©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 8

Exercise

1. Low spin complex of d^{6}-cation in an octahedral field will have the following energy:
A. $\frac{-12}{5} \Delta_{0}+P$
B. $\frac{-12}{5} \Delta_{0}+3 P$
C. $\frac{-2}{5} \Delta_{0}+2 P$
D. $\frac{-2}{5} \Delta_{0}+P$

- Watch Video Solution

2. The enthalpy change of the reaction $C_{3} H_{8}(g)+H_{2}(g) \rightarrow C_{2} H_{6}(g)+C H_{4}(g)$, at 25°, will be Given that: heat of combustion values under standard condition -393.5
Compound
C(graphite)
$\Delta H^{\circ}(\mathrm{kJ} / \mathrm{mol}) \quad-285.8 \quad-890.0 \quad-1560.0$
$\mathrm{H}_{2}(\mathrm{~g}) \quad \mathrm{CH}_{4}(\mathrm{~g})$
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$
(The standard
heat of formation of $C_{3} H_{8}(g)$ is $-103.8 \mathrm{~kJ} / \mathrm{mol}$)
A. $55.7 \mathrm{~kJ} . \mathrm{mol}$
B. $5.57 \mathrm{~kJ} / \mathrm{mol}$
C. $-55.7 \mathrm{~kJ} / \mathrm{mol}$
D. $-5.57 \mathrm{k} . \mathrm{mol}$

Answer:

3. The pH of blood stream is maintained by a proper balance of $\mathrm{H}_{2} \mathrm{CO}_{3}$ and NaHCO_{3} concentrations. What volume of 5 M NaHCO 3 solution, shnould be mixed with 10 mL sample of blood, which is 2 M in $\mathrm{H}_{2} \mathrm{CO}_{3}$ in order to maintain a pH of $7.4\left(\mathrm{~K}_{a} f\right.$ or $\mathrm{H}_{2} \mathrm{CO}_{3}$ in blood $\left.=7.8 \times 10^{-7}\right)$
A. 75.0
B. 84.5
C. 78.36
D. 70.4

Answer:

- Watch Video Solution

4. The number of β-particles emitted during the change ${ }_{a} X^{c}$ $\rightarrow{ }_{d} Y^{b}+m_{2} H e^{4}+n_{-1} e^{0}$ is
A. $\frac{a-b}{4}$
B. $d+\left[\frac{c-b}{2}\right]-a$
C. $d+\left[\frac{a-b}{2}\right]-a$
D. $d+\left[\frac{a-b}{2}\right]-c$

Answer: B

- Watch Video Solution

5. An element is placed in second group and third group ofthe periodic table, bums in presence of oxygen to form a basic oxide. The electronic configuration of the element is
A. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
B. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$
C. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$
D. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{2}$

Answer:

6. A freshly obtained of SnO_{2} is peptized by little of KOH to give a sol. Particles may be represented as
A. $\left[\mathrm{SnO}_{2}\right] \mathrm{K}^{+}$
B. $\left[\mathrm{SnO}_{2}\right] \mathrm{OH}^{-}$
C. $\left[\mathrm{SnO}_{2}\right] \mathrm{Sn}^{4+}$
D. $\left[\mathrm{SnO}_{2}\right] \mathrm{SnO}_{3}^{2-}$

Answer:

Watch Video Solution

7. To prepare 3 -ethylpentan-3-ol, the reactants needed are
A. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}+\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{MgBr}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
C. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}+\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCH}_{2} \mathrm{CH}_{3}$
D. $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{MgBr}+\mathrm{CH}_{3} \mathrm{COCH}_{2} \mathrm{CH}_{3}$

Answer:

- Watch Video Solution

8. The follwing diagram indicates the energy levels of a certain atom when the system moves from $2 E$ level to E, a photon of wavelength λ is emitted. The wavelength of photon produced during its transition from $\frac{4 E}{3}$ level to E is

A. $\frac{\lambda}{3}$
B. $\frac{3 \lambda}{3}$
C. $\frac{4}{3} \lambda$
D. 3λ

Answer:

- Watch Video Solution

9. KCl crystallises in the same type of lattice as does NaCl Given that $r_{\mathrm{Na}^{+}} / r_{\mathrm{Cl}^{-}}=0.55$ and $r_{\mathrm{K}^{+}} / r_{C l^{-}}=0.74$, the ratio of the side of unit cell for KCl to that of NaCl is
A. 1123
B. 0.891
C. 1414
D. 0.414

Answer:

10. When phosphine is bubbled through a solution of nitrate is precipitated.
A. Silver
B. Silver phosphide
C. Silver oxide
D. None of these

Answer:

11. The correct order of acidity for the following compounds is

III

II

IV
A. $I>I I>I I I>I V$
B. $I I I>I>I I>I V$
C. $I I I>I V>I I>I$
D. $I>I I I>I V>I I$

Answer:

12. The equalitative sketches I, II and III given below show the variation of surface tension with molar concentration of three diferent aqueous solutions of $\mathrm{KCl}, \mathrm{CH}_{3} \mathrm{OH}$ and $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{OSO}_{3}^{-} \mathrm{Na}^{+}$at room temperature.

The correct assignment of the sketches is
A. I: KCl II: $\mathrm{CH}_{3} \mathrm{OH}$ III: $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{OSO}_{3}^{-} \mathrm{Na}^{+}$
B. I: $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{OSO}_{3}^{-} \mathrm{Na}^{+}$II: $\mathrm{CH}_{3}, \mathrm{OH}$ III: KCI
C. I:KCI II: $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{OSO}_{3}^{-} \mathrm{Na}{ }^{+}$III: $\mathrm{CH}_{3}, \mathrm{OH}$
D. I: $\mathrm{CH}_{3}, \mathrm{OH}$ II : KCl III: $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{OSO}_{3}^{-} \mathrm{Na}^{+}$

Answer:

13. Which of the following statements is not true?
A. $\left[M n C l_{4}\right]^{2-}$ ion has tetrahedral geometry and is paramagnetic
B. $\left[M n(C N)_{6}\right]^{4-}$ ion has octahedral geometry and is diamagnetic
C. $\left[\mathrm{CuCl}_{4}\right]^{2-}$ has square planar geometry and is paramagnetic
D. $\left[N i\left(P h_{3} P\right)_{2} B r_{3}\right]$ has trigonal bipyramidal geometry and one unpaired electron.

Answer:

- Watch Video Solution

14. The major product of the following reaction sequence is

A.
(a)

B.
(b)

C.
(c)

D.

Answer:
15. Experimentally it was found that a metal oxide in formula $M_{0.98} O$. Metal M is present as M^{2+} and M^{3+} in its oxide ,Fraction of the metal which exists as M^{3+} would be
A. 7.01%
B. 4.08%
C. 6.05%
D. 5.08%

Answer:

- Watch Video Solution

16.

(i) $\mathrm{NaNH}_{2}, \mathrm{NH}_{3}$
A.
B.
C.
(c)

D.
(d)

Answer:

- Watch Video Solution

17. Two grams of benzoic acid $\left(\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}\right)$ dissolved in 25.0 g of benzene shows a depression in freezing point equal to 1.62 K . Molal
depression constant for benzene is $4.9 \mathrm{Kkg}^{-1} \mathrm{~mol}^{-1}$. What is the percentage association of acid if it forms dimer in solution?
A. 98
B. 100
C. 99.8
D. 99.2

Answer:

- Watch Video Solution

18. Among the complex ions,

$$
\begin{aligned}
& {\left[\mathrm{Co}\left(\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}-\right)_{2} \mathrm{Cl}_{2}\right)+,\left[\mathrm{CrCl}_{2}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{2}\right]^{3-},\left[\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}(\mathrm{l}\right.} \\
& {\left[\mathrm{Co}\left(\mathrm{NH}_{2}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{NH}_{2}\right)_{2}\left(\mathrm{NH}_{3}\right) \mathrm{Cl}\right]^{2+} \text { and }\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right) 4\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right]^{2+}}
\end{aligned}
$$

, the number of complex ion(s) that show(s) cis-trans isomerism is
A. 3
B. 4
C. 6
D. 1

Answer:

- Watch Video Solution

19. An organic compound ' A ' on treatment with ethyl alcohol gives a carboxylic acid ' B ' and compound ' C '. Hydrolysis of ' C ' under acidic conditions gives ' B ' and ' D '. Oxidation of ' D ' with $K M n O_{4}$ also gives ' B . ' B ' on heating with $\mathrm{Ca}(\mathrm{OH})_{2}$ gives ' E ' (molecular formula, $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}$). ' E ' does not give Tollent's test and does not reduce Fehling's solution but forms a 2,4-dinitrophenylhydrazone. The compound ' E ' is:
A. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}$
B. $\mathrm{CH}_{3} \mathrm{COCH}_{3}$
C. $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COC}_{6} \mathrm{H}_{5}$
D. $\mathrm{CH}_{3} \mathrm{CHO}$

- Watch Video Solution

20. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

Molecular weight of NH_{3} and N_{2} are x_{1} and x_{2}, respectively. Their equivalent weights are y_{1} and y_{2}, respectively. Then $\left(y_{1}-y_{2}\right)$
A. $\frac{2 X_{1}-X_{2}}{6}$
B. $\left(X_{1}-X_{2}\right)$
C. $\left(3 X_{1}-X_{2}\right)$
D. $\left(X_{1}-3 X_{2}\right)$

Answer:

21. Calcium crystallises in a face-centered cubic unit cell with a 0.556 nm and density $1.4848 \mathrm{~g} / \mathrm{cm}^{3}$. Percentage of Schottky defects in the crystal is:
A. 0.03
B. 0.02
C. 3.8%
D. 0.04

Answer:

- Watch Video Solution

22. The conductivity of $0.001 \mathrm{M} \mathrm{Na}_{2} \mathrm{SO}_{4}$ solution is $2.6 \times 10^{-4} \mathrm{Scm}^{-1}$ and increases to $7.0 \times 10^{-4} \mathrm{Scm}^{-1}$, When the solution is saturated with CaSO_{4}. The molar conductivities of Na^{+}and Ca^{2+} are 50 and 120 $S \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$, respectively. Neglect conductivity of used water. What is the solubility product fo CaSO_{4} ?
A. 4×10^{-6}
B. 1.57×10^{-3}
C. 4×10^{-4}
D. 2.46×10^{-6}

Answer:

- Watch Video Solution

23. For a dilute solution containing 2.5 g of a non-volatile non-electrolyte solute in 100 g of water, the elevation in boiling point at 1 atm pressure is $2^{\circ} \mathrm{C}$. Assuming concentration of solute is much lower than the concentration of solvent, the vapour pressure (mm of Hg) of the solution is (take $K_{b}=0.76 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$)
A. 724
B. 740
C. 736
D. 718

Answer:

- Watch Video Solution

24. 19 g of molten SnCl_{2} is electrolysed for sometime using inert electrodes. 0.119 g of Sn is deposited at the cathode. No substance is lost during the electrolysis. The ratio of the weights of $\mathrm{SnCl}_{2}: \mathrm{SnCl}_{4}$ after electrolysis [Atomic weight of $S n=119$]
A. $71.34: 1$
B. 75.84:1
C. 1:75.84
D. $70: 1$

Answer:

\square

