d'doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - KVPY PREVIOUS YEAR

MOCK TEST 9

Exercise

1. The final product obtained in the reaction

A.

B.
C.
(c)

D.

R

Answer:

- Watch Video Solution

2. A detergent $\left(C_{12} H_{25} S O^{4} \wedge(-) N a^{+}\right)$ solution becomes colloidal sol at a concentration of $10^{-3} \mathrm{M}$. On an average 10^{13} colloidal partcles
are present in $1 \mathrm{~mm}^{3}$. What is the average number of ions which are contained by one colloidal particle (micelle)?
A. 6×10^{7}
B. 10
C. 60
D. 6

(D) Watch Video Solution

3. The major product of the following reaction is

A.
(a)

B.
C.
(c)

D.

F

Answer:

- Watch Video Solution

4. The densities of graphite and diamond at $298 K$
are 2.25 and $3.31 \mathrm{gcm}^{-3}$, respectively. If the standard free energy difference $\left(\Delta G^{0}\right)$ is equal to
$1895 \mathrm{Jmol}^{-1}$, the pressure at which graphite will be transformed into diamond at 298 K is
A. $9.920 \times 10^{5} \mathrm{~Pa}$
B. $11.094 \times 10^{8} \mathrm{~Pa}$
C. $10.952 \times 10^{7} \mathrm{~Pa}$
D. $9.920 \times 10^{6} \mathrm{~Pa}$

Answer:

- Watch Video Solution

5. A radioavtive source in the form of a metal sphere of daimeter $10^{-3} \mathrm{~m}$ emits β-particles at a constant rate of 6.25×10^{10} particles per second. If the source is electrically insulated, how long will it take for its potential to rise by 1.0 V , assuming that 80% of the emitted β-particles escape the socurce?
A. $6.95 \mu \mathrm{sec}$
B. $0.95 \mu \mathrm{sec}$
C. $1.95 \mu \mathrm{sec}$
D. $2.15 \mu \mathrm{sec}$

Answer:

D Watch Video Solution

6. Consider the following three compounds
(i) $A X_{2 n}^{n-}$, (ii) $A X_{3 n}$ and (ii) $A X_{4 n}^{n+}$, where central atom A is 15 th group element and their maximum covalency is $3 n$. If total number of proton in surrounding atom X is n and value of n is one, then calculate value of $x^{3}+y^{2}+z^{2}$. (where x, y and z are total number of lone pair at central atom in compounds (i), (ii) and (iii) respectively.
A. 3
B. 2
C. 5
D. 9

Answer:

D Watch Video Solution

7. Gas A is bubbled through slaked lime when a white precipitate is formed. On prolonged bubbling the precipitate is dissolved. On heating the resultant solution, the white precipitate
appears with evolution of gas B. The gases A and B
respectively are
A. $C O$ and $C O$
B. CO_{2} and CO
C. CO and CO_{2}
D. CO_{2} and CO_{2}

Answer:

- Watch Video Solution

8. Cellulose upon acetylation with excess acetic anhydride/ $\mathrm{H}_{2} \mathrm{SO}_{4}$ (catalytic) gives cellulose triacetate whose structure is
A.
B.

C.

D.

Answer:

D Watch Video Solution

9. On addition of increasing amount of AgNO_{3} to 0.1 M each of NaCl and NaBr in a solution, what \%
of Br^{-}ion gets precipitated when Cl^{-}ion starts precipitating?
$K_{s p}(A g C l)=1.0 \times 10^{-10}, K_{s p}(A g B r)=1 \times 10^{-13}$
A. 0.1
B. 0.01
C. 99.9
D. 99.99

Answer:

- Watch Video Solution

10. 5 g of $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was dissolved in xg of $\mathrm{H}_{2} \mathrm{O}$.

The change in freezing point was found to be $3.82^{\circ} \mathrm{C}$. If $\mathrm{Na}_{2} \mathrm{SO}_{4}$ is 81.5% ionised, the value of x
(k_{f} for water $=1.86^{\circ} C \mathrm{~kg} \mathrm{~mol}^{-1}$) is apporximately
(molar mass of $\mathrm{S}=32 \mathrm{~g} \mathrm{~mol}^{-1}$ and that of $\mathrm{Na}=23 \mathrm{~g}$ mol^{-1})
A. 15 g
B. 25 g
C. 45 g
D. 65 g

Answer:

- Watch Video Solution

11. Passing $H_{2} S$ gas into a mixture of $\mathrm{Mn}^{2+}, \mathrm{Ni}^{2+}, \mathrm{Cu}^{2+}$ and Hg^{2+} ions in an acidified aqueous solution precipitates
A. CuS and HgS
B. MnS and CuS
C. MnS and NiS
D. NiS and HgS

Answer:

12. When $2 g$ of a gas A is introduced into an evacuated flask kept at $25^{\circ} \mathrm{C}$, the pressure is found to be 1 atm . If $3 g$ of another gas B is then heated in the same flask, the total pressure becomes 1.5 atm. Assuming ideal gas behaviour, calculate the ratio of the molecular weights M_{A} and M_{B}.
A. $3: 1$
B. 1: 3
C. 1:9
D. $9: 1$

D Watch Video Solution

13. Which of the following componds does not evolve oxygen when heated alone?
A. KClO_{3}
B. KMnO_{4}
C. $\mathrm{NH}_{4} \mathrm{NO}_{2}$
D. KNO_{3}

- Watch Video Solution

14. Equimolar solutions of the following substances were prepared separately. Which one of these will record the highest $p H$ value?
A. BeCl_{2}
B. SrCl_{2}
C. CaCl_{2}
D. $M g C l_{2}$

Answer:
15. n-Propyl benzene can be obtained in quantitative yield by following method :
(i) By treating benzene with n - propyl chloride in presence of AlCl_{3}
(ii) By treating excess of benzene with n - propyl chloride in presence of AlCl_{3}
(iii) By treating benzene with allyl chloride in presence of AlCl_{3} followed by reduction
(iv) By treating benzene with propionyl chloride in the presence of AlCl_{3} followed by Clemmensen reduction
A. By(ii),(iii) and(iv)
B. By(i),(iii)and(iv)
C. By (iii)and(iv)
D. By(ii) only

Answer:

- Watch Video Solution

16. A solution of (+)-1-chloro-1-phenylethane in t toluene racemises slowly in the presence of a small amount of $S b C l_{5}$ due to the formation of
A. carbanion
B. carbene
C. carbocation
D. freeradical

Answer:

- Watch Video Solution

17. At $300 K$ and $1 a t m, 15 m L$ of a gaseous hydrocarbon requires 375 mL air containing $20 \% \mathrm{O}_{2}$ by volume for complete combustion.

After combustion, the gases occupy $330 m L$.

Assuming that the water formed is in liquid form and the volumes were measured at the same temperature and pressure, the formula of the hydrocarbon is
A. $C_{4} H_{8}$
B. $C_{4} H_{10}$
C. $C_{3} H_{6}$
D. $C_{3} H_{8}$

Answer:

- Watch Video Solution

18. The compression factor (compressibility factor)
for 1 mol of a van der Waals gas at $0^{\circ} \mathrm{C}$ and
100 atm pressure is found to be 0.5 . Assuming that
the volume of a gas molecule is neligible, calculate the van der Waals constant a.
A. 2524
B. 1.253×10^{-6}
C. 1253
D. 2.524×10^{-6}

Answer:

19. Two reactants A and B separately shows two chemical reactions.Both reactions are made with same initial concentration of each reactant. Reactant A follows first order kinetics whereas reactant B follows second order kinetics. If both have same half lives, find the ratio of the ratios of their rates at the start of reaction and after the lapse of one half life.
A. 2: 1
B. 1: 3
C. 1:2
D. $2: 3$

Answer:

- Watch Video Solution

20. Compounds $\left[\mathrm{Cu}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{2+}(\mathrm{A})$ and $\left[\mathrm{Ti}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}\right]^{3+}$ (B) exhibit tetragonal elongation and tetragonal compression,respectively.The
unpaired electron A and B are found respectively, in orbitals,
A. $d_{z^{2}}$ and $d_{x^{2}-y^{2}}$
B. $d_{x^{2}-y^{2}}$ and $d_{z^{2}}$
C. $d_{z^{2}}$ and $d_{z^{2}}$
D. $d_{x^{2}-y^{2}}$ and $d_{x^{2}-y^{2}}$

Answer:

D Watch Video Solution

21. A gas undergoes a process such that $p \propto \frac{1}{T}$. If the molar heat capacity for this process is $C=33.24 \mathrm{~J} / \mathrm{mol}-K$, find the degree of freedom of the molecules of the gas.
A. 3
B. 2
C. 4
D. 6

Answer:

- Watch Video Solution

22. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{5}$ according to the equation: $2 \mathrm{~N}_{2} \mathrm{O}_{5}(g) \rightarrow 4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g})$ is a
first order reaction. After 30 min . from the start of the decomposition in a closed vessel, the total
pressure developed is found to be 284.5 mm of Hg and on complete decomposition, the total pressure is 584.5 mm of Hg . Calculate the rate constant for the reaction.
A. $5.2 \min ^{-1}$
B. $520 \times 10^{-3} \min ^{-1}$
C. 5.2×10^{-3} min $^{-1}$
D. $0.52 \times 10^{-3} \mathrm{~min}^{-1}$

Answer:

23. Arrange the wavelengths (λ) of the following emission lines of H -atom in an increasing order. (1)

$$
\begin{aligned}
& n=3 \xrightarrow{\lambda_{1}} n=1 \quad \text { (2) } \quad n=5 \xrightarrow{\lambda_{2}} n=3 \\
& n=12 \xrightarrow{\lambda_{3}} n=10(4) n=22 \xrightarrow{\lambda_{4}} n=20
\end{aligned}
$$

$$
\text { A. } \lambda_{4}<\lambda_{3}<\lambda_{2}<\lambda_{1}
$$

$$
\text { B. } \lambda_{1}<\lambda_{2}<\lambda_{3}<\lambda_{4}
$$

$$
\text { C. } \lambda_{1}<\lambda_{2}<\lambda_{4}<\lambda_{3}
$$

$$
\text { D. } \lambda_{1}<\lambda_{3}<\lambda_{4}<\lambda_{2}
$$

Answer:

24. Which of the following expression for $\%$
dissociation of a monoacidic base (BOH) in aqueous solution at appreciable concentration is not correct?
A. $100 \times \sqrt{\frac{K_{a}}{c}}$
B. $\frac{1}{1+10^{\left(p K_{b}-p O H\right)}}$
C. $\frac{K_{W}\left[H^{+}\right]}{K_{b}+K_{W}}$
D. $\frac{K_{b}}{K_{b}+\left[O H^{-}\right]}$

Answer:

25. The final product Z in the following reaction is

A.
(a)

B.
C.

D.

Answer:

D Watch Video Solution

26. Which of the following species contains minimum number of atoms in XY plane?
A. XeF_{5}^{-}
B. $S F_{6}$
C. $I F_{7}$
D. All

Answer:

- Watch Video Solution

