
ightarrow 2NH_3$$

Molecular weight of NH_3 and N_2 are x_1 and x_2 , respectively. Their equivalent weights are y_1 and y_2 , respectively. Then $(y_1 - y_2)$

A. $rac{2X_1-X_2}{6}$ B. (X_1-X_2) C. $(3X_1-X_2)$ D. (X_1-3X_2)

Answer:

21. Calcium crystallises in a face-centered cubic unit cell with a 0.556 nm and density $1.4848g/cm^3$. Percentage of Schottky defects in the crystal is:

A. 0.03

B. 0.02

C. 3.8%

D. 0.04

Answer:

22. The conductivity of 0.001M Na_2SO_4 solution is $2.6 \times 10^{-4}Scm^{-1}$ and increases to $7.0 \times 10^{-4}Scm^{-1}$, When the solution is saturated with $CaSO_4$. The molar conductivities of Na^+ and Ca^{2+} are 50 and 120 Scm^2mol^{-1} , respectively. Neglect conductivity of used water. What is the solubility product fo $CaSO_4$? A. $4 imes 10^{-6}$

B. $1.57 imes10^{-3}$

 ${\sf C.4} imes 10^{-4}$

D. $2.46 imes10^{-6}$

Answer:

23. For a dilute solution containing 2.5g of a non-volatile non-electrolyte solute in 100g of water, the elevation in boiling point at 1 atm pressure is 2° C. Assuming concentration of solute is much lower than the concentration of solvent, the vapour pressure (mm of Hg) of the solution is (take K_b =0.76 K kg mol⁻¹)

A. 724

B.740

C. 736

Answer:

Watch Video Solution

24. 19 g of molten $SnCl_2$ is electrolysed for sometime using inert electrodes. 0.119g of Sn is deposited at the cathode. No substance is lost during the electrolysis. The ratio of the weights of $SnCl_2 : SnCl_4$ after electrolysis [Atomic weight of Sn = 119]

A. 71.34:1

B. 75.84:1

C. 1:75.84

D. 70:1

Answer: