© ${ }^{\text {T doubtnut }}$ India's Number 1 Education App

CHEMISTRY

BOOKS - GRB CHEMISTRY (HINGLISH)

THERMODYNAMICS

1. Out of different state parameters like E, H, G, A and S , only entropy(s) is the parameter whose absolute value can be determined, by using third law of thermodynamics. While perfect crystals hace zero entropy at $0 K$, non-perfect crystals have some residual entropy at $0 K$. From this info and the following data chart, answer the questions that follow :

Substance	$C_{\boldsymbol{p}}(\mathbf{s o l i d})$ $(\mathbf{J} / \mathbf{m o l} \mathbf{K})$	Standard melting point	$\Delta H_{\text {fusion }}^{\circ}$ $(\mathbf{k J} /$ mole $)$	$\mathbf{S}_{\mathbf{m}, 100 \mathrm{~K}}^{\circ}$ $(\mathbf{J} / \mathbf{K}$ mole $)$
\mathbf{P}	$(0.35 \mathrm{~T})$	200 K	27	35
Q	$(0.25 \mathrm{~T})$	250 K	29	30
R	$(0.15 T)$	300 K	30	20
S	$(0.45 T)$	350 K	40	50

What will be molar entropy of liquid R at 300 K ?
A. 150J/K mole
B. $145 \mathrm{~J} / \mathrm{K}$ mole
C. $45 \mathrm{~J} / \mathrm{K}$ mole
D. $50 \mathrm{~J} / \mathrm{K}$ mole

Answer: a

- Watch Video Solution

2. When acids an bases react they liberate some amount of energy which is represented as ΔH neutralization if one equivalent of acid and base reacts. The energy liberated depends on the concentration of acid and
base and also on whether the acid is strong or weak. For strong acids and bases, the value is constant and for weaker acids as bases the magnitude is generally lesser.

Using this info and the date below answer the question that follow :
[Given data :
$\Delta_{\text {neutralization }} \mathrm{HCl} / \mathrm{NaOH}=-14 \mathrm{Kcal} / \mathrm{eq}$ (at infinite dil.)
$\Delta H_{\text {ionisation }} \mathrm{CH}_{3} \mathrm{COOH}=2 \mathrm{kcal} / \mathrm{mol}$
$\left.\Delta H_{\text {ionisation }} \mathrm{NH}_{4} \mathrm{OH}=3 \mathrm{kcal} / \mathrm{eq}\right]$
In which of the following will heat released be same?
A. $\operatorname{HCl}(0.2 M, 500 \mathrm{ml})$, mixed with $\mathrm{NaOH}(0.3 \mathrm{M}, 500 \mathrm{ml})$
B. $\mathrm{HNO}_{3}(0.5 \mathrm{M}, 200 \mathrm{ml})$ mixed with $\mathrm{KOH}(0.4 \mathrm{M}, 280 \mathrm{ml})$
C. $\mathrm{H}_{2} \mathrm{SO}_{4}(0.1 \mathrm{M}, 200 \mathrm{ml})$ mixed with $\mathrm{NaOH}(0.3 \mathrm{M}, 1000 \mathrm{ml})$
D. $\mathrm{CH}_{3} \mathrm{COOH}(0.1 \mathrm{M}, 1000 \mathrm{ml})$ mixed with $\mathrm{NaOH}(0.3 \mathrm{M}, 500 \mathrm{ml})$

Answer: a,b

- Watch Video Solution

3. Fuel cells are the commercial cells which converts the chemical energy into electrical energy and differ from the normal batteries since fuel cells require constant source of fuel and oxygen to obtain electric current. However, they can be used to produce electricity as long as the supply of fuel and oxygen is maintained. All fuel cells consist of an andoe and a cathode and an electrolyte which allows charges to move between the two sidez of the fuel cell. Electrons are drawn from anode to cathode through an external circuit and hence produce direct current electricity. Under practical cases, efficient of fuel cell is around $40-60 \%$ and in some cases it may be as high as $85-90 \%$

Some common examples of fuel cell are diect methanol fule cell (DMFC), Direct Borohydride fuel cell (DBFC), alkaline fuel cell (AFC) and others.While in DMFC the electrolyte is an ionomer (proton exchange monomer) in case of AFC and DBFC the electrolyte is an aqueous alkaline solution. Also, in case of DBFC the borohydride gets oxidised to metaborate, In all the above three cases, at cathode reduction of O_{2} (gas) occurs in a medium controlled by the electrolyte. Based on this information answer the electrolyte. Based on the information answer the
question that follow :

Data
$\left(\Delta H_{f}^{\circ} \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})=-230 \mathrm{~kJ} / \mathrm{mole}, \Delta H_{f}^{\circ} \mathrm{CO}_{2}=-390 \mathrm{~kJ} / / / \mathrm{mole} \mathrm{l}\right)$,
(Delta_(f)^(@)H_(2)O(I) = - $285 \mathrm{~kJ} / / " \mathrm{mole"}$,,S_(mH_(2)O(I))^(@)=130J//K "mole"),(S_(mCO_(2(g))) = $210 \mathrm{~J} / / \mathrm{K}$ "mole",S_(mH_(2)O(I))^(@) = $110 \mathrm{~J} / / \mathrm{K}$ "mol"),(S_(mO_(2(g)))=206J//K "mole",,S_(mH_(2(g))) = 130J//K "mole"),("All data at" 300 K.,1/F = 10^(-5) $\left.\left.\mathrm{C}^{\wedge}(-1)\right):\right\}^{`}$

If in DBFC it is known that sodium borohydride is taken as a fuel than
which of the following reaction wil be occuring at approprite electrode in the DBFC ?
A. At cathode, $\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 e^{-} \rightarrow 4 \mathrm{OH}^{-}$
B. At cathode, $\mathrm{O}_{2}+4 e^{-}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}$
C. At anode, $\mathrm{NaBH}_{4}+8 \mathrm{OH}^{-} \rightarrow \mathrm{NaBO}_{2}+6 \mathrm{H}_{2} \mathrm{O}+8 e^{-}$
D. At anode, $\mathrm{NaBH}_{4}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{NaBO}_{2}+8 e^{-}+8 \mathrm{H}$

Answer: a,c

4. While analyzing driving forces for a chemical reaction it is observed that energy and entropy are true forces. The entropy is a typical state function owing to the possibility of calculation of its absolute value. The absolute values of entropies can be compared an calculating by knowing the residual entropies at $0 K$ and by calculating the change due to change of state. Using the given information and data for a particular substance x answer the questions that follow :

Useful data :
(p) Standard melting point and boiling point of x is 200 K and 400 K respectively.
(q) $\Delta H_{\text {fusion }}^{\circ}=10 \mathrm{kcal} / \mathrm{mole}$ and $\Delta H_{\text {vap }}^{\circ}=80 \mathrm{kcal} / \mathrm{mole}$.
(r) $C_{p . m}(s) x=0.1$ Tcal $/$ Kmole, $C_{p . m}(l) x=0.05 T c a l / K m o \leq$
$S_{m .40 K}^{\circ} S_{x}=5 \mathrm{cal} / \mathrm{mole}$
Which of the following options regarding absolute molar entropies of x is/are correct?
A. $S_{m, 200 K^{\chi(s)}}^{\circ}=21 \mathrm{cal} / \mathrm{mole}$
B. $S_{m, 400 K^{\chi}(g)}^{\circ}=281 \mathrm{cal} / \mathrm{mole}$
C. $S_{\left.m, 400 K^{\chi(}\right)}^{\circ}=81 \mathrm{cal} / \mathrm{mole}$
D. $S_{m, 200 K^{\chi}(l)}^{\circ}=70 \mathrm{cal} / \mathrm{mole}$

Answer: a,b,c

- Watch Video Solution

5. It is observed that when acid and bases react, some energy is released due to neutralization reaction. While in case of strong acid and bases, the energy released in greater, in case of weaker acids of bases, energy released will be lesser. The difference is attributed to energy required for ionization. From the above information and data below answer the questions that follow:
$\Delta H_{\text {neutrization } \mathrm{SA} / \mathrm{SB}}=-57.5 \mathrm{~kJ} /$ equivalent,
$\Delta H_{\text {ionization }}$ of $\mathrm{NH}_{4} \mathrm{OH}=10 \mathrm{~kJ} /$ mole,
$\Delta H_{\text {ionization }}$ of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=20 \mathrm{~kJ} /$ mole.
What will be $\Delta H_{\text {neutralization }}$ of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ with NaOH per mole of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}$ if acid is assumed to be completely unionized in the following?
A. $37.5 \mathrm{~kJ} / \mathrm{mole}$
B. $-75 \mathrm{~kJ} / \mathrm{mole}$
C. $95 \mathrm{~kJ} / \mathrm{mole}$
D. -3507kJ/mole

Answer: c

D Watch Video Solution

6. Cycloalkenes and alka- dienes are structural isomers and it is observed that the isomerisation reaction of cyclo-butene into 1,3 , buta-diene follows 1st order kinetics with respect to cyclobutene. The rate constant of the reaction can be determined by hydrogenting (reaction with H_{2} to remove unsaturation) the reaction mixture and different instant and measuring the amount of hydrogen required. In one such experiment two separate glass flasks of volume 1 litres. were added with same amount of cyclobutene and sealed. While one flask was broken after 138.6 min and the contents required 39.2 ml of H_{2} gas at 1 atm pressure and 273 K ,
where as other flask was broken after a very long time and the contents required 44.8 ml of H_{2} gas at 1 tam pressure and 273 K . From the information given above and given data, anwer the questions that follows:
ΔH_{f}° Cyclobutene $=175 \mathrm{~kJ} / \mathrm{mol}$
ΔH_{f}° Buta-1,3-diene $=125 \mathrm{~kJ} / \mathrm{mol}$
The rate at which heat is released in isomerisation of cyclobutene at $\mathrm{t}=69.3 \mathrm{~min}$
A. 50 kJ
B. $5 \mathrm{~J} / \mathrm{min}$
C. $0.25 \mathrm{~J} / \mathrm{min}$
D. $10 \mathrm{~J} / \mathrm{min}$

Answer: c

- View Text Solution

7. Dissociation of $\mathrm{NH}_{3}(\mathrm{~g})$ over solid platinum follows zero order kinetics.
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
The rate of reaction is $2 \times 10^{-3} \mathrm{Msec}^{-1}$. Also at 300 K , thermodynamic data are:
$\Delta H_{f}^{\circ} \mathrm{NH}_{2}=-45 \mathrm{~kJ} / \mathrm{mole}_{\mathrm{N}_{2}}^{\circ}=190 \mathrm{~J} / \mathrm{K}$ mole
$S_{\mathrm{NH}_{3}}^{\circ}=200 \mathrm{~J} / \mathrm{K}$ mole, $S_{\mathrm{H}_{2}}^{\circ}=130 \mathrm{~J} / \mathrm{K}$ mole
From the above data and the assumption that $\Delta H_{\mathrm{Rxn}}^{\circ}$ are independent of temperature, anwer the question that follows. [Take $R \times 300 \mathrm{k}$]]

What is the rate at which heat is absorbed at time $t=50 \mathrm{sec}$. if volume of vessel is kept at 1 litre?
A. $0.18 \mathrm{kJsec}^{-1}$
B. $0.36 \mathrm{kJsec}^{-1}$
C. 0.09 k
D. $0.17 \mathrm{~kJ} \mathrm{sec}-1$

Answer: d

8. Entropy change for reversible phase transition at constant pressure P and temperature T is calculated by the formula $\Delta S=\frac{\Delta H}{T}$, where ΔH is the enthalpy change for phase transition. For irreversible phase transition $\Delta S>\frac{\Delta H}{T}$.

Consider a phase transition.
$\operatorname{Sn}($ white, $s) \Leftrightarrow \operatorname{Sn}($ grey,s)
ΔH° at 1 atm and $300 \mathrm{~K}=-2 \mathrm{kJmol}^{-1}$
The equilibrium temperature at 1 atm is 400 K .
Assume $C_{p, m}$ of Sn (white,s) and Sn (grey,s) are equal.
ΔG° for above phase transition at 1 atm and 300 K is :
A. $-500 \mathrm{Jmol}^{-1}$
B. $-500 \mathrm{kJmol}^{-1}$
C. 0
D. $-100 \mathrm{Jmol}^{-1}$

Answer: a

9. The solubility on any substance in water may be classified as :

Molecular ability: $\mathrm{AB}(\mathrm{s} / \mathrm{I} / \mathrm{g}) \stackrel{a q}{\Leftrightarrow} \mathrm{AB}(\mathrm{aq})$
aq
Ionic solubility : $\mathrm{AB}(\mathrm{s} / \mathrm{l} / \mathrm{g}) \Leftrightarrow A^{+}(a q)+B^{-}(a q)$
For a substance $\mathrm{AB}(\mathrm{s})$ the following thermodynamic informations are available at 300 K :

Molecular solubility: $\Delta H^{\circ}=+20 \mathrm{kcal} / \mathrm{mol}$,
$\Delta S^{\circ}=+40 \mathrm{kcal} / \mathrm{K}-\mathrm{mole}$
Ionic solubility: $\Delta H^{\circ}=-25 \mathrm{kcal} / \mathrm{mol}$,
$\Delta S^{\circ}=-50 \mathrm{cal} / \mathrm{K}$-mole
The equilbrium constant for the ionic and molecular solubility of $\mathrm{AB}(\mathrm{s})$ in water at 300 K are respectively:
A. $e^{50 / 3}, e^{-40 / 3}$
B. $10^{50 / 3}, 10^{-40 / 3}$
C. $e^{-50 / 3}, e^{40 / 3}$
D. $10^{-50 / 3}, 10^{40 / 3}$

Answer: a

- View Text Solution

10. Equilibrium constant for a reaction can be obtained by kinetics approach or by thermodynamics approch. While from kinetics approach at equililbrium, the rate of forward and backward will be same, from thermodynamics approach Gibbs free energy will be minimized at equilibrium. Using this information and following thermodynamics values, answer the question that follow:
$\Delta G_{f}^{\circ} A(g)=-200 \mathrm{kcal} / \mathrm{mole}$
$\Delta G_{f}^{\circ} B(g)=-320 \mathrm{kcal} / \mathrm{mole}$
$\Delta G_{f}^{\circ} C(g)=-300 \mathrm{kcal} / \mathrm{mole}$
$\Delta G_{f}^{\circ} D(l)=-224.606 \mathrm{kcal} / \mathrm{mole}$
$\Delta G_{f}^{\circ} D(g)=-226.9 .9 \mathrm{kcal} /$ mole,
All values at 500K

Calculate equilibrium concentration of $\mathrm{B}(\mathrm{g})$ if $\mathrm{A}(\mathrm{g})$ at 10 bar, $\mathrm{B}(\mathrm{g})$ at 2 bar, $\mathrm{C}(\mathrm{g})$ at 20 bar is mixed with excess liquid D such that following

equilbrium gets established at 500K:

$A(g) B(g) \Leftrightarrow C(g)+D(g)$
A. 2 M
B. $\frac{2}{41.57}$
C. $1 M$
D. $\frac{1}{41.57}$

Answer: b

- View Text Solution

11. A gaseous sample is generally allowed to do only expansion/compression type of work against its surroundings. The work done in case of an irreversible expansion (in the intermediate stages of expansion/ compression the states of gases are not defined). The work done can be calculated using
$d w=-P_{\mathrm{ext}} d V$
while in case of reversible process the work done can be calculated using
$\mathrm{dw}=-\mathrm{PdV}$ where P is pressure of gas at some intermediate stages. Like for an isothermal reversible process, since
$P=\frac{n R T}{V}$, so,
$w=\int d w=-\int_{V_{i}}^{V_{f}} \frac{n R T}{V} \cdot d V=-n R T \quad \operatorname{In}\left(\frac{V_{f}}{V_{i}}\right)$
Since,dw=PdV, so magnitude of work done can also be calculated by calculating the area under the PV curve of the reversible process in PV diagram.

There are two sample of same gas initially at same initial state. Gases of both the sample are expanded. Ist sample using reversible isothermal process and IInd sample using reversible adiabatic process till final pressures of both the samples become half of the initial pressure, then :
A. Final volume of Ist sample < final volume of lind sample
B. final volume of IInd sample < final volume of Ist sample
C. final volumes will be equal
D. information insufficient

Answer: b
12. For an ideal monoatomic gas, an illustration of three different paths A , (B+C) and (D+E) from an initial state P_{1}, V_{1}, T_{1} to a final state P_{2}, V_{2}, T_{1} is shown in the given figure.

Path A represents a reversible isothermal from $P_{1} V_{1}$ to P_{2}, V_{2}, path ($\mathrm{B}+\mathrm{C}$) represent a reversible adiabatic expansion (B) from P_{1}, V_{1}, T_{1} to P_{3}, V_{2}, T_{2} followed by reversible heating of the gas at constant volume (C) from P_{3}, V_{2}, T_{2} to P_{2}, V_{2}, T_{1}. Path (D+E) represents a reversible expansion at constant pressure $P_{1}(D)$ from
P_{1}, V_{1}, T_{1} to P_{1}, V_{2}, T_{3} followed by a reversible cooling at constant volume $V_{2}(E)$ form P_{1}, V_{2}, T_{3} to P_{2}, V_{2}, T_{1}

What is ΔS for path (A)?
A. $n r \operatorname{In} \frac{V_{2}}{V_{1}}$
B. $-n r \operatorname{In} \frac{V_{2}}{V_{1}}$
C. zero
D. $n R\left(V_{2}-V_{1}\right)$

Answer: a

- View Text Solution

13. Entropy is a state function and its depends on two or three variable temperature (T), pressure(P) and volume (V). Entropy change for an ideal gas having number of moles (n) can be determined by the following equation:
$\Delta S=2.303 n C_{v} \log \left(\frac{T_{2}}{T_{1}}\right)+2.303 n R \quad \log \left(\frac{V_{2}}{V_{1}}\right)$
$\Delta S=2.303 n C_{p} \quad \log \left(\frac{T_{2}}{T_{1}}\right)+2.303 n R \quad \log \left(\frac{P_{2}}{P_{1}}\right)$
Since free energy change for a process or a chemical equation is a deciding factor of spontaneity, which can be obtained by using entropy change (ΔS) according to the expression, $\Delta G=\Delta H-T \Delta S$ at a temperature T .

An isobaric process having one mole of ideal gas has entropy change $23.03 \mathrm{~J} / \mathrm{K}$ for the temperature range $27^{\circ} \mathrm{C}$ to $327^{\circ} \mathrm{C}$. What would be the molar specific heat capacity (C_(v))?
A. $\frac{10}{\log 2} \mathrm{~J} / \mathrm{K} \mathrm{mol}$
B. $\frac{10}{\log 2}-8.3 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
C. $10 \times \log 2 \mathrm{~J} / \mathrm{K} \mathrm{mol}$
D. $10 \log 2+8.3 \mathrm{~J} / \mathrm{K} \mathrm{mol}^{-}$

Answer: b
14. For a process top be spontaneous, at constant temperature and pressure, there must be decreases in free energy of the system in the direction of the process, i.e. $\Delta G_{\text {P.T. }}<0 . \Delta_{\text {P.T. }}=0$ implies the equilibrium condition and $\Delta G_{P . T .}>0$ corresponding to non-spontaneity. Gibb's Helmholtz equation relates the free energy change to the enthalpy and entropy change of the process as :
$\Delta G_{\text {P.T. }}=\Delta H-T \Delta S$
The magnitude of ΔH does not change much with the change in temperature but the entropy factor $T \Delta S$ changes appreciably. Thus, spontaneity of a process depends very much on temperature.

For edothermic proces, both ΔH and ΔS are positive. The energy factor,the first factor of equation, opposes the spontaneity whereas entropy factor favours it . At low temperature, the favourable factor $T \Delta S$ will be small and may be less than $\Delta H, \Delta G$ will have positive value indicating the nonspontaneity of the process. On raising temperature, the factor $T \Delta S$ increases appreciably and when it exceeds $\Delta H, \Delta G$ would become negative and the process would be spontaneous.

For an exothermic process, both ΔH and ΔS would be negative. In this
case, the first factor of equation(i) favours the spontaneity whereas the second factor opposes it. At high temperature, when $T \Delta S>\Delta H, \Delta G$ will have positive value, showing thereby the non-spontaneity of the process. However, on decreasing temperature, the factore $T \Delta S<\Delta H, \Delta G$ becomes negative and the process occurs spontaneously. Thus, an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature.

For the reaction $25^{\circ} \mathrm{C}, \mathrm{X}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{XO}_{2}(\mathrm{~g}) \quad \Delta H=2.1 \mathrm{kcal}$ and $\Delta \mathrm{S}=20$ cal K^{-1}. The reaction would be:
A. spontaneous
B. non-spontaneous
C. at equilibrium
D. unpredictable

Answer: a

- Watch Video Solution

15. Standard Gibbs energy of reaction $\left(\Delta_{r} G^{\circ}\right)$ at a certain temperature can be completed as $\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T \delta_{r} S^{\circ}$ and the change in the value of $\Delta_{r} H^{\circ}$ and $\Delta_{r} S^{\circ}$ for a reaction with temperature can be computed as follows:
$\Delta_{r} H_{T_{2}}^{\circ}-\Delta_{r} C_{p}^{\circ}\left(T_{2}-T_{1}\right)$
$\Delta_{r} S_{T_{2}}^{\circ}-\Delta_{r} S_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ} \operatorname{In}\left(\frac{T_{2}}{T_{2}}\right)$
$\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}$
$\Delta_{r}^{\circ} G^{\circ}=-R T I n K_{e q}$
Consider the following reaction :

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

Given

$\Delta_{r} H^{\circ}\left(\mathrm{CH}_{3} \mathrm{Oh}, \mathrm{g}\right]=-201 \mathrm{KJ} / \mathrm{mol}$
$\Delta_{r} H^{\circ}(C O, g)=-114 K J / m o l$
$s^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}, \mathrm{g}\right)=240 \mathrm{~J} / \mathrm{mol}-\mathrm{k}$,
$S^{\circ}\left(\mathrm{H}_{2} g\right)=198 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$C_{p . m}^{\circ}\left(h_{2}\right)=28.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$C_{p . m(C O)}=29.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$C_{p . m}^{\circ}\left(\mathrm{CH}_{3_{\square}} \mathrm{OH}\right)=44 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
and $\operatorname{In}\left(\frac{320}{300}\right)=0.06$, all data at $300 K$.
$\Delta_{r} H^{\circ}$ at 300 K for the reaction is :
A. $-87 \mathrm{~K} \frac{\mathrm{~J}}{\mathrm{~m}} \mathrm{ol}$
B. $87 \mathrm{KJ} / \mathrm{mol}$
C. $172 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
D. none of these

Answer: a

- View Text Solution

16. Enthalpy of neutralzation is defined as the enthalpy change when 1 mole of acid /base is completely neutralized by base /acid in dilute solution.

For Strong acid and strong base neutralization net chemical change is
$\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta_{r} H^{\circ}=-55.84 \mathrm{KJ} / \mathrm{mol}$
$\Delta H_{\text {ionization }}^{\circ}$ of aqueous solution of strong acid and strong base is zero.
when a dilute solution of weak acid or base is neutralized, the enthalpy of neutralization is somewhat less because of the absorption of heat in the ionzation of the because of the absorotion of heat in the ionization of the weak acid or base ,for weak acid /base
$\Delta H_{\text {neutrlzation }}^{\circ}=\Delta H_{\text {ionization }}^{\circ}+\Delta_{r} H^{\circ}\left(H^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}\right)$
What is ΔH° for complate neutralization of strong diacidic base $\mathrm{A}(\mathrm{OH})_{2} \mathrm{byHNO}_{3}$?
A. $-55.84 K J$
B. -111.68 KJ
C. 55.84 KJ
D. none of these

Answer: b

17. 9.0 gm ice $0^{\circ} \mathrm{C}$ is mixed with 36 gm of water at $50^{\circ} \mathrm{C}$ in a thermally insulated container.using the following data, Answer the qusestion that follow:
$C_{p}\left(\mathrm{H}_{2} \mathrm{O}\right)=4.18 \mathrm{Jg}^{-1} k^{-1}, \Delta H_{\text {fusion }}($ ice $)=335 \mathrm{Jg}^{-1}$
$\Delta S_{i c e}{ }^{i s}$:
A. $11.04 \mathrm{JK}^{-1}$
B. $3.16 \mathrm{JK}^{-1}$
C. $14.2 \mathrm{JK}^{-1}$
D. $7.84 \mathrm{Jk}^{-1}$

Answer: c

- Watch Video Solution

18. Liquid water freezes at 273 K under external pressure of 1atm . The process is at eruilibrium
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$ at 273 K and 1 atm
however, it required to calculate the thermodynamic parameters of the fusion process occurring at same pressure and different temperature .

Using the following dat ,answer the questions thaat follow:
$d_{\text {ice }}=0.9 \mathrm{gm} /, d_{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}=1 \mathrm{gm} / \mathrm{cc}, 1 \mathrm{~L}-\mathrm{atm}=101.3 \mathrm{~J}$
$C_{p}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{s})\right]=36.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$C_{p}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=75.3 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$
$\Delta H_{\text {fusion }}=6008.2 \mathrm{~mol}^{-1}$. Alldataat273K.
$\Delta S_{\text {fusion }}$ at 263 K and 1atm will be :
A. $22.01 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $22.84 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $21.36 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $20.557 \mathrm{JK}^{-1} \mathrm{~mol}_{-1}$

Answer: d

- View Text Solution

19. A mixture of hydrogen gas and theortical amount of air at $25^{\circ} \mathrm{C}$ and a total pressure of 1atm, is exploded in a closed right vessel . If the process ossurs under adiabatic conditions then using the given data anwer the question that follow :

Given :
$C_{p}\left(\mathrm{~N}_{2}\right)$ and $C_{p}\left(\mathrm{H}_{2} \mathrm{O}\right)$ are8.3 and $11.3 \mathrm{caldeg}^{-1} \mathrm{~mol}^{-1}$ not necessarily in the same order.
$\Delta H_{f}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]=-57.8 \mathrm{kcal}$
[take air as $80 \% N_{2}, 20 \% O_{2}$ by volume.]
What will be the maxiimum temperature attained if the process occurs in adiabatic container?
A. $\cong 2940 K$
B. $\cong 2665 K$
C. $\cong 1900 \mathrm{~K}$
D. $\cong 298 K$

Answer: a

20. The commercial production of 'Water gas' utilzes the endothermic reaction
$\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
the heat required for this reaction is generated by combustion of coal to CO_{2} using stoichiometric amount of air ($79 \% \mathrm{~N}_{2}$ by volume and $21 \% \mathrm{O}_{2}$ by volume). the superheated steam undergoes 75% conversion . usingthe following data ,answer the question that follows :
$\Delta H_{f}[C O(g)]=-110.53 \mathrm{KJmol}$
$\Delta H_{f}\left[H_{2} \mathrm{O}(\mathrm{g})\right]=-241.81 \mathrm{KJ} / \mathrm{mol}$
$\Delta H_{f}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-314.0 \mathrm{Kj} / \mathrm{mol}$
Match the gas and percentage of each gas in one litre product gases.
Gas percentage
(a) $N_{2} \quad(p) \approx 23.1$
(b) $\mathrm{CO}_{2} \quad(Q) \approx 36.4$
(C) $\mathrm{H}_{2} \quad(\mathrm{R}) \approx 7.7$
(d) $\mathrm{H}_{2} \mathrm{O} \quad(S) \approx 9.7$
A. (A-P), (B-Q),(C-R),(D-S)
B. (A-Q), (B-p),(c-S),(D-R)
C. (A-R), (B-s), (C-P),(D-R)
D. $(A-Q),(B-S),(C-P),(D-R)$

Answer: d

- View Text Solution

21. Heat of neuralisation is amount of heat evolved or absorbed when $1 g$ - equivalent of an acid reacts with $1 g$ - equivalent of a base in dilute solution. If weak acid or weak bae are neutralised, the heat released during neutralisation is somewhat lesser than -13.7 kcal or -57.27 kJ . Het of neutralisation is also referred as heat of formation of water from H^{+} and OH^{-}ions i.e., $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-13.7 \mathrm{kcal}$.

200 mL of 0.1 MNaOH is mixed with 100 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$ in 1 experiment. In II experiment 100 mL of 0.1 MNaOH is mixed with 50 mL of $0.1 \mathrm{MH}_{2} \mathrm{SO}_{4}$. Select the correct statements:
(1) heat liberated in each of the two reactions is 274 cal .
(2) heat liberated in I is 274 cal and in II is 137 cal. ,brgt (3) temperature rise is I reaction is equal to the temperature rise in II.
(4) temperature rise in I reaction is equal to the temperaure rise in II
A. 1,3
B. 2,4
C. 2,3
D. 1,4

Answer: b

- Watch Video Solution

3

1. Fuel cells are the commercial cells which converts the chemical energy into electrical energy and differ from the normal batteries since fuel cells require constant source of fuel and oxygen to obtain electric current. However, they can be used to produce electricity as long as the supply of
fuel and oxygen is maintained. All fuel cells consist of an andoe and a cathode and an electrolyte which allows charges to move between the two sidez of the fuel cell. Electrons are drawn from anode to cathode through an external circuit and hence produce direct current electricity. Under practical cases, efficient of fuel cell is around $40-60 \%$ and in some cases it may be as high as $85-90 \%$

Some common examples of fuel cell are diect methanol fule cell (DMFC), Direct Borohydride fuel cell (DBFC), alkaline fuel cell (AFC) and others.While in DMFC the electrolyte is an ionomer (proton exchange monomer) in case of AFC and DBFC the electrolyte is an aqueous alkaline solution. Also, in case of DBFC the borohydride gets oxidised to metaborate, In all the above three cases, at cathode reduction of O_{2} (gas) occurs in a medium controlled by the electrolyte. Based on this information answer the electrolyte. Based on the information answer the question that follow :

Data
$\left(\Delta H_{f}^{\circ} \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})=-230 \mathrm{~kJ} / \mathrm{mole},, \Delta H_{f}^{\circ} \mathrm{CO}_{2}=-390 \mathrm{~kJ} / / \mathrm{"mole}^{\prime}\right)$,
(Delta_(f)^(@)H_(2)O(I) = - $285 \mathrm{~kJ} / /$ "mole",,S_(mH_(2)O(l))^(@)=130J//K
"mole"),(S_(mCO_(2(g))) = $210 \mathrm{~J} / / \mathrm{K}$ "mole",S_(mH_(2)O(I))^(@) = $110 \mathrm{~J} / / \mathrm{K}$
"mol"),(S_(mO_(2(g)))=206J//K "mole",„S_(mH_(2(g))) = 130J//K "mole"),("All data at" $\left.300 \mathrm{~K} .1 / \mathrm{F}=10^{\wedge}(-5) \mathrm{C}^{\wedge}(-1)\right): 3 I f \in A F C, \mathrm{H}_{-}(2)(\mathrm{g})^{\wedge}$ is used as anode then identify the options which are not correct for AFC.
A. Electricity and water will be obtained due to reaction
B. $E_{\text {cell }}^{\circ}$ at $300 K=1241 V$ approx.
C. Magnitude of electrical work obtained will be less than magnitude of heat liberated at constant pressure.
D. The cathodic reaction will be

$$
\mathrm{O}_{2}+4 e^{-} 4 \mathrm{H}^{+} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}
$$

Answer: b,d

- Watch Video Solution

2. It is observed that when acid and bases react, some energy is released due to neutralization reaction. While in case of strong acid and bases, the energy released in greater, in case of weaker acids of bases, energy
released will be lesser. The difference is attributed to energy required for ionization. From the above information and data below answer the questions that follow:
$\Delta H_{\text {neutrization } \mathrm{SA} / \mathrm{SB}}=-57.5 \mathrm{~kJ} /$ equivalent,
$\Delta H_{\text {ionization }}$ of $\mathrm{NH}_{4} \mathrm{OH}=10 \mathrm{~kJ} / \mathrm{mole}$,
$\Delta H_{\text {ionization }}$ of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=2 \mathrm{Ok} / \mathrm{mole}$.
What will be final temperature attained if all the heat release in neutralization of 1 L of 0.2 M NH 44 OH with 2 L of 0.1 M HCl increase the temperature of the final solution having density $0.95 \mathrm{gm} / \mathrm{ml}$ and specific heat capacity $=\frac{1}{3} \mathrm{~J} / \mathrm{gm}{ }^{\circ} \mathrm{C}$ if original temperature was $27^{\circ} \mathrm{C}$? Assume weak base to be completely unionized.
A. $310{ }^{\circ} \mathrm{C}$
B. 300 K
C. 310 K
D. 290 K

Answer: c

3. Cycloalkenes and alka- dienes are structural isomers and it is observed that the isomerisation reaction of cyclo-butene into 1,3, buta-diene follows 1st order kinetics with respect to cyclobutene. The rate constant of the reaction can be determined by hydrogenting (reaction with H_{2} to remove unsaturation) the reaction mixture and different instant and measuring the amount of hydrogen required. In one such experiment two separate glass flasks of volume 1 litres. were added with same amount of cyclobutene and sealed. While one flask was broken after 138.6 min and the contents required 39.2 ml of H_{2} gas at 1 atm pressure and 273 K , where as other flask was broken after a very long time and the contents required 44.8 ml of H_{2} gas at 1 tam pressure and 273 K . From the information given above and given data, anwer the questions that follows:
ΔH_{f}° Cyclobutene=175kJ $/ \mathrm{mol}$
ΔH_{f}° Buta-1,3-diene $=125 \mathrm{~kJ} / \mathrm{mol}$
which of the followin cannot be a possible value of volume of hydrogen
measured at 1 atm and 300K required if the first bottle is broken at any other tim?
A. 20 ml
B. 25 ml
C. 29 ml
D. 40 ml

Answer: a

- View Text Solution

4. Dissociation of $\mathrm{NH}_{3}(\mathrm{~g})$ over solid platinum follows zero order kinetics.
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
The rate of reaction is $2 \times 10^{-3} \mathrm{Msec}^{-1}$. Also at 300 K , thermodynamic data are:
$\Delta H_{f}^{\circ} \mathrm{NH}_{2}=-45 \mathrm{~kJ} / \mathrm{mole}_{\mathrm{N}_{2}}^{\circ}=190 \mathrm{~J} / \mathrm{K}$ mole
$S_{\mathrm{NH}_{3}}^{\circ}=200 \mathrm{~J} / \mathrm{K}$ mole, $S_{\mathrm{H}_{2}}^{\circ}=130 \mathrm{~J} / \mathrm{K}$ mole
From the above data and the assumption that $\Delta H_{\mathrm{Rxn}}^{\circ}$ are independent of
temperature, anwer the question that follows. [Take $R \times 300 \mathrm{k}$]]
The temperature at which dissociation of ammonia attains equilibrium at 1 bar pressure is given by?
A. 500 K
B. 400 K
C. 300 K
D. 200 K

Answer: a

- View Text Solution

5. The solubility on any substance in water may be classified as :

Molecular ability: $\mathrm{AB}(\mathrm{s} / \mathrm{l} / \mathrm{g}) \stackrel{a q}{\Leftrightarrow} \mathrm{AB}(\mathrm{aq})$
$a q$
Ionic solubility : $\mathrm{AB}(\mathrm{s} / \mathrm{l} / \mathrm{g}) \Leftrightarrow A^{+}(a q)+B^{-}(a q)$
For a substance $A B(s)$ the following thermodynamic informations are available at 300 K :

Molecular solubility: $\Delta H^{\circ}=+20 \mathrm{kcal} / \mathrm{mol}$,
$\Delta S^{\circ}=+40 \mathrm{kcal} / \mathrm{K}-\mathrm{mole}$
Ionic solubility: $\Delta H^{\circ}=-25 \mathrm{kcal} / \mathrm{mol}$,
$\Delta S^{\circ}=-50 \mathrm{cal} / \mathrm{K}-\mathrm{mole}$

When the temperature of aqueous solution $A B(s)$ is increased from 00 K then the extent of :
A. molecular as well as ionic solubility increases
B. molecular as well as ionic solubility decreases
C. molecular solubility increases but ionic solubility decrease
D. molecular solubility decreases but ionic solubility increases

Answer: c

D View Text Solution

6. A gaseous sample is generally allowed to do only expansion/compression type of work against its surroundings. The work done in case of an irreversible expansion (in the intermediate stages of
expansion/ compression the states of gases are not defined). The work done can be calculated using
$d w=-P_{\text {ext }} d V$
while in case of reversible process the work done can be calculated using $d w=-P d V$ where P is pressure of gas at some intermediate stages. Like for an isothermal reversible process, since
$P=\frac{n R T}{V}$,so,
$w=\int d w=-\int_{V_{i}}^{V_{f}} \frac{n R T}{V} \cdot d V=-n R T \quad \operatorname{In}\left(\frac{V_{f}}{V_{i}}\right)$
Since, $\mathrm{dw}=\mathrm{PdV}$, so magnitude of work done can also be calculated by calculating the area under the PV curve of the reversible process in PV diagram.

In the above problem:
A. work done by gas Ist sample > work done by gas in lind sample
B. work done by gas in lind sample > work done by gas in Ist sample
C. work done by gas Ist sample=work done by gas in lind sample
D. none of the above

D View Text Solution

7. For an ideal monoatomic gas, an illustration of three different paths A,
(B+C) and (D+E) from an initial state P_{1}, V_{1}, T_{1} to a final state P_{2}, V_{2}, T_{1} is shown in the given figure .

Path A represents a reversible isothermal from $P_{1} V_{1}$ to P_{2}, V_{2}, path ($\mathrm{B}+\mathrm{C}$) represent a reversible adiabatic expansion (B) from P_{1}, V_{1}, T_{1} to P_{3}, V_{2}, T_{2} followed by reversible heating of the gas at
constant volume (C) from P_{3}, V_{2}, T_{2} to P_{2}, V_{2}, T_{1}. Path (D+E) represents a reversible expansion at constant pressure $P_{1}(D)$ from P_{1}, V_{1}, T_{1} to P_{1}, V_{2}, T_{3} followed by a reversible cooling at constant volume $V_{2}(E)$ form P_{1}, V_{2}, T_{3} to P_{2}, V_{2}, T_{1}

What is ΔS for $(\mathrm{D}+\mathrm{E})$?
A. zero
B. $\int_{T_{3}}^{T_{1}} \frac{C_{V}(T)}{T} d t$
C. $-n R \operatorname{In} \frac{V_{2}}{V_{1}}$
D. $n R \operatorname{In} \frac{V_{2}}{V_{1}}$

Answer: d

- View Text Solution

8. Entropy is a state function and its depends on two or three variable temperature (T), pressure(P) and volume (V). Entropy change for an ideal gas having number of moles (n) can be determined by the following

equation:

$\Delta S=2.303 n C_{v} \quad \log \left(\frac{T_{2}}{T_{1}}\right)+2.303 n R \quad \log \left(\frac{V_{2}}{V_{1}}\right)$
$\Delta S=2.303 n C_{p} \log \left(\frac{T_{2}}{T_{1}}\right)+2.303 n R \quad \log \left(\frac{P_{2}}{P_{1}}\right)$
Since free energy change for a process or a chemical equation is a deciding factor of spontaneity, which can be obtained by using entropy change (ΔS) according to the expression, $\Delta G=\Delta H-T \Delta S$ at a temperature T .

For a reaction $M_{2} O(s) \rightarrow 2 M(s)+\frac{1}{2} O_{2}(g), \Delta H=30 \quad \mathrm{~kJ} / \mathrm{mol}$ and ΔS $=0.07 \mathrm{~kJ} / \mathrm{K}-\mathrm{mol}$ at 1 atm . Calculate upto which temperature the reaction would not be spontaneous.
A. $T>428.6 K$
B. $T>300.8 K$
C. $T<300.8 K$
D. $T<428.6 K$

Answer: d

9. For a process top be spontaneous, at constant temperature and pressure, there must be decreases in free energy of the system in the direction of the process, i.e. $\Delta G_{\text {P.T. }}<0 . \Delta_{\text {P.T. }}=0$ implies the equilibrium condition and $\Delta G_{P . T .}>0$ corresponding to non-spontaneity.

Gibb's Helmholtz equation relates the free energy change to the enthalpy and entropy change of the process as :
$\Delta G_{\text {P.T. }}=\Delta H-T \Delta S$.
The magnitude of ΔH does not change much with the change in temperature but the entropy factor $T \Delta S$ changes appreciably. Thus, spontaneity of a process depends very much on temperature.

For edothermic proces, both ΔH and ΔS are positive. The energy factor,the first factor of equation, opposes the spontaneity whereas entropy factor favours it . At low temperature, the favourable factor $T \Delta S$ will be small and may be less than $\Delta H, \Delta G$ will have positive value indicating the nonspontaneity of the process. On raising temperature, the factor $T \Delta S$ increases appreciably and when it exceeds $\Delta H, \Delta G$ would become negative and the process would be spontaneous.

For an exothermic process, both ΔH and ΔS would be negative. In this case, the first factor of equation(i) favours the spontaneity whereas the second factor opposes it. At high temperature, when $T \Delta S>\Delta H, \Delta G$ will have positive value, showing thereby the non-spontaneity of the process. However, on decreasing temperature, the factore $T \Delta S<\Delta H, \Delta G$ becomes negative and the process occurs spontaneously. Thus, an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature.

For the reaction at $298 \mathrm{~K}, 2 A+B \rightarrow C \quad \Delta H=100 \mathrm{kcal}$ and $\Delta S=0.050 \mathrm{kcal}$ K^{-1}. If ΔH and ΔS are assumed to be constant over the temperature range, just above what temperature will be reaction become spontaneous?
A. 1000 K
B. 1500 K
C. 2000 K
D. 2500 K

Answer: c

10. Standard Gibbs energy of reaction $\left(\Delta_{r} G^{\circ}\right)$ at a certain temperature can be completed as $\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T \delta_{r} S^{\circ}$ and the change in the value of $\Delta_{r} H^{\circ}$ and $\Delta_{r} S^{\circ}$ for a reaction with temperature can be computed as follows:

$$
\Delta_{r} H_{T_{2}}^{\circ}-\Delta_{r} C_{p}^{\circ}\left(T_{2}-T_{1}\right)
$$

$\Delta_{r} S_{T_{2}}^{\circ}-\Delta_{r} S_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ} \operatorname{In}\left(\frac{T_{2}}{T_{2}}\right)$
$\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}$
$\Delta_{r}^{\circ} G^{\circ}=-R T I n K_{e q}$
Consider the following reaction :
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
Given
$\Delta_{r} H^{\circ}\left(\mathrm{CH}_{3} \mathrm{Oh}, \mathrm{g}\right]=-201 \mathrm{KJ} / \mathrm{mol}$
$\Delta_{r} H^{\circ}(C O, g)=-114 K J / m o l$
$s^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}, \mathrm{g}\right)=240 \mathrm{~J} / \mathrm{mol}-\mathrm{k}$,
$\mathrm{S}^{\circ}\left(\mathrm{H}_{2} \mathrm{~g}\right)=198 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$C_{p . m}^{\circ}\left(h_{2}\right)=28.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$C_{p . m(C O)}=29.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$C_{p . m}^{\circ}\left(\mathrm{CH}_{3_{\square}} \mathrm{OH}\right)=44 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
and $\operatorname{In}\left(\frac{320}{300}\right)=0.06$, all data at 300 K .
$\Delta_{r} S^{\circ}$ at 320 K is:
A. $155.18 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
B. $150.02 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
C. 172J/mol-K
D. none of these

Answer: d

- View Text Solution

11. Enthalpy of neutralzation is defined as the enthalpy change when 1 mole of acid / base is completely neutralized by base /acid in dilute solution.

For Strong acid and strong base neutralization net chemical change is
$\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta_{r} H^{\circ}=-55.84 \mathrm{KJ} / \mathrm{mol}$
$\Delta H_{\text {ionization }}^{\circ}$ of aqueous solution of strong acid and strong base is zero.
when a dilute solution of weak acid or base is neutralized, the enthalpy of neutralization is somewhat less because of the absorption of heat in the ionzation of the because of the absorotion of heat in the ionization of the weak acid or base ,for weak acid /base
$\Delta H_{\text {neutrlzation }}^{\circ}=\Delta H_{\text {ionization }}^{\circ}+\Delta_{r} H^{\circ}\left(H^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}\right)$
under same conditions , how many mL of 0.1 m NaOH and $0.05 \mathrm{M} \mathrm{H}_{2} \mathrm{~A}$ (strong diprotic acid) solution should be mixed for a total volume of 100 mL to producce the hight rise in temperature ?
A. $25: 75$
B. $50: 50$
C. 75: 25
D. 66.66: 33.33

Answer: b

12. 9.0 gm ice $0^{\circ} \mathrm{C}$ is mixed with 36 gm of water at $50^{\circ} \mathrm{C}$ in a thermally insulated container.using the following data, Answer the qusestion that follow :
$C_{p}\left(\mathrm{H}_{2} \mathrm{O}\right)=4.18 \mathrm{Jg}^{-1} k^{-1}, \Delta H_{\text {fusion }}($ ice $)=335 \mathrm{Jg}^{-1}$
$\Delta S_{\text {water }}$ is:
A. $-12.64 J^{-1}$
B. $-0.34 J K J^{-1}$
C. $-5.42 \mathrm{JK}^{-1}$
D. $12.64 \mathrm{JK}^{-1}$

Answer: a

- Watch Video Solution

13. Liquid water freezes at 273 K under external pressure of 1atm . The process is at eruilibrium
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{S}) a t 273 \mathrm{~K}$ and 1 atm
however, it required to calculate the thermodynamic parameters of the fusion process occurring at same pressure and different temperature.

Using the following dat ,answer the questions thaat follow:
$d_{\text {ice }}=0.9 \mathrm{gm} /, d_{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}=1 \mathrm{gm} / \mathrm{cc}, 1 \mathrm{~L}-\mathrm{atm}=101.3 \mathrm{~J}$
$C_{p}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{s})\right]=36.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$C_{p}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=75.3 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$
$\Delta H_{\text {fusion }}=6008.2 \mathrm{~mol}^{-1}$. Alldataat273K.
At 1 atm and at different temperature given below Match the conditions and the temperature for the ' fusion ' process.

Condition Temperature
(a)Spontaneous
(P)273K
(B)Atequilibrium
(Q)260K
(c)Not feasible
(R)280k
A. (A-R), (B-P), (C-Q)
B. (A-Q),(B-P),(C-R)
C. (A-R), (B-Q),(C-P)
D. $(A-P),(B-Q),(C-R)$

Answer: a

- View Text Solution

14. A mixture of hydrogen gas and theortical amount of air at $25^{\circ} \mathrm{C}$ and a total pressure of 1atm, is exploded in a closed right vessel. If the process ossurs under adiabatic conditions then using the given data anwer the question that follow :

Given :
$C_{p}\left(\mathrm{~N}_{2}\right)$ and $C_{p}\left(\mathrm{H}_{2} \mathrm{O}\right)$ are8.3 and $11.3 \mathrm{caldeg}^{-1} \mathrm{~mol}^{-1}$ not necessarily in the same order.
$\Delta H_{f}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]=-57.8 \mathrm{kcal}$
[take air as $80 \% N_{2}, 20 \% O_{2}$ by volume.]
What will be the final pressure in atm?
A. $\cong 8.5$
B. $\cong 7.6$
C. $\cong 5.46$
D. $\cong 0.85$

Answer: a

- Watch Video Solution

4

1. A gaseous sample is generally allowed to do only expansion/compression type of work against its surroundings. The work done in case of an irreversible expansion (in the intermediate stages of expansion/ compression the states of gases are not defined). The work done can be calculated using
$d w=-P_{\mathrm{ext}} d V$
while in case of reversible process the work done can be calculated using $d w=-P d V$ where P is pressure of gas at some intermediate stages. Like for an isothermal reversible process, since
$P=\frac{n R T}{V}$, so,
$w=\int d w=-\int_{V_{i}}^{V_{f}} \frac{n R T}{V} \cdot d V=-n R T \quad \operatorname{In}\left(\frac{V_{f}}{V_{i}}\right)$

Since,dw=PdV, so magnitude of work done can also be calculated by calculating the area under the PV curve of the reversible process in PV diagram.

If four identical samples of an ideal gas initially at similar state $\left(P_{0}, V_{0}, T_{0}\right)$ are allowed to expand to double their volumes by four different processes.

(P)By isothermal irreversible process
(Q) By reversible process having equation $P^{2} V=$ constant
(R) By reversible adiabatic process
(S)By irreversible adiabatic expansion against constant external pressure.

Then in the graph shown the final state is represented by four different points then, the correct match can be :
A. $1-P, 2-Q, 3-R, 4-S$
B. $1-Q, 2-P, 3-S, 4-R$
C. $2-R, 3-Q, 4-P, 1-S$
D. 3-Q,1-P,2-S,4-R`

Answer: b

- View Text Solution

2. For a process top be spontaneous, at constant temperature and pressure, there must be decreases in free energy of the system in the direction of the process, i.e. $\Delta G_{\text {P.T. }}<0 . \Delta_{\text {P.T. }}=0$ implies the equilibrium condition and $\Delta G_{P . T .}>0$ corresponding to non-spontaneity. Gibb's Helmholtz equation relates the free energy change to the enthalpy and entropy change of the process as :
$\Delta G_{P . T .}=\Delta H-T \Delta S$

The magnitude of ΔH does not change much with the change in temperature but the entropy factor $T \Delta S$ changes appreciably. Thus, spontaneity of a process depends very much on temperature.

For edothermic proces, both ΔH and ΔS are positive. The energy factor,the first factor of equation, opposes the spontaneity whereas entropy factor favours it . At low temperature, the favourable factor $T \Delta S$ will be small and may be less than $\Delta H, \Delta G$ will have positive value indicating the nonspontaneity of the process. On raising temperature, the factor $T \Delta S$ increases appreciably and when it exceeds $\Delta H, \Delta G$ would become negative and the process would be spontaneous.

For an exothermic process, both ΔH and ΔS would be negative. In this case, the first factor of equation(i) favours the spontaneity whereas the second factor opposes it. At high temperature, when $T \Delta S>\Delta H, \Delta G$ will have positive value, showing thereby the non-spontaneity of the process. However, on decreasing temperature, the factore $T \Delta S<\Delta H, \Delta G$ becomes negative and the process occurs spontaneously. Thus, an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature.

A reaction has a value of $\Delta H=-40 \mathrm{kcal}$ at 400 K . Above 400 K , the reaction
is spontaneous, below this temperature, it is not. The value of ΔG and ΔS at 400K are respectively:
A. $0,-0.1, \mathrm{calK}^{-1}$
B. $0,100 \mathrm{calK}^{-1}$
C. - 10kcal, - 100calK ${ }^{-1}$
D. $0,-100 \mathrm{calK}^{-1}$

Answer: d

- Watch Video Solution

3. Standard Gibbs energy of reaction $\left(\Delta_{r} G^{\circ}\right)$ at a certain temperature can be completed as $\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T \delta_{r} S^{\circ}$ and the change in the value of $\Delta_{r} H^{\circ}$ and $\Delta_{r} S^{\circ}$ for a reaction with temperature can be computed as follows:
$\Delta_{r} H_{T_{2}}^{\circ}-\Delta_{r} C_{p}^{\circ}\left(T_{2}-T_{1}\right)$
$\Delta_{r} S_{T_{2}}^{\circ}-\Delta_{r} S_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ} \operatorname{In}\left(\frac{T_{2}}{T_{2}}\right)$
$\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}$
$\Delta_{r}^{\circ} G^{\circ}=-R T I n K_{e q}$
Consider the following reaction :

$$
\mathrm{CO}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{~g})
$$

Given

$\Delta_{r} H^{\circ}\left(\mathrm{CH}_{3} \mathrm{Oh}, \mathrm{g}\right]=-201 \mathrm{KJ} / \mathrm{mol}$
$\Delta_{r} H^{\circ}(C O, g)=-114 \mathrm{KJ} / \mathrm{mol}$
$s^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}, \mathrm{g}\right)=240 \mathrm{~J} / \mathrm{mol}-\mathrm{k}$,
$S^{\circ}\left(\mathrm{H}_{2} \mathrm{~g}\right)=198 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$C_{p . m}^{\circ}\left(h_{2}\right)=28.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$C_{p . m(C O)}=29.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$C_{p . m}^{\circ}\left(\mathrm{CH}_{3_{\square}} \mathrm{OH}\right)=44 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
and $\operatorname{In}\left(\frac{320}{300}\right)=0.06$, all data at 300 K .
$\Delta_{r} H^{\circ}$ at 320 K is :
A. $-288.86 \mathrm{KJ} / \mathrm{mol}$
B. $-289.1 \mathrm{KJ} / \mathrm{mol}$
C. $-87.86 \mathrm{~K} \frac{\mathrm{~J}}{\mathrm{~m}}$ ol
D. none of these

Answer: c

- View Text Solution

4. 9.0 gm ice $0^{\circ} \mathrm{C}$ is mixed with 36 gm of water at $50^{\circ} \mathrm{C}$ in a thermally insulated container.using the following data, Answer the qusestion that follow :
$C_{p}\left(\mathrm{H}_{2} \mathrm{O}\right)=4.18 \mathrm{Jg}^{-1} \mathrm{k}^{-1}, \Delta H_{\text {fusion }}($ ice $)=335 \mathrm{Jg}^{-1}$
What I dthe total entropy change in the process?
A. $-1.56 \mathrm{JK}^{-1}$
B. $-1.60 \mathrm{Jk}^{-1}$
C. $1.56 \mathrm{JK}^{-1}$
D. $1.60 \mathrm{JK}^{-1}$

Answer: c

5. Liquid water freezes at 273K under external pressure of 1atm . The process is at eruilibrium
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$ at273K and 1atm
however, it required to calculate the thermodynamic parameters of the fusion process occurring at same pressure and different temperature .

Using the following dat ,answer the questions thaat follow:
$d_{i c e}=0.9 \mathrm{gm} /, d_{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}=1 \mathrm{gm} / \mathrm{cc}, 1 \mathrm{~L}-\mathrm{atm}=101.3 \mathrm{~J}$
$C_{p}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{s})\right]=36.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$C_{p}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=75.3 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$
$\Delta H_{\text {fusion }}=6008.2 \mathrm{~mol}^{-1}$. Alldataat273K.
for the fusion process at 263 k , match the conditiions with the pressure .
Condition Temperature
(a)Spontaneous (P)1atm
(B)Atequilibrium
(Q)1060atm
(c)Not feasible
(R)2000atm
A. (A-Q),(B-R),(C-P)
B. $(A-P),(B-Q),(C-R)$
C. (A-R),(B-Q),(C-A)
D. (A-P),(B-R),(C-Q)

Answer: c

- View Text Solution

6. A mixture of hydrogen gas and theortical amount of air at $25^{\circ} \mathrm{C}$ and a total pressure of 1atm, is exploded in a closed right vessel. If the process ossurs under adiabatic conditions then using the given data anwer the question that follow :

Given :
$C_{p}\left(N_{2}\right)$ and $C_{p}\left(\mathrm{H}_{2} \mathrm{O}\right)$ are8.3 and $11.3 \mathrm{caldeg}^{-1} \mathrm{~mol}^{-1}$ not necessarily in the same order.
$\Delta H_{f}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]=-57.8 \mathrm{kcal}$
[take air as $80 \% N_{2}, 20 \% O_{2}$ by volume.]
If at a initial temperature $T_{1},\left(e_{1}\right)$ is initial energy and higher final temperature $, T_{2}, E_{2}$ is the final internal energy, then which option is true?
A. $E_{1}>E_{2}$
B. $E_{2}>E_{1}$
C. $E_{1}=E_{2}$
D. can't be compared from the given data

Answer: c

- Watch Video Solution

5

1. A gaseous sample is generally allowed to do only expansion/compression type of work against its surroundings. The work done in case of an irreversible expansion (in the intermediate stages of expansion/ compression the states of gases are not defined). The work done can be calculated using
$d w=-P_{\text {ext }} d V$
while in case of reversible process the work done can be calculated using
$\mathrm{dw}=-\mathrm{PdV}$ where P is pressure of gas at some intermediate stages. Like for an isothermal reversible process, since
$P=\frac{n R T}{V}$,so,
$w=\int d w=-\int_{V_{i}}^{V_{f}} \frac{n R T}{V} \cdot d V=-n R T \quad \operatorname{In}\left(\frac{V_{f}}{V_{i}}\right)$
Since, $d w=P d V$, so magnitude of work done can also be calculated by calculating the area under the PV curve of the reversible process in PV diagram.

Two samples (initially under same states) of an idea gas are first allowed to expand to doubletheir volume using irreversible isothermal expansion against constant external pressure, then samples are turned back to their original volume first by reversible process having equation $P V^{2}=$ constant
then:

A. final temperature of both samples will be equal
B. final temperature of first sample will be greater than of second sample
C. Final temperature of second sample will be greater than of first sample
D. none of the above

- View Text Solution

2. For a process top be spontaneous, at constant temperature and pressure, there must be decreases in free energy of the system in the direction of the process, i.e. $\Delta G_{P . T .}<0 . \Delta_{P . T .}=0$ implies the equilibrium condition and $\Delta G_{P . T .}>0$ corresponding to non-spontaneity. Gibb's Helmholtz equation relates the free energy change to the enthalpy and entropy change of the process as :
$\Delta G_{P . T .}=\Delta H-T \Delta S$
The magnitude of ΔH does not change much with the change in temperature but the entropy factor $T \Delta S$ changes appreciably. Thus, spontaneity of a process depends very much on temperature.

For edothermic proces, both ΔH and ΔS are positive. The energy factor,the first factor of equation, opposes the spontaneity whereas entropy factor favours it. At low temperature, the favourable factor $T \Delta S$ will be small and may be less than $\Delta H, \Delta G$ will have positive value indicating the nonspontaneity of the process. On raising temperature, the factor $T \Delta S$ increases appreciably and when it exceeds $\Delta H, \Delta G$ would become
negative and the process would be spontaneous.
For an exothermic process, both ΔH and ΔS would be negative. In this case, the first factor of equation(i) favours the spontaneity whereas the second factor opposes it. At high temperature, when $T \Delta S>\Delta H, \Delta G$ will have positive value, showing thereby the non-spontaneity of the process. However, on decreasing temperature, the factore $T \Delta S<\Delta H, \Delta G$ becomes negative and the process occurs spontaneously. Thus, an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature.

The enthalpy change for a certain reaction at 300 K is $-15.0 \mathrm{k} \mathrm{cal} \mathrm{mol}^{-1}$. The entropy change under these conditions is $-7.2 \mathrm{cal}^{-1} \mathrm{~mol}^{-1}$. The free energy change for the reaction and its spontaneous/non-spontaneous character will be :
A. $-12.84 \mathrm{kcal} \mathrm{mol}^{-1}$, spontaneous
B. $12.84 \mathrm{kcal} \mathrm{mol}^{-1}$, non-spontaneous
C. $-17.16 \mathrm{kcal} \mathrm{mol}^{-1}$,spontaneous
D. none of the above

D Watch Video Solution

3. Standard Gibb's energy of reaction $\left(\Delta_{r} G^{\circ}\right)$ at a certain temperature can be computed $\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}$ and the change in the value of $\Delta_{r} H^{\circ}$ and $\Delta_{r} S^{\circ}$ for a reaction with temperature can be computed as follows :

$$
\Delta_{r} H_{T_{2}}^{\circ}-\Delta_{r} H_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ}\left(T_{2}-T_{1}\right)
$$

$\Delta_{r} S_{T_{2}}^{\circ}-\Delta_{r} S_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ} \ln .\left(\frac{T_{2}}{T_{1}}\right)$

$$
\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}
$$

and by $\Delta_{r} G^{\circ}=-\mathrm{RT} \ln K_{e q}$.
Consider the following reaction : $\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
Given : $\Delta_{f} H^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}, g\right)=-201 \mathrm{~kJ} / \mathrm{mol}, \quad \Delta_{f} H^{\circ}(\mathrm{CO}, g)=-114 \mathrm{~kJ} / \mathrm{mol}$ $S^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}, g\right)=240 \mathrm{~J} / \mathrm{K}-\mathrm{mol}, S^{\circ}\left(\mathrm{H}_{2}, g\right)=29 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$S^{\circ}(C O, g)=198 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, C_{p, m}^{\circ}\left(H_{2}\right)=28.8 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$C_{p, m}^{\circ}(\mathrm{CO})=29.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K}, C_{p, m}^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}\right)=44 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
and $\ln \left(\frac{320}{300}\right)=0.06$, all data at 300 K
$\Delta_{r} G^{\circ}$ at 320 K is :
A. $-48295.2 \mathrm{KJ} / \mathrm{mol}$
B. $-240.85 \mathrm{KJ} / \mathrm{mol}$
C. $240.85 \mathrm{KJ} / \mathrm{mol}$
D. $-81.91 \mathrm{KJ} / \mathrm{mol}$

Answer: d

D Watch Video Solution

Reasoning type

1. Statement-1: Adiabatic free expansion of any subatance in a cosed system will not cause any change in temperature of the substance.

Statement-2: In adiabatic free expansion of any substance in a closed system, internal energy will remain constant.
A. Statement-1 is True, Statement -2 is True, Statement- 2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: d

- Watch Video Solution

2. Statement-1: The heat absorbed during the adiabatic expansion of an a ideal gas against vacuum is zero.

Statement-2:The volume occupied by an ideal gas is zero.
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: c

- Watch Video Solution

3. Consider a reaction :
$A(g)+2 b(g) \rightarrow C(g)$
$\Delta H_{300}^{\circ}=40 \mathrm{KJ}, \Delta S_{300}^{\circ}=-400 \mathrm{~J} / \mathrm{K}$
Given : ΔH° and ΔS° are temperature indendent.
Statement-1: The above reaction will be non-spontaneous if only A and B both are at standard conditions .

Statement-2: The above reaction will be non-spontaneous if only A and B both are at Standard conditions .
A. Statement-1 is True, Statement -2 is True, Statement- 2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: d

D Watch Video Solution

4. Statement-1: The enthalpy of formation of $\mathrm{H}_{-}(2) \mathrm{O}(\mathrm{I})$ is greater than of $\mathrm{H}_{-}(2) \mathrm{O}(\mathrm{g})$ in magnitude.

Statement -2: Enthalpy chnge Is negative for the condensation reaction

$$
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: a

- Watch Video Solution

5. Statement -1: heat of neutralistion of perchoric acid , HClO_{4} with NaOH is same as that of Hcl with NaOH .

Statement -2: Both HCl and HClO_{4} are strong acid
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct
explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: a

- Watch Video Solution

6. Statement -1 : When a gas at high pressure expands against vaccum, the magnitude of work done is maximum.

Statement -2: Work done in expansion deends upon the pressure inside the gas and increase in volume.
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

- Watch Video Solution

7. Statement -1 in the following reaction :
$C(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta H=\Delta U-R T$
Statement -2 : ΔH Is related to ΔU by the equation,
$\Delta H=\Delta+\Delta n_{g} R T$
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: d

8. Staement -1 : The heat absorbed during the isothermal expansion of an ideal gas againt vacuum is zero .

Statement -2: The volume occupied by the molecules of an ideal gas is zero.
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: b

- Watch Video Solution

9. Staetement -1: The magniyude of the work involed in an isothermal expansion is greater than that involved in an adiabatic expansion.

Statement -2: P-v cure (pon y -axas and V on X -axas) decrease more repidly for reversible asiabatic expansion compared to reversible isothermal expansion starting from same initial state.
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: a

- Watch Video Solution

10. Statement -1: Entropy change in reversible adiabatic expansion of an ideal gas is zero.

Statement-2: The increase in entropy due to volume increase just compensates the decrease in entropy due to fall in temperature.
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: a

- Watch Video Solution

11. Statement -1: The Standard free energy changes of all spontaneously occurring reactions are negative .

Statement-2: The standard free energies of the elements in their standard states at 1 bar and 2985 K aare taken aszero.
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct
explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: b

- Watch Video Solution

12. Statement -1: Enthalpy and entropy of any elements substance in the standard states are taken as zero .

Statement-2: At absolute zero , partiles of the perfectly crystalline substance become completely motioness.
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: d

- Watch Video Solution

13. Statement-1: A reaction which is spontaneous and accompained by decrease of randomness must be exothermic.

Statement -2: All exothermic reaction that are accomained by decrease of randomness.
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: c

- Watch Video Solution

14. Statement -1: Many endothermic reactions that are not spontaneous at room temperature become spontaneous at high temperature.

Statement-2: ΔH° of the endothermic recation increases with increases with increase in temperature.
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: b

- Watch Video Solution

15. Statement-1: Decrease of free energy during the process under constant temperature and pressure provides a measure of its spontaneity.

Statement -2: A spontaneous change must have +ve sign of $\Delta S_{\text {system }}$.
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: c

- Watch Video Solution

16. Statement -1: For every chmical reaction at equilibrium , standard Gidds energy of reaction is zero

Statement-2: At constant temperature and pressure, chemical reactions are spontaneious in the direction of decreasing gibbs energy.
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: d

- Watch Video Solution

17. Statement-1: There is a natural asymmetry between work to heat and converting heat to work.

Statement-2: No process is possible in which the sole result is the absorption of heat from a reservoir and its complaete conversion into work.
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: a

- Watch Video Solution

18. Statement-1: A reaction with $K_{p}=\frac{1}{1.005} \mathrm{~atm}^{2}$ is expected to be spontaneous with negative conditions.

Statement-2: Reactions with negative $\Delta G_{\text {reaction }}^{\circ}$ will be spontaneous at standard condition .
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: a

- Watch Video Solution

19. Statement-1: Combustion of all organic compounds is an exothermic reaction.

Statement-2: The enthalpy of formation of all elements in their standard state are zero.
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: b

- Watch Video Solution

20. Statement-1:A liquid crystallises into a solid and is accompainied by decrease in entropy.

Statement -2: In crystals, moles cules organise in an ordered manner.
A. Statement-1 is True, Statement -2 is True, Statement-2 is a correct explanation for Statement-1.
B. Statement -1 is True ,Starement -2 is True ,Statement-2 is not a correct explanation for Statement-1
C. Statement-1 is True ,Statement-2 is False.
D. Statement-1 is False ,Statement-2 is True.

Answer: a

- Watch Video Solution

1. Which of the following statement (s) is /are true ?
A. for any substance $\Delta S_{\text {vap }}^{\circ}>\Delta S_{\text {fusion }}^{\circ}$
B. Greater amount of heat will be requried to dissociate ammmonia gas into nitrogen and hydrogrn gas at constant pressue condition at same temperature
C. The reaction having rate law $=K[A]^{2}[B]^{1}$ will follow first order kinetics if concentration of $[B]$ is kept constant .
D. Normally of KMno_{4} in alkaline medium may be either equally to molarity or may be three times molarity

Answer: a,b,d

- Watch Video Solution

2. Which of the following option(s) will show a decrease in Gibbs free energy ?
A. Combustion of propane at 1 bar and 500 K .
B. Vapourisation of any liquild at 1 atm and above its normal bolling point.
C. Fusion of $\mathrm{H}_{2} \mathrm{O}$ at 1 atm and $0^{\circ} \mathrm{C}$ if its normal melting point is $0^{\circ} \mathrm{C}$.
D. Vapourisation of $\mathrm{H}_{2} \mathrm{O}$ at $100^{\circ} \mathrm{Cand} 1$ bar if its normal boling ponts is $100^{\circ} \mathrm{C}$.

Answer: a,b,d

- Watch Video Solution

3. The enthalpy and entropy change of trimerization of gas phase $\left(3 A(g) \rightarrow A_{3}(g)\right)$ at 300 K are $-100 \mathrm{~K} / \mathrm{J}$ mole amd $-400 \mathrm{~J} / \mathrm{Kmole}$ respectively . If the bolling points of A and A_{3} are 300 K and 400 K respectively .

Given : $C_{\mathrm{pm}_{A_{3}(g)}}=C_{\mathrm{pm}_{A_{3}(l)}}, d_{A(l)}=1.2 \mathrm{~g} / \mathrm{ml}$,
$d_{A_{3(l)}}=1.5 \mathrm{~g} / \mathrm{ml}$, molar masss of $\mathrm{A}=20$ garm
Assume : Density of $A_{3}(l)$ and $A(l)$ are independent of pressure.
A. ΔH " for trimerisation in liquid phases "

$$
\text { at } 300 \mathrm{~K}=-125 \mathrm{KJmol}^{-1}
$$

B. ΔS "for trimerisation in liquid phase "

$$
\text { at } 300 \mathrm{~K}^{=}=-275 \mathrm{kJmol}^{-1}
$$

C. At standard state of $300 K \Delta G$ of the reaction :
$3 A(l) \rightarrow A_{3}(l)$ is7500J
D. The equilibrium pressure of the reaction

$$
3(A) \rightarrow A_{3}(l) \text { is } 7.501 \times 10^{8} \mathrm{~Pa} \text { at } 300 \mathrm{~K}
$$

Answer: c,d

- View Text Solution

4. A substance A has the following variation of vapour presesure with temperature for its solid state and liquild state. Indentify the options which are correct :

Date : For solid A: $\log _{10} P=4-\frac{200}{T}$

For liquind $\mathrm{A}: \log _{10} P=3.48-\frac{1500}{T}$
where P is in mm of Hg and T in K .
A. Enthalpy of vapourisation and enthalpy of fusion will be temperature independent.
B. ΔH_{\subset}. will be approximately $9.212 \mathrm{kcal} / \mathrm{mol}$.
C. $\Delta H_{\text {fusion }}$ will be approximately $2.303 \mathrm{kcal} / \mathrm{mol}$.
D. $\Delta H_{v a p}$ will be approximately $6.909 \mathrm{kcal} / \mathrm{mol}$.

Answer: a,b,c,d

D View Text Solution

5. In the thermite reaction used for obtaining energy, aluminium and ferric oxide react to from iron and aluminium oxide. From the given datw identify the option (s) which is (are) correct :
[Given : $\Delta H_{f}^{\circ} \mathrm{Al}_{2} \mathrm{O}_{3}=-390 \mathrm{KJ} / \mathrm{mole}$, $\Delta H_{f}^{\circ} \mathrm{Fe}_{2} \mathrm{O}_{3}=-176 \mathrm{~kJ} / \mathrm{mol}$,
density of aliuminium $=2.7 \mathrm{gm} / \mathrm{ml}$
density of $\left.\mathrm{Fe}_{2} \mathrm{O}_{3}=-3.2 \mathrm{gm} / \mathrm{ml}\right]$
A. Maximum calorific value of the fuel can be $1000 \mathrm{~J} / \mathrm{gm}$.
B. Maximum calorific vale of the fuel can be $\frac{21.4}{7} \mathrm{~kJ} / \mathrm{ml}$.
C. 2.14 kg of the mixture can produce 2500 kJ of heat .
D. 140 ml of the mixture can produce 280 kJ of heat .

Answer: a,b,d

- View Text Solution

6. Which of the following statement(s) are incorrect ?
A. Combustion of methane in an abiabatic rigid container will cause no charge in temperature of the system .
B. It is possible to have both adiabatic reversible and adicbatic irreversible peocesses between two states.
C. For a reaction involing only ideals gasese, occuring at constant temperature there will be no chager in internal energy
D. P-V work is always non -zero when there is change in volume .

Answer: a,b,c,d

- Watch Video Solution

7. Which of the following process must be spontaneous?
A. Isobaric and isoentropic process with negative enthalpy charge.
B. Isobaric and isoentropic process with negative internal energy change.
C. A process with constant internal energy and isothermal with an increase in entropy of system
D. An adiabatic process with constant volume consition and entropy of system increasing .

- View Text Solution

8. 3 moles of an ideal $\operatorname{gas}(\gamma=5 / 3)$ is subjected to following charge of state .

Identify the correct statement :
Reversible
satete $\mathrm{A}(400 \mathrm{~K}$, 2 bar) \rightarrow isothermal cooling state B
$\left(T_{B}, T_{B}\right) \xrightarrow{\text { Reversible }}$ isothermal expansionStateC
Asiabatic
$(300 \mathrm{~K}, 1 \mathrm{bar}) \xrightarrow{ }$ free expansionState $D\left(T_{D}, 0.5 \mathrm{bar}\right)$
A. T_{B} and T_{D} will be same and equal to 300 K
B. $\Delta H_{A D}=750 R$
C. $\Delta S_{A C}=0$
D. $\Delta E_{B D}=0$

Answer: a,d

9. One mole of an ideal diatomic gas $\left(C_{v}=5\right.$ calK $\left.^{-1} \mathrm{~mole}^{-1}\right)$ chagre its state from state $1\left(27^{\circ} \mathrm{C} 1 \mathrm{~L}\right)$ to state $2\left(127^{\circ} \mathrm{C}, 10 \mathrm{~L}\right)$. For this process, which of the following is (are) correct? (Given: $R=2$ cal $^{-1} \mathrm{~mole}^{-1}$)
A. $\Delta H=700 \mathrm{cal}$
B. $\Delta U=500 \mathrm{cal}$
C. $\Delta S=5 \ln \left(\frac{4}{3}\right)+2 \ln 10$ cal $^{-1}$
D. ΔG of the process can't be calculated using given information.

Answer: a,b,c,d

- Watch Video Solution

10. An ideal gas is expanded so that the amount of heat transferred to the gas is equal to the double the decrease in enthalpy. Indentify the options which are correct. [Symbols have usual meaning]
A. $P V^{\frac{3 \gamma}{2 \gamma+1}}=$ constant
B. Molar heat cacity $=2 C_{p}$
C. $T V^{\frac{\gamma-1}{2 \gamma+1}}=$ constant
D. $P^{1-\gamma} T^{\gamma}=$ constant

Answer: a,c

- View Text Solution

11. For a reaction : $2 A(g) \rightarrow B(g), \Delta H=-40 \mathrm{Kcal}$. If rate constant for disapperance of A is $10^{-2} \mathrm{M}^{-1} \mathrm{sec}^{-1}$ then identify the opations which will be correct
[Assume gases to behave ideally and reaction to be occuring at 300 K] [Take : R=2 cal/mole K]
A. The reaction must be elementary reaction.
B. Change in internal energy of the reaction will be $-19.7 \mathrm{kcal} / \mathrm{mole}$ ofA
C. The rate at which heat will be liberated initially when 2 moles of A is
taken in 3 litre rigid vessel will be approx $0.26 \mathrm{kcal} / \mathrm{sec}$.
D. Time requried for concentration of A

Answer: b,d

- View Text Solution

12. For which of the reaction reaction $|\Delta H|>|\Delta U|$?
A. $\mathrm{C}_{2} \mathrm{H}_{6}+\frac{7}{2} \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+3 \mathrm{H}_{2} \mathrm{O}$ at 1 bar and 27
B. $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g})$
C. $\mathrm{N}_{6}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\mathrm{C}_{2} \mathrm{H}_{4}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{CO}_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Answer: b,c,d

13. Which of the following statement(s) is/are incorrect for a reaction, $A_{2}(g)+B(g) \rightarrow A_{2} B(g)$ assuming ideal gas behaviour if $\Delta H_{R}^{\circ}=-$ $100 \mathrm{Kcal} / \mathrm{mole}$ and $\Delta S_{R}^{\circ}=-\frac{1}{3} \mathrm{kcal} /$ mole K at temperature $T=300 \mathrm{~K}$.
A. The reaction is at equilibrium when occuredat 1 bar pressure of each gas and 300 K .
B. No non-P V work can be obtained from the reaction at 300 K at stander conditions
C. In a rigid container the above reaction will be spontaneious at 300
K.
D. When performed in a rigid conatiner the reaction will be endothermic.

Answer: c,d

- View Text Solution

14. One mole of an ideal diatomic gas $\left(C_{v}=5 c a l\right)$ was transformed is 25° and 1 L to the state when temperature is 100° and volume 10 L . Then for the process : ($\mathrm{R}=2$ Calories/mole/K) (take calopries as unit of energy and kelvin for tempertaure)
A. $\Delta H=525$
B. $\Delta S=5 \operatorname{In} \frac{373}{298}+2 \operatorname{In} 10$
C. $\Delta E=525$
D. ΔG of the process cannot br calculated using given information.

Answer: a,b,d

- View Text Solution

15. Consider the reactions:
(P) S (rhombic) $+\frac{3}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{3}(g), \quad \Delta H_{1}$
(Q) S (Monoclinic) $0+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2} \quad \Delta \mathrm{H}_{2}$
(R) $\mathrm{S}($ rhiombic $)+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta \mathrm{H}_{3}$
(S) S (monoclince) $+\mathrm{O}_{3}(\mathrm{~g}) \rightarrow \mathrm{SO}_{3}(\mathrm{~g}) \quad \Delta H_{4}$
A. $\Delta H_{1}<\Delta H_{2}<\Delta H_{4}$ (magnitude only)
B. $\Delta H_{1}<\Delta H_{3}<\Delta H_{4}$ (magnitude only)
C. $\Delta H_{1}<\Delta H_{2}=\Delta H_{3}<\Delta H_{4}$ (magnitude only)
D. $\Delta H_{1}+\Delta H_{4}=\Delta H_{2}<\Delta H_{3}$

Answer: a,b,d

- View Text Solution

16. The normal boiling point of a liquid X is 400 K . Which of the following statement I dtrue about the process $X(I) \rightarrow X(g)$?
A. At 400 k and 1 atm pressure $\Delta G=0$
B. At 400 k and 2 atm pressure $\Delta G=+v e$
C. At 400 k and 0.1 atm pressure $\Delta G=-v e$
D. At 410 k and 1 atm pressure $\Delta G=+v e$

Answer: a,b,c,d

- Watch Video Solution

17. The following is(are) endothermic reaction (s):
A. Combustion of methane
B. decomposition of water
C. dehydrogenation of etheane to ethylene
D. conversion pf graphite to diamond.

Answer: b,c,d

- Watch Video Solution

18. Among the following , the state function (s) is(are):
A. internal energy
B. irrevcersible expansion work
C. reversible expansion work
D. molar enthalpy

Answer: a,d

- View Text Solution

19. The value of $\Delta H_{\text {transition }}$ of $\mathrm{C}\left(\right.$ diamond) is $1.9 \mathrm{~kJ} / \mathrm{mol}$ at $25^{\circ} \mathrm{C}$. Entropy graphite id higher than entropy of diamond. The implies that.
A. C(diamond) is thermodynamically more satble than (graphite) at $25^{\circ} \mathrm{C}$.
B. C(graphite) is thermodynamically more satble than (diamond) at $25^{\circ} \mathrm{C}$.
C. diamond will provide more heat om complete sombustion at $25^{\circ} \mathrm{C}$.
D. $\Delta G_{\text {transition }}$ of C (diamond)toC(graphite) is -ve

Answer: b,c,d

- View Text Solution

20. Which of the following stament (s) is/are false ?
A. All adiabatic processes are isoentropic (orisentrophic) processes
B. When $\left(\Delta G_{\text {system }}\right)_{T, P}<0$: the reaction must be exothermic.
C. $\mathrm{dG}=\mathrm{VdP}-\mathrm{SdT}$ is applicable for closed system both PV and non -PV work
D. the heat of vaproisaton of water at $100^{\circ} \mathrm{C}$ is $40.6 \mathrm{~kJ} / \mathrm{mol}$. When 9
gm of water vapour condeneses to liquid at $100^{\circ} \mathrm{C}$ and 1 atm , then

$$
\Delta S_{\text {system }}=54.42 \mathrm{~J} / \mathrm{K}
$$

Answer: a,b,c,d

21. Which of the following stament (s) is/are false ?
A. $\Delta E=0$ for combutins of $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ in a sealed rigid adiabatic container
B. $\Delta_{f} H^{\circ}(S$, monoclinic $) \neq 0$
C. If dissociation enegry $\mathrm{CH}_{4}(\mathrm{~g})$ is $1656 \mathrm{KJ} / \mathrm{mole}$ and $\mathrm{C}_{2} H_{6}(\mathrm{~g})$ is $2812 \mathrm{~kJ} / \mathrm{mole}$,then value of C-C bond energy will be $328 \mathrm{~kJ} / \mathrm{mol}$.
D. If $\Delta H_{f}\left(H_{2} \mathrm{O}, g,\right)=-242 \mathrm{~kJ} / \mathrm{mol}, \Delta H_{v a p}\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right)=44 \mathrm{~kJ} / \mathrm{mol}$ then $\Delta_{f} H^{\circ}\left(\mathrm{OH}^{-}, a q\right)$ will be be- $142 \mathrm{~kJ} / \mathrm{mol}$

Answer: a,b,c,d

- Watch Video Solution

22. From the following date, mark the opation(s) where ΔH is correctly written for the given reaction .

Given: $\mathrm{H}+(\mathrm{aq})+\mathrm{OH}-(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(l)$,
$\Delta H=-57.3 k J$
$\Delta H_{\text {solution }} H A(g)=-70.7 \mathrm{kJmole}$
$\Delta H_{\text {solution }} \mathrm{BOH}(\mathrm{g})=-20 \mathrm{kJmole}$
$\Delta H_{\text {ionzatoin }}$ of $H A=15 \mathrm{~kJ} /$ mole and BOH is a strong base.

	Reaction	$\Delta \mathbf{H}_{r}(\mathbf{k J} / \mathbf{m o l})$
(a)	$\mathrm{HA}(a q)+\mathrm{BOH}(a q) \longrightarrow B A(a q)+\mathrm{H}_{2} \mathrm{O}$	-42.3
(b)	$\mathrm{HA}(\mathrm{g})+\mathrm{BOH}(\mathrm{g}) \longrightarrow B A(a q)+\mathrm{H}_{2} \mathrm{O}$	-93
(c)	$\mathrm{HA}(\mathrm{g}) \longrightarrow \mathrm{H}^{+}(a q)+\mathrm{A}^{-}(a q)$	-55.7
(d)	$B^{+}(a q)+\mathrm{OH}^{-}(a q) \longrightarrow B \mathrm{OH}(a q)$	-20

- Watch Video Solution

23. Select the correct statement (s).
A. System having non-permeable and adiabatic boundry must be isolated.
B. Molarity , normality and molality all are intensive properties .
C. $\Delta U=q+w$ can be used for any system.
D. Closed system can transfer energy only .

Answer: b,d

- Watch Video Solution

24. Select the correct statement for an ideal gas undergoinf reversible or irreversible adiabatic process from same initial process
A. For same final pressure, final ktemperature is more in irreversible process
B. For same final volume, final temperature is more in irreversible process
C. For same final temperature final pressure is more in irreversible process
D. For same final temperature final volume is more in irreversible process

Answer: a,b,d

D Watch Video Solution

25. For the charge :
$R \rightarrow P: \quad \Delta H=-v e$

If in above reaction, the randomnes of system increases then:
A. $\Delta H_{f}(P)>\Delta H_{f}(R)$
B. $\Delta H_{C}(P)>\Delta H_{C}(R)$
C. $\Delta G_{f}(P)>\Delta G_{f}(R)$
D. $\Delta S_{f}(P)>\Delta S_{f}(R)$

Answer: b,d

26. Which of the following statement is .are correct ?
A. Internal energy can be written as $U=f(P, T)$ for a substance (no physical or chemical change)
B. Absolute value of entropy can be determined
C. The heat absored during the isothernal expansion of an ideal gas against vacuum is zero
D. During an adiabatic reversible expansion of an ideal gas, temperature of the system increases.

Answer: a,b,c,d

- Watch Video Solution

27. For a soild $A(s)$ following sate is giiven is given
$\Delta H_{\text {fusion }}^{\circ}=20 \mathrm{kJmole}^{-1}$
$\Delta S_{\text {fusion }}^{\circ}=50 \mathrm{kJmole}{ }^{-1} \mathrm{~K}^{-1}$
Identify correct option(s) at 1 bar .
A. Freezing is reversible at 450 K
B. Freezing is spontaneous at 500 K
C. Melting is spontaneous at 500 K
D. Melting is non-spontaneous at 400 K

Answer: b,c

(Watch Video Solution

28. Which of the following processe will lead to increase in entropy of universe?
A. Mixing of two gases in a vessel
B. Freezing water at 273 K and 1 atm
C. Combustion of LPG at room temperature
D. Rusting of iron at room temperature

Answer: a,c,d

- Watch Video Solution

29. Consider the reaction,
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~g})+6 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$,
which of the following expressions is /are correct?
A. $\Delta H_{\text {reaction }}^{\circ}=6 \Delta H_{f}^{\circ}\left(\mathrm{CO}_{2}\right)+6 \Delta H_{f}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)-\Delta H_{f}^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
B. $\Delta G_{\text {reaction }}^{\circ}=6 \Delta G_{f}^{\circ}\left(\mathrm{CO}_{2}\right)+6 \Delta G_{f}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)-\Delta G_{f}^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
C. $\Delta S_{\text {reaction }}^{\circ}=6 \Delta S_{f}^{\circ}\left(\mathrm{CO}_{2}\right)+6 S^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)-\mathrm{S}^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$
D. $\Delta S_{\text {reaction }}^{\circ}=6 \Delta S^{\circ}\left(\mathrm{CO}_{2}\right)+6 \mathrm{~S}^{\circ}\left(\mathrm{H}_{2} \mathrm{O}\right)-\mathrm{S}^{\circ}\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)-6 \mathrm{~S}^{\circ}\left(\mathrm{O}_{2}\right)$

Answer: a,b,d

- Watch Video Solution

30. The integral enthaiply of solution of one mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ with n mole of water is given by the equation
$\Delta H=\frac{-75.6 n}{n+1.8}$ which of the following option(s) is/are correct ?
A. When 1 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ is dissolved in 2 mole of

$$
\mathrm{H}_{2} \mathrm{O} \cdot \Delta \mathrm{H}_{\text {sol }}=-39.79 \mathrm{~kJ}
$$

B. When 1 mole of $\mathrm{H}_{2} \mathrm{So}_{4}$ is dissolved in 7 mole of

$$
\mathrm{H}_{2} \mathrm{O}, \Delta H_{\text {sol }}=-60.14 \mathrm{~kJ}
$$

C. When 1 mole of $\mathrm{H}_{2} \mathrm{So}_{4}$ is dissolved in 7 mole of

$$
\mathrm{H}_{2} \mathrm{O}, \Delta H_{\text {sol }}=-23.5 \mathrm{~kJ}
$$

D. When 1 mole of $\mathrm{H}_{2} \mathrm{So}_{4}$ is dissolved in 7 mole of

$$
\mathrm{H}_{2} \mathrm{O}, \Delta H_{\text {sol }}=-75.6 \mathrm{~kJ}
$$

Answer: a,b,d

- Watch Video Solution

31. The standard enthaply of fromation of CO_{2} will be given by:
A. standard enthaply of combustion of diamond
B. standard enthaply of combustion of graphite
C. standard enthaply of combustion of CO
D. sum of standard enthaply of formation ans enthalpy of combustion
of CO.

Answer: b,d

- Watch Video Solution

32. Which of the following is always negative?
A. Enthalphy of the hydration of ion
B. Enthalphy of neutralization
C. Enthalphy of hydrogenation
D. Enthalphy of solution

Answer: a,b,c

- Watch Video Solution

33. Which is an irreversible processe ?
A. Mixing of two gases by diffusion
B. Evaporation of water at 373 K and 1 atm pressure
C. Dissolution of NaCl in water
D. Melting of ice at 273 k and 1 atm

Answer: a,c

- Watch Video Solution

34. Select the correct option :
A. As $P($ Pressure) is a state function, therefore ΔP does not depend upon path
B. $\Delta U=(Q+W)$ is applicable for any process, in any system
C. $\frac{1}{2} k T$ energy is associated with each degree of freedom in case of ideal gas
D. In an isolated system, heat trasfer as well as mass trasfer is not possible

Answer: a,d

- Watch Video Solution

35. The correct statement (s) is/are:
A. All system maximze their entropy at equilibrium
B. Al substance have zero entropy at absolute zero temperature
C. At constant P,T if $\Delta G<0$ then the process must be work producing
D. In all adiabatic processes, entropy of surroundings is constant

Answer: c,d

- Watch Video Solution

36. Which of the following statement is /are correct ?
A. ΔG_{f}° of $H_{2}(g)$ at 298 K is zero
B. ΔG_{f}° of $D_{2}(g)$ at 298 K is zero
C. ΔH_{f}° of $H_{2}(g)$ at 298 K is zero
D. S° of H^{+}(aq.) at 298 K is zero

Answer: a,b,c,d

- Watch Video Solution

37. For the ideal gas , the work of reversible expansion under isothermal conditions can be calculated by
using the expression $w=-n R T \operatorname{In} \frac{v_{f}}{v_{I}}$
A sample containing 1.0 mol of an ideal gas is expanded isothermally and reversibly to ten times of its original is carried put at 300 K and at 600 K respectvely. Choose the correct option .
A. Work done at 600 K is 20 times the work done at 300 K .
B. Work done at 300 K is twice the work done at 600 K .
C. Work done at 600 K is twice the work done at 300 K .
D. $\Delta U=0$ in both cases.

Answer: c,d

- View Text Solution

38. Select the correct option(s).
A. $Q=n C_{v} d t$ is applicable to all substance during heating/cooling at
constant volume
B. $y=\frac{5}{3}$ for monomatomic ideal gas, at any temperature
C. $d U=n C_{v} d T$ is applicable for real gas at constant volume
D. molar heat capacity, pressure and temperature are intensive properties

Answer: a,b,c,d

- Watch Video Solution

39. Assume ideal gas behavior for all the gases considered and vibratonal degree of freedom to be active. Separated equimolar sample of $\mathrm{Ne}, \mathrm{O}_{2}, \mathrm{So}_{2}$ and CH_{4} were subjedted to a two step process as mentioned . Initiallyt all are at same state of temperture and pressure.

Step -I: All undergo reversible abiabatic expansion to attain same final volume thereby causing the decreasae in their temperature.

Step -II : After step I, all are given appropriate amount of heat
isochorically to restore the original temperature .

Mark the correct optoin(s).
A. Due to step I only, the decrease in temperature will be maximum for Ne .
B. During step II, heat given will be minimum for CH_{4}
C. There will be no net change in internal energy for any of the gas after both the steps of process are completed.
D. The (\circ) $P-V$ graph of CH_{4} and SO_{2} wll be same for overall process.

Answer: a,c

- View Text Solution

40. In which cases(s), 1st molecule in the pair has lower entroy per mole/
A. $\mathrm{H}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ in a volume of 10 L and $\mathrm{H}_{2}(\mathrm{~g})$ at $25^{\circ} \mathrm{C}$ in volume of
B. O_{2} at $25^{\circ} \mathrm{C}$ and 1 atm and O_{2} at $25^{\circ} \mathrm{C}$ and 1 atm
C. H_{2} at $25^{\circ} \mathrm{C}$ and $1 \mathrm{~atm} \mathrm{H}_{2}$ at $100^{\circ} \mathrm{C}$ and 1 atm
D. CO_{2} at STP and CO_{2} at $100^{\circ} \mathrm{C}$ and 0.1 atm

Answer: a,c,d

- View Text Solution

41. Select the incorrect statement (s).
A. $\Delta H_{\text {atomisaton }}$ of graphite id equal to $\Delta H_{f}[C(g)]$
B. $\Delta H_{\text {Comb }}$ of H atom is equal to $\Delta H_{f}\left[\left(\mathrm{H}_{2} \mathrm{O}\right) l\right]$
C. $\Delta H_{f}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]$ is zero
D. $\Delta H_{\text {comb }}$ of graphite is equal $\Delta H_{f}[C O(g)]$

Answer: b,c,d

42. An ideal gasa undergoes through folowing cyclic procees.

1-2 : Reversible adialbatic comparession from
$P_{1} V_{1} T_{1}$ to $P_{2} V_{2} T_{2}$
2-3 : Reversible isochoric heating from
$P_{2} V_{2} T_{2}$ to $P_{3} V_{3} T_{3}$
3-4 Reversible adialbatic expansion from
$P_{3} V_{3} T_{3}$ to $P_{4} V_{4} T_{4}$
4-1 Reversible isochoric cooling from
$P_{4} V_{4} T_{4}$ to $P_{1} V_{1} T_{1}$
Eefficiencyof the cycle is :
A. $\left(\frac{T_{4}-T_{1}}{T_{3}-T_{2}}\right)$
B. $1-\frac{T_{1}}{T_{2}}$
C. $1-\left(\frac{V_{2}}{V_{1}}\right)^{\gamma-1}$
D. $1-\left|\frac{Q_{4-1}}{Q_{2-3}}\right|$

View Text Solution

43. Thermodynamics mainly deals with:
A. interrelation of various from of energy and their transformation from one form to another .
B. energy change in the processes which depend only on initinal and final states of the microscophi system containing a few moleculas .
C. how and what rate these energy transformations are carried out.
D. the system in equilibrium state or moving from one equlildrium state to another equilibrium state.

Answer: a,d

- Watch Video Solution

44. In a exothermic reaction, heat is evolved, and system losses heat to the surrounding . For such system:
A. q_{q} wil be negative
B. $\Delta_{r} H$ will be negative
C. q_{r} will be positive
D. $\Delta_{r} H$ will be positive

Answer: a,b

- View Text Solution

45. The spontaneity means having the potential to proceed without assistance of external agency. The processes which occur spontaneously are
A. flow of heat from colder to warmer body.
B. gas in a container contracting into one corner .
C. gas expanding to fill the available volume .
D. buring carbon in oxygen to given carbon dioxide.

Answer: c,d

D Watch Video Solution

46. Consider the following reaction between zinc and oxygen and choose the correct options out of the options given below
$2 \mathrm{Zn}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{ZnO}_{s}: \Delta H=-693.8 \mathrm{kJmol}^{-1}$
A. The enthalpy of two moles of ZnO is less than the total enthalpy of two moles of Zn and one omle of oxygen by 693.8 kJ .
B. The enthalpy of two moles of ZnO is more than the total enthapy of two moles of Zn and one moles of oxygen by 693.8 kJ .
C. $693.8 \mathrm{kJmol}^{-1}$ energy is evolved in the reaction .
D. $693.8 \mathrm{kJmol}^{-1}$ energy is absorbed in the reaction .

- Watch Video Solution

47. Which of the following are correct regarding standerd molar entroy at 298K ?
A. $S_{O 3}^{\circ}>S_{O 2}^{\circ}$
B. $S_{C_{2} H_{6}}^{\circ}>S_{\mathrm{CH}_{4}}^{\circ}$
C. $S_{H^{+(a q)}}^{\circ}>0$
D. $S_{N a(s)}^{\circ}>0$

Answer: a.b,d

- View Text Solution

48. Which of the following statement are always correct ?
A. The entropy changes of a system particulaing in adiabatic process is always positive
B. The entropy changes of a system particulaing in adiabatic irrversible process is always positive .
C. The entroy change of surrounding is always zero in abiabatic process.
D. The entrophy change of a system participating in adiabatic process is always zero .

Answer: b,c

- Watch Video Solution

49. Metal ions are activators and increase catlytic activity of enzyme molecular. If water vapours is assumed to be a perfect gas, molar enthalpy change for vaporisation of 1 mole of water 1 bar $100^{\circ} \mathrm{C}$ is
$41 \mathrm{~kJ} / \mathrm{mol}$. Choose the correct statement(s).
$($ TakenR $=8.3 \mathrm{~J} / \mathrm{mole} / \mathrm{K})$
A. $\Delta U_{\text {vaporisation }}$ of 1 mole of water at 1 bar and $100^{\circ} \mathrm{C}=37.904 \mathrm{~kJ} / \mathrm{mol}$
B. $(\Delta U=\Delta H)$ for conversion of the water into ice at $0^{\circ} \mathrm{C}$
C. In the isothermal process of (b), $\Delta H=0$
D. $(\Delta H=\Delta U)$ for conversion of 1 mole of water into steam $100^{\circ} \mathrm{C}$

Answer: a,b

- View Text Solution

50. 1 mole of an ideal monatomic gas is subjected toi the following reversible charge of state

Isothermal Isochoric
$A \rightarrow$ Expansion $B \rightarrow$ Cooling
(5 atm , 500K)
Adiabatic
$C \rightarrow$ compression A
(300K)

Then , which of the following are correct?
[Given $(0.6)^{2.5}=0.3, \mathrm{in} 2=0.7$]
$(R=0.08 L-\mathrm{atm} / \mathrm{mol}-K=2 \mathrm{cal} / \mathrm{mol}-\mathrm{k})$
A. Pressure of point B is 2.5 atm
B. Volume at point C is 16 litre
C. Magnitude of work involved in complete process is 100 cal
D. Change in enthalpy of process of process $C-A$ is +1 kcal .

Answer: a,b,c,d

- View Text Solution

51. An ideal gas expanded adiabaticlly such that, $\mathrm{T} \propto V^{-1 / 2}$ then :
A. γ of gas will be 1.5
B. $V \propto P^{2 / 3}$
C. $P \propto T^{3}$
D. $P \propto T^{2}$

Answer: a,b,c

- Watch Video Solution

52. Which of the following is /are correct ?
A. $\Delta H=\Delta U+\Delta(P V)$ when P and V both changes
B. $\Delta H=\Delta U+P \Delta V$ when pressure is constant
C. $\Delta H=\Delta U+V \Delta P$ when volume is constant
D. $\Delta H=\Delta V+P \Delta V+V \Delta P$ when $n P$ and V both changes

Answer: a,b,c

- Watch Video Solution

53. Which of the following statements is/are ture ?
A. $\Delta U=0$ for combaustion of $\mathrm{CH}_{4}(\mathrm{~g})$ is a sealed rigid adiabatic container
B. ΔH_{f} for s (mmonoclinci) is non -zero
C. If heat of atomisation of $\mathrm{CH}_{4}(\mathrm{~g})$ is $360 \mathrm{kcal} / \mathrm{mole}$ and $\mathrm{C}-\mathrm{C}$ bond energy is $0 \mathrm{Kcal} / \mathrm{mole}$ then heat of atomication of $\mathrm{C}_{2} \mathrm{H}_{6}$ is $600 \mathrm{kcal} / \mathrm{mole}$
D. Work done may be zero in cyclic process

Answer: a,b,c,d

- Watch Video Solution

54. Which of the following are false about Gibbs free energy?
A. $\Delta G=\Delta H-T \Delta S$
B. $\Delta G>0$ indicates that process is spontaneous
C. $\Delta G^{\circ}<0$ implies $K_{e g}<1$
D. $\Delta G=0$ implies $K_{e q}=1$

Answer: b,c,d

- Watch Video Solution

55. Choose the correct statement(s).
A. During adiabatic expansion of an ideal gs ,magnitude of work obatained id equal to ΔH of gas.
B. For same change in temperature of ideal gas, more work done by system through adiabatic than irreversible process.
C. During boiling of $\mathrm{H}_{2} \mathrm{O}$ at 1 atm , 100° C kineticx energy of $\mathrm{H}_{2} \mathrm{O}$ molecules increase.
D. For same change in volume of ideal gas,decrease in internal energy is more in adiabatic expansion than in isobaric expnsion if expansion starts with same intial state.

- Watch Video Solution

56. Which among the following properties is/are extenstive properties?
A. Mole
B. Heat capacity
C. Molar enthalpy
D. Entropy

Answer: a,b,d

- Watch Video Solution

57. Which of the following statement are false ?
A. For every change in an isolated system $\Delta T=0$
B. For evergy change in an isolated system $W=0$
C. For evergy change in an isolated system that has no macroscopic change in kinetic or potential energy , $\Delta V=0$
D. the magnitude of the slpoe of an adiabatic curve is greater than the magnitude of the slpoe of an isothermal curve for the same values of pressue and volume

Answer: a,d

- Watch Video Solution

58. A gas may expand either abiabatically or isothermally .A number of P-V curves are drawn for the two processes over different ranges of pressure and volume. It will be found that :
A. two adiabtaic curves do not intersect.
B. two isothermal curves do not intersect.
C. an adiabatic curve and an isothermal curve may intresect.
D. the magniture of the slpoe of an adiabatic curvesis greater than the
magnitude of the slope of an isothermal curves for the same values of pressure and volume.

Answer: a,b,c,d

- Watch Video Solution

59. Suppose that the voulme of a certain ideal gas is to be doubled by one the following processes:
(1) isothermal expansion
(2) adiabatic expansion
(3) free expansion in isulated condition
(4) expansion at constant pressure .

If E_{1}, E_{2}, E_{3} and E_{4} respectively are the changes in average kinetic energy of the molecules for the four processes, them :
A. $E_{2}=E_{3}$
B. $E_{1}=E_{3}$
C. $E_{1}>E_{4}$
D. $E_{4}>E_{3}$

Answer: b,d

- Watch Video Solution

60. Choose the correct statement(s).
A. If system A and B each consit of pure liquild water at 1 bar pressure and if $T_{A}>T_{B}$, then the internal energy of system A must be greater than that of B.
B. ΔU for a reversible phase change at constant at T and P is zero .
C. During adiabatic reversible compression the temperature of ideal gas increases.
D. During sameincrease in volume of ideal gas at 1 atm, 300 K more work will be done by gas if isothermal process.

Answer: c,d

- Watch Video Solution

61. One mole of an ideal monoatomic gas undergo process from the state A to state C as :

State1atm300kA \rightarrow processstate600KB $\rightarrow \quad$ processState64atmC

Choose the correct option (s).
A. Pressure of gas at state B in 2 atm
B. $\Delta H_{A B}=900 \mathrm{cal}$
C. $\Delta U_{A C}=6300 \mathrm{cal}$
D. $W_{B C}=5400 \mathrm{cal}$

Answer: a,c,d

62. One mole of N_{2} gas undrgoes following process

One step
State $0{ }^{\circ} \mathrm{C} 1 \mathrm{~atm} A \rightarrow$ irreversible processStateB2atm0 ${ }^{\circ}$
Choose the correct statement (s):
A. $\Delta H=0$
B. $\Delta S=-0.0821 \mathrm{In} 2 \frac{\mathrm{~atm}-\text { liter }}{k}$
C. $q=-44.8 a t m-$ litre
D. $W=22.4 a t m-$ litre

Answer: a,b,d

- View Text Solution

63. In the following table, which of the options are correct ?

$\lrcorner \mathrm{H} /\lrcorner \mathrm{S}$	Nature of reaction
	Spontaneous at all temperature
(t, $(+),(+)$	Non-spontaneous regardless of temperature
(c) $1+1)$	Spontaneous only at high temperature
dit (-) (-)	Spontaneous only at low temperature

64. Which among the following are state functions ?
A. Internal energy
B. Enthalphy
C. Gibbs energy
D. Change in internal energy

Answer: a,b,c

65. Choose the correct statement(s) among the following :
A. Internal energy of $\mathrm{H}_{2} \mathrm{O}$ remains constant during converstion of liquid into its vapour at connstant temperture.
B. During fusion of ice into water enthalpy change and internal energy change are almost same at constant temperature.
C. Molar heat capacity of gasaes are temperature dependent
D. During comparession of an ideal gas at constant pressure, the temperature of gas decreases.

Answer: b,c,d

- View Text Solution

66. One mole Of an ideal triatomic gas undergoes compression process adiabatically . Then:
A. Temperature change of gas will be more if process is carried out reversibly
B. Work involved during the process will be more if process is carreid out reversibly
C. Change in internal energy of gas will be less if process is carreid out reversibly
D. Change in enthalphy of gas will be less if process is carried out reversibly

Answer: c,d

- View Text Solution

67. For an ideal gas undergoing expansion compression process. The relationships which hold good are:
A. $\left(\frac{\partial U}{\partial P}\right)_{T}=0$
B. $\left(\frac{\partial H}{\partial T}\right)_{V}=C_{p}$
C. $\left(\frac{\partial U}{\partial T}\right)_{P}=C_{V}$
D. $C_{v}=C_{p}+R$

Answer: a,b,c

- View Text Solution

68. An ideal gas is expandend isothermally from $\left(P_{1} V_{1}\right)$ and to $\left(P_{2} V_{2}\right)$ against a constant external pressure. Which of the following is/are correct regarding above process ?
A. If $P_{\text {ext }}=P_{2}$ piston will not stop automatically at the final state
B. If $P_{\text {ext }}=P_{2}$ piston will not stop automatically at the final state
C. Magnitude of work during expansion can vary in the range of

$$
0 \leq|W| \leq P_{2}\left(V_{2}-V_{1}\right)
$$

D. Work will be zero when $P_{\text {ext }}$ is zero and will bre maximum when $P_{\text {ext }}$
is eqaul to pressure of system at final state

Answer: b,c,d

- View Text Solution

69. In an adiabatic process, the work involed during expansion or compression of an ideal gas is given by :
A. $n C_{V} \Delta T$
B. $\frac{n R}{\gamma-1}\left(T_{2}-T_{1}\right)$
C. $-n R P_{e x t}\left[\frac{T_{2} P_{1}-T_{1} P_{2}}{P_{1} P_{2}}\right]$
D. $-2.303 R T \log \left(\frac{V^{1}}{V_{2}}\right)$

Answer: a,b,c

70. Consider the following reaction
$2 \mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{C}(\mathrm{s}) \rightarrow 4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{Co}_{2}(\mathrm{~g})$
ΔH° ofFe O_{3} and CO_{2} are - $820 \mathrm{~kJ} / \mathrm{mol}$ and
-390kJ/mol respectively
The reaction respectively .
A. endothermic
B. exothermic
C. spontaneous at high temperature
D. spontancous at low temperature

Answer: a,c

- View Text Solution

71. Choose the correct statement(s).
A. For phase transformation of liquid water at 1 atm, 373 K to water vapour at 1 atm, $373 \mathrm{~K}, \Delta G$ will be zero .
B. Two solid blocks of same material and same mass having different temperature are kept in an isolated system then entropy of system must increase.
C. Intensive properties are not additive in nature while extensive properties are additive in nature.
D. No cyclic process is possible in which the sole result is absorption of heat from a hot reservoir and its complete conversion into work

Answer: a,b,c,d

- Watch Video Solution

72. Which of the following process is/are always exothermic ?
A. Enthalphy of combustion
B. Enthalphy of neutralisation
C. Enthalphy of atomisation
D. Enthalphy of fromation

Answer: a,b

D Watch Video Solution

73. A system is changed from initial state to final state in such a manner that $\Delta H=q$. If the same change from initial state to final state were made by different path, which of the following statements are correct?
A. ΔH remains the same
B. ΔH will depends upon the path
C. Heat exchange will be same if the path is isobaric
D. Heat ecchanged q will be different if the path is non-iosbric.

Answer: a,c,d

Comprehension Type

1. Bomb calorimeters are the devices that are used to experimentally determine ΔH and ΔU of any reaction by measuring the temperature change in the water bath Hence, the experimatal data can be used for cross-checking theortical data, From the following theoretical data answer the question that follow:

Thermodynamic data:
$\Delta H_{f}^{\circ} \mathrm{Ch}_{4}(\mathrm{~g})=-15 \mathrm{kcal} / \mathrm{mole}, \Delta H_{f}^{\circ} \mathrm{CO}_{2}(\mathrm{~g})=-90 \mathrm{kcal} / \mathrm{mole}$,
$\Delta H_{f}^{\circ} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-60 \mathrm{Kcal} / \mathrm{mole}$
$S_{m}^{\circ} \mathrm{CH}_{4}(\mathrm{~g})=40 \mathrm{cal} / \mathrm{mole}$ Kelivn
$S_{m}^{\circ} O(g)=45 \mathrm{cal} / \mathrm{mole}$ Kelivn
$S_{m}^{\circ} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})=15 \mathrm{cal} / \mathrm{mole}$ Kelivn
$S_{m}^{\circ} \mathrm{CO}_{2}(g)=50 \mathrm{cal} / \mathrm{mole}$ Kelivn
Calorimeter data:
(1) Water equivlent of calorimaeter $=36 \mathrm{gm}$
(2) Sepcific heat capacity of water $=1 \mathrm{cal} / \mathrm{gm} .{ }^{\circ} \mathrm{C}$
(2) mass of water inthe water bath $=164 \mathrm{gm}$

All data at $300 \mathrm{~K}, R=2 \mathrm{cal} / \mathrm{mol} \mathrm{K}$.

1. Calculate $\Delta U_{\text {combustion }}$ of $\mathrm{CH}_{4}(\mathrm{~g})$ at 300 K .
A. $-195 \mathrm{kcal} / \mathrm{mole}$
B. $-196.2 \mathrm{kcal} / \mathrm{mole}$
C. -193.8kcal/mole
D. $-235 \mathrm{kcal} / \mathrm{mole}$

Answer: c

- Watch Video Solution

2. Bomb calorimeters are the devices that are used to experimentally determine ΔH and ΔU of any reaction by measuring the temperature change in the water bath Hence, the experimatal data can be used for cross-checking theortical data, From the following theoretical data answer the question that follow:

Thermodynamic data:
$\Delta H_{f}^{\circ} \mathrm{Ch}_{4}(\mathrm{~g})=-15 \mathrm{kcal} / \mathrm{mole}, \Delta H_{f}^{\circ} \mathrm{CO}_{2}(\mathrm{~g})=-90 \mathrm{kcal} / \mathrm{mole}$,
$\Delta H_{f}^{\circ} \mathrm{H}_{2} \mathrm{O}(\mathrm{I})=-60 \mathrm{Kcal} / \mathrm{mole}$
$S_{m}^{\circ} \mathrm{CH}_{4}(\mathrm{~g})=40 \mathrm{cal} / \mathrm{mole}$ Kelivn
$S_{m}^{\circ} O(g)=45 \mathrm{cal} /$ mole Kelivn
$S_{m}^{\circ} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})=15 \mathrm{cal} / \mathrm{mole}$ Kelivn
$S_{m}^{\circ} \mathrm{CO}_{2}(\mathrm{~g})=50 \mathrm{cal} / \mathrm{mole}$ Kelivn
Calorimeter data:
(1) Water equivlent of calorimaeter $=36 \mathrm{gm}$
(2) Sepcific heat capacity of water $=1 \mathrm{cal} / \mathrm{gm} .{ }^{\circ} \mathrm{C}$
(2) mass of water inthe water bath $=164 \mathrm{gm}$

All data at $300 \mathrm{~K}, R=2 \mathrm{cal} / \mathrm{mol} \mathrm{K}$.
Calculate rise in temperature of calorimeter if 0.01 moles of $\mathrm{CH}_{4}(\mathrm{~g})$ undergoes combustion in the above bonb calorimeter at 300 K .
A. 9.18 K
B. 9.696 K
C. 12 K
D. 8.8 K

D Watch Video Solution

3. Bomb calorimeters are the devices that are used to experimentally determine ΔH and ΔU of any reaction by measuring the temperature change in the water bath Hence, the experimatal data can be used for cross-checking theortical data, From the following theoretical data answer the question that follow:

Thermodynamic data:
$\Delta H_{f}^{\circ} \mathrm{Ch}_{4}(\mathrm{~g})=-15 \mathrm{kcal} / \mathrm{mole}, \Delta H_{f}^{\circ} \mathrm{CO}_{2}(\mathrm{~g})=-90 \mathrm{kcal} / \mathrm{mole}$,
$\Delta H_{f}^{\circ} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})=-60 \mathrm{Kcal} / \mathrm{mole}$
$S_{m}^{\circ} \mathrm{CH}_{4}(g)=40 \mathrm{cal} / \mathrm{mole}$ Kelivn
$S_{m}^{\circ} O(g)=45 \mathrm{cal} / \mathrm{mole}$ Kelivn
$S_{m}^{\circ} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})=15 \mathrm{cal} / \mathrm{mole}$ Kelivn
$S_{m}^{\circ} \mathrm{CO}_{2}(\mathrm{~g})=50 \mathrm{cal} / \mathrm{mole}$ Kelivn
Calorimeter data:
(1) Water equivlent of calorimaeter $=36 \mathrm{gm}$
(2) Sepcific heat capacity of water $=1 \mathrm{cal} / \mathrm{gm} .{ }^{\circ} \mathrm{C}$
(2) mass of water inthe water bath $=164 \mathrm{gm}$

All data at $300 \mathrm{~K}, R=2 \mathrm{cal} / \mathrm{mol} \mathrm{K}$.
If calorimeter is modified so as to convert chemical energy into electrical by ensuring that the reaction is occurring at constant pressure then how much electron work can be obtained by combustion of 0.1 mole of $\mathrm{CH}_{4}(\mathrm{~g})$
?
A. 19.5 kcal
B. 18 kcal
C. 19.62kcal
D. 18.12kcal

Answer: b

- Watch Video Solution

1. Out of different state parameters like E, H, G, A and S , only entropy(s) is the parameter whose absolute value can be determined, by using third law of thermodynamics. While perfect crystals hace zero entropy at $0 K$, non-perfect crystals have some residual entropy at $0 K$. From this info and the following data chart, answer the questions that follow :

Substance	$\begin{gathered} C_{p} \text { (solid) } \\ (\mathrm{J} / \mathrm{mol} \mathrm{~K}) \end{gathered}$	Standard melting point	$\underset{\text { (kJ/mole) }}{\Delta H_{\text {fusion }}^{\circ}}$	$\begin{array}{\|c\|} \hline \mathbf{S}_{\mathrm{m}, 100 \mathrm{~K}}^{\circ} \\ (\mathrm{J} / \mathrm{K} \text { mole }) \end{array}$
P	(0.35 T)	200 K	27	35
Q	(0.25 T)	250 K	29	30
R	(0.15 T)	300 K	30	20
S	(0.45 T)	350 K	40	50

Which of the substances will have residual entropy at $0 K$
A. Only R
B. Only P
C. Q, R and S all three
D. Q and P only

Answer: c

Comprehension \#3 1

1. When acids an bases react they liberate some amount of energy which is represented as ΔH neutralization if one equivalent of acid and base reacts. The energy liberated depends on the concentration of acid and base and also on whether the acid is strong or weak. For strong acids and bases, the value is constant and for weaker acids as bases the magnitude is generally lesser.

Using this info and the date below answer the question that follow :
[Given data :
$\Delta_{\text {neutralization }} \mathrm{HCl} / \mathrm{NaOH}=-14 \mathrm{Kcal} / \mathrm{eq}$ (at infinite dil.)
$\Delta H_{\text {ionisation }} \mathrm{CH}_{3} \mathrm{COOH}=2 \mathrm{kcal} / \mathrm{mol}$
$\Delta H_{\text {ionisation }} \mathrm{NH}_{4} \mathrm{OH}=3 \mathrm{kcal} / \mathrm{eq}$]
Which of the following option(s) is//are correct assuming weak acids/bases to be completely unionized ?
A. $\Delta \mathrm{H}_{\text {neutralization }} \mathrm{H}_{2} \mathrm{SO}_{4} / \mathrm{NaOH}=-28 \mathrm{kcal} / \mathrm{mole}$ of $\mathrm{H}_{2} \mathrm{SO}_{4}$
B. $\Delta H_{\text {neutralization }} \mathrm{HCl} / \mathrm{NH}_{4} \mathrm{OH}=-11 \mathrm{kcal} /$ mole of HCl
C. $\Delta H_{\text {neutralization }} \mathrm{CH}_{3} \mathrm{COOH} / \mathrm{NH}_{4} \mathrm{OH}=-9 \mathrm{kcal} / \mathrm{mole}$ of $\mathrm{CH}_{3} \mathrm{COOH}$
D. $\Delta H_{\text {neutralization }} \mathrm{KOH} / \mathrm{CH}_{3} \mathrm{COOH}=-11 \mathrm{kcal} /$ mole of KOH

Answer: a,b,c

- Watch Video Solution

Comprehension \#4 1

1. Fuel cells are the commercial cells which converts the chemical energy into electrical energy and differ from the normal batteries since fuel cells require constant source of fuel and oxygen to obtain electric current. However, they can be used to produce electricity as long as the supply of fuel and oxygen is maintained. All fuel cells consist of an anode and a cathode and an electrolyte which allows charges to move between the two sides of the fuel cell. Electrons are drawn from anode to cathode through an external circuit and hence produce direct current electricity.

Under practical cases, efficient of fuel cell is around $40-60 \%$ and in some cases it may be as high as $85-90 \%$

Some common examples of fuel cell are diect methanol fule cell (DMFC), Direct Borohydride fuel cell (DBFC), alkaline fuel cell (AFC) and others.While in DMFC the electrolyte is an ionomer (proton exchange monomer) in case of $A F C$ and DBFC the electrolyte is an aqueous alkaline solution. Also, in case of DBFC the borohydride gets oxidised to metaborate, In all the above three cases, at cathode reduction of O_{2} (gas) occurs in a medium controlled by the electrolyte. Based on this information answer the electrolyte. Based on the information answer the question that follow :

Data
$\left(\Delta H_{f}^{\circ} \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})=-230 \mathrm{~kJ} / \mathrm{mole}, \quad \Delta H_{f}^{\circ} \mathrm{CO}_{2}=-390 \mathrm{~kJ} / / \mathrm{Mmole}^{\prime}\right)$,
(Delta_(f)^(@)H_(2)O(l) = - $285 \mathrm{~kJ} / /$ "mole",,S_(mH_(2)O(l))^(@)=130J//K "mole"),(S_(mCO_(2(g))) = $210 \mathrm{~J} / / \mathrm{K}$ "mole",S_(mH_(2)O(I))^(@) = $110 \mathrm{~J} / / \mathrm{K}$ "mol"),(S_(mO_(2(g)))=206J//K "mole",,S_(mH_(2(g))) = 130J//K "mole"),("All data at" 300 K.,1/F $=10^{\left.\left.\wedge(-5) C^{\wedge}(-1)\right):\right\}}$

Whichofthefollow $\in g \in f$ or mationisc or rectaboutDMFCat300 K if mathanol liquid is used as a fuel in DMFC ?
A. $\Delta H_{\text {reaction }}^{\circ}=-730 \mathrm{~kJ} /$ moleofO_(2) consumed
B. $\Delta S_{\text {reaction }}^{\circ}=-9 J / K$ mole of methonal consumed
C. $E_{\text {cell }}^{\circ}=1.21$ volts approx.
D. $\Delta G_{\text {cell }}^{\circ}=-727.3 \mathrm{~kJ} / \mathrm{mole}$ of CO_{2} produced.

Answer: b,c,d

D Watch Video Solution

Comprehension \#5 1

1. While analyzing driving forces for a chemical reaction it is observed that energy and entropy are true forces. The entropy is a typical state function owing to the possibility of calculation of its absolute value. The absolute values of entropies can be compared an calculating by knowing the residual entropies at $0 K$ and by calculating the change due to change of state. Using the given information and data for a particular substance x answer the questions that follow :

Useful data :
(p) Standard melting point and boiling point of x is 200 K and 400 K respectively.
(q) $\Delta H_{\text {fusion }}^{\circ}=10 \mathrm{kcal} / \mathrm{mole}$ and $\Delta H_{\text {vap }}^{\circ}=80 \mathrm{kcal} / \mathrm{mole}$.
(r) $C_{p . m}(s) x=0.1$ Tcal $/$ Kmole, $C_{p . m}(l) x=0.05 T c a l / K m o \leq$
$S_{m .40 K}^{\circ} S_{x}=5 \mathrm{cal} / \mathrm{mole}$
Which of the following statement is/are true ?
A. Substance x will be a perfect crystals.
B. $S_{m, \mathrm{~N}_{2} \mathrm{O}_{4}}^{\circ}=$ two times $S_{m \cdot \mathrm{~N}_{2} \mathrm{O}_{4}}^{\circ}$
C. $\Delta S_{\text {fusion }}$ of x will be temperature dependent
D. $\Delta H_{\text {fusion }, 300 \mathrm{~K}}^{\circ}<10 \mathrm{kcal} / /$ "mole"' $^{\circ}$

Answer: c,d

- Watch Video Solution

1. It is observed that when acid and bases react, some energy is released due to neutralization reaction. While in case of strong acid and bases, the energy released in greater, in case of weaker acids of bases, energy released will be lesser. The difference is attributed to energy required for ionization. From the above information and data below answer the questions that follow:
$\Delta H_{\text {neutrization } S A / S B}=-57.5 \mathrm{~kJ} /$ equivalent,
$\Delta H_{\text {ionization }} \mathrm{Of} \mathrm{NH}_{4} \mathrm{OH}=10 \mathrm{~kJ} / \mathrm{mole}$,
$\Delta H_{\text {ionization }}$ of $\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}=2 \mathrm{Ok} / \mathrm{mole}$.
What will be the energy released when 500 ml of0.1 $\mathrm{M}_{2} \mathrm{SO}_{4}$ solution reacts with 1 L of $0.1 \mathrm{M} \mathrm{NH}_{4} \mathrm{OH}$ solutioni if the base is 30% ionized in the given solution?
A. 5.75 kJ
B. 4.75 kJ
C. 5.05 kJ
D. 5.45 kJ

Answer: c

- Watch Video Solution

comprehensive7

1. Cycloalkenes and alka- dienes are structural isomers and it is observed that the isomerisation reaction of cyclo-butene into 1,3, buta-diene follows 1st order kinetics with respect to cyclobutene. The rate constant of the reaction can be determined by hydrogenting (reaction with H_{2} to remove unsaturation) the reaction mixture and different instant and measuring the amount of hydrogen required. In one such experiment two separate glass flasks of volume 1 litres. were added with same amount of cyclobutene and sealed. While one flask was broken after 138.6 min and the contents required 39.2 ml of H_{2} gas at 1 atm pressure and 273 K , where as other flask was broken after a very long time and the contents required 44.8 ml of H_{2} gas at 1 tam pressure and 273 K . From the information given above and given data, anwer the questions that
follows:
ΔH_{f}° Cyclobutene $=175 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{f}{ }^{\circ}$ Buta-1,3-diene $=125 \mathrm{~kJ} / \mathrm{mol}$
The average life of cyclobutene will be:
A. 100 min
B. 69.3 min
C. 0.01 min
D. 1.386 min

Answer: a

- View Text Solution

comprehensive8

1. Dissociation of $\mathrm{NH}_{3}(\mathrm{~g})$ over solid platinum follows zero order kinetics.
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$
The rate of reaction is $2 \times 10^{-3} \mathrm{Msec}^{-1}$. Also at 300 K , thermodynamic data
are:
$\Delta H_{f}^{\circ} \mathrm{NH}_{2}=-45 \mathrm{~kJ} / \mathrm{mole}_{\mathrm{N}_{2}}^{\circ}=190 \mathrm{~J} / \mathrm{K}$ mole
$S_{\mathrm{NH}_{3}}^{\circ}=200 \mathrm{~J} / \mathrm{K}$ mole, $S_{\mathrm{H}_{2}}^{\circ}=130 \mathrm{~J} / \mathrm{K}$ mole
From the above data and the assumption that $\Delta H_{\mathrm{Rxn}}^{\circ}$ are independent of
temperature, anwer the question that follows. [Take $R \times 300 \mathrm{~kJ}$]
If initially $\left[\mathrm{NH}_{3}\right]=3 \mathrm{M}$, then what will be its concentration after 100 sec if
it is performed in rigid vessel as 300 K :
A. 2.6 M
B. 2.8 M
C. $0.09 \mathrm{kJsec}^{-1}$
D. 3 M

Answer: a

- View Text Solution

1. Entropy change for reversible phase transition at constant pressure P and temperature T is calculated by the formula $\Delta S=\frac{\Delta H}{T}$, where ΔH is the enthalpy change for phase transition. For irreversible phase transition $\Delta S>\frac{\Delta H}{T}$.

Consider a phase transition.
$\operatorname{Sn}($ white, $s) \Leftrightarrow \operatorname{Sn}($ grey,s)
ΔH° at 1 atm and $300 \mathrm{~K}=-2 \mathrm{kJmol}^{-1}$
The equilibrium temperature at 1 atm is 400 K .
Assume $C_{p, m}$ of Sn (white,s) and $\mathrm{Sn}(\mathrm{grey}, \mathrm{s})$ are equal.
ΔS° for above phase transition at 1 atm and 300 K is:
A. $-5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $-\frac{20}{3} \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $-0.0055 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $-\frac{2000}{3} \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: a

comprehensive 10

1. The solubility on any substance in water may be classified as :
$a q$
Molecular ability: $\mathrm{AB}(\mathrm{s} / \mathrm{l} / \mathrm{g}) \Leftrightarrow \mathrm{AB}(\mathrm{aq})$
Ionic solubility : $\mathrm{AB}(\mathrm{s} / \mathrm{l} / \mathrm{g}) \stackrel{a q}{\Leftrightarrow} A^{+}(a q)+B^{-}(a q)$
For a substance $\mathrm{AB}(\mathrm{s})$ the following thermodynamic informations are available at 300 K :

Molecular solubility: $\Delta H^{\circ}=+20 \mathrm{kcal} / \mathrm{mol}$,
$\Delta S^{\circ}=+40 \mathrm{kcal} / \mathrm{K}$-mole
Ionic solubility: $\Delta H^{\circ}=-25 \mathrm{kcal} / \mathrm{mol}$,
$\Delta S^{\circ}=-50 \mathrm{cal} / \mathrm{K}$-mole
Which of the following statements is correct for the solubillity of $\mathrm{AB}(\mathrm{s})$ in water at 300 K ?
A. It undergoes molecular solubility.
B. It undergoes ionic solubility.
C. It undergoes ionic as well as molecular solubility.
D. It is almost completely insoluble in water.

Answer: b

- View Text Solution

comprehensive 11

1. Equilibrium constant for a reaction can be obtained by kinetics approach or by thermodynamics approch. While from kinetics approach at equililbrium, the rate of forward and backward will be same, from thermodynamics approach Gibbs free energy will be minimized at equilibrium. Using this information and following thermodynamics values, answer the question that follow:
$\Delta G_{f}^{\circ} A(g)=-200 \mathrm{kcal} / \mathrm{mole}$ $\Delta G_{f}^{0} B(g)=-320 \mathrm{kcal} / \mathrm{mole}$
$\Delta G_{f}^{\circ} C(g)=-300 \mathrm{kcal} / \mathrm{mole}$ $\Delta G_{f}^{\circ} D(l)=-224.606 \mathrm{kcal} / \mathrm{mole}$
$\Delta G_{f}^{\circ} D(g)=-226.9 .9 \mathrm{kcal} / \mathrm{mole}$,

All values at 500 K

Calculate rate constant of the backward reaction for the following reaction at 500K:
$A(g)+B(g) \Leftrightarrow C(g)+D(I)$ if $K_{f}=10 \mathrm{bar}^{-1} \sec ^{-1}$
A. $10 \mathrm{bar}^{-1} \mathrm{sec}^{-1}$
B. $0.1 \mathrm{bar}^{-1} \mathrm{sec}^{-1}$
C. $0.1 \mathrm{sec}^{-1}$
D. $10 \mathrm{sec}^{-1}$

Answer: c

D View Text Solution

comprehensive 12

1. A gaseous sample is generally allowed to do only expansion/compression type of work against its surroundings. The work done in case of an irreversible expansion (in the intermediate stages of
expansion/ compression the states of gases are not defined). The work done can be calculated using
$d w=-P_{\text {ext }} d V$
while in case of reversible process the work done can be calculated using $d w=-P d V$ where P is pressure of gas at some intermediate stages. Like for an isothermal reversible process, since
$P=\frac{n R T}{V}$,so,
$w=\int d w=-\int_{V_{i}}^{V_{f}} \frac{n R T}{V} \cdot d V=-n R T \quad \operatorname{In}\left(\frac{V_{f}}{V_{i}}\right)$
Since,dw=PdV, so magnitude of work done can also be calculated by calculating the area under the PV curve of the reversible process in PV diagram.

An ideal gaseous sample at time state $\mathrm{i}\left(P_{0} V_{0} T_{0}\right)$ is allowed to expand to volume $2 V_{0}$ using two different processes, in the first process the equation of process is $P V^{2}=K_{1}$ and in second process the equation of the process is $P V=K_{2}$. Then :
A. work done in the first process will be greater than work in second process (magnitude wise)
B. the order of values of work done cannot be compared unless we know the value of K_{1} and K_{2}
C. value of work done (magnitude) in second process is greater in above expansion irrespective of the value of K_{1} and K_{2}
D. 1st process is not possible

Answer: c

- View Text Solution

comprehensive 13

1. For an ideal monoatomic gas, an illustration of three different paths A,
($\mathrm{B}+\mathrm{C}$) and ($\mathrm{D}+\mathrm{E}$) from an initial state P_{1}, V_{1}, T_{1} to a final state P_{2}, V_{2}, T_{1} is shown in the given figure.

Path A represents a reversible isothermal from $P_{1} V_{1}$ to P_{2}, V_{2}, path ($\mathrm{B}+\mathrm{C}$) represent a reversible adiabatic expansion (B) from P_{1}, V_{1}, T_{1} to P_{3}, V_{2}, T_{2} followed by reversible heating of the gas at constant volume (C) from P_{3}, V_{2}, T_{2} to P_{2}, V_{2}, T_{1}. Path (D+E) represents a reversible expansion at constant pressure $P_{1}(D)$ from P_{1}, V_{1}, T_{1} to P_{1}, V_{2}, T_{3} followed by a reversible cooling at constant volume $V_{2}(E)$ form P_{1}, V_{2}, T_{3} to P_{2}, V_{2}, T_{1}

What is $q_{\text {rev }}$ for path (A)?
A. zero
B. $-n R \operatorname{In} \frac{V_{2}}{V_{1}}$
C. $-n R T_{1} \operatorname{In} \frac{V_{2}}{V_{1}}$
D. $n R T_{1} \operatorname{In} \frac{V_{2}}{V_{1}}$

Answer: d

- View Text Solution

comprehensive 14

1. Entropy is a state function and its depends on two or three variable temperature (T), pressure(P) and volume (V). Entropy change for an ideal gas having number of moles (n) can be determined by the following equation:
$\Delta S=2.303 n C_{v} \log \left(\frac{T_{2}}{T_{1}}\right)+2.303 n R \quad \log \left(\frac{V_{2}}{V_{1}}\right)$
$\Delta S=2.303 n C_{p} \quad \log \left(\frac{T_{2}}{T_{1}}\right)+2.303 n R \quad \log \left(\frac{P_{2}}{P_{1}}\right)$
Since free energy change for a process or a chemical equation is a deciding factor of spontaneity, which can be obtained by using entropy
change (ΔS) according to the expression, $\Delta G=\Delta H-T \Delta S$ at a temperature T .

What would be the entropy change involved in thermodynamic expansion of 2 moles of a gas from a volume of 5 Lts to a volume of 50 Lts at $25^{\circ} \mathrm{C}$?
[Given $\mathrm{R}=8.3 \mathrm{~J} /$ mole-K]
A. $38.23 \mathrm{~J} / \mathrm{K}$
B. $26.76 \mathrm{~J} / \mathrm{K}$
C. $20 \mathrm{~J} / \mathrm{K}$
D. $28.23 \mathrm{~J} / \mathrm{K}$

Answer: a

- View Text Solution

comprehensive 15

1. For a process top be spontaneous, at constant temperature and pressure, there must be decreases in free energy of the system in the
direction of the process, i.e. $\Delta G_{\text {P.T. }}<0 . \Delta_{\text {P.T. }}=0$ implies the equilibrium condition and $\Delta G_{P . T .}>0$ corresponding to non-spontaneity. Gibb's Helmholtz equation relates the free energy change to the enthalpy and entropy change of the process as :
$\Delta G_{\text {P.T. }}=\Delta H-T \Delta S(i)$
The magnitude of ΔH does not change much with the change in temperature but the entropy factor $T \Delta S$ changes appreciably. Thus, spontaneity of a process depends very much on temperature.

For edothermic proces, both ΔH and ΔS are positive. The energy factor,the first factor of equation, opposes the spontaneity whereas entropy factor favours it . At low temperature, the favourable factor $T \Delta S$ will be small and may be less than $\Delta H, \Delta G$ will have positive value indicating the nonspontaneity of the process. On raising temperature, the factor $T \Delta S$ increases appreciably and when it exceeds $\Delta H, \Delta G$ would become negative and the process would be spontaneous.

For an exothermic process, both ΔH and ΔS would be negative. In this case, the first factor of equation(i) favours the spontaneity whereas the second factor opposes it. At high temperature, when $T \Delta S>\Delta H, \Delta G$ will have positive value, showing thereby the non-spontaneity of the process.

However, on decreasing temperature, the factore $T \Delta S<\Delta H, \Delta G$ becomes negative and the process occurs spontaneously. Thus, an exothermic process may be spontaneous at low temperature and non-spontaneous at high temperature.

When CaCO_{3} is heated to a high temperature, it undergoes decomposition into CaO and CO_{2} whereas it is quite stable at room temperature. The most likely explanation of it, is:
A. the enthalpy of reaction (ΔH) outweighs the term $T \Delta S$ at high temperature
B. the term $T \Delta S$ outweighs the enthalpy of reaction at high temperature
C. at high temperature, both enthalpy of reaction and entropy change become negative
D. none of the above

Answer: b

Comprehension 16

1. Standard Gibbs energy of reaction $\left(\Delta_{r} G^{\circ}\right)$ at a certain temperature can be completed as $\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T \delta_{r} S^{\circ}$ and the change in the value of $\Delta_{r} H^{\circ}$ and $\Delta_{r} S^{\circ}$ for a reaction with temperature can be computed as follows:

$$
\Delta_{r} H_{T_{2}}^{\circ}-\Delta_{r} C_{p}^{\circ}\left(T_{2}-T_{1}\right)
$$

$\Delta_{r} S_{T_{2}}^{\circ}-\Delta_{r} S_{T_{1}}^{\circ}=\Delta_{r} C_{p}^{\circ} \operatorname{In}\left(\frac{T_{2}}{T_{2}}\right)$
$\Delta_{r} G^{\circ}=\Delta_{r} H^{\circ}-T . \Delta_{r} S^{\circ}$
$\Delta_{r}^{\circ} G^{\circ}=-$ RTInK $_{e q}$
Consider the following reaction :
$\mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{g})$
Given
$\Delta_{r} H^{\circ}\left(\mathrm{CH}_{3} \mathrm{Oh}, \mathrm{g}\right]=-201 \mathrm{KJ} / \mathrm{mol}$
$\Delta_{r} H^{\circ}(C O, g)=-114 \mathrm{KJ} / \mathrm{mol}$
$s^{\circ}\left(\mathrm{CH}_{3} \mathrm{OH}, \mathrm{g}\right)=240 \mathrm{~J} / \mathrm{mol}-\mathrm{k}$,
$S^{\circ}\left(\mathrm{H}_{2} \mathrm{~g}\right)=198 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$C_{p . m}^{\circ}\left(h_{2}\right)=28.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$C_{p . m(C O)}=29.4 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
$C_{p . m}^{\circ}\left(\mathrm{CH}_{3_{\square}} \mathrm{OH}\right)=44 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
and $\operatorname{In}\left(\frac{320}{300}\right)=0.06$, all data at $300 K$.
$\Delta_{r} S^{\circ}$ at 300 K for the reaction is :
A. $152.6 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
B. 181.6J?K-mol
C. $-16 \frac{\mathrm{~J}}{\mathrm{~K}}-\mathrm{mol}$
D. none of these

Answer: c

- View Text Solution

Comprehension 17

1. Enthalpy of neutralzation is defined as the enthalpy change when 1 mole of acid-base is completely neutralized by base /acid in dilute solution.

For Strong acid and strong base neutralization net chemical change is
$\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta_{r} H^{\circ}=-55.84 \mathrm{KJ} / \mathrm{mol}$
$\Delta H_{\text {ionization }}^{\circ}$ of aqueous solution of strong acid and strong base is zero .
when a dilute solution of weak acid or base is neutralized, the enthalpy of neutralization is somewhat less because of the absorption of heat in the ionzation of the because of the absorotion of heat in the ionization of the weak acid or base ,for weak acid /base
$\Delta H_{\text {neutrlzation }}^{\circ}=\Delta H_{\text {ionization }}^{\circ}+\Delta_{r} H^{\circ}\left(H^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}\right)$
If enthalpy of neutralization of $\mathrm{CH}_{3} \mathrm{COOH}$ by NaOH is $-49.86 \mathrm{KJ} / \mathrm{mol}$ then enthalpy of ionization of $\mathrm{CH}_{3} \mathrm{COOH}$ is:
A. $5.98 \mathrm{KJ} / \mathrm{mol}$
B. $-5.98 \mathrm{KJ} / \mathrm{mol}$
C. $105.7 \mathrm{KJ} / \mathrm{mol}$

D. none of these

Answer: a

- Watch Video Solution

Comprehension 18

1. 9.0 gm ice $0^{\circ} \mathrm{C}$ is mixed with 36 gm of water at $50^{\circ} \mathrm{C}$ in a thermally insulated container.using the following data, Answer the qusestion that follow:
$C_{p}\left(\mathrm{H}_{2} \mathrm{O}\right)=4.18 \mathrm{Jg}^{-1} k^{-1}, \Delta H_{\text {fusion }}($ ice $)=335 \mathrm{Jg}^{-1}$
final temperature of water is:
A. 304.43 K
B. 296.97 K
C. 303.93 K
D. 287 K

Answer: b

- Watch Video Solution

Comprehension 19

1. Liquid water freezes at 273 K under external pressure of 1atm . The process is at eruilibrium
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{S})$ at 273 K and 1 atm
however, it required to calculate the thermodynamic parameters of the fusion process occurring at same pressure and different temperature . Using the following dat ,answer the questions thaat follow:
$d_{i c e}=0.9 \mathrm{gm} /, d_{\mathrm{H}_{2} \mathrm{O}(\mathrm{l})}=1 \mathrm{gm} / \mathrm{cc}, 1 \mathrm{~L}-\mathrm{atm}=101.3 \mathrm{~J}$
$C_{p}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{s})\right]=36.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
$C_{p}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right]=75.3 \mathrm{Jk}^{-1} \mathrm{~mol}^{-1}$
$\Delta H_{\text {fusion }}=6008.2 \mathrm{~mol}^{-1}$. Alldataat273K.
the value of $\Delta H_{\text {fusion }}$ at 263 K and 1 atm will be :
A. $+6008.0 \mathrm{Kmole}^{-1}$
B. $5619.2 \mathrm{Jmole}^{-1}$
C. -5619.2 Jmole ${ }^{-1}$
D. $6619.2 \mathrm{~mole}^{-1}$

Answer: b

- View Text Solution

Comprehension 20

1. A mixture of hydrogen gas and theortical amount of air at $25^{\circ} \mathrm{C}$ and a total pressure of 1atm, is exploded in a closed right vessel . If the process ossurs under adiabatic conditions then using the given data anwer the question that follow :

Given :

$C_{p}\left(\mathrm{~N}_{2}\right)$ and $C_{p}\left(\mathrm{H}_{2} \mathrm{O}\right)$ are8.3 and $11.3 \mathrm{caldeg}^{-1} \mathrm{~mol}^{-1}$ not necessarily in the same order.
$\Delta H_{f}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]=-57.8 \mathrm{kcal}$
[take air as $80 \% N_{2}, 20 \% O_{2}$ by volume. $]$
the value of $\mathrm{C}_{p} \mathrm{ofN} \mathrm{N}_{2}$ and $\mathrm{H}_{2} \mathrm{O}$ inthe order $\mathrm{N}_{2}, \mathrm{H}_{2} \mathrm{O}$ will be : (in cal $\mathrm{deg}^{-1} \mathrm{~mol}^{-1}$
A. 8.3,8.3
B. 8.3,11.3
C. 11.3,11.3
D. 11.3,8.3

Answer: b

- Watch Video Solution

Comprehension 21

1. The commercial production of 'Water gas' utilzes the endothermic reaction

$$
\mathrm{C}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{~g})
$$

the heat required for this reaction is generated by combustion of coal to
CO_{2} using stoichiometric amount of air $\left(79 \% N_{2}\right.$ by volume and $21 \% \mathrm{O}_{2}$ by volume). the superheated steam undergoes 75% conversion. usingthe following data ,answer the question that follows :
$\Delta H_{f}[C O(g)]=-110.53 \mathrm{KJmol}$
$\Delta H_{f}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]=-241.81 \mathrm{KJ} / \mathrm{mol}$
$\Delta H_{f}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-314.0 \mathrm{Kj} / \mathrm{mol}$
THe amount of heat liberated when one litre of product gases are burnt at 373 K and one atm is:
A. $\cong 3.36 K J$
B. $\cong 3.9 K J$
C. $\cong 4.43 \mathrm{KJ}$
D. $\cong 5.34 K j$

Answer: a

- View Text Solution

1. If Weak acid or weak base are neutralised ,the heat relealised, the heat released during neutralisatiojn is somewhat lesser than -13.7 kcal or -57.27 Kj .Heat of neutralistion is also referred to as heat of formation of water from H^{+}and OH^{-}ionsi.e .,
$\mathrm{H}^{+} \mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta h=-13.7 \mathrm{kcal}$
Magnitude of heat of neutralistion of Hi and acetic acid respectively are (in kcal) buy strong base are:
A. 13.7, < 13.7
B. >13.7 for both
C. <13.7 for both
D. $<13.7,>13.7$

Answer: a

- Watch Video Solution

1. Born- Hyber cycle below respesents the energy changes occurring as 298 K , jwhen MO(s) is formed from its elements, wherx $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are enthalpy change elements, for corresponding proOcesses respectively

$\Delta H_{\text {sub }}$ of $M=180 \mathrm{~kJ} / \mathrm{mol}$
I. $E_{1}(M)=218 \mathrm{~kJ} / \mathrm{mol}$
I. $E_{2}(M)=384 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{\text {atomisation }}$ of $O_{2}=640 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H\left(O \rightarrow O^{-}\right)=-142 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H\left(O \rightarrow O^{-2}\right)=-844 \mathrm{~kJ} / \mathrm{mol}$

In terms of $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{c}$ and d enthalpy change for the reaction, $2 \mathrm{M}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MO}(\mathrm{s})$, is:
A. $2 x+2 y+2 z+2 a+2 b+2 c+2 d$
B. $x+y+z+a+b+c+d$
C. $2 x+2 y+z+2 a+2 b+2 c+d$
D. $2 x+2 y+2 z+2 a+2 b+2 c-2 d$

Answer: a

D View Text Solution

Comprehension\#25

1. A factory, producing methanol, is based on the reaction :
$\mathrm{CO}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$
Hydrogen and carbon monoxide are obtained by the reaction

$$
\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}
$$

Three units of factory namely, the "reformer" for the H_{2} and CO
production, the "methanol reactor" for production of methonol adn a "separator" to separate $\mathrm{CH}_{3} \mathrm{OH}$ form CO and H_{2} are schematically shown in figure.

The flow of methonal from valve-3 is $10^{3} \mathrm{~mol} / \mathrm{sec}$. The factory is so designed that $\frac{2}{3}$ of the CO is converted to $\mathrm{CH}_{3} \mathrm{OH}$. Assume that the feromer reaction goes to completion.
$\mathrm{CO}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH} \Delta_{r} \mathrm{H}=-100 \mathrm{R}$

What is the flow of CO and H_{2} at valve-1?
A. $\mathrm{CO}: 1500 \mathrm{~mol} / \mathrm{sec}, \mathrm{H}_{2}: 2000 \mathrm{~mol} / \mathrm{sec}$
B. $\mathrm{CO}: 1500 \mathrm{~mol} / \mathrm{sec}, \mathrm{H}_{2}: 3000 \mathrm{~mol} / \mathrm{sec}$
C. $\mathrm{CO}: 1000 \mathrm{~mol} / \mathrm{sec}, \mathrm{H}_{2}: 2000 \mathrm{~mol} / \mathrm{sec}$
D. $\mathrm{CO}: 1500 \mathrm{~mol} / \mathrm{sec}, \mathrm{H}_{2}: 4500 \mathrm{~mol} / \mathrm{sec}$

Answer: d

1. One mole of a monoatomic ideal gas was isobarically heated from 300 K to 600 K at constant pressure of one atm. Subsequently, it is subjected to reversible adiabatic expansion till the volume becomes $4 \sqrt{2}$ of origingl (starting) value. After that it is subjected to isobaric cooling to original volume.

Select the correct statement :
A. Net work done in overall orocess is

$$
\left[-\frac{450}{\sqrt{2}} R-75 R\right]
$$

B. Net work done in overall process is $\left[-450 R-\frac{75}{\sqrt{2}} R\right]$
C. Temperature attained after adiabatic process is equal to initial temperature
D. Temperature attained finally is lesser than initial temperature

Comprehension \#27

1. Bond dissociation enthaply of the first H -S bond in hydrogen sulphide is $376 \mathrm{Kj} /$ mole. The enthalpies of formatin of $\mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})$ and $\mathrm{S}(\mathrm{g})$ are - 20.0 and $277.0 \mathrm{kj} /$ mole respectively. The enthalpy of formation of gaseous hydrogen atomis $218 \mathrm{Kj} /$ mole. Using above information, answer following questions :

The enthalpy of formation of free radical HS is :
A. $138 \mathrm{~kJ} / \mathrm{mole}$
B. $276 \mathrm{~kJ} / \mathrm{mole}$
C. $-10 \mathrm{~kJ} / \mathrm{mole}$
D. $357 \mathrm{~kJ} / \mathrm{mole}$

Answer: a

Comprehension\#28

1. One mole of idea monoatomic gas at 300 K undergoes an adiabatic irrersible process due to which its interhnal energy decreases by 150 calories.

Calculate the final temperature of the gas.
A. 200 K
B. 250 K
C. 350 K
D. 400 K

Answer: b

- Watch Video Solution

Comprehension\#30

1. Photosyntesis is a bio process by which planets make energy rich molecules from low energy molecules with the help of energy. From sunlight. The photosynthesis of glucose can be represented as :
$6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+h v \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}(\mathrm{s})+6 \mathrm{O}_{2}(\mathrm{~g})$
Electrochemical oxidation of glucoses to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. which is the reverse of photosyhnthesis, is an impottaint reaction and it can be used in the construction of a fuel cell. In a fule cell, a working substance celled fule is electrochemiclly oxidised by O_{2}
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{HO} \rightarrow 24_{e}^{-}+24 \mathrm{H}^{+}+6 \mathrm{CO}_{2}$
Heats of combustion of graphite and hydrogen at 300 K are $-400 \mathrm{kJmol}^{-1}$ respectively. If on combustion, 1 g of glucose releases 15 kJ of energy. calculate the heat of formation of glucose at 300 K .
A. -450 kJ
B. 1350 kJ
C. -1350 kJ
D. 450 kJ

- View Text Solution

Comprehension\# 31

1. $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \Delta \mathrm{H}_{\mathrm{rxn}}>0$ Which relationship is correat for this reaction at a pressure of 1 atm ?
A. $\Delta E_{r x n}>\Delta H_{r x n}$
B. $\Delta E_{r x n}<\Delta H_{r x n}$
C. $\Delta E_{r x n}=\Delta H_{r x n}+\Delta S_{r a x}$
D. $\Delta E_{r x n}=\Delta H_{r x n}-\Delta S_{r a x}$

Answer: a

- Watch Video Solution

Comprehension \# 32

1. Rubber bands comprise of loosely packed chains of atoms. When stretched, the chain of atoms get neatly lined up in rows and hens the entrops of system decreases whereas when contacted the chains get tangled up in a mess increasing entropy of system. Also on strectching rubber band, it is observed that any substance brought in its contact gets heated up. Based on this information, answer the following questions.

Which of the following statement (s) is/are true regarding the change Rubber band ${ }_{\text {streched }} \rightarrow$ Rubberband $_{\text {unstreached }}$?
A. The change is spontaneous.
B. The process is endothrmic in nature.
C. Entropy of the rubber band is increasing in the process.
D. Entropy of surroundings is decreacing in the process.

Answer: a,b,c,d

- View Text Solution

1. When 1 mole of $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})$ at $27^{\circ} \mathrm{C}$ is burnt completely in some oxygen gas at $27^{\circ} \mathrm{C}$ At constant pressure, $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are produce at $327^{\circ} \mathrm{C}$. the surropundings. The standard enthaplies of formation of $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}) . \mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are $-40,-90,-30$ and $-60 \mathrm{kcal} / \mathrm{mol}$ respectively. The molor heat capacities at constant pressure of $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are 7.0, 6.0 and 9.0cal/ Kmol, respectively. The molar hear capacities at constnt pressure of $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are $7.0,6.0$ and $9.0 \mathrm{cal} / \mathrm{K}-\mathrm{mol}$ respectively. On the basis of these informations, math teh valuesof column-I with the quantities represented in column-II Assume $\Delta_{r} H$ independent of temperature.
(, Column-I, , Column-II), ((a), 1.0, (p), $\Delta_{r} H$ of reaction: $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 C$ (, Column-I, , Column-II), $\left((a), 1.0,(p), \Delta_{r} H\right.$ of reaction: $2 C_{2} H_{6}(g)+7 O_{2}$ $\left((b),-200 \mathrm{kcal},(q), \Delta_{r} H\right.$ of reactIon: $\mathrm{C}_{2} \mathrm{H}_{6}(g)+\frac{5}{2} \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}(g)+3$. $\left((d),-640 \mathrm{kcal},(s)\right.$, Moles of $\mathrm{CO} _(2)$ formed is $),(,,(t)$, Work done by the

- View Text Solution

1. A picece of zinc of mass 5.0 g is dropped into a beaker of dilute hydrochloric acid. Calculate the work done by the system (mangnitude only in J) as a result of the reaction. The atmospheric pressure is 1.1 atm and temperture $23^{\circ} \mathrm{C}$.

- Watch Video Solution

Others

1. For a van der Waal's gas with $a=0.2463{\mathrm{~atm} \mathrm{lit}^{2} \mathrm{~mol}^{-1}}$ and $\mathrm{b}=0.01$ lit mol^{-1} subjected to adiabatic free exapansion at an initial temperature of 650 K will show which of the following characterstics?
A. $q=0, w=0, \Delta T=0$
B. $q=0, w=0, \Delta T>0$
C. $q=0, w=0, \Delta T<0$
D. $q \neq 0, w=0, \Delta T=0$

Answer: B

- View Text Solution

2. 1 mole of argon is expanded isothermiocally and irreversably (not against vaccum) from 10L to 100L. Which of the following is incorrect the process ?
A. $\Delta U=0$
B. $\Delta H=0$
C. Heat supplied(q)=0
D. $\Delta T=0$

Answer: C

- Watch Video Solution

3. A vessel contains 100 litres of liquid X . Heat is suppplied to the liquid in such a fashion that, Heat given = change in ethalpy. The volume of the liquid is incresed by 2 litres. If the external pressure is one atm, and 202.6joules of heat were supplied then, [$U=$ total internal energy] :
A. $\Delta U=0, \Delta H=0$
B. $\Delta U=+202.6 J, \Delta H=+202.6 J$
C. $\Delta U=-202.6 J, \Delta H=-202.6 J$
D. $\Delta U=0, \Delta H=+202.6 \mathrm{~J}$

Answer: D

- View Text Solution

4. 2 mole of ideal gas expands isothermically and reversibally from 1 L to 10 L at 300 K . then ΔH is :
A. 4.98 kJ
B. 11.47 kJ
C. -11.47 kJ
D. zero

Answer: D

- View Text Solution

5. Select the correct set of statement/s :
(P) Work done by the surroundings in case of infinite stage expansion is more than single stage expansion.
(Q) Irreversible work is always greater than reversible work.
(R) In an ideal gas in case of single stage expansion and compression, system as well as surroundings are restored back to their orginal states.
(S) If gas in thermodynamics is equilibrium is taken from state A to state B, by four successive single stage expansion. Then we can plot four points on the $P-V$ indicator diagram.
A. Only Q
B. P,Q,R,S
C. Q,S
D. P,Q,S

Answer: A

- Watch Video Solution

6. A typical adults needs 33 kcal per kg body weight per day. Assuming an energy balance, calculate the' power' of an 80 kg individual
A. 217 W
B. 128 W
C. 712 W
D. 172 W

Answer: B

7. A sample of gas is compressed from an initial volume of $2 V_{0}$ to V_{0} using three different processes.

First: Using reversing isothermal
Second : Using reversible adiabatic
Third : Using irreversible adiabatic under a constant external pressure ,than :
A. Final temerature of gas will be highest at the end of third process.
B. Final temperature of gas will be highest at the end of second
process
C. Enthalpy change of sample will be highest in isothermal process.
(magnitude wise)
D. Final pressure of gas will be highest at the end of second process.

Answer: A

- View Text Solution

8. In an isothermical expansion of a gaseous sample the correct relation is (consider w (work) with sign according to IUPAC convention)
[The reversible and irreversible procss are carried out between same initial and final states.]
A. $w_{\text {rev }}>w_{\text {irrev }}$
B. $w_{\text {irev }}>w_{\text {rev }}$
C. $q_{\text {rev }}>q_{\text {irrev }}$
D. cannot be predicted

Answer: B

- Watch Video Solution

9. a monoatomic gas $\left(C V=\frac{3}{2} R\right)$ is allowed to expand adiabaticaly and reversibly from initial volume of 8 L to 300 K to a volume V_{2} at $250 \mathrm{~K} . V_{2}$ is
A. 10.5 L
B. 23 L
C. 8.5 L
D. 50.5 L

Answer: A

- Watch Video Solution

10. An ideal gas with $C_{v}=3 R$ expands adiabatically into a vaccum thus doubling its volume. The final temeperature is given by :
A. $T_{2}=T_{1}\left[2^{-1 / 3}\right]$
B. $T_{2}=T_{1}$
C. $T_{2}=2 T_{1}$
D. $T_{2}=\frac{T_{1}}{2}$

Watch Video Solution

11. The enthalapy of vaporization of water at $100^{\circ} \mathrm{C}$ is $40.63 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The value of ΔU° for this process would be :
A. $37.53 \mathrm{kj} \mathrm{mol}^{-1}$
B. $39.08 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $42.19 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $43.73 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: A

- View Text Solution

12. What is the work done against the atmosphere when 25 grams of water vapourizes at 373 K against a constant external pressure of 1 atm ? Assume that steam obeys perfect gas laws. Given that the molar enthalpy
of vaporization is $9.72 \mathrm{kcal} / \mathrm{mole}$, what is the change of enternal energy in the above process? [Take $\mathrm{R}=2 \mathrm{cal} / \mathrm{mol} / \mathrm{K}$]
A. 1294.0 cals, 11247 cals
B. 921.4 cals, 11074 cals
C. 1036.1 cals, 12464 cals
D. 1129.3 cals, 10207 cals

Answer: C

- Watch Video Solution

13. The magnitude of enthalpy changes for irreversible adiabiatic expansion of a gas from 1 L to 2 L is ΔH_{1} and for reversible adiabatic expansion for the same expansion is ΔH_{2}. Then :
A. $\Delta H_{1}>\Delta H_{2}$
B. $\Delta H_{1}<\Delta H_{2}$
C. $\Delta H_{1}<\Delta H_{2}$, enthalapy being a state function
D. $\Delta H_{1}=\Delta E_{1}$, and $\Delta H_{2}=\Delta E_{2}$ Where ΔE_{1} and ΔE_{2} are magnitudes changes in internal energy of gas in three expansions respectively .

Answer: B

- View Text Solution

14. A certain mass of gas expanded from ($1 \mathrm{~L}, 10 \mathrm{~atm}$) to ($4 \mathrm{~L}, 5 \mathrm{~atm}$) against a constant external pressure of 1 atm. If initial temperature of gas is 300 K and the heat capacity of process is $50 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. Then the enthalpy change during the process is :
(1Latm~100J)
A. $\Delta H=15 k J$
B. $\Delta H=15.7 \mathrm{~kJ}$
C. $\Delta H=14.4 k J$
D. $\Delta H=14.7 \mathrm{~kJ}$

Answer: D

Watch Video Solution

15. A container of volume 2 L is seperated into equal compartments. In one compartment, one mole of an ideal monoatomic gas is filled at 1 bar pressure and the other compartment is completely evacuted. A pihole is made in the seperator so gas expands to occupy full 2 L and heat is supplied to gas so that finally pressure of gas equals 1 bar. Then :

Vacuum
 1 L 1 bar

A. $\Delta E=\Delta H=150 J$
B. $\Delta H=250 J$
C. $\Delta E=100 J$
D. $\Delta E=\Delta H=0$

Answer: D

- Watch Video Solution

16. Which of the following options is not correct w.r.t. van der Waal's gas subjected to isothermal process?
A. $|w|$ for 2 moles in a reversible process will not be double of $|w|$ for one mol.
B. Heat exchange :

$$
q=\mathrm{nR} \operatorname{Tl} \frac{V_{2}-n b}{V_{1}-n b}+a n^{2}\left[\frac{1}{V_{2}}-\frac{1}{V_{1}}\right]
$$

C. Kinetic energy of molecules will remain constant.
D. Potential energy of moecules will change

Answer: B

- Watch Video Solution

17. 5 moles of an ideal monoatomic gas absorbes x joule when heated from $25^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ at a constant volume. The amount of heat absorbed when 2 moles of the same gas is heated from $25^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ at constant pressure, is :
A. $\frac{3}{5} x J$
B. $\frac{5}{3} x J$
C. $\frac{2}{3} x J$
D. $\frac{25}{6} x J$

Answer: C

18. The only incorrect statement for the value of γ for NH_{3} gas is :
(Assume ideal gas behaviour)
A. $y=\frac{7}{5}$ at moderate temperature
B. $y=\frac{5}{9}$ at very low temperature
C. $\gamma=\frac{10}{9}$ at very high temperature
D. $y=\frac{7}{6}$ considering only 50% contribution of vibrational energy.

Answer: A

- Watch Video Solution

19. For a gaseous reaction,

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{SO}_{3}, \Delta \mathrm{H}=-440 \mathrm{~kJ} / \mathrm{mole}
$$

at a temperature of 300 K . Calculate ΔU when 1 mole of SO_{2} is completely reacted with 1 mole of O_{2} in a 10 litre rigid vessel at an initial pressure of 50 bar which decreases to 20 bar.
A. $-190 k J$
B. -250 kJ
C. $-410 k J$
D. -470 kJ

Answer: A

D Watch Video Solution

20. Select the option in which all the parametres are intensive :
A. pH, volume, Electrodes potential.
B. Molar enthalpy, Heat capacity, Resistivity.
C. Temperature,Molality, Electromotive force.
D. Mass, Pressure, Molar entropy.

Answer: C

21. For which of the following process $|\Delta H|<|\Delta E|$:
A. Vaporisation of liquid bromine at constant pressure
B. Dissociation of $\mathrm{NH}_{3}(\mathrm{~g})$ to give $\mathrm{N}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2}(\mathrm{~g})$ at constant pressure
C. Adiabatic free expansion of ideal gas
D. Conversion of graphite to diamond occuring at constant pressure condition

Answer: D

- Watch Video Solution

22. For a fixed amouunt of an ideal $\operatorname{gas}\left(\gamma=\frac{11}{9}\right)$, the change in internal energy of the gas when pressure changes from 10 bar to 20 bar in rigid vessel of volume 5 L is given by :
A. 225 J
B. 22.5 kJ
C. 15 kJ
D. 36 kJ

Answer: B

- Watch Video Solution

23. Calculate change in enthalpy when 2 moles of liquid water at 1 bar and $100^{\circ} \mathrm{C}$ is coverted into steam at 2 bar and 300°. Assume $\mathrm{H}_{2} \mathrm{O}$ vapoures to behave ideally.
[Latent heat of vaporisation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at 1 bar and $100^{\circ} \mathrm{C}$ id=s 10.8 kcal per mole]
[$\mathrm{R}=2 \mathrm{cal} / \mathrm{mol} \mathrm{K}]$
A. 21.6 kcal
B. 11.8 kcal
C. 24.8 kcal
D. 23.6 kcal

Answer: C

- Watch Video Solution

24. Which of the following statement is incorrect regarding adiabatic and isothermal processes for an ideal gas, starting from same initial state to same final volume?
A. In expansion, more work is done by the gas in isothermal processs.
B. In compression, less work will be done on the gas in isothermal
process.
C. The slope of adiabatic P - V graph is negative.
D. In expansion, final temperature of adiabatic will be mor as compared to isothermal.

Answer: D

25. Calculate work involved in compression of 2 moles of H_{2} gas reversibly and isothermically from 1.2 L to 0.6 L at 300 K , if critical volume of H_{2} gas is $0.3 \mathrm{~L} / \mathrm{mol}$.

Given : R=2cal/mol,in10=2.3,log $4=0.6, \log 5=0.7, \log 11=1.2]$
A. 1.104 kcal
B. 1.38 kcal
C. 2 kcal
D. 3.9 kcal

Answer: A

- Watch Video Solution

26. Which of the following options is correct w.r.t. ideal gas
A. $\left(\frac{\partial H}{\partial T}\right)_{P}-\left(\frac{\partial H}{\partial T}\right)_{V}=R$
B. $\left(\frac{\partial H}{\partial T}\right)_{P}<\left(\frac{\partial H}{\partial T}\right)_{V}$
C. $\frac{\left(\frac{\partial H}{\partial T}\right)_{P}}{}=\gamma$ (Poisson's ratio)
$\left(\frac{\partial U}{\partial T}\right)_{V}$
D. $\left(\frac{\partial U}{\partial T}\right)_{P}-\left(\frac{\partial H}{\partial T}\right)_{p}=R$

Answer: C

- View Text Solution

27. Caalculate ΔH when 2 moles of solid benzoic acid undergo complete combustion at 300 K if
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{s})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 7 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta U_{\text {reaction }}=-750 \mathrm{~kJ} / \mathrm{mole}$
A. -751.247 kJ
B. $-752.494 k J$
C. -1501.247 kJ
D. $-1502.494 k J$

Answer: D

- Watch Video Solution

28. For the combustion of CH_{4} at 1 atm pressure and 300 K , which of the following options is correct?
A. $\Delta H=\Delta U$
B. $\Delta H>\Delta U$
C. $\Delta H<\Delta U$
D. $\Delta H=0$

Answer: C

29. A certain mass of a gas is expended from [$2 \mathrm{~L}, 20 \mathrm{~atm}, 300 \mathrm{~K}$] to [$5 \mathrm{~L}, 10$ atm, 320 K$]$ against a constant external pressure of 5 atm. If heat capacity of the gas is $100 \mathrm{~J} /{ }^{\circ} \mathrm{C}$ then enthalapy change of the process will be : [1 $\operatorname{atm} \operatorname{lit} .=100 \mathrm{~J}]$
A. 2 kJ
B. 0.5 kJ
C. 1.5 kJ
D. 1 kJ

Answer: C

- Watch Video Solution

30. Calculate heat capacity of a diatomic ideal gas (Molar mass $=11 \mathrm{gm} / \mathrm{mol}$) if it is subjected to a process such that pressure exerted is directly proportional to cube of the volume.[R=2cal/molK]

A. $5 \mathrm{cal} / \mathrm{molK}$

B. $11 \mathrm{cal} / \mathrm{gmK}$
C. $0.5 \mathrm{cal} / \mathrm{gmK}$
D. $0.5 \mathrm{cal} / \mathrm{molK}$

Answer: C

- View Text Solution

31. The value of $\Delta H-\Delta U$ when 2 moles of solid benzoic acid undergoes combustion at 300 K is given by :
A. $-1.247 k J$
B. $-2.494 k J$
C. $+2.494 k J$
D. +1.247 kJ

Answer: B

32. For a reaction

$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta \mathrm{H}=-24 \mathrm{kcal}$ at 700 K and 10 atm pressure, calculate magnitude of change in internal energy if 1.68 kg of $N_{2}(g)$ and 0.3 kg of H_{2} are mixed and reaction undergoes 60% completion :
A. 21.2 kcal
B. 636 kcal
C. 1200 kcal
D. 1090 kcal

Answer: D

- View Text Solution

33. What will be the value of maximum work one by the gas when pressure of $20 \mathrm{gm} \mathrm{H}_{2}$ is reduced from 20 to 2 atm at constant tempreature of 300 k , assuming gas to behave ideally?
A. 57.44 kJ
B. 114.88 J
C. 224.478 kJ
D. 22.4478 kJ

Answer: A

- Watch Video Solution

34. An ideal gas is subjected to two different reversible expansion process, $P V^{3}=K_{1}$ and $P V^{5 / 2}=K_{2}$ from same initial state to same final volume. Which of the follwing statements is correct regarding the two process :
A. The work done by the gas in second process is more as compared to first process.
B. The magnitude of work done can be compared only by knowing value of K_{1} and K_{2}.
C. Heat capacity of the gas for the two process is same
D. Final state for the two process will be same

Answer: A

- Watch Video Solution

35. A real gas is subjected to an adibatic process causing in a change of state from (3 bar, $50 \mathrm{~L}, 500 \mathrm{~K}$) to (5 bar, $40 \mathrm{~L}, 600 \mathrm{~K}$) against a constant pressure of 4 bar. The magnitude of enthalpy change for the process is :
A. 4000 J
B. 5000 J
C. 9000 J
D. 1000 J

Answer: C

36. Which of the following options consist of only intensive parametres?
A. pH of solution, Temperature and volume.
B. Δp, Specific heat capacity, Molar internal energy, E.M.F.
C. Resistence, Molar mass, Vapour density
D. Density, Mass and temperature.

Answer: B

- Watch Video Solution

37. A real gas follows $\mathrm{PV}=\mathrm{nRT}$ at a temperature of $30^{\circ} \mathrm{C}$. Which of the following statements is true when it is subjected to adiabatic free expansion at a temperature of 70°.
A. It will not undergo any change in temperature
B. It will not undergo increase in the temperature
C. It will not undergo decrease in the temperature
D. It will undergo first increase and then decrease in temperature

Answer: C

- Watch Video Solution

38. Identify the options in which $\Delta H>\Delta U$. [Assume gases to behave as ideal].
A. Polymerisation of ethene (g) into polyethene (g).
B. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
C. $\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
D. $\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow \mathrm{O}_{2}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Answer: B

- Watch Video Solution

39. In which of the following processes involving ideal gas magnitude of heat exchange will be maximum for same change in temperture and same moles.[P
is in atm and V in litre]:
A. $P V^{3}=20$
B. Isochoric procees
C. Isobaric process
D. $P V^{1 / 2}=10$

Answer: D

(D) Watch Video Solution

40. Four sample of ideal gas containig same moles and intially at same temperature and prcessure are subjected to four difference processes :
(A) Isothermal reversible expansion
(B) Isothermal irrversible expansion against final pressure
(C) Adiabatic reversible expansion
(D) Adiabatic irreversible expansion against final pressure

If in all the cases, final pressue is same then what will be the order of final temperture in the above cases.
A. $T_{a}=T_{b}>T_{c}=T_{d}$
B. $T_{a}>T_{b}>T_{c}>T_{d}$
C. $T_{a}=T_{b}<T_{c}<T_{d}$
D. $T_{a}=T_{b}>T_{d}>T_{c}$

Answer: D

D Watch Video Solution

41. An ideal gas is expanded irrversibly against 10 bar pressure from 20 litre to 30 litre. Calculate if processure is isoenthalpic:
A. 0
B. +100 J
C. -100 J
D. +10 kJ

Answer: D

- Watch Video Solution

42. The volume of gas is reduced to half from its original volume. The specific heat will be
A. reduced to half
B. be doubled
C. remain constant
D. increase four times

Answer: C

43. For a real gas having $a=4.105 \mathrm{~atm}-L^{2} / \mathrm{mole}$ and
$b=\frac{1}{5.4} L /$ mole .If it is at an initial temperture of 300 k , then which of the following process can cause liquifaction of the gas ?
A. Isothermally decrease of pressure
B. Isothermally increase of pressure
C. Adiatbatic decrease of pressure
D. both (b) and (c)

Answer: C

- Watch Video Solution

44. What is the change internal energy when a gas contracts from 377 mL to 177 mL under a constant pressure of 1520 torr, while at the same time being cooled by removing 124 J heat ?
[Take:(1Latm) = 100J)]
B. $-84 J$
C. $-164 J$
D. -248 J

Answer: B

- Watch Video Solution

45. The heat capactiy of liquid water is $75.6 \mathrm{~J} / \mathrm{molK}$, while the enthalpy of fusion of ice is $6.0 \mathrm{kj} / \mathrm{mol}$. What is the smallest number of ice cubes at 0° C, each containing 9.0 g of the of water, needed to cool 500 g of liquid water from $20^{\circ} \mathrm{C}$ to $0^{\circ} \mathrm{C}$?
A. 1
B. 7
C. 14
D. None of these

Answer: C

- Watch Video Solution

46. Two rigid adiabatic vessel A and B which initially, contain two gases at different temperature are connected by pipe line with value of negligible volume .The vessel A contain 2 moles Ne gas $\left(C_{p . m}=\frac{5}{2} R\right)$ at 300 K , vessel B contain 3 moles of $\mathrm{SO}_{2} g a s\left(C_{p . m}=4 R\right)$ at 400 K .

The volume of the A and B vessel is 4 and 6 litre repectively .

The final total pressue (in atm) when valve is opened and 12 kcal heat supplied throught it to vessels .
[Use $: R=2 \mathrm{cal} / \mathrm{mole} K$ and $R=0.08 \mathrm{~L}$. atm $/ \mathrm{mole} \mathrm{K}$ as

A. 3.5 atm
B. 7atm
C. 35 atm
D. 70atm

Answer: C
47. A system contains 1 mole of a monoatomic ideal gas . Now 1 mole of a diatomic non-reacting ideal gas is added into the system at constant volume and temperature. Due to addition diatomic gas ,Choose the incorrect statement, regarding the new system :
A. Enthalpy of system will increase
B. Adiabatic coefficient $\left(\lambda=C_{p} / C_{V}\right)$ of the system
will decrease
C. Internal energy of the system remains constant .
D. Pressure energy system will increase .

Answer: C

- View Text Solution

48. Warming ammonium chloride with sodium hydroxide in a test tube is an example of:
A. closed system
B. isolated system
C. open system
D. None of these

Answer: C

D Watch Video Solution

49. Out of boiling point (P), entropy (Q), $\mathrm{pH}(\mathrm{R})$ and e.m.f. of cell (S), intensive properties are:
A. P, Q
B. P, Q, R
C. P, R, S
D. All of these

Answer: C

50. Ice-water mass ratio is maintntained as $1: 1$ in a given system containing water in equilibrium with ice at constant pressue. If C_{p} (ice) $=$ C_{p} (water) $=4.18 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$ molar heat capacity of such a system is :
A. Zero
B. infinity
C. $4.182 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. $75.48 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$

Answer: B

- Watch Video Solution

51. A piece of zinc at a tempreature of $20.0^{\circ} \mathrm{C}$ weighing 63.38 g is drooped into 180 g boiling water $\left(T=100^{\circ} \mathrm{C}\right)$. The specific heat of zinc
is $0.400 \mathrm{Jg}^{-1 \circ} \mathrm{C}$ and that of water is $4.20 \mathrm{Jg}^{1 \circ} \mathrm{C}$. What is the finial comman temperature reached by both the zinc and water ?
A. $97.3^{\circ} \mathrm{C}$
B. $33.4^{\circ} \mathrm{C}$
C. $80.1^{\circ} \mathrm{C}$
D. $60.0^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

52. Two mole of an ideal gas is heated at constant pressure of one atmosphere from $27^{\circ} \mathrm{C}$ to $127^{\circ} \mathrm{C}$. If $C_{v, m}=20+10^{-2} \mathrm{~T} \mathrm{JK}^{-1} . \mathrm{mol}^{-1}$, then q and ΔU for the process are respectively:
A. 6362.8J, 4700J
B. 3037.2J, 4700J
C. $7062.8,5400 \mathrm{~J}$
D. none of these

Answer: A

- Watch Video Solution

53. Determine which of the following reactions at constant pressure represent surrounding that do work on the system environment :
(P) $4 \mathrm{NH}_{3}(g)+7 \mathrm{O}_{2}(g) \rightarrow 4 \mathrm{NO}_{2}+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
(Q) $\mathrm{CO} \cdot \mathrm{O}(\mathrm{g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}(\mathrm{l})$
(R) $\mathrm{C}(\mathrm{s}$, graphite $)+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$
(S) $\mathrm{H}_{2} \mathrm{O}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
A. R,S
B. Q and R
C. Q,S
D. P,Q and S

Answer: D

(D) Watch Video Solution

54. A sample of liquid in a thermally insulated constant (a calorimetre) is strirred for 2 hr . by a mechancal linkage to motor in the surrounding ,for this procees :
A. $w<0, q=0, \Delta U=0$
B. $w>0, q=0, \Delta U>0$
C. $w<0, q>0, \Delta U=0$
D. $w>0, q=0, \Delta U>0$

Answer: D

- Watch Video Solution

55. 10 mole of ideal gas expand isothermally and reversibly from a pressure of 10 atm to 1 atm at 300 K . What is the largest mass which can lifted through a height of 100 meter?
A. 31842 kg
B. 58.55 kg
C. 342.58 kg
D. None of these

Answer: B

- Watch Video Solution

56. A gas expands adiabatically at constant pressure such that $T \propto V^{-1 / 2}$. Thre Value of $\gamma\left(C_{p, m} / C_{v, m}\right)$ of the gas will be:
A. 1.3
B. 1.5
C. 1.7
D. 2

Answer: B

57. Which has maximum internal energy at 290 K ?
A. Neon gas
B. Nitrogen gas
C. Ozone gas
D. Equal for (a),(b),(c)

Answer: C

- Watch Video Solution

58. 1 mole of NH_{3} gas at $27^{\circ} \mathrm{C}$ is expanded under reversible adiabatic conditions to make volume 8 times ($\gamma=1.33$). Final temperature and work done respectively are :
A. $150 \mathrm{~K}, 900 \mathrm{cal}$
B. $150 \mathrm{~K}, 400 \mathrm{cal}$
C. $250 \mathrm{~K}, 1000 \mathrm{cal}$
D. $200 \mathrm{~K}, 800 \mathrm{cal}$

Answer: A

- View Text Solution

59. 1 mole of an ideal gas $\mathrm{A}\left(C_{v, m}=3 R\right)$ and 2 mole of an ideal gas B are $\left(C_{v, m}=\frac{3}{2} R\right)$ taken in a container and expended reversibly and adiabatically from 1 litre to 4 litre starting from initial temperature of 320 K. ΔE or ΔU for the process is :
A. $-240 R$
B. $+240 R$
C. 480 R
D. $-960 R$

- View Text Solution

60. One mole of an ideal gas $\left(C_{v, m}=\frac{5}{2} R\right)$ at 300 K and 5 atm is expanded adiabatically to a final pressure of 2 atm against a constant pressure of 2 atm . Final temperature of the gas :
A. 270 K
B. 273 K
C. 248.5 K
D. 200 K

Answer: C

61. The work done in adiabatic compression of 2 mole of an ideal monoatomic gas by constant external pressure of 2 atm starting from initial pressure of 1 atm and initial tempreature of 1 atm and initial temperature of 300 K .
($\mathrm{R}=2 \mathrm{cal} / \mathrm{mol}-$ degree)
A. 360 cal
B. 720 cal
C. 800 cal
D. 1000 cal

Answer: B

- View Text Solution

62. One mole of a non-ideal gas undergoes a change of state (1.0 atm,3.0 $\mathrm{L}, 200 \mathrm{~K}$) to (4.0 atm,5.0 L,250 K) with a change in internal energy $(\Delta U)=40$ L-atm. The change in enthalpy of the process in L-atm :
A. 43
B. 57
C. 42
D. None of these

Answer: B

- View Text Solution

63. 0.5 mole each of two ideal gases $\mathrm{A}\left(C_{v, m}=\frac{5}{2} R\right)$ and $\mathrm{B}\left(C_{v, m}=3 R\right)$ are taken in a container and expanded reversibely and adibatically, during this process, temperature of gaseous mixture decreased from 350 K and 250 K . Find ΔH (in cal/mol) for the process :
A. $-100 R$
B. $-137.5 R$
C. $-375 R$
D. None of these

Answer: C

- View Text Solution

64. 100 mL of a liquid is contained in an insulated container at a pressure of 1bar. The pressure is steeply increased to 100bar. The volume of the liquid is decreased by $1 m L$ at this constant pressure. Find ΔH and ΔU.
A. 1 L atm
B. 5 L atm
C. 500 L atm
D. 50 L atm

Answer: A

- Watch Video Solution

65. Consider the reaction at 300 K
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}), \Delta H^{\circ}=-185 \mathrm{~kJ}$
If 2 mole of H_{2} compeletely react with 2 mole of Cl_{2} to form HCl . What is ΔU° for this reaction ?
A. 0
B. $-185 k J$
C. 370 kj
D. -370 kJ

Answer: D

D Watch Video Solution

66. For the real gases reaction,
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}), \Delta H=-560 \mathrm{~kJ}$. In 10 litre rigid vessel at 500 K the initial pressure is 70 bar and after the reaction it becomes 40 bar. The change in internal energy is :
A. $-557 k J$
B. -530 kJ
C. $-563 k J$
D. None of these

Answer: B

- Watch Video Solution

67. Correct statements about samples of ice and liquid water at $0^{\circ} \mathrm{C}$ include which of the following ? (P) Molecules in ice and liquid water have the same kinetic energy.
(Q) Liquid water has a greater entropy than ice. (R) Liquid water has a greater potential energy than ice
A. P and Q only
B. P and R only
C. Q and R only
D. P,Q and R

Answer: D

- Watch Video Solution

68. A heating coil is immersed in a 100 g sample of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})$ at a 1 atm and $100^{\circ} \mathrm{C}$ in a closed vessel. In this heating process, 60% of the liquid is converted to the gaseous form at constant pressure of 1 atm . The densities of liquid and gas under these conditions are $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and $0.60 \mathrm{~kg} / \mathrm{m}^{3}$ respectively. Magnitude of the work done forthe process is : (Take : 1L-atm=100J)
A. 4997 J
B. 4970 J
C. 9996 J
D. none of these

Answer: C

- Watch Video Solution

69. 10 itres of monoatomic gas at $0^{\circ} \mathrm{C}$ and 10 atm pressure is suddenly released to 1 atm pressure and the gas expands adibatically against the constant pressure. The final temperature and the volume of the gas respectively are :
A. $\mathrm{T}=174.7 \mathrm{~K}, \mathrm{~V}=64.00$ liitres
B. $\mathrm{T}=153 \mathrm{~K}, \mathrm{~V}=57$ liitres
C. $\mathrm{T}=165.4 \mathrm{~K}, \mathrm{~V}=78.8$ liitres
D. $T=161.2 \mathrm{~K}, \mathrm{~V}=68.3$ liitres

Answer: A

- Watch Video Solution

70. Consider a classroom that is roughly $5 \mathrm{~m} \times 10 \mathrm{~m} \times 3 \mathrm{~m}$. Initially $T=27^{\circ}$

C and $\mathrm{p}=1 \mathrm{~atm}$. There are 50 people in a insulated class losing energy to
the room at the average rate of 150 Watt per person. How long can they remain in class if the body temperature is $42^{\circ} \mathrm{C}$ and person feels uncomfortable above this temperature. Heat capacity of air=(7/2)R
A. 4.34 minutes
B. 5.91 minutes
C. 6.86 minutes
D. 7.79 minutes

Answer: B

- Watch Video Solution

71. The increase in internal energy of 1 kg of water at $100^{\circ} \mathrm{C}$ when it is converted into steam at the same temperature and 1 atm (100 kPa) will be
[The density of water and steam are $1000 \mathrm{~kg} / \mathrm{m}^{3}$ and $0.6 \mathrm{~kg} / \mathrm{m}^{3}$ respectively. The latent heat of vapourisation of water is $2.25 \times 10^{6} \mathrm{~J} / \mathrm{kg}$.]
A. $2.08 \times 10^{6} J$
B. $4 \times 10^{7} \mathrm{~J}$
C. $3.27 \times 10^{8} \mathrm{~J}$
D. $5 \times 10^{9} \mathrm{~J}$

Answer: A

- Watch Video Solution

72. At 5×10^{4} bar pressure density of diamond and graphite are $3 \mathrm{~g} / \mathrm{cc}$ and $2 g / c c$ respectively, at certain temperature ' T '. Find the value of $\Delta U-\Delta H$ for the conversion of 1 mole of graphite to 1 mole of diamond at temperature ' T ' :
A. $100 \mathrm{~kJ} / \mathrm{mol}$
B. $50 \mathrm{~kJ} / \mathrm{mol}$
C. $-100 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: A

- Watch Video Solution

73. A new flourocarbon of molar mass $102 \mathrm{~g} \mathrm{~mol}^{-1}$ was placed in an electricity heated vessel. Whwn the pressure was 650 torr, the liquid boiled at $77^{\circ} \mathrm{C}$. After the boiling point had been reached, it was found that a current of 0.25 A from a 12.0 volt supply passed for 600 sec vaporises 1.8 g of the sample. The molar enthalpy and enternal energy of vaporisation of new flourocarbon will be :
A. $\Delta H=102 \mathrm{~kJ} / \mathrm{mol}, \Delta E=99.1 \mathrm{~kJ} / \mathrm{mol}$
B. $\Delta H=95 \mathrm{~kJ} / \mathrm{mol}, \Delta E=100.3 \mathrm{~kJ} / \mathrm{mol}$
C. $\Delta H=107 \mathrm{~kJ} / \mathrm{mol}, \Delta E=105.1 \mathrm{~kJ} / \mathrm{mol}$
D. $\Delta H=92.7 \mathrm{~kJ} / \mathrm{mol}, \Delta E=97.4 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

- Watch Video Solution

74. A sample of argon gas at 1 atm pressure and $27^{\circ} \mathrm{C}$ expand reversibly and adibatically from $1.25 \mathrm{dm}^{3}$ to $2.50 \mathrm{dm}^{3}$. The enthalpy change in this process will be $C_{v . m}$. for argon is $12.48 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$.
A. 114.52 J
B. $-117.14 J$
C. -57.26 J
D. 57.26 J

Answer: D

- View Text Solution

75. In thermo dynamics a process is called reversible when :
A. surroundings and system change into each other
B. there is no boundary between system and surroundings
C. the surroundings are always in equilibrium with system
D. the system chnges into surrounding spontanously

Answer: C

- View Text Solution

76. Which one of the following statement is false :
A. work is a state function
B. temperetaue is a state function
C. change in the state is completely defined when the initial and final states are specified.
D. work appears at the boundary of the system.

Answer: A

77. One mole of a non-ideal gas undergoes a change of state (2.0atm, 3.0L, 95K) \rightarrow (4.0atm, $5.0 \mathrm{~L}, 245 \mathrm{~K})$ with a change in internal energy , $\Delta U=30.0 \mathrm{~L}$ atm. The change in enthalapy (ΔH) of the process in L atm is :
A. 40
B. 42.3
C. 44
D. not defined, because pressure is not constant

Answer: C

- View Text Solution

78. The molar heat capacity, C_{v} of helium gas is $3 / 2 \mathrm{R}$ and is independent of temperature. For hydrogen gas, C_{v} approaches $3 / 2 \mathrm{R}$ at a very low temperature, equals $5 / 2 \mathrm{R}$ at moderate temperature and is higher than
$5 / 2 \mathrm{R}$ at high temperature. Choose the correct reason for the temperature dependence of C_{v} in case of hydrogen :
A. Hydrogen is diatomic so at high temperature rotational and vibrational motion also counts
B. Hydrogen is monoatomic so at high temperature rotational and vibrational motion also counts
C. Hydrogen is diatomic so at high temperature rotational and vibrational motion are not counted
D. can't be defined

Answer: A

- Watch Video Solution

79. 2 moles of an ideal gas is expanded isothermically and revrsibly from 1 litre to 10 litre. Find the enthalapy change in $\mathrm{kJ} \mathrm{mol}^{-1}$.
A. 0
B. 11.7
C. -11.7
D. 25

Answer: A

- View Text Solution

80. There is 1 mol liquid (molar volume 100 ml) in an adiabatic container initial, pressure being 1 bar. Now the pressure is steeply increased to 100 bar ,and the volume decreased by 1 mL under constant pressure of 100 bar. Calculate ΔH and ΔE.
[Given 1 bar $=10^{5} \mathrm{~N} / \mathrm{m}^{2}$]
A. $\Delta E=0 J, \Delta H \neq 0 J$
B. $\Delta H=990 J, \Delta E=10 J$
C. $\Delta E=20 J, \Delta H=890 J$
D. $\Delta E=0 J, \Delta H=10 J$

Answer: B

- View Text Solution

81. One mole of an ideal monoatomic gas at temperature T and volume 1 L expands to 2 L against a constant external pressure of one atm under adibatic conditions, then final temperature of gas will be :
A. $T+\frac{2}{3 \times 0.0821}$
B. $T-\frac{2}{3 \times 0.0821}$
C. $\frac{T}{2^{5 / 3-1}}$
D. $\frac{T}{2^{5 / 3+1}}$

Answer: B

- View Text Solution

82. The ratio of P to V at any instant is constant and is equal to 1 . for a monoatomic ideal gas undergoing a process. What is the molar heat capacity of the gas?
A. $\frac{3 R}{2}$
B. $\frac{4 R}{2}$
C. $\frac{5 R}{2}$
D. 0

Answer: B

- Watch Video Solution

83. An ideal gas expands from $1 \times 10^{-3} \mathrm{~m}^{3}$ to $1 \times 10^{-2} \mathrm{~m}^{3}$ at 300 K againts a constant pressure of $1 \times 10^{5} \mathrm{Nm}^{-2}$. The work done is :
A. -900 J
B. -900 kJ
C. 270 kJ
D. +900 kJ

Answer: A

- Watch Video Solution

84. Consider the reaction: $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ carried out at constant pressure and temperature. If ΔH and ΔU are change in enthalpy and change in internal energy respectively, then:
A. $\Delta H=0$
B. $\Delta H=\Delta U$
C. $\Delta H<\Delta U$
D. $\Delta H>\Delta U$

Answer: C

85. An ideal gas is allowed to expand both reversible and irreversibly in an isolated system. If T_{i} is the initial temperature and T_{f} is the final temperature, which of the following statements is correct:
A. $T_{f}>T_{i}$ for reversible process but $T_{f}=T_{i}$ for irreversible process
B. $\left(T_{f}\right)_{\text {rev }}=\left(T_{f}\right)_{\text {irrev }}$
C. $T_{f}=T_{i}$ for both reversible and irreversible process
D. $\left(T_{f}\right)_{\text {irrev }}>\left(T_{f}\right)_{\text {rev }}$

Answer: D

- Watch Video Solution

86. ($\Delta H-\Delta U$) for the formation of carbon monoxide (CO) from its elements at 298 K is :
($\mathrm{R}=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
A. $1238.78 \mathrm{~J} \mathrm{~mol}^{-1}$
B. $-2477.57 \mathrm{Jmol}^{-1}$
C. $2477.57 \mathrm{~J} \mathrm{~mol}^{-1}$
D. $-1238.78 \mathrm{~mol}^{-1}$

Answer: A

- View Text Solution

87. Assuming that water vapour in an ideal gas, the internal energy change (ΔU) when 1 mol of water is vaporised at 1 bar of pressure and $100^{\circ} \mathrm{C}$, (Given : Molar enthalpy of vapourization of water at 1 bar and 373 $\mathrm{K}=41 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$) will be :
A. $37.904 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $41.00 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $4.100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $3.7904 \mathrm{~kJ} \mathrm{~mol}^{-1}$

D View Text Solution

88. A substance is expanded in adiabatic process from 2 L to 5 L against constant pressure of 1 bar then internal energy change will be :
A. 3 bar-L
B. - $3 \mathrm{bar}-L$
C. 6 bar-L
D. -6bar - L

Answer: B

- View Text Solution

89. What is the change in enthalapy (kcal) when 1 mole of ideal monoatomic gas is expended reversibly and adibatically from initial
volume of 1 L and initial temperature 300 K to final volume of 8 L :
A. -1.125
B. +1.125
C. 2.25
D. -2.250

Answer: A

- Watch Video Solution

90. One mole of a monoatomic ideal gas initially at a pressure of 2.00 bar and a temperature of 273 K is taken to a final pressure of 4.00 bar by a reversible path defined by $P / V=$ constant, the value of $\Delta U / w$ for this process is :
A. -3.0
B. -1.5
C. +1.5
D. +3.0

Answer: A

- Watch Video Solution

91. The temperature of a definite amount of an ideal monoatomic gas becomes four times in a reversible process for which heat exchange is zero. Which of the following is correct relation between the final and initial parameteres of gas?
A. $V_{f}=8 V_{i}$
B. $P_{f}=32 P_{i}$
C. $V_{f}=16 V_{i}$
D. $P_{f}=\frac{1}{16} P_{i}$

Answer: B

92. Calculate the work done on the system in Joules when 2.0 moles of N_{2} reactes with 6.0 moles H_{2}, to form NH_{3} against a pressure of 1.0 atm at
27°
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
(Given : R=8J/molK)
A. $+4.8 \times 10^{3}$
B. -9.6×10^{3}
C. -4.8×10^{3}
D. $+9.6 \times 10^{3}$

Answer: D

- Watch Video Solution

93. A certain mass of an ideal gas absorbes 80 kJ heat and gas is expended from 2 L to 10 L at constant pressure of 25 bar. What is ΔU for gas in the process ? (1 bar-L= 100 J)
A. 280 kJ
B. -120 kJ
C. 60 kJ
D. 100 kJ

Answer: C

- Watch Video Solution

94. For which of the following change $\Delta H \neq \Delta E$?
A. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$
B. $\mathrm{HCl}(a q)+\mathrm{NaOH}(a q) \rightarrow \mathrm{NaCl}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
D. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$

Answer: D

95. Select the correct formula for isothermal irreversible process for an ideal gas :
A. $W=n R T \ln . \frac{P_{2}}{P_{1}}$
B. $W=P_{\text {ext }}\left(\frac{n R T}{P_{2}}-\frac{n R T}{P_{1}}\right)$
C. $Q=P_{\text {ext }}\left(\frac{n R T}{P_{2}}-\frac{n R T}{P_{1}}\right)$
D. $Q=n R T \ln \left(\frac{P_{2}}{P_{1}}\right)$

Answer: C

- Watch Video Solution

96. When 1 mol of real gas absorbes 100 kJ heat at constant pressure of 1 bar, it's volume changes from 2 L to 2.5 L . What is the enthalapy for the gas?
A. 150 kJ
B. 50 kJ
C. 100 kJ
D. -50 J

Answer: C

- Watch Video Solution

97. 418.4 J of heat is added to a $4 \times 10^{-3} \mathrm{~m}^{3}$ rigid container containing a diatomic gas atm and 273 K . Calculate the pressure of the gas assuming ideal behaviour. The vibrational contributions may be neglected : $(\mathrm{R}=8.314$ $\mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$)
A. $3.48 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
B. $7.27 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$
C. $1.43 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}$
D. $9.2 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$

Answer: C

D Watch Video Solution

98. Given at $25^{\circ} \mathrm{C}$
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+4 \mathrm{NO}(\mathrm{g})$,
$\Delta H^{\circ}=-1169 \mathrm{kJmol}^{-1}$

The value of ΔU° for this reaction at $25^{\circ} \mathrm{C}$ will be about :
A. -1181.4 kJmol
B. $-1194.8 \mathrm{kJmol}^{-1}$
C. $-1156.6 \mathrm{kJmol}^{-1}$
D. $-1144.2 \mathrm{kJmol}^{-1}$

Answer: D

99. Given at 300 K
$\mathrm{NH}_{3}(\mathrm{~g}) \Leftrightarrow \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{H}_{2}(\mathrm{~g})$,
$\Delta_{r} H^{\circ}=193.27 \mathrm{kJmol}^{-1}$
The value of $\Delta_{r} U$ for this reaction would be :
A. $190.78 \mathrm{kJmol}^{-1}$
B. $19.576 \mathrm{kJmol}^{-1}$
C. $188.29 \mathrm{kJmol}^{-1}$
D. $198.27 \mathrm{kJmol}^{-1}$

Answer: A

- Watch Video Solution

100. One mole of diatomic ideal gas undergoing a process in which absolute temperature is directely proportional to cube of volume, then, heat capacity of process is :
A. $\frac{10}{3} R$
B. $\frac{11}{6} R$
C. $\frac{17}{6} R$
D. 3R

Answer: C

- Watch Video Solution

101. Calculate ΔU for a gas, if enthalpy change is 40 atm-L for the state change ($5 \mathrm{~atm}, 10 \mathrm{~L})$ to $(3 \mathrm{~atm}, 15 \mathrm{~L})$:
A. $45 \mathrm{~atm}-\mathrm{L}$
B. 35 atm-L
C. 30 atm-L
D. $40 \mathrm{~atm}-\mathrm{L}$
102. Maximum heat absorbed during isothermal expansion of an ideal gas from ($10 \mathrm{~atm}, 1 \mathrm{~L}$) to ($1 \mathrm{~atm}, 10 \mathrm{~L}$) is :
A. 90 atm-L
B. 10 atm-L
C. 9 atm-L
D. $23.03 \mathrm{~atm}-\mathrm{L}$

Answer: D

- Watch Video Solution

103. 1 mole of an ideal gas expands from $5 \mathrm{dm}^{3}$ to $25 \mathrm{dm}^{3}$ isothermally and irreversibly at $27^{\circ} \mathrm{C}$. Find work done in the process $[\mathrm{R}=8.3 \mathrm{~J} / \mathrm{mol} / \mathrm{K}]$

$$
\text { A. }-1.99 \mathrm{~kJ}
$$

B. +1.99 kJ
C. -7.46 kJ
D. +7.46 kJ

Answer: A

- Watch Video Solution

104. Which of the following statements is correct ?
A. The presence of reacting species in a covered beaker is an example of open system.
B. There is an exchange of energy as well as matter between the system and the surounding in a closed system
C. The presence of rectants in aclose vessel made up of copper is an exampleof a closed system
D. The presence of reactants in a thermose flask or any other closed insulated vessel is an example of a closed system

Answer: C

- Watch Video Solution

105. Thermodynamics is not concerned about....
A. energy changes involved in a chemical reaction
B. the extent to which a chemical reaction proccedes
C. the rate at which a reaction proceedes
D. the feasibility of a chemical reaction

Answer: C

106. The volume of gas is reduced to half from its original volume. The specific heat will be
A. reduce to half
B. be doubled
C. remains constant
D. increases four times

Answer: C

- Watch Video Solution

107. During an experiment an ideal gas is found to be obey an additional law $P V^{3}=$ Constant. The initial temperature of gas is 600 K , what will be the final temperature, if gas expands to double it's volume :
A. 1200 K
B. 2400 K
C. 300 K
D. 150 K

Answer: D

- Watch Video Solution

108. A gas expands slowely against a variable pressure given by $p=\frac{10}{V}$ bar, where V is the volume of gas at each stage of expansion. During expansion from volume 10 L to 100 L the gas undergoes an increase in internal energy of 400 J . How much heat is absorbed by gas during expansion?
A. 1900 J
B. 2300 J
C. 2700 J
D. 423 J

Answer: C

D Watch Video Solution

109. A system is provided 50 J of heat and work can be done on the system is 10 J. The change in internal energy during the process is:
A. 40 J
B. 60 J
C. 80 J
D. 50 J

Answer: B

D Watch Video Solution

110. Temperature of 1 mol of a gas is increased by 1° at constant pressure.

The work done is
A. $-R$
B. $-2 R$
C. $-\frac{R}{2}$
D. $-3 R$

Answer: A

D Watch Video Solution

111. In an adibatic process, no transfer of heat takes place between system and surroundings. Choose the correct option for free expansion of an ideal gas under adiabatic conditions from the following :
A. $q=0, \Delta T \neq 0, w=0$
B. $q \neq 0, \Delta T=0, w=0$
C. $q=0, \Delta T=0, w=0$
D. $q=0, \Delta T<0, w \neq 0$

Answer: C

D Watch Video Solution

112. The pressure-volume work for an ideal gas can be calculated by using

$$
v_{1}
$$

the expression $\omega=-\int v_{1} P_{e x} d V$. The work can also be calculated form the Pv , plot by using the area under the curve within the specified limits.

When an ideal gas is compressed (a) reversiblity or (b) irrevesibly form volume V_{i} to V_{f} choose the correct option:
A. ω (reversible) $=\omega$ (irreversible)
B. ω (reversible) $<\omega$ (irreversible)
C. ω (reversible) $>\omega$ (irrversible)
D. ω (reversible) $=\omega$ (irrversible)

Answer: B

- Watch Video Solution

113. Work done by a sample of an ideal gas in a process A is double the work done in another process B . The temperature rises through the same amount in the two process. If C_{A} and C_{B} be the molar heat capacitites for the two processes:
A. $C_{A}=C_{B}$
B. $C_{A}>C_{B}$
C. $C_{A}<C_{B}$
D. None of these

Answer: D

- Watch Video Solution

114. One mole of a real gas is subjective to a process form (2bar, 30lit, 300k) to (2bar, 50lit, 400k)

Given
$C_{v}=40 \mathrm{~J} / \mathrm{mol} / \mathrm{K}, C_{P}=50 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$ Calculate ΔU.
A. 4000 J
B. 2000 J
C. 1000 J
D. 5000 J

Answer: C

- Watch Video Solution

115. An ideal gaseous sample at intial state $i\left(P_{0}, V_{0}, T_{0}\right)$ is allowed to expand to volume $2 V_{0}$ using two different process, in the first process, thje equation of process is $2 P V^{2}=K_{1}$ and in the second process the equation of the process is $P V=K_{2}$. Then:
A. Work done in the first process will be greater than work in second process (magnitude wise).
B. The order of value of work done cannot be compared unless we know the value of K_{1} and K_{2}
C. Value of work done (magnitude) in second process is greater in above expansion irrespective value of K_{1} and K_{2}
D. Ist process is not possible.

Answer: C

- Watch Video Solution

116. A balloon is 1 m in diameter and contain air at $25^{\circ} \mathrm{C}$ and 1 bar pressure. It is filled with air isothermally and reversibly until the pressure reaches 5bar. Assume pressure is propotional to diameter of ballon. Calulate work done by air $\left(\mathrm{atm}, \mathrm{m}^{3}\right)$
A. 78π
B. 156π
C. 624π
D. 625π

- Watch Video Solution

117. During an adiabatic process, the pressure of a gas is found to be proportional to cube of its absolute temperature. The poision's ratio of gas is:
A. $\frac{3}{2}$
B. $\frac{7}{2}$
C. $\frac{5}{3}$
D. $\frac{9}{7}$

Answer: A

118. Calulate the work done (in cal.). When 1.0 mole of $\mathrm{N}_{2} \mathrm{H}_{4}$ decomposes completely against a pressure of 1.0 atm at $27^{\circ} \mathrm{C}($ GivenR $=2 \mathrm{cal} / \mathrm{mol} / \mathrm{K})$

$$
\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})
$$

A. -1000 cal
B. 1000 cal
C. -3000 cal
D. 3000 cal

Answer: A

- Watch Video Solution

119. The average degree of freedom per molecule for a gas is 6 . The gas performs 25 J of work when it expands at constant pressure. Find the heat absorbed by the gas:
A. 25 J
B. 50 J
C. 75 J
D. 100 J

Answer: D

- Watch Video Solution

120. In which of the following chemical reactions, $\delta H>\delta U$?
A. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HI}(\mathrm{g})$
B. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})$
C. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g})$
D. $\mathrm{C}_{\mathrm{s}}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$

Answer: C

121. In a constant pressure process, for 5 mole of an ideal monoatomic gas, the temperature of gas increased form $300 K \rightarrow 500 k$. Which of the following is incorrect reagarding the process?
A. $\delta H_{\text {sys }}=2500 R$
B. $\delta U_{\text {sys }}=1500 R$
C. $Q=3500 R$
D. $\omega=-1000 R$

Answer: C

- Watch Video Solution

122. $\delta_{f} U^{\ominus}$ of formation of $\mathrm{CH}_{4}(\mathrm{~g})$ at a certain temperature is $-393 \mathrm{Jmol}^{-1}$. The value of δH^{\ominus} is:
A. zero
B. $<\delta_{f} U^{\ominus}$
C. $>\delta_{f} U^{\ominus}$
D. equal to $\delta_{f} U^{\ominus}$

Answer: B

- Watch Video Solution

123. What is correcto for an ideal gas undergoing reversible adiabatic expansion reagarding temperture?
A. Remains same
B. Increases
C. Decreases
D. May increase or decrease

Answer: C

124. An ideal gas taken in an insulated chamber is relased into interstellar space. The statement that is nearly trure for this pupose is :
A. $Q=0, W \neq 0$
B. $W=0, Q \neq 0$
C. $\delta U=0, Q \neq 0$
D. $Q=W=\delta U=0$

Answer: D

- Watch Video Solution

125. How much energy must be supplied to change 36 g of ice at 36 g of ice at $0^{\circ} \mathrm{C}$ water at room temperture, $25^{\circ} \mathrm{C}$?

Data for Water, $\mathrm{H}_{2} \mathrm{O}$

$\Delta H_{\text {fusion }}^{\circ}$
 $6.01 \mathrm{~kJ} \mathrm{~mol}^{-1}$
 $C_{\text {p. liquid }}$
 $4.18 \mathrm{~J} \mathrm{~K}^{-1} \mathrm{~g}^{-1}$

A. 12 kJ
B. 16 kJ
C. -210kJ
D. 22 kJ

Answer: B

- Watch Video Solution

126. A certain reaction is exothermic by 220 kJ and does 10 kJ of work.

What is the change is the internal energy of the system at constant temperture?
A. +230 kJ
B. $+210 k J$
C. -210kJ
D. -230 kJ

Answer: D

- Watch Video Solution

127. Calculate the amount the energy necessary to heat a $2.5 g$ ice cube form $0^{\circ} \mathrm{Cto} 23^{\circ} \mathrm{C}$:

A. 240 J
B. 850 J
C. 1090 J
D. 3700 J

Answer: C

- Watch Video Solution

128. δE° is measured at constant volume and δH° is measured at constant pressure. For the reaction,
$2 C(s)+O_{2}(g) \rightarrow 2 C O(g) " " \delta H^{\circ}<0 k J$
How do the δE° and δH° compare for this reaction?
A. $\delta E^{\circ}<\delta H^{\circ}$
B. $\delta E^{\circ}>\delta H^{\circ}$
C. $\delta E^{\circ}=\delta H^{\circ}$
D. Impossible to tell form this infromation.

Answer: A

129. An ice cube at $0.00^{\circ} \mathrm{C}$ is placed is 200 g of distilled water at $25^{\circ} \mathrm{C}$. The final temperature after ithe ice is completely metled is $5.00^{\circ} \mathrm{C}$. What is the mass of the ice cube?
$\delta H_{f u s}=340 \mathrm{~J} . g^{-1}, C_{p}=4.18 \mathrm{~J} \cdot \mathrm{~g}^{-1} . .{ }^{\circ} \mathrm{C}^{-1}$
A. 23.6 g
B. $46.3 g$
C. 50.0 g
D. 800 g

Answer: B

- Watch Video Solution

130. For which reaction is δH (enthalpy change) most nearly equal to δE (internal energy change)?
A. $\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B. $\mathrm{Cl}_{2}(g)+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CIF}(\mathrm{g})$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
D. $2 \mathrm{SO}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$

Answer: B

- Watch Video Solution

131. A gold ring that weighting 3.81 g is heated to 84° Gand placed in 50.0 g of $\mathrm{H}_{2} \mathrm{O}$ at $22.1^{\circ} \mathrm{C}$. What is the final temperature?

A. $22.2^{\circ} \mathrm{C}$
B. $24.0^{\circ} \mathrm{C}$
C. $26.5^{\circ} \mathrm{C}$
D. $53.1^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

132. For which exothermic reaction is δE more negative than δH ?
A. $\mathrm{Br}_{2}(\mathrm{l}) \rightarrow \mathrm{Br}_{2}(\mathrm{~g})$
B. $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$
C. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{g})$
D. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{2}(\mathrm{~g})$

Answer: B

133. An ice cube of unknown mass at $0^{\circ} \mathrm{C}$ is added to 265 g of $\mathrm{H}_{2} \mathrm{O}$ at $25.00^{\circ} \mathrm{C}$ in a calorimeter. If the final temperature of the resulting $\mathrm{H}_{2} \mathrm{O}$ is $21.70^{\circ} \mathrm{C}$, what is the mass of the ice cube?

Properties of Water

$$
4.18 \mathrm{~J} \cdot \mathrm{~g}^{-1} \cdot \mathrm{~K}^{-1}
$$

$\Delta H_{\text {fusion }}$
$333 \mathrm{~J} \cdot \mathrm{~g}^{-1}$
A. 2.47 g
B. 8.63 g
C. 10.3 g
D. 11.0 g

Answer: B
134. What is the specific heat capacity of mercury $\left(\right.$ in $\left.J \times g^{-1} \times C^{-1}\right)$ if a 25.0 g a sample requires 19.3 J to raise its temperature from $24.5^{\circ} \mathrm{Cto} 30.0^{\circ} \mathrm{C}$?
A. 0.026
B. 0.032
C. 0.14
D. 7.0

Answer: C

- Watch Video Solution

135. For reactions conducted at constant pressure, under that what conditions are δE and $\delta H e q u a l ?$
(A) Constant number of moles
(b) Constant temperature
(C) Constant volume
A. P only
B. Q only
C. R only
D. P and Q only

Answer: C

- Watch Video Solution

136. 84.12 gof gold at $120.1^{\circ} \mathrm{C}$. Is placed in 106.4 g of $\mathrm{H}_{2} \mathrm{Og}$ at $21.4^{\circ} \mathrm{C}$. What is the final temperature of this system?

A. 70.8
B. 65.0
C. 27.8
D. 23.7

Answer: D

- Watch Video Solution

137. A 10.00 g piece of metal is heated to $80.00^{\circ} \mathrm{C}$ and placed in 100.0 g of water at $23.00^{\circ} \mathrm{C}$. When the system has reached eqvillibrium the temperature of the water and metal are $23.50^{\circ} \mathrm{C}$. What is the identify of the metal?

Specify heat capacity of $\mathrm{H}_{2} \mathrm{O}=4.184 \mathrm{~J} / \mathrm{g} \stackrel{\circ}{\mathrm{C}}$
A. $\operatorname{Ag}\left(C_{p} 0.236 J / g C\right)$
B. $C u\left(C_{p} 0.385 J / g C\right)$
C. $F e\left(C_{p} 0.385 J / g C\right)$
D. $A l\left(C_{p} 0.385 J / g C\right)$

Answer: B

- Watch Video Solution

138. When MgO reacts with $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$ and 1 atm , the volume change is $-4.6 \mathrm{~mL} . \mathrm{mol}^{-1}$.
$\mathrm{MgO}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{Mg}(\mathrm{OH})_{2}(\mathrm{~s})$
What is the value of $\delta H-\delta E$ for this reaction?
A. $-4.7 \times 10^{-1} \mathrm{~J}^{2} \mathrm{~mol}^{-1}$
B. $-4.7 \times 10^{-2} \mathrm{~J}^{2} \mathrm{~mol}^{-1}$
C. $4.7 \times 10^{-2} \mathrm{~J}_{\mathrm{mol}}{ }^{-1}$
D. $4.7 \times 10^{-1} \mathrm{J}. \mathrm{~mol}^{-1}$

Answer: A

139. An ice cube at an unknown temperature is added to 25.0 g of liquid $\mathrm{H}_{2} \mathrm{O}$ at $40.0^{\circ} \mathrm{C}$. The final temperature of the 29.3 g equilibrated mixture of the ice cube?
$C_{p}\left(\mathrm{~J} / \mathrm{g} \times .{ }^{\circ} \mathrm{C}\right)$ water $=4.184$, ice $=2.06, \delta H_{\text {fusion }}=333 \mathrm{~J} / \mathrm{g}{ }^{\circ}$
A. $-6.5^{\circ} \mathrm{C}$
B. $-13.1^{\circ} \mathrm{C}$
C. $-35.3^{\circ} \mathrm{C}$
D. $-56.8^{\circ} \mathrm{C}$

Answer: B

- Watch Video Solution

140. Which is (are) state properties?
(P) enthalpy (Q) heat (C) Volume
A. P only
B. Q only
C. P and R only
D. Q and R only

Answer: C

- Watch Video Solution

141. How much work is done by the gas when 1.00 g of sodium azide, NaN_{3} ($M=65.01 \mathrm{~g} \times \mathrm{mol}^{-1}$), decomposes in a container of changeable volume (e.g. and airbag in a car) against a constant pressure of 1.00 atm at 298 K ?
$2 \mathrm{NaN}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Na}(\mathrm{s})+3 \mathrm{~N}_{2}(\mathrm{~g})$
A. +114 J
B. +57.2 J
C. $-114 J$
D. - 57.2 J

Answer: D

- Watch Video Solution

142. The specific heat capacities of three metals are given below.

If 1.00 g of each metal is heated to $100^{\circ} \mathrm{C}$ and added to 10.0 g of $\mathrm{H}_{2} \mathrm{O}$ at $25.0^{\circ} \mathrm{C}$, what is the order of the temperatures of the final mixtures form the lowest to the highest?
A. $\mathrm{Fe}<\mathrm{Zn}<\mathrm{Pb}$
B. $\mathrm{Pb}<\mathrm{Zn}<\mathrm{Fe}$
C. $\mathrm{Zn}<\mathrm{Pb}<\mathrm{Fe}$
D. $\mathrm{Zn}<\mathrm{Fe}<\mathrm{Pb}$

Answer: B

- Watch Video Solution

143. A system consists of a gas contined in a thin ballon. If the ballon deflates as the temperature of the gas changes from $90^{\circ} \mathrm{Cto} 25^{\circ} \mathrm{C}$, then:
A. Heat is transferred out of the system and work is done on the system.
B. Heat is transferred out of the system and work is done by the system.
C. Heat is transferred into the system and work is done by the system.
D. Heat is transferred into the system and work is done the system

Answer: A

- Watch Video Solution

144. Which of the following is a mathametical statement of the first law of theromodynamics?
A. $\delta V=\frac{n R}{P} \delta T$
B. $\delta E=q+w$
C. $\partial a H=\delta E+P \delta V$
D. $\delta G=\delta H+T \delta S$

Answer: B

D Watch Video Solution

145. 7 g of $N_{2} g$ at $27^{\circ} \mathrm{C}$ is expanded slowly and isothermally form pressuure of $0.5 M P a$ to a final pressure 0.1 Mpa . Determine approximate work done $\left[\operatorname{In5}=1.6, R=8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right]$
A. -996 J
B. +125 J
C. -95 J
D. $+200 J$

Answer: A

- Watch Video Solution

146. An ideal gas involved in a reversible adiabatic process follow the law $T \alpha P^{1 / 3}$ then what will be the value of C_{p} / C_{v} ?
A. 1
B. $\frac{4}{3}$
C. 1.5
D. 1.333

Answer: C

147. One mole of $\mathrm{H}_{2} \mathrm{at} 25^{\circ} \mathrm{C}$ undergo combustion in the presence of excess O_{2} in a closed rigid adibatic container:
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \quad \Delta \mathrm{H}=-240 \mathrm{~kJ} / \mathrm{mole}$
Choose the incorrect option :
A. $q=0$
B. $w=0$
C. $\delta U=0$
D. $\delta T=0$

Answer: D

- Watch Video Solution

148. $2(\mathrm{Ag}) \rightarrow B(\mathrm{~g}), \delta H=-20 \mathrm{kcal} / \mathrm{mol}$. In a closed rigid container, 0.2 mole of $A(g)$ at constant temperature $727^{\circ} \mathrm{C}$ convert into $\mathrm{B}(\mathrm{g})$ then, change in heat energy in the process will be:
($R=2 \mathrm{cal} / \mathrm{mole}-K)$
A. -12 kcal
B. -1.8 kacl
C. -2.4 kcal
D. 0.24 kcal

Answer: B

- Watch Video Solution

149. A real gas is subjective to an adiabatic process form (2bar, $40 \mathrm{~L}, 300 \mathrm{~K}$) to (4bar, $30 \mathrm{~L}, 300 \mathrm{~K}$) against a constant pressure of 4 bar. The enthalpy change for the process is (1bar - litre $=100 \mathrm{~J})$:
A. zero
B. 6000J
C. 8000J
D. 10000J

Answer: C

D Watch Video Solution

150. Calculate magnitude of work involved when 100 g of calcite form of CaCO_{3} is converted into it's aragonite form of CaCO_{3} at 100 bar pressure. Given density of calcite=2g/density of arogonite $=2.5 \mathrm{~g} /$
A. 0.2 kJ
B. 0kJ
C. 0.1 kJ
D. 0.5 kJ

Answer: C

- Watch Video Solution

151. Select the incorrec option:
A. Specific volume and molar heat capacity are intensive properties:
B. Change in internal energy for an ideal gas for and isobaric process is expected as $n C_{v}\left(T_{2}-T_{1}\right)$.
C. Thermodyamics can predict rate at which process will take place.
D. Free expansion is an irreversible process.

Answer: C

- View Text Solution

152. For an isothernal free expansion of an ideal gas correct question option is:
A. $q=0, w=0, \delta H \neq 0$
B. $q=0, w=0, \delta H=0$
C. $q \neq 0, w \neq 0, \delta H \neq 0$
D. $q=0, w=0, \delta H=0$

Answer: D

D View Text Solution

153. For the reaction:
$5 A(g)+3 B(g)+7 C(g) \rightarrow 5 D(g)+4 E(l)$
$\Delta H=-56 \mathrm{kcal} / \mathrm{mole}$

Find heat exchanged when 2 moles of $A, 1.5$ moles of B and 2.1 moles of C react in a closed rigid container to 300 K :
A. -62kcal
B. -15 kcal
C. -18.6 kcal
D. -50 kcal

Answer: B

154. 7.5 Kj of heat is added to a closed system and its internal system decreases by 12 k , then how much energy is transferred as work?
A. 19.5 kJ
B. -19.5 kJ
C. 4.5 kJ
D. -4.5 kJ

Answer: B

- Watch Video Solution

155. 10 litre of an ideal gas at 25 atm and $27^{\circ} \mathrm{C}$ is expanded isothermally to 1 atm against a constant external pressure of 760 torr. Calualate work done by the gas in litre-atm:
A. 240
B. 250
C. 800
D. 400

Answer: A

- Watch Video Solution

156. 50 g of an ideal gas is undergoing a process for which heat capacity is $50 \mathrm{cal} / \mathrm{mo} \leq-K$. If rise in temperature during the process is $100^{\circ} \mathrm{C}$ then calculate work involved in process (given molar mass of gas $=10 \mathrm{~g} / \mathrm{mole}$, C_{p} ofgas $=5 R$)
A. - 29 kcal
B. -21 kcal
C. 29kcal
D. 21 kcal

Answer: B

157. As per the first law of theromdyamics, which of the following statements would be appropriate?
A. Energy of system remains constant
B. Energy of surrounding remains constant
C. Energy of universe remains constant
D. Energy of universe always increases

Answer: C

- View Text Solution

158. Ration of C_{p} / C_{v} for NH_{3} gas(assuming ideal behaviour) when vibrational degree of freedom are active :
A. $\frac{10}{9}$
B. $\frac{4}{3}$
C. $\frac{11}{8}$
D. $\frac{12}{10}$

Answer: A

D Watch Video Solution

159. Temperature of 1.5 mole of gas is increased by $10^{\circ} \mathrm{C}$ at constant pressure. Magnitude if work involved is:
A. $15 R$
B. $10 R$
C. $10 R$
D. $20 R$

Answer: A

160. Which of the following expression expressions is true for an ideal gas?
A. $\left(\frac{\partial V}{\partial T}\right)_{p}=0$
B. $\left(\frac{\partial P}{\partial T}\right)_{V}=0$
C. $\left(\frac{\partial U}{\partial P}\right)_{T}=0$
D. $\left(\frac{\partial U}{\partial T}\right)_{T}=0$

Answer: C

- Watch Video Solution

161. For the real gas reaction,
$2 A(g)+B(g) \rightarrow 2 C(g) \delta H=-440 \mathrm{~kJ} / \mathrm{mol}$
If the reaction is carried out in 10 litre rigid vessol, the initial pressure is

50bar bar which decreses to 20bar in the course of reactioin. The change in internal energy for the reaction is:
A. $-434 k J$
B. -140 kJ
C. -443kJ
D. $-470 k J$

Answer: B

- Watch Video Solution

162. Which of the following is true
A. $C_{P}-C_{v}=R$ is applicable for all gases
B. For an ideal gas undergoing adiabatic process, temperature will not always change under normal conditions.
C. If $\delta T=0$, process must be isothermal
D. If isothermal reversible and irreversible process are started from same initial state to same final pressure then both process ends at same date.

Answer: D

- Watch Video Solution

163. $1 \mathrm{dm}^{3}$ of an ideal gas at a pressure of 10bar expands reversibly and isothermally to final volume of 10 litre .(In $10=2.3$). Heat absorbed in the process will be:
A. 1.15kJ
B. 4.6J
C. 2.3 kJ
D. 9.2 kJ

Answer: C

164. With what pressure must a given volume of oxygen, originally at 300K and 1 bar pressure be adiabatically and irreversibly compored in order to raise its temperture to 600K ($\gamma=7 / 5$)

A. 4.5bar

B. 9bar
C. 2.25bar
D. 6.75bar

Answer: A

- Watch Video Solution

165. Pressure of a liquid is linear function of volume $P=a+b V$. Calculate work done for change in state form (1bar, $2 L$) to (2bar, $5 L$):
A. +810 J
B. -450 J
C. -810 J
D. +450 J

Answer: C

- Watch Video Solution

166. For reaction
$2 A(g)+3 B(g) \rightarrow 4 C(g)+D(s)$ Calulate work involved during system reaction if reaction occurs at constant pressure and 300K:
A. 600 ka
B. 300 kcal
C. 150 cal
D. 1200 kacl

D Watch Video Solution

167. An ideal gas was subjected to following process: $\left(n_{1}=2 \mathrm{~mole}, T_{1}=400 \mathrm{~K}, P_{1}=1 \mathrm{~atm}\right)$
Reversible Isobarically

$$
\rightarrow \quad\left(n_{2}-2 \text { mole, } T_{2}=300 \mathrm{~K}, P_{2}=1 \mathrm{~atm}\right)
$$

The work done by the gas is:
A. $+831 k J$
B. +1662.8 J
C. -1662.8 J
D. -831.4 J

Answer: B

- Watch Video Solution

168. Consider the following statements and arrange in the order of true/false as given in the codes.
S_{1} : Change in state function between two states is a definite quantity and does not depend on path.
S_{2} : Intensive properties can't be algebraically added or subtracted.
S_{3} : Ration of two extensive properties always result into a parameter that depends on amount of substance.
S_{4} : Molar heat capacity is a path function.
The correct order of True//false of the above statement is:
A. FTFT
B. FFFT
C. TTFT
D. TTFT

Answer: C

- Watch Video Solution

169. One mole of an ideal gas is subjected to adiabatic expansion form initail state of (10atm, 300 K) to final pressure of 1 atm against constant external pressure. Which of the following option contain correct change in thermodynamic parameters for the above process. (Given: $\gamma=\frac{4}{3}$)
A. $\delta U=270 R$
B. $\delta S=\operatorname{RIn} 10$
C. $\delta H=230 R$
D. $\omega=-202.5 R$

Answer: D

- Watch Video Solution

170. One mole of an ideal gas is subjected to adiabatic expansion form initail state of $16 \mathrm{~atm}, 200 \mathrm{~K}$ to final pressure of 1 atm against constant external pressure. Select the incorrect optioin if $y=\frac{4}{3}$ for the gas
A. $\delta U=0$
B. $\delta S=1 \times R I n 16$
C. $\delta S_{\text {surrounding }}=0$
D. $\delta V_{\text {final }}=8.21$ litre

Answer: D

- View Text Solution

171. A substance has a normal boiling point of 400 K . Which of the following options correct set of thermodynamic parameters for the reaction:
$(\mathrm{l})(1 \mathrm{~atm} .400 \mathrm{~K}) \rightarrow A(\mathrm{~g})(1 \mathrm{~atm}, 400 \mathrm{~K})$
A. $q>0, \delta G=0, W>0$
B. $\delta H=0 M, \delta G=0, \delta S=0$
C. $\delta G=0 M, \delta H>0, \delta S>0$
D. $\delta G<0, \delta H>0, \delta S>0$

Answer: C

D Watch Video Solution

172. Which of the following parameters correctly represent conditions for a spontaneous process with no non P-V work involved?
(P) $(d H)_{S, P}<0(\mathrm{Q})(d U)_{S, P}<0$
$(\mathrm{R})(d G)_{T, P}<0(\mathrm{~S})(d H)_{P, T}>0$
$(\mathrm{T})(d, S)_{\text {universe }}>0(\mathrm{U})(d S)_{U, V}>0$
A. Options (Q),(R) and (T) are correct
B. Options (P),(T) and (U) are correct
C. Options $(P),(R)$ and (T) are incorrect
D. Options (Q) and (R) are incorrect

Answer: B

173. A reaction has an equillibrium constant of 0.98 at 300 K and 1.2 at 400K. Select the incorrect option:
A. The reaction in endothermic.
B. At standard conditions, reaction will be non spontaneous at 300 K and spontaneous at 400K.
C. Enthaply change of reaction,
$\delta H_{R}^{\circ}=1200 R \times \operatorname{In}\left(\frac{1.2}{0.98}\right)$
D. $\delta S_{R}^{\circ}=3 R \operatorname{In} \frac{1.2}{0.98} \quad$ [Assuming δH° and δS° to be temperature independent]

Answer: B

- Watch Video Solution

174. The gibbs free energy of formation of $M O$ and $C O$ at temperature $1000^{\circ} \mathrm{C}$ and $1900^{\circ} \mathrm{C}$ are given below :

This reactioin is feasible at temperature:

$$
\begin{array}{ll}
2 \mathrm{M}+\mathrm{O}_{2} \rightarrow 2 \mathrm{MO} & \Delta G_{1000{ }^{\circ} \mathrm{C}}=-921 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta G_{1900{ }^{\circ} \mathrm{C}}=-300 \mathrm{~kJ} / \mathrm{mol} \\
2 \mathrm{C}+\mathrm{O}_{2} \rightarrow 2 \mathrm{CO} & \Delta G_{1000{ }^{\circ} \mathrm{C}}=-432 \mathrm{~kJ} / \mathrm{mol} \\
& \Delta G_{1900{ }^{\circ} \mathrm{C}}=-624 \mathrm{~kJ} / \mathrm{mol}
\end{array}
$$

$\mathrm{MO}+\mathrm{C} \xrightarrow{\Delta} \mathrm{M}+\mathrm{CO} \uparrow$
A. $1900{ }^{\circ} \mathrm{C}$
B. $1000{ }^{\circ} \mathrm{C}$
C. $900{ }^{\circ} \mathrm{C}$
D. $12000{ }^{\circ} \mathrm{C}$

Answer: A

- Watch Video Solution

175. When water in a beaker freezes to form ice, then which of the following will be correct statement:
A. $S_{\text {system }}$ decreases whereas $S_{\text {surrounding }}{ }^{\text {increases }}$
B. $S_{\text {system }}$ and $S_{\text {surrounding }}$ both increases
C. $S_{\text {system }}$ increases whereas $S_{\text {surrounding }}$ decreases
D. $S_{\text {system }}$ and $S_{\text {surrounding }}$ both increases

Answer: A

D Watch Video Solution

176. Identify the option which correctly represents set of true (T) false (F) statements:

Statement :1 In an adiabatic free expansion, entropy of system remains constant.

Statement-2: For every isothermal process, internal energy of the system remains contant. Statement-3: Molar enthalpy is an intensive parameter.

Statement-4: For every reversible cyclic process, final state of surroundings is same as that of initial state of surroundings.
A. TTFT
B. FFTF
C. FFTT
D. TFTF

Answer: C

- Watch Video Solution

177. The entropy change when 2 moles of an ideal monoatomic gas us subjective to change in state from (1atm, 10 L) to ($2 \mathrm{~atm}, 5 \mathrm{~L}$) will be : $(\operatorname{In2}=0.7)$
A. $-2.8 \mathrm{cal} / \mathrm{K}$
B. $2.8 \mathrm{~J} / \mathrm{K}$
C. $-1.4 \mathrm{cal} / \mathrm{K}$
D. $5.6 \mathrm{cal} / \mathrm{K}$

Answer: A

178. In order to solve a complex physical chemistry, problem, brain requires some "netural energives " which are electical in nature. Each problem on an average requires 21 Joules of netral energy. Calculate minimum amount of glucose required to solve 10 such problem if all electrical energy is obtained for oxidation of glucose:
[Given: $\delta H_{\text {combustion }}^{\circ}$ of glucose $=-2800 \mathrm{k} / \mathrm{J}$ mole
$\delta S_{\text {combustion }}^{\circ}$ of glucose $=-\frac{1000}{3} \mathrm{~J} / \mathrm{mol} / \mathrm{K}$, Temperature=300K]
A. 14 g
B. 14 mg
C. 20 g
D. 120 mg

Answer: B

- Watch Video Solution

179. For an allotropic change:
$A(s) \rightarrow B(s), \delta G_{400}^{\circ}=20 \mathrm{~kJ} / \mathrm{mole}$
If molar volume A and B are $12 \mathrm{~mL} / \mathrm{mole}$ and $10 \mathrm{~mL} /$ mole respectively then calculate approximate pressure at which the two allotropes will be at equillibrium at 400K:
A. $10^{5} \mathrm{~Pa}$
B. $2 \times 10^{4} \mathrm{~Pa}$
C. 100 Pa
D. $10^{10} \mathrm{~Pa}$

Answer: D

- Watch Video Solution

180. Which of the following options correctly represent trure//false nature of statements?

Statement-I: $\delta H=\delta U+P \delta V$ for all processes

Statements-II: For a reaction involving only ideakl gas, $\Delta H_{\text {reaction }}$ will be independent of the pressure at which reactants and products are taken. Statements-III: Heat taken from a thermal reservoir can be completely converted at work without liberating some heat at lower temperature. Statement-IV: For a chemical reaction, G at equillibrium will be zero.
A. All the statement are true
B. Only statement-II are true
C. All the statements are false
D. Only statement-I and III are false

Answer: B

- Watch Video Solution

181. Which of the following parameters is correct reagarding adsorption of gases over solid?
A. $\delta S_{\text {system }}>0$
B. $\delta S_{\text {surrounding }}>0$
C. $\delta G>0$
D. $\delta H>0$

Answer: B

D Watch Video Solution

182. A substance has latent heat of vaporisation (at its boiling point $300 \mathrm{~K})=3 \mathrm{~kJ} / \mathrm{g}$. If molar mass of substance is 40 , the molar entropy change for condensation process will be:
A. $10 \mathrm{~J} / \mathrm{K}$
B. $400 \mathrm{~J} / \mathrm{K}$
C. $-400 \mathrm{~J} / \mathrm{K}$
D. $-10 \mathrm{~J} / \mathrm{K}$

Answer: C

183.

For a
reaction:
$2 A(g)+4 B(g) \rightarrow 5 C(g)+2 D(\mathrm{l}) \Delta E^{\circ}=40 \mathrm{kcal} / \mathrm{mole}$ and $\Delta S^{\circ}=+200 \mathrm{cal} / \mathrm{Kmol}$
The value of ΔG_{200}° will be.
A. 0
B. $+0.4 \mathrm{kcal} / \mathrm{mole}$
C. -0.4kcal/mole
D. -360kcal/mole

Answer: C

- Watch Video Solution

184. A heat engine takes up heat at 100 K and liberates heat at 200 K . Which of the following in an impossible amount of heat rejected by the engine if 1000J of heat is absorbed:
A. 60 J
B. 80 J
C. 90 J
D. 15J

Answer: D

- Watch Video Solution

185. Which of the reaction is expectd to be spontaneous at low temperatures and non-spontaneous at high temperatures:
A. Dissociation of PCl_{5} to give PCl_{3} and Cl_{2}
B. Formation of $\mathrm{H}_{2} \mathrm{O}$ from $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{O}_{2}(\mathrm{~g})$
C. Melting of ice
D. Vaporisation of any volatile liquid

Answer: B

186. Which of the following statements is incorrect?
A. $\Delta H_{\text {vap }}^{2} H_{2} O(l)>21 \times 373 \mathrm{cal}$
B. $\oint \frac{d q}{T}=0$ for all cyclic processes.
C. Adiabatic reversible process is isoentropic.
D. Heat exchange at constant volume condition will be independent of path.

Answer: B

- Watch Video Solution

187. Which of the following partical derivations are incorrect for one mole of an ideal gas?
A. $\left.\frac{\partial S}{\partial T}\right)_{V}=\frac{C_{v, m}}{T}$
B. $\left.\frac{\partial S}{\partial V}\right)_{T}=\frac{n R}{T}$
C. $\left.\frac{\partial G}{\partial P}\right)_{T}=V$
D. $\left.\frac{\partial H}{\partial P}\right)_{T}=0$

Answer: B

- View Text Solution

188. For a substance A, vapour pressure of liquid and solid state at temperature 400 K is 0.1 bar and 0.16 bar respectively. What will be Gibbs free energy change for the following process.
$A(s)[0.1 \mathrm{bar}, 400 \mathrm{~K}, n=1] \rightarrow A(l)$
[0.16bar, 400K, $n=1]$
A. 0
B. 400 RIn1. 6
C. $400 \operatorname{RIn} \frac{1}{1.6}$
D. $400 R[0.16-01]$

Answer: C

- Watch Video Solution

189. Which of the following options correctly reagarding the following statements?

Statements-1: $\Delta S_{f}^{\circ} \mathrm{NH}_{3}(\mathrm{~g})$ and $\Delta S_{f}^{\circ} \mathrm{PCl}_{5}(\mathrm{~g})<\mathrm{O}$
Statement-2: On heating a metal , entorpy of metal increases.
Statement-3: $\Delta S_{f}^{\circ} \mathrm{NH}_{2}(l)=0$
A. All the statement are incorrect
B. Only statement-3 are incorrect
C. only statement- 1 is correct
D. All the statement are incorrect

Answer: B

- Watch Video Solution

190. In which of the following cases, entropy of the system is increasing.
A. $\Delta S_{f}^{\circ} N H_{2}(I)=0$
B. $C_{\text {graphite }} \rightarrow C$ (diamond)
C. Ideal monotomic gas subjected to change on state from 1atm300K \rightarrow 2atm600K
D. Dimerisation of acetic acid

Answer: C

- Watch Video Solution

191. An ideal gas $(\gamma=1.4)$ is used in a carnot cycle as a working substance . Substance. The efficency of the cycle, if as a result of an adiabatic expansion, the gas volume increases $2.75 \times$ is $\left[(1.5)^{2.5}=2.75\right]$
A. $\frac{100}{3} \%$
B. $\frac{200}{3} \%$
C. 50 \%
D. 25%

Answer: A

- Watch Video Solution

192. Caculate $\Delta G(\mathrm{~kJ} / \mathrm{mole})$ for the reaction at 300 K
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Leftrightarrow 2 \mathrm{NO}(\mathrm{g})$
at constant where partical pressure of N_{2}, O_{2} and NOare $10^{-1} \mathrm{bar}, 10^{-3} \mathrm{bar}$.
$\Delta H_{f}^{\circ} N O(g) a t 300 \mathrm{~K}=90.5 \mathrm{~kJ} / \mathrm{mole}$ and $\Delta S_{f}^{\circ}, N O(\mathrm{~g}) a t 300 \mathrm{~K}=12.5 \mathrm{~J} / \mathrm{Kmole}$ and
[2.303 $\times R \times 300=5750 \mathrm{~J} / \mathrm{mole}]$
A. $173.5 \mathrm{~kJ} / \mathrm{mole}$
B. $185 \mathrm{~kJ} / \mathrm{mole}$
C. $162 \mathrm{Kj} / \mathrm{mole}$
D. $84.5 \mathrm{~kJ} / \mathrm{mole}$

Answer: C

193. Identify the option which is correct :
A. for an adiabatic process, entropy, of system must remains constant is always.
B. for porcess to be spontaneous Gibbs free energy should decreses.
C. for any substance heat required for melting will always be more than heat required for vaporisation since solids will have stronger interaction.
D. ΔS_{f}° of $H_{2} O(l) i s<0$.

Answer: D

D Watch Video Solution

194.

$2 A(g)+B(g) \rightarrow C(g), \Delta U^{\circ}=30 \mathrm{kcal} / \mathrm{mole}, \Delta S^{\circ}=100 \mathrm{cal} / \mathrm{Kmole}$. What will be t
$[R=2$ cal $/$ Kmole $]\left[\Delta C_{p_{\text {reaction }}}=0\right]$
A. 0
B. -1.2 kacl
C. -11.2 kcal
D. -10 kcal

Answer: C

- Watch Video Solution

195. What is the free energy for the process
$\mathrm{H}_{2} \mathrm{O}\left(\mathrm{l},-10^{\circ} \mathrm{C}, 0.28 \mathrm{~Pa}\right.$, 1mole $) \rightarrow \mathrm{H}_{2} \mathrm{O}$
(s, - $10^{\circ} \mathrm{C}, 0.26 \mathrm{~Pa}$, 1mole)
Given that vapor pressure of water and ice at $-10^{\circ} \mathrm{C}$ is 0.28 and 0.26 Pa
A. $R \times 263 \times \operatorname{In} \frac{14}{13}$
B. $R \times 263 \times \operatorname{In} \frac{13}{14}$
C. $-R \times 10 \times \operatorname{In} \frac{13}{14}$
D. zero

Answer: B

- Watch Video Solution

196. Which of the following options represents correct sequence of True
(T) or False(T) statements:

Statements-I: No Gibbs for energy changes occurs for vaporisation at triple point.

Statement:II: Entrophy driven process are spontaneous at hight temperature.

Statement-III: ΔG° of a reaction will increases with increses in temperature if the reaction is endothermic.
A. TTT
B. TTF
C. FTF
D. TFF

Answer: B

D Watch Video Solution

197. A reaction has an equillibrium constant of 0.98 at 300 K and 1.2 at 400K. Select the incorrect option:
A. The reaction in endothermic.
B. At standard conditions, reaction will be non spontaneous at 300 K and spontaneous at 400K.
C. Enthaply change of reaction,

$$
\Delta H_{R}^{\circ}=1200 R \times \operatorname{In}\left(\frac{1.2}{0.98}\right)
$$

D. $\Delta S_{R}^{\circ}=3 R \operatorname{In} \frac{1.2}{0.98}$

- Watch Video Solution

198. For a reaction : $3 A(g)+B(g) \rightarrow 2 C(g)+4 D(l)$
$\Delta U^{\circ}=50 \mathrm{kcal} / \mathrm{mole}$ and $\Delta S^{\circ}=-400 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$.
Calculate ΔG° at $200 K$:
A. 129.2 kcal
B. 130kcal
C. 130.8kcal
D. -30kcal

Answer: A

199. A substance P has a standard boiling point of 450 K . Which of the following options contain correct set of thermodynamic parameters for the following reactions?

$$
P(l)(1 a t m, 420 K) \rightarrow P(g)(1 a t m, 420 K)
$$

A. $\Delta G<0, \Delta H>0, \Delta S>0$
B. $q>0, W>0, \Delta U>0$
C. $\Delta H=0, \Delta U=0, q>0$
D. $\Delta G>0, q>0, \Delta U>0$

Answer: D

- Watch Video Solution

200. For a reaction $A(s) \rightarrow B(s), \Delta G_{300}^{\circ}=-2 k J / m o l e$ Where A and B ar allotropic forms. At what external pressure will the reaction attain equillbrium at $300 K$, if specific volume of A and B are $10 \mathrm{~mL} / / \mathrm{g}$ and $15 \mathrm{~mL} / / \mathrm{g}$ respectively and molar mass of A is 40 g :
A. $100 P a$
B. 100bar
C. $101 P a$
D. 101bar

Answer: D

D Watch Video Solution

201. Select the correct option with respect to reversible process:
A. ΔG will always be zero for isobaric process.
B. $\Delta S_{\text {system }}$ wil always be greater than zero for a closed system.
C. $\Delta S_{\text {universe }}$ will always be zero for a closed system.
D. Both A and C option are correct

Answer: C

202. For the process,
$\mathrm{H}_{2} \mathrm{O}(l, T, K, \mathrm{Pbar}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}, \mathrm{TK}, \mathrm{Pbar})$
Identify the option which is not correct.
A. $\Delta G=0$ if P, representvapourpressureof $\mathrm{H}_{-}(2) \mathrm{O}^{`}$ at TK.
B. $\Delta G<0$ if Prepresentvapourpressureof $\mathrm{H}_{-}(2) \mathrm{O}^{`}$ at temperature greater than TK.
C. $\Delta G>0$ if P is greater than vapour pressure of $\mathrm{H}_{2} \mathrm{O}$ TK.
D. Only A and C are correct.

Answer: B

- Watch Video Solution

203. One mole of an ideal monoatomic gas expands isothermally against constant external pressure of 1 atm from initial volume of 1 L to a state where its final pressure becomes equal to external pressure. If initial
temperature of gas is 300 K then total entropy change of system in the above process is:
$\left[R=0.082 \mathrm{Latmmol}^{-1} \mathrm{~K}^{-1} \equiv 8.3 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right]$
A. 0
B. $\operatorname{RIn}(24.6)$
C. $\operatorname{RIn}(2490)$
D. $\frac{3}{2} \operatorname{RIn}(24.6)$

Answer: B

- Watch Video Solution

204. For a perfectly crystalline solid $C_{p . m .}=a T^{3}$, where ais constant. If $C_{p . m .}$ is $0.42 . \mathrm{J} / / \mathrm{K}-\mathrm{mol}$ " at 10 K , molar entropy at 10 K is:
A. $0.42 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
B. $0.14 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
C. $4.2 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
D. zero

Answer: B

- Watch Video Solution

205. Predict which of the following reaction (s) has a positive entropy change?
$I . \mathrm{Ag}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightarrow \mathrm{AgCl}(s)$
$\mathrm{II} . \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s}) \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g})$
III. $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}+3 \mathrm{H}_{2}(\mathrm{~g})$
A. P and Q
B. R
C. Q and R
D. Q

Answer: C

206. Which of the following reactions is asssociated with the most negative change in entropy?
A. $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{SO}_{3}(g)$
B. $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})$
C. $\mathrm{C}(\mathrm{s}$, graphite $)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
D. $3 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})$

Answer: D

- Watch Video Solution

207. When two moles of an ideal gas $\left(C_{p . m .}=\frac{5}{2} R\right)$ heated form 300 K to 600 K at constant pressure, the change in entropy of gas (ΔS) is:
A. $\frac{3}{2} R I n 2$
B. $-\frac{3}{2} R I n 2$
C. 5RIn2
D. $-\frac{5}{2} R \operatorname{In} 2$

Answer: C

- Watch Video Solution

208. In a previous problem, calculate $\Delta S_{\text {gas }}$ If process is carried out at constant volume:
A. 5 RIn 2

3
B. $\frac{-R I n 2}{2}$
C. Value of work done (magnitude) in second process is greater in above expansion irrespective value of K_{1} and K_{2}
D. - 3 RIn2

Answer: C

209. When one mole of an ideal gas is compressed to half of its initial volume and simultaneously heated to twice its initial temperature, the change in entropy of gas (DelataS) is:
A. $C_{p . m .}$ In2
B. $C_{v . m .}$ In 2
C. RIn2
D. $\left(C_{v . m .}-R\right) I n 2$

Answer: D

- Watch Video Solution

210. The entropy change when two of ideal monoatomic gas is heated form $200 \rightarrow 300^{\circ} \mathrm{C}$ reversiblity and isochorically?
A. $\frac{3}{2} \operatorname{RIn} \frac{300}{200}$
B. $\frac{5}{2} \operatorname{RIn} \frac{573}{273}$
C. $3 R \operatorname{In} \frac{573}{473}$
D. $\frac{3}{2} \operatorname{RIn} \frac{573}{473}$

Answer: C

- Watch Video Solution

211. If one mole of an ideal gas $\left(C_{p . m .}=\frac{5}{2} R\right)$ is expanded isothermally at 300K until it's volume is tripled, then change in entropy of gas is:
A. zero
B. infinity
C. $\frac{5}{2} R I n 3$
D. RIn3
212. In previous problem, if expansion is carried out freely $\left(P_{\text {ext }}=0\right)$, then Δ Sis:
A. zero
B. infinity
C. RIn3
D. None of these

Answer: C

- Watch Video Solution

213. Two moles of an ideal gas is expanded irreversibly and isothermally at $37^{\circ} \mathrm{C}$ until its volume is doubled and 3.41 KJ heat is absorbed from surrounding. $\Delta S_{\text {total }}$ (system +surrounding) is:
A. $-0.52 J / K$
B. $0.52 \mathrm{~J} / \mathrm{K}$
C. $22.52 \mathrm{~J} / \mathrm{K}$
D. 0

Answer: B

- Watch Video Solution

214. 1 mol of an ideal gas at $25^{\circ} \mathrm{C}$ is subjected to expand reversibly 10 times of its initial volume. Calculate the change in entropy of expansions.
A. 19.15
B. -19.15
C. 4.7
D. zero
215. One mole of an ideal diatomic gas $\left(C_{v}=5 c a l\right)$ was transformed form initial $25^{\circ} \mathrm{C}$ and 1 L to the state when the temperature is $100^{\circ} \mathrm{C}$ and volume 10L. The entropy change of the process can be express as: $(R=2 \mathrm{cal} / \mathrm{mol} / \mathrm{K})$
A. $3 \operatorname{In} \frac{298}{373}+2 \operatorname{In} 10$
B. $5 \operatorname{In} \frac{373}{298}+2 \operatorname{In} 10$
C. $7 \operatorname{In} \frac{373}{298}+2 \operatorname{In} \frac{1}{10}$
D. $5 \operatorname{In} \frac{373}{298}+2 \operatorname{In} \frac{1}{10}$

Answer: B

- Watch Video Solution

216. What is the change in entropy when 2.5 mole of water is heated from
$27^{\circ} \mathrm{C}$ to $87^{\circ} \mathrm{C}$?

Assume that the heat capacity is constant

$$
\left.\left(C_{p}\right)_{m}\left(H_{2} \mathrm{O}\right)=4.2 \mathrm{~J} / g=k, \ln (1.2)=0.18\right)
$$

A. $16.6 \mathrm{~J} / \mathrm{K}$
B. $9 \mathrm{~J} / \mathrm{K}$
C. $34.46 \mathrm{~J} / \mathrm{K}$
D. $1.89 \mathrm{~J} / \mathrm{K}$

Answer: C

D Watch Video Solution

217. For a perfectly crystalline solid $C_{p . m}=a T^{3}+b T$,where a and b constant. If $C_{p . m}$. $i s 0.40 \mathrm{~J} / \mathrm{Kmol}$ at 10 K and $0.92 \mathrm{~J} / \mathrm{Kmolat} 20 \mathrm{~K}$ then molar entropy at 20k is:
A. 0.92 J . . Kmol
B. $8.66 \mathrm{~J} / \mathrm{Kmol}$
C. $85 \times 1.5 \mathrm{~J} / \mathrm{K}^{-1}$
D. None of these

Answer: C

- Watch Video Solution

218. The entropy if vaporisation of benzene is $85 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$. When 117 g benzene vaporizes at its's normal boiling point, the entropy change in surrounding is:
A. $-85 \mathrm{JK}^{-1}$
B. $-85 \times 1.5 \mathrm{JK}^{-1}$
C. $85 \times 1.5 \mathrm{~J} / \mathrm{K}^{-1}$
D. None of these

Answer: B

219. Calculate the total entropy change for the transition at 368 K of 1 mol of sulphur from the monoclinic to the rhombic solid state, if $\Delta H=-401.7 \mathrm{~J}^{2} \mathrm{~mol}^{-1}$ "for the transition". Assume the surroundings tio be an ice-water bath at $0^{\circ} \mathrm{C}$:
A. $-1.09 \mathrm{JK}^{-1}$
B. $1.47 \mathrm{JK}^{-1}$
C. $0.38 \mathrm{JK}^{-1}$
D. None of these

Answer: C

- Watch Video Solution

220. Which of the following statement (s) is correct?

Statement-I: The entropy of isolated system with P-V work only, is always maximized at equillibrium.

Statement-2: It is possible for the entropy of closed system to decrease substantialy in an irreversible process.

Statemet-3: Entropy can be crearted but not destroyed.
Statement-4 $\Delta S_{\text {system }}$ is zero for reversible process in an isolated system.
A. Statement 1,2,3
B. Statement 2,4
C. Statemetn 1,2,4
D. All of these

Answer: D

- Watch Video Solution

221. Calculate the entropy change ($\mathrm{J} / \mathrm{molK}$) of the given reaction. The molar entropies ($\mathrm{J} / \mathrm{K}-\mathrm{mol}$) are given in brackets after each substance:
$2 \mathrm{PbS}(\mathrm{s})[19.2]+3 \mathrm{O}_{2}(\mathrm{~g})[205.1]$
$\rightarrow 2 \mathrm{PbO}(\mathrm{s})[66.5]+2 \mathrm{O}_{2}(\mathrm{~g})[248.2]$
A. -113.5
B. -168.3
C. +72.5
D. -149.2

Answer: B

- Watch Video Solution

222. Given $\Delta_{r} S^{\circ}=-266$ and the listed $\left[S_{m}^{\circ}\right.$ value $]$ Calculate $S^{\circ}{ }^{\text {for Fe }}{ }_{3} \mathrm{O}_{4}(\mathrm{~s})$
$4 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})[\ldots]+\mathrm{O}_{2}(\mathrm{~g})[205] \rightarrow 6 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})[87]$
A. +111.1
B. +122.4
C. 145.75
D. 248.25

Answer: C

- Watch Video Solution

223. Which of the following conditions reagarding a chemical process ensures its spontaneity at all temperature?
A. $\Delta H>0, \Delta G<0$,
B. $\Delta H<0, \Delta S>0$,
C. $\Delta H<0, \Delta S<0$,
D. $\Delta H>0, \Delta S<0$,

Answer: B

- Watch Video Solution

224. For isothermal expansion in case of an ideal gas :
A. $\Delta G=\Delta S$
B. $\Delta G=\Delta H$
C. $\Delta G=-\Delta T . \Delta S$
D. None of these

Answer: C

D Watch Video Solution

225. When reaction is at standard state at equilibrium, then
A. $\Delta H^{\circ}=0$
B. $\Delta S^{\circ}=0$
C. equillibrium constant $K=0$
D. equillibrium constant $K=1$

Answer: D

226. For the gas-phase decomposition,
$\mathrm{PCl}_{5}(\mathrm{~g}) \Leftrightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$
A. $\Delta H<\Delta S<0$
B. $\Delta H>\Delta S>0$
C. $\Delta H>\Delta S<0$
D. $\Delta H<\Delta S>0$

Answer: B

- Watch Video Solution

227. What is the free energy change (ΔG) when 1.0 mole of water at $100^{\circ} \mathrm{C}$ and atm pressure is converted into steam at $100^{\circ} \mathrm{C}$ and 1 atm pressure?

A. 80 cal

B. 540 cal
C. 620 cal
D. zero

Answer: D

- Watch Video Solution

228. The enthalpy change for a given reaction at $298 \mathrm{~K} \mathrm{is}^{-x \text { calmol }^{-1} \text {. If the }}$ reaction occurs spontaneously at $298 K$, the entropy change at that temperature
A. can be negative but numerically larger than $\mathrm{x} / 298$.
B. can be negative but numerically smaller than $\mathrm{x} / 298$.
C. cannot be negative
D. cannot be positve

Answer: B

229. A reaction has $\Delta H=-33 k J$ and $\Delta S=-58 J / K$. This reaction would be:
A. spontaneous at all temperature.
B. non-spontaneous at all temperatures.
C. spontaneous above a certain temperature.
D. spontaneous below a certain temperature.

Answer: D

- Watch Video Solution

230. For a certain $A(g) \rightarrow B(g)$ at equillibrium. The parital pressure of B is found to be one fourth of the partial pressure of A . The value of ΔG° of the reaction $A \rightarrow B$ is:
A. RTIn 4
B. - RTIn4
C. $R T \log 4$
D. $-R T \log 4$

Answer: A

- Watch Video Solution

231. During winters, moisture condness in the form of dew and can be seen on plant leaves and grass. The entropy of the system in such cases decreases as liquids posses lesser disorder compared to gases. With prefrence to the second law, which statement is correct, for the above proces?
A. The randomnes of the unierse decreases.
B. The randomnesof the surroundings decreases.
C. Increases is randomne of surrroundings equals the decreases in randomnes of system.
D. The increase in randomnes of the surrounding is greater as compared to the decrease in randomnes of the system.

Answer: D

- Watch Video Solution

232. For the hypothetical reaction
$A_{2}(g)+B_{2}(g) \rightarrow 2 A B_{g}$
ΔG_{r}° and ΔS_{r}° are $20 \mathrm{KJ} / \mathrm{mol}$ and $-20 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively at200K
$\Delta_{r} C_{r}$ is $J K^{-1}$ then ΔH_{r}° at400Kis
A. $20 \mathrm{KJ} / \mathrm{mol}$
B. $7.98 \mathrm{KJ} / \mathrm{mol}$
C. $28 \mathrm{kj} / \mathrm{mol}$
D. None of these

- Watch Video Solution

233. Following reaction occurs at $25^{\circ} \mathrm{C}$
$2 \mathrm{NO}\left(\mathrm{g}, 1 \times 10^{-5} \mathrm{~atm}\right)+\mathrm{Cl}_{2}\left(\mathrm{~g}, 1 \times 10^{-2} \mathrm{~atm}\right)$
$2 \operatorname{NOCl}\left(\mathrm{~g}, 1 \times 10^{-2} \mathrm{~atm}\right) \Delta G^{\circ}$ is $R=8 \mathrm{~J} / \mathrm{moleK}$
A. $-43.92 k J$
B. -25.53 kJ
C. 28 kj
D. -57.06 kJ

Answer: A

234. Find ΔG° and ΔH° for the reaction
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$ at 300 K
when the standard entropy is $-0.094 \mathrm{kJmol}^{-1} \mathrm{~K}^{-1}$. The standard Gibbs free energiers fo formation for
CO_{2} and COare - 394.4 and $-137.2 \mathrm{kJmol}^{-1}$ respectively.
A. $\Delta G^{\circ}=257.2 \mathrm{~kJ} / \mathrm{mol}, \Delta H^{\circ}=285.4 \mathrm{~kJ} / \mathrm{mol}$
B. $\Delta G^{\circ}=514.4 \mathrm{~kJ} / \mathrm{mol}, \Delta H^{\circ}=-570.8 \mathrm{~kJ} / \mathrm{mol}$
C. $\Delta G^{\circ}=514.4 \mathrm{~kJ} / \mathrm{mol}, \Delta H^{\circ}=-570.8 \mathrm{~kJ} / \mathrm{mol}$
D. $\Delta G^{\circ}=-257.2 \mathrm{~kJ} / \mathrm{mol}, \Delta H^{\circ}=-285.4 \mathrm{~kJ} / \mathrm{mol}$

Answer: D

- Watch Video Solution

235. $\Delta H=30 \mathrm{kJmol}^{-1}, \Delta S=75 \mathrm{~J} / \mathrm{K} / \mathrm{mol}$. find boiling temperature at1atm:
A. 400 K
B. 300 K
C. 150 K
D. 425 K

Answer: A

- Watch Video Solution

236. The direct conversion of A to B is difficult, hence is carried out by the following shown path:
$\Delta(A \rightarrow C)=50, \Delta S(C \rightarrow D)=30, \Delta S(B \rightarrow D)=20$ The entropy change for the process $A \rightarrow B$ is:
A. 100
B. - 60
C. -100
D. +60

- Watch Video Solution

237. The value of $\log _{10} K$ for a reaction $A \Leftrightarrow B$ is (Given: $\Delta_{f} H_{298 K}^{\Theta}=-54.07 \mathrm{kJmol}^{-1}$,
$\Delta_{r} S_{298 K}^{\Theta}=10 \mathrm{JK}^{=1} \mathrm{~mol}^{-1}$, and $R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
A. 5
B. 10
C. 95
D. 100

Answer: B
238. For the process $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})(1 \mathrm{bar}, 373 \mathrm{~K}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})(1 \mathrm{bar}, 373 \mathrm{~K})$ the correct set of thermodynamic parameters is
A. $\Delta G=0, \Delta S=+v e$
B. $\Delta G=0, \Delta S=-v e$
C. $\Delta G=+v e, \Delta S=0$
D. $\Delta G=-v e, \Delta S=+v e$

Answer: A

- Watch Video Solution

239. Identify the correct statement regarding a spontaneous process :
A. Exothermic process are always spontaneous.
B. Lowering of energy in the reaction process is the only criterion for spontaneity.
C. For a spontaneous process in an isolated system, the change in entropy is positive.
D. Endothermic process are never spontaneous.

Answer: C

D Watch Video Solution

240. In conversation of lime-stone ti lime, $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) 7$ the value of ΔH° and ΔS° are $+179.1 \mathrm{KJmol}^{-1}$ and $160.2 \mathrm{~J} / \mathrm{K}$ respectively at 298 K and 1 bar. Assuming that ΔH and ΔS do not change with temperature, temperature above which coversation of lime-stone to lime will be just spontaneous is:

- Watch Video Solution

241. Predict which of the following reactions(s) has a positive entropy change?
A. $\mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g) \rightarrow 2 \mathrm{NH}_{3}(g)$
B. $\mathrm{HCl}(\mathrm{g})+\mathrm{NH}_{3}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{4} \mathrm{Cl}(g)$
C. Graphite(s) \rightarrow diamonds(s)
D. $F_{2}(g) \rightarrow 2 F(g)$

Answer: D

- Watch Video Solution

242. Select correct statements:
A. $\int \frac{d q}{T}$ is always independent of path followed between two points.
B. Entropy of universe is conserved.
C. For a process in isolated system, entropy either increases or remains contant
D. Enrtropy decreases with increase in temperature at constant V .

Answer: C

Watch Video Solution

243. In which of the following reactions do you except to have a decrease in entropy?
A. $\mathrm{Fe}(\mathrm{s}) \rightarrow \mathrm{Fe}(\mathrm{l})$
B. $\mathrm{Fe}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
C. $\mathrm{Fe}(\mathrm{l}) \rightarrow \mathrm{Fe}(\mathrm{g})$
D. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})$

Answer: B

- Watch Video Solution

244. In which of the following process (involving ideal gas) entropy of system remain constant?
A. reversible isothermal expansion
B. irreversible adiabatic expansion
C. reversible adiabatic expansion
D. free expansion

Answer: C

- Watch Video Solution

245. During melting of an ice slab at 273 K at 1atm pressure:
A. Negative work is done on the ice-water system by the atmosphere
B. Positive work is done by the ice-water system on the atmosphere
C. The entropy of the ice-water system decrease
D. The internal energy of the ice-water system increases

Answer: D

246. Which of the following reactions is spontaneous only at reletively low temperature?
A. $\mathrm{NH}_{4} \mathrm{Br}(\mathrm{s})+188 \mathrm{~kJ} \rightarrow \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{l})$
B. $\mathrm{NH}_{3}(\mathrm{~g})+\mathrm{HCl}(\mathrm{g}) \rightarrow \mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})+176 \mathrm{~kJ}$
C. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g})+196 \mathrm{~kJ}$
D. Both A and C

Answer: B

- Watch Video Solution

247. Two samples of same substance A and B are at 300 K and 500 K respectively. When A and B are bought in thermal contact in reversible manner, which of the following options are correct?

A. $\Delta S_{A}<\Delta S_{B}$
B. $\Delta S_{A}>\Delta S_{B}$
C. $|\Delta S|<\left|\Delta S_{B}\right|$
D. Can't be determine

Answer: B

- Watch Video Solution

248. What are the signs for $\Delta H, \Delta S$ and ΔG for the freezing of liquid water at $-10^{\circ} \mathrm{C}$?
$\Delta H \quad \Delta S \quad \Delta G$
A. $+\quad+$
B. $\Delta H \quad \Delta S \quad \Delta G$
B. - 0
$\Delta H \quad \Delta S \quad \Delta G$
C. $\quad+\quad-$
D. $\Delta H \quad \Delta S \quad \Delta G$

Answer: D

- Watch Video Solution

249. For the reaction between CO_{2} and graphite:
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{C}(\mathrm{s}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$,
$\Delta=170 \mathrm{~kJ}$ and $\Delta S=170 . \mathrm{JK}^{-1}$. The reaction will be spontaneous at:
A. 300 K
B. 500 K
C. 900 K
D. 1100 K

Answer: D

- Watch Video Solution

250. The combustion reaction occuring in an automobile is $2 \mathrm{C}_{8} \mathrm{H}_{18}+25 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 16 \mathrm{CO}_{2}(\mathrm{~g})+18 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ This reaction is accompanied with:
A. $\Delta H=-v e, \Delta S=+v e, \Delta G=+v e$
B. $\Delta H=+v e, \Delta S=-v e, \Delta G=+v e$
C. $\Delta H=-v e, \Delta S=-v e, \Delta G=+v e$
D. $\Delta H=+v e, \Delta S=+v e, \Delta G=-v e$

Answer: C

- Watch Video Solution

251. In which of the following entrophy is creasing?
A. $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
B. $\mathrm{Ca}^{2+}($ aq. $)+2 \mathrm{~F}^{-}(a q) \rightarrow \mathrm{CaF}_{2}(s)$
C. $N_{2}(g, 1 a t m, 300 K) \rightarrow N_{2},(g, 2 a t m, 300 K)$
D. $O_{2}(g, 1 L, 300 K) \rightarrow O_{2},(g, 2 L, 300 K)$

Answer: D

252. $A(s) \rightarrow A(l), \Delta H^{\circ}=3 K l / g$

If at 200 K above changes become reversible then ΔS Will be :
(Molecular weight of $\mathrm{A}=50 \mathrm{~g} / / \mathrm{mole}$)
A. $0.75 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
B. $750 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
C. $1500 \mathrm{~J} / \mathrm{mol}-\mathrm{k}$
D. $75 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$

Answer: B

- Watch Video Solution

253. For reaction at 1000 k :
$A(g) \Leftrightarrow B(g), \Delta G_{f}^{\circ}(A, g)=-5.2 \mathrm{kcal} / \mathrm{mole}^{-1}$,
$\Delta G_{f}^{\circ}(B, g)=-3.814 \mathrm{kcal} / \mathrm{mole}^{-1}$
Equillibrium constant of reaction is:
A. 1
B. 0.5
C. 2
D. 4

Answer: B

- Watch Video Solution

254. A process must be spontaneous (feasible) if:
A. Entropy of system increases
B. Energy of system decreases
C. Gibbs free energy decreases
D. Entropy of univese increases

Answer: D

255. Which of the following statement is incorrect when a system consisting of ideal gas undergoes change of state?
A. In reversible change, $\Delta S_{\text {univ }}=0$
B. In an irreversible change, $\Delta S_{\text {univ }} \neq 0$
C. In an adiabatic process always $\Delta S_{\text {univ }}=0$
D. In an ischoric process, $\Delta S_{\text {syst }}=n C_{\vee} \operatorname{In}\left(\frac{T_{2}}{T_{1}}\right)$

Answer: C

- Watch Video Solution

256. Solid KCIO_{3} is taken in a container maintained at constant pressure of 1 atm. Upon heating, following equiibria is set:
$2 \mathrm{KCIO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
$I f \Delta H^{\circ}=25 \mathrm{kcal} / \mathrm{mol}$ and $\Delta S^{\circ}=50 \mathrm{cal} / \mathrm{K}$, temperature equillibrium will be established in the container?
A. 298 K
B. 500 K
C. 5000 K
D. Data insufficient

Answer: B

- Watch Video Solution

257. ΔG for the conversation of 2 mol of $C_{6} \mathrm{H}_{6}(\mathrm{l})$ at $80^{\circ} \mathrm{C}$ (normal boiling point) to vapour at the same temperature and a pressure of 0.2 atm is:
A. $-9.44 \mathrm{kcal} / \mathrm{mol}$
B. $-2.27 \mathrm{kcal} / \mathrm{mol}$
C. $-1.135 \mathrm{kcal} / \mathrm{mol}$
D. zero

Answer: B

- Watch Video Solution

258. For the given reaction at 1 atm,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{s}) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}), \quad \Delta H_{r}=100 \mathrm{~kJ} / \mathrm{mol}$ and $\Delta S_{r}=400 \mathrm{~J} / \mathrm{mol} / \mathrm{K}$
Temperature at which following reactions occurs reversibly is:
Assuming ΔH_{r} and ΔS_{r} are independent of temperature)
A. 200 K
B. 250 K
C. 400 K
D. None of these

Answer: B

259. What are the signs of ΔH_{r} and ΔS_{r} for the reaction
$2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$
$\Delta H \quad \Delta S$
A.
$\Delta H \Delta S$
B. $\quad+$
$\Delta H \Delta S$
C. $+\quad+$
D. $\begin{gathered}\Delta H \quad \Delta S \\ +\quad-\end{gathered}$

Answer: B

- Watch Video Solution

260. One mole of ice is melted at $0^{\circ} \mathrm{C}$ and then is heated to $100^{\circ} \mathrm{C}$. What is the difference in entropies of the steam and ice? The heats of vaporisation and fusion are $540 \mathrm{calg}^{-1}$ and $80 \mathrm{calg}^{-1}$ respectively. Use the average heat capacity of liquid water as $1 \mathrm{cal} \mathrm{g}^{-1}$ degree $^{-1}$

$$
\text { A. } 18\left(\frac{80}{373}+\frac{540}{273}+\operatorname{In} \frac{373}{273}\right)
$$

B. $18\left(\frac{80}{373}+\frac{540}{373}+\operatorname{In} \frac{373}{273}\right)$
C. $\left(\frac{80}{273}+\frac{540}{373}+\operatorname{In} \frac{373}{373}\right)$
D. $\left(\frac{80}{273}+\frac{540}{373}+100\right)$

Answer: B

- Watch Video Solution

261. One mole of diatomic ideal gas undergoes change such that pressure drops to 4 times and volume increases to 2 times. Then, calculate the entropy change in system during the process:
A. $-\frac{0.693}{K}$
B. -2.1cal/K
C. $1.386 \mathrm{cal} / \mathrm{K}$
D. $-1.386 \mathrm{cal} / \mathrm{K}$

Answer: B

- View Text Solution

262. which of the following statement(s) is/are incorrect?

Statement (a) : Reversible isothermal compression of an ideal gas represents the limiting minimum value of the work done $(|\omega|)$ by the surrounding on the system .

Statement (b) : For thermodynamic changes in adiabatic process
$T\left(\frac{C_{p, m}}{R}\right) \cdot \mathrm{P}=$ constant
Statement (c): $\Delta S_{\text {system }}$ is zero for reversible adiabatic expansion of an ideal gas.
A. Statement b
B. Statement a,b,c
C. statement a, b
D. Statement a

Answer: A

263. The entropy change can be calculated by using the expression $\Delta S-\frac{q_{r e v}}{T}$. When water freezes in a glass beaker, choose the correct statement amongst the following:
A. ΔS (system) decreases but ΔS (surroundings) remains the same.
B. ΔS (system) increases but ΔS (surroundings) decreases.
C. ΔS (system) decreases but ΔS (surroundings) increases .
D. ΔS (system) decreases but ΔS (surroundings) also decreases.

Answer: C

- Watch Video Solution

264. Which of the following is not correct?
A. ΔG is zero for a reversible reaction
B. ΔG is positive for a spontaneous reaction
C. ΔG is neagative for a spontaneous reaction
D. ΔG is positive for a non-spontaneous reaction

Answer: B

- Watch Video Solution

265. Select the option which is correct regarding true//false of the given stateements:

Statements-1: Thermal decomposition of solid CaCO_{3} is expected to be spontaneous as high temperature and non-spontaneous at low temperatures. Statements-2: If the rate law for an acid catalysed reaction is $r=K(\text { Reactant })^{1}[\text { Catalyst }]^{\circ}$ then rate will be independent of presence / absence of catalyst.

Statement-3: When water freezes in a glass beaker, volumes of the system increases at constant temperature and hence entropy will also increses.
B. Only statemen-3 is incorrect
C. only statement-1 is correct
D. Only statement-2 is incorrect

Answer: C

- Watch Video Solution

266. 4 g of he gas is expanded isothermally at 300 K from litre to 10 L . The molar change in entropy is:
A. 2cal
B. 600 cal
C. 1380cal
D. 4.6cal

Answer: D

267. Which of the following thermodynamic condition at constant pressure and temperature is necessary for the spontaneity of a process?
A. $d(E-T S+P V)>0$
B. $d(E-T S+P V)<0$
C. $d(E-T S+P V)=0$
D. $d(E+T S+P V)<0$

Answer: B

- Watch Video Solution

268. For the given reaction:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}^{+}(a q)+2 \mathrm{Cl}^{-}(a q)$
$\Delta G^{\circ}=-262.4 k J$
The value of Gibbs free energy of formation $\left(\Delta G_{r}^{\circ}\right)$ for the ion $\mathrm{Cl}^{-}(a q)$ is:
A. $-131.2 \mathrm{kJmol}^{-1}$
B. $+131.2 \mathrm{kJmol}^{-1}$
C. $-262.4 \mathrm{kJmol}^{-1}$
D. $+262.4 \mathrm{kJmol}^{-1}$

Answer: A

- Watch Video Solution

269. Which of the following options will be correct for the stage of half competiton of the reaction $A \rightarrow B$?
A. $\Delta G^{\circ}=0$
B. $\Delta G^{\circ}>0$
C. $\Delta G^{\circ}<0$
D. $\Delta G^{\circ}=-R T I n 2$
270. For which of the following process would ΔS be expected to be most positive?
A. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
B. $\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~s})$
C. $\mathrm{Na}^{+}(a q)+\mathrm{Cl}^{-}(a q) \rightarrow \mathrm{NaCl}(\mathrm{s})$
D. $\mathrm{Cl}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g})$

Answer: A

- Watch Video Solution

271. The normal boiling point of a liquid A is 300 K . Which of the following statement is false about the process: $A(l) \rightarrow A(g)$?
A. at 300 K and 1 atm pressure $\Delta G=0$
B. at 300 K and 2atm pressure $\Delta G=+v e$
C. at 300 K and 0.1 atm pressure $\Delta G=-v e$
D. at 310 K and 1 atm pressure $\Delta G=+v e$

Answer: D

- Watch Video Solution

272. For the transformation, $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}, 1 \mathrm{~atm}) \rightarrow \mathrm{H}_{2} \mathrm{O} \quad(\mathrm{g}, 1 \mathrm{~atm})$, $\Delta H_{\text {vap }}=40.668 \mathrm{kJmol}^{-}$The change in entropy $\left(\mathrm{JK}^{-} \mathrm{mol}^{-}\right)$is:
A. 19.14
B. 89.89
C. 109.03
D. 128.17

Answer: D

273. For which process will ΔH and ΔG° be expected to be most similar?
A. $2 \mathrm{Al}(\mathrm{s})+\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+\mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s})$
B. $2 \mathrm{Na}(\mathrm{s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
C. $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
D. $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Answer: A

- Watch Video Solution

274. For a particular reaction, $\Delta H=-38.3 \mathrm{~kJ}$ and $\Delta S^{\circ}=-113 \mathrm{~J} \times K^{-1}$. This reaction is:
A. spontaneous at all temperature.
B. non-spotaneous at all temperatures.
C. spontaneous at temperature below $66^{\circ} \mathrm{C}$.
D. spontaneous at temperature above $66^{\circ} \mathrm{C}$.

Answer: C

- Watch Video Solution

275. What is ΔG° for the reaction?
$\frac{1}{2} N_{2}(g)+\frac{3}{2} H_{2}(g) \rightarrow \mathrm{NH}_{3}(g) K_{p}=4.42 \times 10^{4} a t 25^{\circ} \mathrm{C}$.
A. $-26.5 \mathrm{~kJ}^{\mathrm{mol}} \mathrm{mol}^{-1}$
B. $-11.5 \mathrm{kJ.mol}^{-1}$
C. $-2.2 \mathrm{kJ.mol}^{-1}$
D. $-0.97 \mathrm{~kJ}_{\mathrm{mol}} \mathrm{mol}^{-1}$

Answer: A

276. The ΔH° and ΔS° value for a particular reaction are -60.0 kJ and -0.200 kJ . K^{-1} respectively, Under what reaction spontaneous?
A. all conditions
B. $T<300 K$
C. $T=300 \mathrm{~K}$
D. $T>300 K$

Answer: B

- Watch Video Solution

277. What are the signs of ΔH° and ΔS° for a reaction that is spontaneous at all temperature?

$$
\Delta H^{\circ} \quad \Delta S^{\circ}
$$

A.

$\Delta H^{\circ} \Delta S^{\circ}$
B.
$\Delta H^{\circ} \Delta S^{\circ}$
C. $\quad+$
$\Delta H^{\circ} \Delta S^{\circ}$
D.

- -

Answer: C

- Watch Video Solution

278. For a process that is both endothermic and spontaneous:
A. $\Delta H<0$
B. $\Delta H>0$
C. $\Delta E=0$
D. $\Delta S>0$

Answer: D

- Watch Video Solution

279. Consider the values of $\Delta H\left(\right.$ inkJmol $\left.^{-}\right)$and for $\Delta S\left(\right.$ inmol $\left.^{-} K^{-1}\right)$ given for four different reactions. For which reaction will ΔG increases the most (becoming more positive) when the temperature is increased form $0^{\circ} \mathrm{Cto} 25^{\circ} \mathrm{C}$?
A. $\Delta H^{\circ} \mathrm{C}=50, \Delta S^{\circ}=50$
B. $\Delta H^{\circ} C=90, \Delta S^{\circ}=20$
C. $\Delta H^{\circ} \mathrm{C}=-90, \Delta S^{\circ}=-50$
D. $\Delta H^{\circ} \mathrm{C}=-90, \Delta S^{\circ}=-20$

Answer: C

- Watch Video Solution

280. A large positive value of ΔG^{θ} corresponds to which of these?
A. small positive K
B. small positive J
C. large positive K
D. large negative K

Answer: A

- Watch Video Solution

281. Which of the following occurs with an increase in entropy?
A. $2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}(\mathrm{g})$
B. $2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~s})+\mathrm{SO}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{~S}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
C. $2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
D. $\mathrm{CO}(\mathrm{g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$

Answer: A

- Watch Video Solution

282. For the reaction
$\mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{PCl}_{5}(\mathrm{~g}), \Delta H=-86 \mathrm{~kJ}$.
Under what temperature is this reaction expected to be spontaneous?
A. no temperature
B. high temperatures only
C. all temperature
D. low temperature only

Answer: D

- Watch Video Solution

283. Which statement is correct?
A. In a coffe-cup calorimeter, $q=\Delta H$
B. In a coffe-cup calorimeter, $w=0$
C. In bomb calorimeter, $q=\Delta S$
D. In bomb calorimeter, $w>0$

Answer: A

- Watch Video Solution

284. For which substance and conditions can $\Delta S=0$?
(P) elements at $0 \mathrm{~K}(\mathrm{Q})$ compounds at 0 K
(R) gases at 298 K
A. P only
B. R ONLY
C. P AND Q ONLY
D. P AND R ONLY

Answer: C

D Watch Video Solution

285. Which reaction occurs with a decrease in entropy?
A. $\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})$
B. $\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightarrow 2 \mathrm{NO}_{2}(g)$
C. $2 \mathrm{CO}(g) \rightarrow \mathrm{C}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g})$
D. $\mathrm{HCl}(\mathrm{aq})+\mathrm{Ag}_{2} \mathrm{CO}_{3}(\mathrm{~s})$

$$
\rightarrow 2 \mathrm{AgCl}(\mathrm{~s})+\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

Answer: C

- Watch Video Solution

A. 2.2×10^{5}
B. 1.1
C. 0.86
D. 4.5×10^{-6}

Answer: D

D Watch Video Solution

287. when the substance below are arranged in order oif increasing entropy value, S°, $a t 25^{\circ} \mathrm{C}$ which is the correct order?
A. $\mathrm{CO}_{2}(\mathrm{~s})<\mathrm{CO}_{2}(a q)<\mathrm{CO}_{2}(\mathrm{~g})$
B. $\mathrm{CO}_{2}(g)<\mathrm{CO}_{2}(a q)<\mathrm{CO}_{2}(s)$
C. $\mathrm{CO}_{2}(\mathrm{~s})<\mathrm{CO}_{2}(\mathrm{~g})<\mathrm{CO}_{2}(a q)$
D. $\mathrm{CO}_{2}(g)<\mathrm{CO}_{2}(s)<\mathrm{CO}_{2}(a q)$

Answer: A

- Watch Video Solution

288. For the reaction: $2 \mathrm{NO}_{2}(g) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(g): \Delta H<0$. What predictions can be made about the sign of ΔS and the temperature conditions under
which the reaction would be spontaneous?
$\Delta S_{\mathrm{rxn}} \quad$ Temperature Condition
(a) negative low temperature
(b) negative high temperature
(c) positive high temperature
(d) postive low temperature
ΔS_{rxn} Temperature Condition
negative low temperature
$\Delta S_{\text {rxn }} \quad$ Temperature Condition
B.
negative high temperature
$\Delta S_{\mathrm{rxn}} \quad$ Temperature Condition
C.
positive high temperature
$\Delta S_{\mathrm{rxn}} \quad$ Temperature Condition
D.
positive low temperature

Answer: A

- Watch Video Solution

289. Which reaction occurs with a decrease in entropy?
A. $2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2}+\mathrm{O}_{2}(\mathrm{~g})$
B. $2 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$
C. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
D. $\mathrm{Br}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BrCl}(\mathrm{g})$

Answer: A

- Watch Video Solution

290. For a substance with the value of $\Delta H_{v a p}$ and $\Delta S_{\text {vap }}$ given below, what is its normal boiling point in
.${ }^{\circ} C\left(\Delta H_{\text {vap }}=59.0 \mathrm{kJol}^{-1}, \Delta S_{\text {vap }}=93.65 \mathrm{Jmol}^{-1}\right)$
A. 357
B. 630
C. 1314
D. 1587

Answer: A

291. Which of best describtion of the relationship between the absolute entropies, S° of solid water at 100 K and at 200K?
A. $S_{200 k}^{\circ}$ is smaller because entropy decreases as temperature increases.
B. $S_{200 k}^{\circ}$ is smaller because the surroundings are more disordered at
high temperatures.
C. $S_{100 k}^{\circ}=S_{200 k}^{\circ}=$ because water is in the solid phase at high temperatures.
D. $S_{200 k}^{\circ}$ is larger because the vibration of the molecules increases as temperature increases.

Answer: D

- Watch Video Solution

292. Which applies to any endothermic reaction?
A. $\Delta H<0$
B. $\Delta H>0$
C. $\Delta G<0$
D. $\Delta G>0$

Answer: B

- Watch Video Solution

293. Which phase change for water has positive values for both ΔH° and ΔG° ?
A. $(I) \rightarrow(s) a t 250 K$
B. $(I) \rightarrow(s) a t 350 K$
C. (I) $\rightarrow(g) a t 350 K$
D. $(\mathrm{l}) \rightarrow(\mathrm{g}) a t 450 \mathrm{~K}$

Answer: C

D Watch Video Solution

294. When solid CuSO_{4} dissolves in water to make a 1 M solution, the temperature of the system increases When solid $\mathrm{NH}_{4} \mathrm{NP}_{3}$ dissolves in water to make a 1 M solution, the temperature of the system decreases.

Which statement(s) mus be correct for these dissolving processes?
(P) ΔH° value for both processes have the same sign.
(Q) ΔG° values for both processes have the same sign.
A. Ponly
B. Q only
C. Both P and Q
D. Neither P nor Q

Answer: B

295. which reaction proceeds with the greates increases in entropy
A. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{I})$
B. $B r_{2}(I)+F_{2}(g) \rightarrow 2 B r F(g)$
C. $\mathrm{Cu}^{2+}(a q)+\mathrm{Zn}(s) \rightarrow \mathrm{Cu}(s)+\mathrm{Zn}^{2+}(a q)$
D. $4 \mathrm{NH}_{3}(\mathrm{~g})+7 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$

Answer: B

- Watch Video Solution

296. For the reaction,
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=-50.6 \mathrm{~kJ}$.
This reaction is:
A. spontaneous at all temperature.
B. non-spotaneous at all temperatures.
C. spontaneous only at low temperatures.
D. spontaneous only at high temperatures.

Answer: A

- Watch Video Solution

297. Diethyl ether has a normal boiling point of $35.0^{\circ} \mathrm{C}$ and has an entropy of vaporization of $84.4 \mathrm{~J} / \mathrm{molK}$. What is its enthalpy of vaporization?
A. $0.274 \mathrm{~J} / \mathrm{mol}$
B. $2.41 \mathrm{~J} / \mathrm{mol}$
C. $3.65 \mathrm{~J} / \mathrm{mol}$
D. $26.0 \mathrm{Kj} / \mathrm{mol}$

Answer: D

298. For a reaction that is exothermic an non-spontaneous at $25^{\circ} \mathrm{C}$, which quantity must be positive?
A. ΔE°
B. ΔG°
C. ΔH°
D. ΔS°

Answer: B

- Watch Video Solution

299. Bromine boils at $59^{\circ} \mathrm{C}$ with $\Delta H_{\text {vap }}^{\circ}=29.6 \mathrm{kJmol}^{-1}$ What is the value of $\Delta S_{\text {vap }}^{\circ}$ in29.6 $\mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
A. 11.2
B. 89.2
C. 50.1
D. 1750

Answer: B

- Watch Video Solution

300. A chemical reaction is carried out twice with the same quantity of reactants to forms the same products but the pressure is different for the two experiments. Which value does not change?
A. k_{p}
B. Heat released
C. $\Delta T_{\text {surroundings }}$
D. Work done

Answer: A

301. Which reactions is spontaneous at all temperature at standard pressure and concentration?
A. exothermic reaction with a decrease in entropy
B. exothermic reaction with an increase in entropy
C. endothermic reaction with a decrease in entropy
D. endothermic reaction with a increase in entropy

Answer: B

- Watch Video Solution

302. Which has the highest standard molar entropy?
A. $O_{2}(g)$
B. $\mathrm{SO}_{2}(\mathrm{~g})$
C. $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
D. $\mathrm{PbO}_{2}(\mathrm{~s})$

Answer: B

- Watch Video Solution

303. Which always true for a specific system during a spontaneous reaction?
A. $\Delta H<0$
B. $\Delta H \geq 0$
C. $\Delta G<0$
D. $\Delta S>0$

Answer: C

- Watch Video Solution

304. The boiling point of diethyl ether is $34.6^{\circ} \mathrm{C}$. Which is true for the vaporization of diethyl ether at $25.0^{\circ} \mathrm{C}$?
A. $\Delta G_{\text {vap }}^{\circ}>0$
B. $\Delta H_{\text {vap }}^{\circ}<0$
C. $K_{\text {vap }}=1$
D. $\Delta S_{\text {vap }}^{\circ}<0$

Answer: A

- Watch Video Solution

305. when the substance $\mathrm{Na}(\mathrm{s}), \mathrm{Br}_{2}(g), \mathrm{Br}_{2}(\mathrm{l}), \mathrm{NaBr}(s)$ are arranged in order of increasing molar entropy at $25^{\circ} \mathrm{C}$, which order is correct?
A. $B r_{2}(g), B r_{2}(I), \operatorname{Na}(s), \operatorname{NaBr}(s)$
B. $\mathrm{Na}(\mathrm{s}), B r_{2}(\mathrm{~g}), B r_{2}(\mathrm{l}), \mathrm{NaBr}(\mathrm{s})$
C. $\operatorname{Na}(\mathrm{s}), \mathrm{NaBr}(\mathrm{s}), B r_{2}(\mathrm{l}), B r_{2}(\mathrm{~g})$
D. $\operatorname{NaBr}(\mathrm{s}), B r_{2}(g), B r_{2}(l), N a(s)$

Answer: C

- Watch Video Solution

306. The reaction,
$4 \mathrm{Ag}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Ag}_{2} \mathrm{O}(\mathrm{s})$, is exothermic
Which statement about the reaction is correct?
A. It is spontaneous at all temperature
B. It is spontaneous only at low temperatures
C. It is spontaneous only at high temperatures.
D. It is non-spontaneous at all temperatures.

Answer: B

- Watch Video Solution

307. Which reaction has a positive $\Delta S_{\text {reaction }}^{\circ}$?
A. $A g^{+}(a q)+\operatorname{Br}^{-}(a q) \rightarrow \operatorname{AgBr}(s)$
B. $2 \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C. $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g})$
D. $2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+\mathrm{O}_{2}(\mathrm{~g})$

Answer: D

- Watch Video Solution

308. For a
reaction
at
$25 \%(\circ) C, \Delta G^{\circ}=-33.3 k J$ and $\Delta S=-198 k J \times K^{-1}$. What is the value of $\Delta H \%(\circ) ?$
A. $-92.3 k J$
B. $-38.3 k J$
C. $-28.8 k J$

Answer: A

- Watch Video Solution

309. Which statement is always true for a spontaneous reaction?
A. The entropy change for the system is neagative.
B. The enthalpyt change for the system is negative.
C. The entropy change for the universe is positive.
D. The free energy change for the system is positive.

Answer: C

- Watch Video Solution

310. Liquid bromine boils at 332.7. K Estimate the enthalpy of formation of

$$
\mathrm{Br}_{2}(\mathrm{~g}) \in \mathrm{Kj} . \mathrm{Mol}^{-1}
$$

A. 7.4
B. 12.1
C. 19.5
D. 22.2

Answer: A

311. Which change(s) is(are) accompanied by an increase in entropy of the system?
(P) Conversion of $\mathrm{O}_{2}(\mathrm{~g}) \mathrm{to} \mathrm{O}_{3}(\mathrm{~g})$
(Q) Freezing of water
(R) Sublimation of iodine
A. P only
B. R ONLY
C. P AND Q ONLY
D. Q and R only

Answer: B

- Watch Video Solution

312. Which choice represents the signes for ΔS and ΔH for the sublimatioon of a compound that is occuring at constant temperature?
A. $\Delta S<0, \Delta H<0$
B. $\Delta S<0, \Delta H>0$
C. $\Delta S>0, \Delta H>0$
D. $\Delta S>0, \Delta H<0$

Answer: C

- Watch Video Solution

313. A reaction has $\Delta H^{\circ}>0$ and $\Delta G^{\circ}>025^{\circ} \mathrm{C}$. This reaction:
A. is at equillibruim at $25^{\circ} \mathrm{C}$.
B. could not be spontaneous under standard conditions at any temperature.
C. could be spontaneous under standard conditions at temperatures above $25^{\circ} \mathrm{C}$
D. could be spontaneous under standard conditions at temperature below $25^{\circ} \mathrm{C}$.

Answer: C

- Watch Video Solution

314. An ionic compound ha a solublity increases as the temperature is raised. What are the signs of ΔH° and ΔS° for the dissolving process?

	ΔH°	ΔS°
A.	+	+
B.	ΔH°	ΔS°
	+	-
C.	ΔH°	ΔS°
	-	+
D.	ΔH°	ΔS°

Answer: A

315. The enthalpy of fusion for $N a F(s)$ at its melting point $\left(992^{\circ} \mathrm{C}\right)$ is $29.3 \mathrm{~kJ} \times \mathrm{mol}^{-1}$. What is the value of $\Delta S_{\text {fusion }}^{\circ} \mathrm{inJ} \times \mathrm{mol}^{-1} \times \mathrm{K}^{-1}$?
A. 43.2
B. 33.9
C. 29.5
D. 23.2

Answer: D

Watch Video Solution

316. For the reaction at $25^{\circ} \mathrm{C}$,
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \Leftrightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g}), K_{p}=308.08$
What is ΔG° for this reaction in $k J \times \mathrm{mol}^{-1}$?
A. 0.436
B. -3.71
C. -19.2
D. -14.2

Answer: D

- Watch Video Solution

317. Which reaction has the most positive entropy change understandard conditions?
A. $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
B. $\mathrm{CaCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{CaO}(\mathrm{s}) \rightarrow+\mathrm{CO}_{2}(\mathrm{~g})$
C. $\mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{NH}_{3}(\mathrm{aq})$
D. $\mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~g}) \rightarrow \mathrm{C}_{8} \mathrm{H}_{18}(\mathrm{~s})$

Answer: B

- Watch Video Solution

318. What are the sign of ΔH and ΔS for a reaction that is spontaneous only at low temperatures?
A. ΔH is positve, ΔS is positive
B. ΔH is positve, ΔS is negative
C. ΔH is negative, ΔS is negative
D. ΔH is negative, ΔS is positive

Answer: C

- Watch Video Solution

319. For a reaction at constant pressure to be spontaneous, which relationship is correct
A. $\Delta H_{r x n}<0$
B. $\Delta G_{r x n}<0$
C. $\Delta S_{r x n}<0$
D. $\Delta S_{u n i}<0$

Answer: B

- Watch Video Solution

320. Tungsten is obtained commercially by the reduction of WO_{3} with H_{2} according to the equation:
$\mathrm{WO}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{W}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
The following data related to this reaction at $25^{\circ} \mathrm{C}$ are available The temperature at which this reaction is at equillibrium at 1 atm is closest which of the following?
A. 124 K
B. 231 K
C. 928 K
D. 2810 K

Answer: C

Watch Video Solution

321. The gases compound NOBr decomposses accordings to the equation
$\operatorname{NOBr}(g) \Leftrightarrow N O(g)+\frac{1}{2} \operatorname{Br}(g)$
At 350 K , the equillibrium constant, K_{p} is 0.15 . What is the value ΔG° ?
A. $-5.5 \times 10^{3} \mathrm{~J} / \mathrm{mol}$
B. $-2.4 \times 10^{3} \mathrm{~J} / \mathrm{mol}$
C. $2.4 \times 10^{3} \mathrm{~J} / \mathrm{mol}$
D. $5.5 \times 10^{3} \mathrm{~J} / \mathrm{mol}$

Answer: D

- Watch Video Solution

322. At the triple point of water how do the entropies of solid, liquid, and gas compare?
A. $S_{\text {solid }}^{\circ}<S_{\text {liquid }}^{\circ}<S_{\text {gas }}^{\circ}$
B. $S_{\text {solid }}^{\circ}=S_{\text {liquid }}^{\circ}<S_{\text {gas }}^{\circ}$
C. $S_{\text {gas }}^{\circ}<S_{\text {solid }}^{\circ}<S_{\text {liquid }}^{\circ}$
D. $S_{\text {solid }}^{\circ}=S_{\text {liquid }}^{\circ}=S_{\text {gas }}^{\circ}$

Answer: A

D Watch Video Solution

323. "A perfect crystalline substance has an entropy of zero at absolute zero" is a statement of
A. Hess' Law.
B. The First Law of Thermodynamics.
C. The SecondLaw of Thermodynamics.
D. The Third Law of Thermodynamics.
324. Which of the following sets of conditions would result in a reaction that is spontaneous at high temperature but non-spontaneous at low temperature?
A. $\Delta H>0, \Delta S>0$
B. $\Delta H>0, \Delta S<0$
C. $\Delta H<0, \Delta S<0$
D. $\Delta H<0, \Delta S>0$

Answer: A

Watch Video Solution

325. Spontaneous reactions always:
A. go to completion.
B. are fast. Involve phase changes.
C. involve phase changes.
D. release energy and/or show an increase in the system's entropy.

Answer: D

- Watch Video Solution

326. Which is a statement of the second law of Thermodynamics?
A. The energy of the universe is conserved .
B. The energy of the universe is decreasing .
C. The entropy of the universe is unconserved.
D. The entropy of the universe is conserved .

Answer: D

327. For the reaction, $2 H(g) \rightarrow H_{2}(g)$, what are the signs of ΔH and ΔS ?
A. $\Delta H^{\circ}<0, \Delta S^{\circ}<0$
B. $\Delta H^{\circ}<0, \Delta S^{\circ}>0$
C. $\Delta H^{\circ}>0, \Delta S^{\circ}>0$
D. $\Delta H^{\circ}>0, \Delta S^{\circ}<0$

Answer: A

- Watch Video Solution

328. Which substance has the greatest molar entropy at 298 K ?
A. $\mathrm{NO}_{2}(\mathrm{~g})$
B. $\mathrm{NO}_{2} \mathrm{O}_{4}(\mathrm{l})$
C. $\mathrm{NO}_{2} \mathrm{O}_{4}(\mathrm{~g})$
D. $\mathrm{NO}_{2} \mathrm{O}_{5}(\mathrm{l})$

Answer: C

D Watch Video Solution

329. For the process, $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}) \rightarrow \mathrm{CH}_{3} \mathrm{OH}_{g}, \Delta G^{\circ}=4.30 \mathrm{~kJ} / \mathrm{molat} 25^{\circ} \mathrm{C}$.

What is the vapour pressure of $\mathrm{Ch}_{3} \mathrm{OH}(\mathrm{l}) \mathrm{at} 25^{\circ} \mathrm{Cin} \mathrm{mm} \mathrm{Hg}$
A. 0.176 mm Hg
B. 14.0 mm Hg
C. 134 mm Hg
D. 759 mm Hg

Answer: C

- Watch Video Solution

330. Which reaction has the greatest positive change in entropy, ΔS ?
A. $2 \mathrm{Mg}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{MgO}(\mathrm{s})$
B. $2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
C. $2 \mathrm{KClO}_{3}(\mathrm{~s}) \rightarrow 2 \mathrm{KCl}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g})$
D. $2 \mathrm{SO}_{2}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{SO}_{3}(g)$

Answer: C

- Watch Video Solution

331. Which statement is correct for the reaction represented below?
$2 \mathrm{NOCl}(\mathrm{g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}), \Delta \mathrm{H}_{\text {reaction }}^{\circ}>0$
The reaction is
A. spontanous at all temperatures
B. spontanous only at high temperatures
C. spontonous only at low temperatures
D. non-spontanous at any temperature

Answer: B

- Watch Video Solution

332. What is the temperature at which the reaction below is at equillibirium ?
$2 \mathrm{NO}(g)+\mathrm{O}_{2}(g) \rightarrow 2 \mathrm{No}_{2}(g)$
$\Delta H_{\text {reaction }}^{\circ}=-113 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1}$
$\Delta S_{\text {reaction }}^{\circ}=-145 \mathrm{~kJ} \cdot \mathrm{~mol}^{-1} \times \mathrm{K}^{-1}$
A. $-195^{\circ} \mathrm{C}$
B. $77.9^{\circ} \mathrm{C}$
C. $506{ }^{\circ} \mathrm{C}$
D. $779^{\circ} \mathrm{C}$

Answer: C

333. The atmospheric pressure on the summit of Mt. Everest is 0.333
atmospheres. At what tempperature (in ${ }^{\circ} \mathrm{C}$) does $\mathrm{H}_{2} \mathrm{O}$ boil there? $\left(\Delta \mathrm{H}_{\text {vap }} \mathrm{H}_{2} \mathrm{O}=40.7 \mathrm{~kJ} \times \mathrm{mol}^{-1}\right)$
A. $71^{\circ} \mathrm{C}$
B. $87^{\circ} \mathrm{C}$
C. $96^{\circ} \mathrm{C}$
D. $98^{\circ} \mathrm{C}$

Answer: A

- View Text Solution

334. Which isomer of $\mathrm{C}_{4} \mathrm{H}_{8}$ has the lowest entropy at $25^{\circ} \mathrm{C}$?
A. 1-butane
B. cis-2-butane
C. trans-2-butane
D. cyclobutane

Answer: D

- Watch Video Solution

335. Consider the following reactions:
(P) $2 \mathrm{NO}_{2}(g) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g})$
(Q) $2 \operatorname{IBr}(g) \rightarrow I_{2}(s)+B r_{2}(I)$

For which reaction is $\Delta S^{\circ}<0$?
A. Ponly
B. Q only
C. Both P and Q
D. Neither P and q

Answer: B

336. Liquid water is injected into an oven at 400 k . What are the signs for $\Delta G, \Delta H, \Delta S$ for the physical transformation that occurs ?
$\Delta G \quad \Delta H \quad \Delta S$
A.
$\Delta G \quad \Delta H \quad \Delta S$
B.
$+\quad-\quad 0$
$\Delta G \quad \Delta H \quad \Delta S$
C. $\quad+\quad+$
D. $\begin{array}{cc}\Delta G \quad \Delta H \quad \Delta S \\ & -\quad+\quad 0\end{array}$

Answer: C

- Watch Video Solution

337. Which halogen has the highest standerd entropy, S° ?
A. $F_{2}(g)$
B. $\mathrm{Cl}_{2}(g)$
C. $B r_{2}(I)$

D. $I_{2}(s)$

Answer: B

- Watch Video Solution

338. A chemical reaction has $K_{e q}=1 \times 10^{-5}$ at $25^{\circ} \mathrm{C}$, and the value of $K_{e q}$ increases with incresing tempreature. From these statements, what may one conclude?
A. $\Delta H^{\circ}>0$ and $\Delta S^{\circ}>0$
B. $\Delta H^{\circ}<0$ and $\Delta S^{\circ}<0$
C. $\Delta H^{\circ}<0$ and $\Delta S^{\circ}>0$
D. $\Delta H^{\circ}<0$ and no conclusion may be drawn about the sign of ΔS°

Answer: D

- Watch Video Solution

339. Which of these reaction has $\Delta S^{\circ}>0$?
A. $S_{8}(I) \rightarrow S_{8}(s$, monoclinic $)$
B. $\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{aq})$
C. $\mathrm{H}_{2}(g)+2 \mathrm{Ag}^{+}(a q) \rightarrow 2 \mathrm{H}^{+}(a q)+2 \mathrm{Ag}(s)$
D. $\mathrm{PCl}_{5}(\mathrm{~g}) \rightarrow \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g})$

Answer: D

- Watch Video Solution

340. Standard emtropy of X_{2}, Y_{2} and $X_{2} Y_{3}$ are 60, 40 and $150 \mathrm{in} \mathrm{J} / \mathrm{K} \mathrm{mol}$ $X_{2}+\frac{3}{2} Y_{2} \rightarrow X_{2} Y_{3}, \Delta H=+30 \mathrm{~kJ}$

The temperature at which reaction will attain equilibrium is :
A. 250 K
B. 1000 K
C. 750 K
D. 200 K

Answer: B

- Watch Video Solution

341. A reaction at 400 K with approximate $\Delta G^{\circ}=3207 \mathrm{~J} / \mathrm{mole}$, consists of 4 mole of substance A, 2 mole of substance B and 3 mole of substance C at equilibrium in 1 litre container, then which of the following is correctly balanced reaction?
[Take : $\log 3=0.48, \log 2=0.3$ in $x=2.30 \log x$
$\mathrm{R}=8.3 \mathrm{~J} / \mathrm{mole} / \mathrm{K}]$
A. $2 A(g) \Leftrightarrow B(g)+C(g)$
B. $A(g) \Leftrightarrow B(g)+C(g)$
C. $A(g)+B(g) \Leftrightarrow 2 C(g)$
D. $A(g)+C(g) \Leftrightarrow 2 B(g)$

- Watch Video Solution

342. At 500 K , for an isobaric pracess.
$\Delta S_{\text {system }}=-10 \frac{\mathrm{KJ}}{\mathrm{molK}}$ and $\Delta S_{\text {surr }}=12 \frac{\mathrm{KJ}}{\mathrm{molK}}$
Therefore, ΔG for the entire process is
A. $-500 \mathrm{~kJ} / \mathrm{mol}$
B. $-1000 \mathrm{~kJ} / \mathrm{mol}$
C. $-600 \mathrm{~kJ} / \mathrm{mol}$
D. $-1100 \mathrm{~kJ} / \mathrm{mol}$

Answer: B

- Watch Video Solution

343. 1 mole of an ideal gas, initially present in a 1 litre insulated cylinder at 300 K is allowed to expand against vaccum from 1 litre to 8 litre. Determine $\Delta G:[$ in $2=0.7, \mathrm{R}=8.3 \mathrm{~J} / \mathrm{mole}-\mathrm{K}]$
A. $-5229 \mathrm{~J} / \mathrm{mole}$
B. $-1500 \mathrm{~J} / \mathrm{K}$
C. $-3456 \mathrm{~J} / \mathrm{K}$
D. $-600 \mathrm{~J} / \mathrm{K}$

Answer: A

- Watch Video Solution

344. Which of the following decreases with increasing tempreature?
A. The volume of an ideal gas in an adiabatic process
B. Internal energy of a system
C. The pressure of an ideal gas in a fixed volume
D. Entropy of a pure substance

Answer: A

- Watch Video Solution

345. At what temperature the following process would not be spontanous?
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
$\Delta H=-1648 \mathrm{~kJ} / \mathrm{mole}$
$\Delta S=-560 \mathrm{~J} / \mathrm{mole}$
A. 2000 K
B. 3000 K
C. 2900 K
D. 2500 K

Answer: B

346. What will be change in molar Gibbs free energy of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at 300 K constant temperature if it is compressed from 10 bar to 20 bar : [1 bar L=100 J]
A. $36 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
B. $28 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$
C. 18J/mol - K
D. $10 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$

Answer: C

(D) Watch Video Solution

347. From a source of infinite heat capacity 300 kcal heat is extracted at
$727^{\circ} \mathrm{C}$ temperature then change in its entropy (cal/kelvin) will be ?
A. $-300 \ln 2$
B. -300
C. -500
D. $-500 \ln 2$

Answer: B

- Watch Video Solution

348. One mole He gas at 300 K , 10 atm is heated through a process in which its pressure is directly propotional to square of its absolute temperature becomes 600 K . The change in entropy of He is :
A. $\frac{5}{2} \operatorname{Rin} 2$
B. $\frac{1}{2} \operatorname{Rin} 2$
C. $\frac{3}{2} R \mathrm{in} 2$
D. $\frac{9}{2} \operatorname{Rin} 2$

Answer: B

349. Predict in which of the following entropy of the system increses/ decreases:
(P) A liquid crystalizes into a solid
(Q) Temperature of a crystalline solid is raised
(R) $2 \mathrm{NaHCO}_{3}(\mathrm{~s}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})+\mathrm{CO}_{2}(\mathrm{~g})$
(S) $\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g})$
A. increases in all
B. decreases in (P) and (Q)
C. Decreases in (P) only
D. Increases in (P),(S) only

Answer: C

350. Consider an ideal gas reaction
$A(g) \rightarrow B(g), \Delta G=76.5$ joule
$\Delta H=276.5$ joules at 300 K , then, equilibium temperature of reaction will be
A. 298 K
B. 141.75 K
C. 596 K
D. 207.25 K

Answer: B

- Watch Video Solution

351. The change in entropy of the system moles of a diatomic ideal gas is heated from 400 K to 800 K under constant pressure:
A. 3 R in 2
B. 7 R in 2
C. 5 R in 2
D. R in 2

Answer: B

- Watch Video Solution

352. Which one of the following statement is false ?
A. For a fixed amount of substance, entropy of a substance in agaseous phase
B. spontanous process always occur very rapidly
C. for a fixed amount of a solid,ΔS sublimation of a solid may balways be positive
D. If $\Delta G<0$ then it is not necessary that process will be spontaneous always

- Watch Video Solution

1. (A)

2.

Give the
value
of
resonance energy
for
data :
A. $1 \mathrm{kcal} / \mathrm{mole}$
B. $2 \mathrm{kcal} / \mathrm{mole}$
C. $3 \mathrm{kcal} / \mathrm{mole}$
D. $4 \mathrm{kcal} / \mathrm{mole}$

Answer: B

- Watch Video Solution

354. Calculate $C-H$ bond energy from the following data :
$\Delta_{f} H \quad[C(g)]=716.68 \mathrm{~kJ} / \mathrm{mole}$
$\Delta_{f} H \quad[H(g)]=217.97 \mathrm{~kJ} / \mathrm{mole}$
$\Delta_{f} H\left[\mathrm{CH}_{4}(\mathrm{~g})\right]=-74.81 \mathrm{~kJ} / \mathrm{mole}$
A. 1663.37 kJ
B. 415.84 kJ
C. 179.17 kJ
D. 74.81 kJ

Answer: B

- Watch Video Solution

355. Calculate bond energy of $X-X$ bond from the following data.

ΔH_{f} of $X(g)=+300 \mathrm{~kJ} / \mathrm{mole}$

A. 400 kJ
B. 200 kJ
C. 100 kJ
D. 150 kJ

Answer: A

- Watch Video Solution

356. The combustion of 1.22 g benzoic acid ($\mathrm{M}=122$) in a bomb calorimeter at 300 K caused a temperature rise of 3 K , While combustion of 0.88 g ethyl ethanote ($\mathrm{M}=88$) caused a temperature rise of 2 K . Calculate the enthalapy change of combustion of $\mathrm{CH}_{3} \mathrm{COOC}_{2} \mathrm{H}_{5}(\mathrm{l})$ at 300 K . Given : Internal energy change of combustion for benzoic acid $=-300 \mathrm{kJmol}^{-1}$ at 300 K and $\mathrm{R}=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
A. $-2000 \mathrm{~kJ} / \mathrm{mol}$
B. $-2002.49 \mathrm{~kJ} / \mathrm{mol}$
C. $-2006.5 \mathrm{~kJ} / \mathrm{mol}$
D. $-3002.5 \mathrm{~kJ} / \mathrm{mol}$

Answer: B

357. Which of the following substances will have positive value of $\Delta H_{\text {formation }}$?
A. $B r_{2}(I)$
B. $O_{3}(g)$
C. $\mathrm{ZnO}(\mathrm{s})$
D. $H^{+}(a q)$

Answer: B

- View Text Solution

358. It is observed that an combustion of 5.6 g of but-lene(g) 70 kcal of heat is liberated in a closed rigid vessel at 300 K . What could be a possible value of $\left|\Delta H_{\text {combustion }}^{\circ}\right|$ of gaseous cyclone propane [Take : $\mathrm{R}=2$ cal /K mole]?
B. 491.5 kcal
C. 49 kcal
D. 500 kcal

Answer: C

- Watch Video Solution

359. It is observed that on combustion of 4.2 g of gaseous propene in a closed rigid vessel 49 kcal of heat was liberated at 300 K . What could be a possible value of $\mid \Delta H^{\circ}$ combustion \mid of gaseous cyclone propane[Take : $\mathrm{R}=2$ cal/K mole]?
A. 490 kcal
B. 491.5 kcal
C. 49 kcal
D. 500 kcal

Answer: D

- Watch Video Solution

360. Standard enthalpy of formation of $N_{2} \mathrm{O}_{5}$ is $-100 \mathrm{kcal} / \mathrm{mol}$ and standard entorpy of $\mathrm{N}_{2}, \mathrm{O}_{2}$ and $\mathrm{N}_{2} \mathrm{O}_{5}$ are 35,40 and 115 kcal respectively, then $\Delta_{r} G^{\circ}$ of following reaction of $227^{\circ} \mathrm{C}$ will be :
$2 \mathrm{~N}_{2}+5 \mathrm{O}_{2} \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5}$
A. -80 kcal
B. -180 kcal
C. -1800kcal
D. +1800 kcal

Answer: B

361. The bond energy of $\mathrm{C}=\mathrm{O}$ if $\Delta H_{f}^{\circ}\left(\mathrm{CO}_{2}\right)=390 \mathrm{~kJ}, \Delta H_{\text {sublimation }}^{\circ}$ (Graphite) $=720 \mathrm{~kJ}, \mathrm{O}=\mathrm{O}$ bond energy $=490 \mathrm{~kJ}$ and renonce energy $\left(\mathrm{CO}_{2}\right)$ $=36 \mathrm{~kJ}$:
A. 782 kJ
B. 1564 kJ
C. 500 kJ
D. 626 kJ

Answer: A

- Watch Video Solution

362. What will be the maximum amount of heat realeased when 321 g of a mixuture of $f e_{2} \mathrm{O}_{3}$ and Al is subjected to sparkling in absence of air?
$\Delta H_{f}\left(\mathrm{Fe}_{2} \mathrm{O}_{3}=-199 \mathrm{~kJ} / \mathrm{mole}\right.$
$\Delta H_{f}\left(\mathrm{Al}_{2} \mathrm{O}_{3}=-399 \mathrm{~kJ} / \mathrm{mole}\right.$
A. 200 kJ
B. 300 kJ
C. 400 kJ
D. 100 kJ

Answer: B

- Watch Video Solution

363. A 9.40 g sample of KBr is dissolved in 105 g of $\mathrm{H}_{2} \mathrm{O}$ at $23.6^{\circ} \mathrm{C}$ in a coffee cup. Find the final temperature of this system. Assume that no heat is transferred to the cup or the surroundings.

Solution \quad Properties

$\Delta H_{\text {soln }} \mathrm{KBr} \quad 19.9 \mathrm{~kJ} / \mathrm{mol}$
 C_{p} solution $\quad 4.184 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$

A. $20.0^{\circ} \mathrm{C}$
B. $20.3^{\circ} \mathrm{C}$
C. $26.9^{\circ} \mathrm{C}$
D. $27.2^{\circ} \mathrm{C}$

Answer: B

- View Text Solution

364. Which of the followig substances willl have non-zero standard enthalpy of formation $? \Delta H_{f}^{\circ} \neq 0$
A. $H^{+}(a q)$
B. $C_{(\text {gratte })}$
C. $R n_{\text {(gas) }}$
D. $\mathrm{Sn}_{\text {(grey) }}$

Answer: D

- Watch Video Solution

365. What will be the value of resonance energy of $\mathrm{N}_{2} \mathrm{O}$ if:
$\Delta H_{B D E} N=N=400 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{f}^{\circ} \mathrm{N}_{2} \mathrm{O}=100 \mathrm{kJmol}^{-1}$
$\Delta H_{B D E} N=N=950 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{B D E} N=O=600 \mathrm{kJmol}^{-1}$
$\Delta H_{B D E} O=O=500 \mathrm{~kJ} / \mathrm{mol}$
A. $200 \mathrm{~kJ} / \mathrm{mol}$
B. $150 \mathrm{~kJ} / \mathrm{mol}$
C. $100 \mathrm{~kJ} / \mathrm{mol}$
D. $50 \mathrm{~kJ} / \mathrm{mol}$

Answer: C

- Watch Video Solution

366. For the reaction, $2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g})$

Identify the statement which is not correct :
A. $S_{m N_{2}}^{\circ}+3 S_{m H_{2}}^{\circ}>2 S_{m \mathrm{NH}_{3}}^{\circ}$
B. Heat absorbed at constant presssure and temperature will be more as compared to heat absorbed at constant volume .
C. Σ Bond energy $y_{\text {rectant }}>\Sigma$ bond energy $y_{\text {product }}$
D. The value of ΔG° is expected to be negative at exteremely low temperatures.

Answer: D

- Watch Video Solution

367. Identify the option which is correct :
A. $\Delta H_{f}^{\circ} H F_{\text {liquid }}<\Delta H_{f}^{\circ} H F(a q)$
B. $\left|\Delta H_{f}^{\circ} H_{2} \mathrm{O}(g)\right|>\left|\Delta H_{f}^{\circ} \mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right|$
C. $\Delta H_{f}^{\circ} \mathrm{HNO}_{3}(l)>\Delta H_{f}^{\circ} \mathrm{HNO}_{3}(a q)$
D. $\Delta H_{f}^{\circ} H^{+}(g)=0$

Answer: C

368. Calculate ΔH when 2 moles of solid benzoic acid undergo complete combustion at 300 K if
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(\mathrm{s})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 7 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta U_{\text {reaction }}=-750 \mathrm{~kJ} / \mathrm{mole}$
A. -751.247 kJ
B. -752.494 kJ
C. -1501.247 kJ
D. -1502.494 kJ

Answer: D

- Watch Video Solution

369. Two solids A and B having molar masses 200 and 300 react to form another solid C as shown
$2 A(s)+3 B(s) \rightarrow C(s)$
if $\Delta H_{\text {combustion }}^{\circ}$ of A, B and C are $-200,-300$ and -400 kJ respectively then
maximum heat which can be released at constant pressure if total 2600 g of A and B is taken, is given by :
A. 200 kJ
B. 1800 kJ
C. 900 kJ
D. 450 kJ

Answer: B

- Watch Video Solution

370. $A(\mathrm{~g}) \rightarrow 2 B(\mathrm{~g}), \Delta H^{\circ}=10 \mathrm{~kJ} / \mathrm{mole}$ at 300 K ,
$C_{P, A}=20 \mathrm{~J} /$ Kmole $C_{P, B}=20 \mathrm{~J} /$ Kmole
Asuming ideal behaviour of gases, which of the following statements is correct :
A. $\Delta H_{\text {reaction }}>10 \mathrm{~kJ}$ at 300 K if pressure is increased
B. $\Delta H_{\text {reaction }}<10 \mathrm{~kJ}$ at 300 K if pressure is increased
C. $\Delta H_{\text {reaction }}>10 \mathrm{~kJ}$ at 400 K if pressure is kept constant
D. $\Delta H_{\text {reaction }}>10 \mathrm{~kJ}$ at 200 K if pressure is decreased

Answer: C

D Watch Video Solution

371. Calculate $\Delta H_{\text {combustion }}{ }^{\circ}$ of $C_{\text {graphite }}$ if ΔH_{f}° of ace tone $=-250 \mathrm{~kJ}$,
$\Delta_{\text {combustion }}^{\circ}$ of acetone $=-1760 \mathrm{~kJ}$,
$\Delta H_{\text {combustion }}^{\circ}$ of $H_{2}(g)=-280 \mathrm{~kJ}$
A. $-390 k J$
B. -120 kJ
C. -500 kJ
D. -200 kJ

Answer: A

372. The bond enthalpies of $C-C, C=C$ and $C=C$ bonds are 348,610 and $835 \mathrm{kj} /$ mole respectively at 298 K and 1 bar . Calculate enthalpy of polymerisation per mole of butyne at 298 K and 1 bar :
A. -123 kJ
B. $-132 k J$
C. -139kJ
D. -37 kJ

Answer: A

373. Given the following data :

Substance	$\Delta \boldsymbol{H}^{\circ}$ $(\mathbf{k J} / \mathbf{m o l})$	$\boldsymbol{S}^{\circ}(\mathbf{J} / \mathbf{m o l ~ K})$	$\Delta \boldsymbol{G}^{\circ}$ $(\mathbf{k J} / \mathbf{m o l})$
$\mathrm{FeO}(s)$	-266.3	57.49	-245.12
$\mathrm{C}($ Graphite $)$	0	5.74	0
$\mathrm{Fe}(s)$	0	27.28	0
$\mathrm{CO}(g)$	-110.5	197.6	-137.15

Determine at what temperature the following reaction is spontanous?

$$
\mathrm{FeO}(s)+\mathrm{C}_{\text {graphite }} \rightarrow \mathrm{Fe}(\mathrm{~s})+\mathrm{CO}(g)
$$

A. 298 K
B. 668 K
C. 964 K
D. ΔG° is $+v e$, hence the reaction will never be spontaneous

Answer: C

- Watch Video Solution

374. If ΔH_{f}° for Ag^{+}(infinately diluted), NO_{3}^{-}(infinity diluted), Cl^{-} (infinitely diluted) and $\mathrm{AgCl}(\mathrm{s})$ are 105.579, $-207.36,-167.159$ and -127.068 respectively. Calculate the enthalpy change for the reaction $\mathrm{AgNO}_{3}(a q)+\mathrm{HCl}(a q) \rightarrow \mathrm{AgCl}(\mathrm{s})+\mathrm{HNO}_{3}(a q)$
A. $21.471 \mathrm{KJ} / \mathrm{mol}$
B. $145.688 \mathrm{KJ} / \mathrm{mol}$
C. $65.488 \mathrm{KJ} / \mathrm{mol}$
D. none of these

Answer: C

- Watch Video Solution

375. For the equations
$\mathrm{C}($ diamond $)+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) \Delta H_{1}$,

$$
\mathrm{C}(\mathrm{~g})+4 \mathrm{H}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}_{2}
$$

Predict whether
A. $\mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}) \quad \Delta \mathrm{H}_{2}$,
B. $\Delta H_{1}>\Delta H_{2}$
C. $\Delta H_{1}<\Delta H_{2}$
D. $\Delta H_{1}=\Delta H_{2}+\Delta_{\text {vap }} H(C)=\Delta_{\text {diss }} H\left(H_{2}\right)$

Answer: B

- View Text Solution

376. IN Haber's process of manufacturing of ammonia:
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \mathrm{H}_{25}^{\circ}{ }^{\circ} \mathrm{C}=-92.2 \mathrm{~kJ}$
Molecule $\mathrm{N}_{2}(\mathrm{~g}) \mathrm{H}_{2}(\mathrm{~g}) \mathrm{NH}_{3}(\mathrm{~g})$
$C_{p} J K^{-1} 29.128 .835 .1$
If C_{p} is independent of temperature, then reaction at $100^{\circ} \mathrm{C}$ as compared to that of $25^{\circ} \mathrm{C}$ will be :
A. More endothermic
B. less endothermic
C. More exothermic
D. Less exothermic

Answer: C

- Watch Video Solution

377. Which of the reaction defines molar ΔH_{f}° ?
A. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \mathrm{H}_{25}^{\circ}{ }^{\circ} \mathrm{C}=-92.2 \mathrm{~kJ}$
B. $\frac{1}{2} B r_{2}(g)=\frac{1}{2} H_{2}(g) \rightarrow \operatorname{HBr}(g)$
C. $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(\mathrm{~g})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$
D. $I_{2}(s)=H_{2}(g) \rightarrow 2 H I(g)$

Answer: C

- Watch Video Solution

378. In the reaction,
$\mathrm{CO}_{2}(\mathrm{~g})=\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})=\mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \quad \Delta \mathrm{H}=2.8 \mathrm{~kJ}$
ΔH represents :
A. Heat of reaction
B. Heat of combustion
C. Heat of formation
D. Heat of solution

Answer: A

- Watch Video Solution

379. Given,
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Br}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HBr}(\mathrm{g}), \Delta \mathrm{H}_{1}^{\circ}$
and standard enthalpy of condensation of bromine is $\Delta H_{2}{ }^{\circ}$, standard enthalpy of formation of HBr at $25^{\circ} \mathrm{C}$ is :
A. $\frac{\Delta H_{1}^{\circ}}{2}$
B. $\frac{\Delta H_{1}^{\circ}}{2}+\Delta H_{2}^{\circ}$
C. $\frac{\Delta H_{1}^{\circ}}{2}-\Delta H_{2}^{\circ}$
D. $\frac{\left(\Delta H_{1}^{\circ}-\Delta H_{2}^{\circ}\right)}{2}$

Answer: D

- Watch Video Solution

380. For the following reaction,
$\mathrm{C}_{\text {diamond }}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-94.3 \mathrm{kcal}$
$C_{\text {graphite }}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-97.6 \mathrm{kcal}$
the heat require to change 1 g of
$C_{\text {diamond }} \rightarrow C_{\text {graphite }}$ is:
A. 1.59 kcal
B. 0.1375 kcal
C. 0.55 kcal
D. 0.275 kcal

Answer: D

(Watch Video Solution

381. $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \quad \Delta H=-94.3 \mathrm{kcal} / \mathrm{mol}$
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \quad \Delta \mathrm{H}=-67.4 \mathrm{kcal} / \mathrm{mol}$
$\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{g}), \quad \Delta H=117.4 \mathrm{kcal} / \mathrm{mol}$
$C O(g) \rightarrow C(g)+O(g), \quad \Delta H=230.6 \mathrm{kcal} / \mathrm{mol}$
Calculate ΔH for $C(s) \rightarrow C(g)$ in $\mathrm{kcal} / \mathrm{mol}$
A. 171
B. 154
C. 117
D. 145

Answer: D

- Watch Video Solution

382. The difference between ΔH and ΔE on a molar basis for the combustion of n -octane(l) at $25^{\circ} \mathrm{C}$ would be :
A. -13.6 kJ
B. $-1.14 k j$
C. -11.15 kJ
D. $+11.15 k J$

Answer: C

D Watch Video Solution

383. The standard heat of combustion of solid boron is equal to :
A. $\Delta H_{f}^{\circ}\left(B_{2} O_{3}\right)$
B. $\frac{1}{2} \Delta H_{f}^{\circ}\left(B_{2} O_{3}\right)$
C. $2 \Delta H_{f}^{\circ}\left(B_{2} O_{3}\right)$
D. $\frac{1}{4} \Delta H_{f}^{\circ}\left(B_{2} O_{3}\right)$

Answer: B

- Watch Video Solution

384. From the following data of ΔH, of the following reactions
$C(\mathrm{~s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g}) \quad \Delta \mathrm{H}=-110 \mathrm{~kJ}$
$\mathrm{C}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g}) \quad \Delta H=132 \mathrm{~kJ}$
What is the mole composition of the mixture of steam and oxygen on passed over coke at 1273 K , to maintain constant temperature :
A. $0.5: 1$
B. 0.6: 1
C. $0.8: 1$
```
D. 1:1
```


Answer: B

- Watch Video Solution

385. 2 mole of zinc is dissolved in HCl at $25^{\circ} \mathrm{C}$. The work done in open vessel is :
A. -2.477 kJ
B. -4.955 kJ
C. 0.0489 kJ
D. None of these

Answer: B

386. If heat of dissociation of $\mathrm{CHCl}_{2} \mathrm{COOK}+\mathrm{H}_{2} \mathrm{O}$ is $0.7 \mathrm{kcal} / \mathrm{mole}$ then, ΔH for the reaction :

$$
\mathrm{CHCl}_{2} \mathrm{COOH}+\mathrm{KOH} \rightarrow \mathrm{CHCl}_{2} \mathrm{COOK}+\mathrm{H}_{2} \mathrm{O}
$$

A. -13 kcal
B. +13 kcal
C. -14.4 kcal
D. -13.7 kcal

Answer: A

D View Text Solution

387. A solution of 500 mL of 2 MKOH is added to 500 mL of 2 MHCl and the mixture is well shaken. The rise in temperature T_{1} is noted. The experiment is then repeated using 250 mL of each solution and rise in temperature T_{2} is againg noted. Assume all heat is taken up by the solution :
A. $T_{1}=T_{2}$
B. T_{1} is 2 times as large as T_{2}
C. T_{2} is twice of T_{1}
D. T_{1} is 4 times as large as T_{2}

Answer: A

- Watch Video Solution

388. One mole of anahydrous MgCl_{2} dissolves in water and liberates 25 $\mathrm{cal} / \mathrm{mol}$. Heat of dissolution of $\mathrm{MgCl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ is :
A. $+5 \mathrm{cal} / \mathrm{mol}$
B. $-5 \mathrm{cal} / \mathrm{mol}$
C. $55 \mathrm{cal} / \mathrm{mol}$
D. $-55 \mathrm{cal} / \mathrm{mol}$
389. $\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+3.5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta S_{\text {vap }}\left(H_{2} \mathrm{O}, \mathrm{l}\right)=x_{1} \quad$ calK $^{-1}\left(\right.$ boiling point $\left.=T_{1}\right)$
$\Delta H_{f}\left(H_{2} \mathrm{O}, \mathrm{l}\right)=x_{2}$
$\Delta H_{f}\left(\mathrm{CO}_{2}\right)=x_{3}$
$\Delta H_{f}\left(C_{2} H_{6}\right)=x_{4}$
Hence, ΔH for the reaction is :
A. $2 x_{3}+3 x_{2}-x_{4}$
B. $2 x_{3}+3 x_{2}-x_{4}+3 x_{1} T_{1}$
C. $2 x_{3}+3 x_{2}-x_{4}-3 x_{1} T_{1}$
D. $x_{1} T_{1}+x_{2}+x_{3}-x_{4}$

Answer: B

390. Consider the ΔG_{f}° and $\Delta H_{f}^{\circ}(\mathrm{kJ} / \mathrm{mol})$ for the following oxides. Which can be most easily decomposedto form the metal and oxygen gas?
A. $\mathrm{ZnO} \quad\left(\Delta G^{\circ}=-318.4, \quad \Delta H^{\circ}=-348.3\right)$
B. $\mathrm{Cu}_{2} \mathrm{O} \quad\left(\Delta G^{\circ}=-146.0, \quad \Delta H^{\circ}=-168.8\right)$
C. $\mathrm{HgO} \quad\left(\Delta G^{\circ}=-58.5, \quad \Delta H^{\circ}=-90.8\right)$
D. $\mathrm{PbO} \quad\left(\Delta G^{\circ}=-187.9, \quad \Delta H^{\circ}=-217.3\right)$

Answer: C

- Watch Video Solution

391. If $\Delta G=-177 \mathrm{kcal}$ for
(1) $2 \mathrm{Fe}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2} \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
and $\Delta G=-19 k c a l$ for
$(2) 4 \mathrm{FeO}_{3}(\mathrm{~s})+\mathrm{Fe}(\mathrm{s}) \rightarrow 3 \mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s})$
What is the Gibbs free energy of formation of $\mathrm{Fe}_{3} \mathrm{O}_{4}$?
A. $+229.6 \mathrm{kcal} / \mathrm{mol}$
B. $-242.3 \mathrm{kcal} / \mathrm{mol}$
C. $-727 \mathrm{kcal} / \mathrm{mol}$
D. -229.6kcal/mol

Answer: B

- Watch Video Solution

392. The bond dissociation energy of gaseous $\mathrm{H}_{2}, \mathrm{Cl}_{2}$ and HCl are 104,58,103 $\mathrm{kcal} \mathrm{mol}^{-1}$ respectively. The enthalpy of formation for HCl gas will be :
A. -44.0 kcal
B. -22.0 kcal
C. 22.0 kcal
D. 44.0 kcal

Answer: B

- Watch Video Solution

393. In this reaction

$$
\mathrm{CS}_{2}(\mathrm{I})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

$$
\Delta H=-265 \mathrm{kcal}
$$

The enthalpies of formation of CO_{2} and SO_{4} are both negative are in the ratio $4: 3$. The entalpy of formation of $C S_{2}$ is $+26 \mathrm{kcal} / \mathrm{mol}$. Calculate of enthalpy of formation of SO_{2} :
A. -90kcal/mol
B. $-52 \mathrm{kcal} / \mathrm{mol}$
C. $-78 \mathrm{kcal} / \mathrm{mol}$
D. $-71.7 \mathrm{kcal} / \mathrm{mol}$

Answer: D

394. The average $\mathrm{O}-\mathrm{H}$ Bond energy in $\mathrm{H}_{2} \mathrm{O}$ with the help of following data :
(P) $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \quad \Delta \mathrm{H}=+40.6 \mathrm{kJmol}^{-1}$
(Q) $2 \mathrm{H}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g}), \quad \Delta \mathrm{H}=-435.0 \mathrm{kJmol}^{-1}$
$(\mathrm{R}) \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{g}), \quad \Delta H=+489.6 \mathrm{kJmol}^{-1}$
(S) $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \quad \Delta \mathrm{H}=-571.6 \mathrm{kJmol}^{-1}$
A. $584.9 \mathrm{kJmole}^{-1}$
B. $279.8 \mathrm{kJmole}{ }^{-1}$
C. $462.5 \mathrm{kJmole}^{-1}$
D. $925 \mathrm{kJmole}^{-1}$

Answer: C

- Watch Video Solution

395. Heat of hydronization of ethene is x_{1} and that of benzene is x_{2}. Hence, resonance energy is :
A. $x_{1}-x_{2}$
B. $x_{1}+x_{2}$
C. $3 x_{1}-x_{2}$
D. $x_{1}-3 x_{2}$

Answer: C

- Watch Video Solution

396. From the following data, the enthalpy change for the sublimation of of ice at 223 K will be [mean heat capacity of ice $=2 \mathrm{JK}^{-1} \mathrm{~g}^{-1}$, mean heat capacity of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})=4.2 \mathrm{JK}^{-1} \mathrm{~g}^{-1}$, mean heat capacity of $\mathrm{H}_{2} \mathrm{O}(v)=1.85 \mathrm{JK}^{-1} \mathrm{~g}^{-1}$, entalpy of fusion of ice at $0^{\circ} \mathrm{C}=334 \mathrm{Jg}^{-1}$.enthalpy of evaporation of water at $\left.100^{\circ} \mathrm{C}=2255 \mathrm{Jg}^{-1}\right]$
A. $3000 \mathrm{Jg}^{-1}$
B. $3109 \mathrm{Jg}^{-1}$
C. $3827 \mathrm{Jg}^{-1}$
D. $4000 \mathrm{Jg}^{-1}$

Answer: B

- Watch Video Solution

397. If $S+\mathrm{O}_{2} \rightarrow \mathrm{SO}_{2}, \Delta H=-298.2 \mathrm{~kJ} \mathrm{~mole}^{-1}$
$\mathrm{SO}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{SO}_{3} \Delta H=-98.7 \mathrm{~kJ} \mathrm{~mole}^{-1}$
$\mathrm{SO}_{3}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \Delta \mathrm{H}=-130.2 \mathrm{~kJ} \mathrm{~mole}^{-1}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{SO}_{4}, \Delta \mathrm{H}=-287.3 \mathrm{~kJ} \mathrm{~mole}^{-1}$
the enthlapy of formation of $\mathrm{H}_{2} \mathrm{SO}_{4}$ at 298 K will be
A. $-814.4 k J$ mole ${ }^{-1}$
B. $+814.4 k J$ mole ${ }^{-1}$
C. -650.3 kJ mole ${ }^{-1}$
D. $-433.7 k J$ mole ${ }^{-1}$

Answer: A

- Watch Video Solution

398. The standerd enthalpy of formation of FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ is -65 kcal mole $^{-1}$ and $-197 \mathrm{kcal}^{\text {mole }}{ }^{-1}$ respectively. A mixture of two oxides containes FeO and $\mathrm{Fe}_{2} \mathrm{O}_{3}$ in the mole ratio $2: 1$. If by oxidation, it is changed into a 1:2 mole ratio mixture, How much of thermal energy will released per mole of the internal mixture ?
A. $13.4 \mathrm{kcal} / \mathrm{mole}$
B. $14.6 \mathrm{kcal} / \mathrm{mole}$
C. $15.7 \mathrm{kcal} / \mathrm{mole}$
D. $16.8 \mathrm{kcal} /$ mole

Answer: A

399. An athelete is given 100 g of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$ of energy equivalent to 1560 kJ . He utilizes 50% of this gained energy in the event. In order to avoid storage of energy in body, the weight of water he would need to perspire is : (The enthalpy of evaporation of water is $44 \mathrm{~kJ} /$ mole)
A. 319 g
B. 422 g
C. 293 g
D. 378 g

Answer: A

- View Text Solution

400. Substance $A_{2} B(g)$ can undergo decomposition to form of set of products:
$A_{2} B(g) \longrightarrow\left[\begin{array}{l}A_{2}(g)+B(g) ; \Delta H^{\circ}=40 \mathrm{~kJ} / \mathrm{mole} \\ A(g)+A B(g) ; \Delta H^{\circ}=50 \mathrm{~kJ} / \mathrm{mole}\end{array}\right.$
if the molar ratio of $A_{2}(g)$ to $\mathrm{A}(\mathrm{g})$ is 5:3 in a set of product gases, then energy involved in the decomposition of 1 mole of $A_{2} B$ is :
A. $43.75 \mathrm{~kJ} / \mathrm{mol}$
B. $18.73 \mathrm{~kJ} / \mathrm{mol}$
C. $46.25 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: A

- View Text Solution

401. The heat of formation of $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})$ is $-66 \mathrm{kcal} / \mathrm{mole}$. The heat of combustion of $\mathrm{CH}_{3} \mathrm{OCH}_{3}(\mathrm{~g})$ is $-348 \mathrm{kcal} / \mathrm{mole}, \Delta H_{f}$ for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ are $-68 \mathrm{kcal} / \mathrm{mole}$ and $-94 \mathrm{kcal} / \mathrm{mole}$ respectively,. Then the ΔH for the
isomerisation reaction,

$$
\left.\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{I}) \rightarrow \mathrm{CH}_{3} \mathrm{OCH}(\mathrm{~g}) \text {, and } \Delta E \text { for the same are : (Take: } T_{\text {surr }}=298 \mathrm{~K}\right)
$$

A. $\Delta H=18 \mathrm{kcal} / \mathrm{mole}, \Delta E=17.301 \mathrm{kcal} / \mathrm{mole}$
B. $\Delta H=22 \mathrm{kcal} / \mathrm{mole}, \Delta E=21.404 \mathrm{kcal} / \mathrm{mole}$
C. $\Delta H=26 \mathrm{kcal} / \mathrm{mole}, \Delta E=25.709 \mathrm{kcal} / \mathrm{mole}$
D. $\Delta H=30 \mathrm{kcal} / \mathrm{mole}, \Delta E=28.522 \mathrm{kcal} / \mathrm{mole}$

Answer: B

- View Text Solution

402. In the reaction $A B_{2}(l)+3 X_{2}(g) \Leftrightarrow A X_{2}(g)+2 B X_{2}(g) \Delta H=-2700$ kcal per mole. Of $A B_{2}(l)$. The entalpies of formation of $A X_{2}(g)$ and $B X_{2}(g)$ are in the ratio of $4: 3$ and have opposite sign. The value of $\Delta H_{f}^{\circ}\left(A B_{2}(I)\right)=30 \mathrm{kcal} / \mathrm{mol}$. Then :
A. $\Delta H_{f}^{\circ}\left(A X_{2}\right)=-96 \mathrm{kcal} / \mathrm{mol}$
B. $\Delta H_{f}^{\circ}\left(B X_{2}\right)=+480 \mathrm{kcal} / \mathrm{mol}$
C. $K_{p}=K_{c}$ and $\Delta H_{f}^{\circ}\left(A X_{2}\right)=+480 \mathrm{kcal} / \mathrm{mol}$
D. $K_{p}=K_{c}$ RT and $\Delta H_{f}^{\circ}\left(A X_{2}\right)+\Delta H_{f}^{\circ}\left(B X_{2}=-240 \mathrm{kcal} / \mathrm{mol}\right.$

Answer: C

- View Text Solution

403. $A B, A_{2}$ and B_{2} are diatomic molecules. If the bond enthlpies of $A_{2}, A B$ and B_{2} are in the ratio 1:1:0.5 and enthalopy of formation of $A B$ from A_{2} to B_{2} is $-100{\mathrm{~kJ} / \mathrm{mol}^{-1} \text {. What is the bound enthalpy of } A_{2} \text { ? } \text { ? }{ }^{\text {? }} \text {. }}^{\text {. }}$
A. $400 \mathrm{~kJ} / \mathrm{mol}$
B. $200 \mathrm{~kJ} / \mathrm{mol}$
C. $100 \mathrm{~kJ} / \mathrm{mol}$
D. $300 \mathrm{~kJ} / \mathrm{mol}$

Answer: A

404. When a certain amount of ethylene was combusted, 6226 kJ heat was evolved. If heat of combustion of ethylene is 1411 kJ , the volume of O_{2} (at STP) that entered into the reaction is :
A. 296.5 litres
B. 300.3 litres
C. 6226×22.7 litres
D. 22.7 litres

Answer: B

- Watch Video Solution

405. Given the following reaction :

$$
\begin{aligned}
& P: \mathrm{N}_{2}(g)+2 \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g), \Delta H_{p}=16.18 \mathrm{kcal} \\
& Q: \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}), \Delta \mathrm{H}_{Q}=2.31 \mathrm{kcal}
\end{aligned}
$$

Based on the above facts :
A. NO_{2} is more stable than $\mathrm{N}_{2} \mathrm{O}_{4}$ at low temperature
B. $\mathrm{N}_{2} \mathrm{O}_{4}$ is more stable than than NO_{2} at low temperature
C. both are equally stable at low temperature
D. none of these

Answer: B

- Watch Video Solution

406. Enthalpy of polymerisation of ethylene, as represented by the reaction,

Q: $\mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}), \Delta H_{Q}=2.31 \mathrm{kcal}$ is -100 kJ per mole of ethylene. Given bond enthalpy of $C=C$ bond is $600 \mathrm{~kJ} \mathrm{~mol}^{-1}$, enthalpy of $C-C$ bond (in kJ mol) will be :
A. 116.7
B. 350
C. 700
D. intermediate

Answer: B

- Watch Video Solution

407. The heat of formation of HCl at 348 K from the following data will be
:
$0.5 \mathrm{H}_{2}(\mathrm{~g})+0.5 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCl} \Delta \mathrm{H}_{298}^{\circ}=-22060$ cal. The mean heat capacities over this temperature range are,
$H_{2}(g), \quad C_{p}=6.82 \mathrm{cal} \mathrm{mol}^{-1} K^{-1}$
$\mathrm{Cl}_{2}(\mathrm{~g}), \quad C_{p}=7.71 \mathrm{cal} \mathrm{mol}^{-1} K^{-1}$
$\mathrm{HCl}(\mathrm{g}), \quad C_{p}=6.81 \mathrm{cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
A. -20095 cal
B. -32758 cal
C. -37725 cal
D. -22083 cal

Answer: D

- Watch Video Solution

408. The average $\mathrm{Xe}-\mathrm{F}$ bond energy is $34 \mathrm{Kcal} / \mathrm{mol}$, first I. E. Of $X e$ is $279 \mathrm{Kcal} / \mathrm{mol}$, electron affinity of F is $85 \mathrm{Kcal} / \mathrm{mol}$. Then, the enthalpy change for the reaction
$X e F_{4} \rightarrow X e^{+}+F^{-}+F_{2}+F$ will be
A. $367 \mathrm{kcal} / \mathrm{mole}$
B. $425 \mathrm{kcal} / \mathrm{mole}$
C. $292 \mathrm{kcal} / \mathrm{mole}$
D. $392 \mathrm{kcal} / \mathrm{mole}$

Answer: C

409. Reactions involving gold have been of particular intrests to alchemists. Consider the following reactions,
$\mathrm{Au}(\mathrm{OH})_{3}+4 \mathrm{HCl} \rightarrow \mathrm{HAuCl}_{4}+3 \mathrm{H}_{2} \mathrm{O}$,
$\Delta H=-28 \mathrm{kcal}$
$\mathrm{Au}(\mathrm{OH})_{3}+4 \mathrm{HBr} \rightarrow \mathrm{HAuBr}_{4}+3 \mathrm{H}_{2} \mathrm{O}$
$\Delta H=-36.8 \mathrm{kcal}$
In an experiment there was an absorption of 0.44 kcal when one mole of HAuBr_{4} was mixed with 4 moles of HCl . Then the fraction HAuBr_{4} converted into HAuCl_{4} : (percentage conversion)
A. 5%
B. 6%
C. 7%
D. 8%

Answer: A

410. Enthalpy of neutralization of $\mathrm{H}_{3} \mathrm{PO}_{3}$ with NaOH is $-106.68 \mathrm{~kJ} / \mathrm{mol}$. If enthalpy of neutralization of HCL with NaOH is $-55.84 \mathrm{~kJ} /$ mole, then calculate enthalpy of ionization of $\mathrm{H}_{3} \mathrm{PO}_{3}$ in to its ions in kJ.
A. $50.84 \mathrm{~kJ} / \mathrm{mol}$
B. $5 \mathrm{~kJ} / \mathrm{mol}$
C. $2.5 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: B

- Watch Video Solution

411. The enthalpy of neutralisation of a weak acid in 1 M solution with a strong base is $-56.1 \mathrm{~kJ} \mathrm{~mol}^{-1} /$ If the enthalpy of ionization of the acid is $1.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and enthalpy of neutralization of the strong acid with a strong base is $-57.3 \mathrm{~kJ} \mathrm{equiv}^{-1}$, what is the $\%$ ionization of the weak acid in molar solution (assume the acid to be monobasic)?
A. 10
B. 15
C. 20
D. 25

Answer: C

- Watch Video Solution

412. Combustion of sucrose is used by aerobic organisms for providing energy for the life sustaining process. If all the capturing of energy from the reaction is done through electrical process (non P-V work), then calculate, maximum available energy which can be captured by combustion of 34.2 g of sucrose :
$\left(\right.$ Given : $\Delta H_{\text {combustion }}($ sucrose $)=-6000 \mathrm{kJmol}^{-1}$
$\Delta S_{\text {combustion }}=180 \mathrm{j} / \mathrm{K}-\mathrm{mol}$ and bodyntemperature is 300 K)
A. 600 kJ
B. 594.6 kJ
C. 5.4 kJ
D. 605.4 kJ

Answer: D

D Watch Video Solution

413. The ΔH_{f}° for $\mathrm{CO}_{2}(\mathrm{~g}), \mathrm{CO}(\mathrm{g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ are -395.5, -110.5 and $-241.8 \mathrm{kJmol}^{-1}$ respectively. The standard enthalpy change in (in kJ) for the reaction
$\mathrm{CO}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ is
A. 524.1
B. 41.2
C. -262.5
D. -41.2

D Watch Video Solution

414. Diborane is a potential rocket fuel which undergoes combustion according to the reaction,
$\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
from the following data, the enthalpy change for the combustion of diborane will be :
$2 B(s)+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~s}), \quad \Delta H=-1273 \mathrm{~kJ}$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \quad \Delta \mathrm{H}=-286 \mathrm{~kJ}$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \quad \Delta \mathrm{H}=44 \mathrm{~kJ}$
$2 B(s)+3 H_{2}(g) \rightarrow B_{2} H_{6}(g), \quad \Delta H=46 \mathrm{~kJ}$
A. $-2079 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $-1091 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $-2045 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-762 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: C

- Watch Video Solution

415. Which of the following equation gives the values of heat of formation $\left(\Delta H_{f}^{\circ}\right)$?
A. C (diamond) $+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
B. $\frac{1}{2} H_{2}(g)+\frac{1}{2} F_{2}(g) \rightarrow H F(g)$
C. $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
D. $\mathrm{H}_{2}(g)+\mathrm{F}_{2}(g) \rightarrow 2 \mathrm{HF}(g)$

Answer: B

D Watch Video Solution

416. The enthalpies of combustion of carbon and carbon monoxide are
-393.5 and $-283 \mathrm{~kJ} \mathrm{~mol}^{-1}$ respectively. The enthaly of formation of carbon
monoxide per mole is:
A. 110.5 kJ
B. 676.5 kJ
C. $-676.5 k J$
D. -110.5 kj

Answer: B

- Watch Video Solution

417. Calculate standard molar entropy $O_{2}(g)$ from the following thermodynamics data at 300 K :
$4 \mathrm{Cr}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s}), \Delta G^{\circ}=-2093.4 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{f}^{\circ} \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})=-1129.05 \mathrm{~kJ} / \mathrm{mole}$
$S_{m}^{\circ} \operatorname{Cr}(\mathrm{s})=24 \mathrm{~J} / \mathrm{K}$ mole
$S_{m}^{\circ} \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})=81 \mathrm{~J} / \mathrm{K}$ mole
A. 0
B. $205 \mathrm{~J} / \mathrm{K}$ mole
C. $100 \mathrm{~J} / \mathrm{K}$ mole
D. $410 \mathrm{~J} / \mathrm{K} \mathrm{mole}$

Answer: B

- Watch Video Solution

418. The enthalpy changes for the following process are listed below :
$\mathrm{Cl}_{2}(\mathrm{~g})=2 \mathrm{Cl}(\mathrm{g}), \quad 242.3 \mathrm{kJmol}^{-1}$
$I_{2}(g)=2 I(g), \quad 151.0 \mathrm{kJmol}^{-1}$
$\operatorname{ICl}(\mathrm{g})=2 I(\mathrm{~g})+\mathrm{Cl}(\mathrm{g}), \quad 211.3 \mathrm{kJmol}^{-1}$
$I_{2}(s)=I_{2}(g), \quad 62.76 \mathrm{kJmol}^{-1}$
Given that standard states for iodine and chlorine are $I_{2}(s)$ and $\mathrm{Cl}_{2}(g)$, the standerd enthalpy of formation for $\mathrm{ICl}(\mathrm{g})$ is :
A. $-16.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
B. $+16.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
C. $+244.8 \mathrm{~kJ} \mathrm{~mol}^{-1}$
D. $-14.6 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Answer: B

- Watch Video Solution

419. The standard enthalpy of formation $\left(\Delta_{f} H^{\circ}\right)$ at $298 K$ for methane $\left(\mathrm{CH}_{4(\mathrm{~g})}\right)$ is $-74.8 \mathrm{kJmol}^{-1}$. The additional information required to determine the average energy for $C-H$ bond formation would be :
A. the dissociation energy of H_{2} and enthelpy of sublimation of carbon.
B. latent heat of vaporisation of methane.
C. the first four ionization energies of carbon and electron gain enthlpy of hydrogen.
D. the dissociation energy of hydrogen molecule, H_{2}

- Watch Video Solution

420. Standard entropy of X_{2}, Y_{2} and $X Y_{3}$ are 60,40 and $50 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively. For the reaction, $\frac{1}{2} X_{2}+\frac{3}{2} Y_{2} \rightarrow X Y_{3}, \Delta H=-30 K J$, to be at equilibrium, the temperature will be:
A. 500 K
B. 750 K
C. 1000 K
D. 1250 K

Answer: B

- Watch Video Solution

421. On the basis of the following thermochemical data : $\left(\Delta_{f} G^{\circ} H_{(a q .)}^{+}=0\right)$
$\mathrm{H}_{2} \mathrm{O}_{(l)} \rightarrow \mathrm{H}_{(a q .)}^{+}+\mathrm{OH}_{(a q .)}^{-}, \Delta H=57.32 \mathrm{~kJ}$
$\mathrm{H}_{2(\mathrm{~g})}+\frac{1}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}, \Delta \mathrm{H}=-286.20 \mathrm{~kJ}$
The value of enthalpy of formation of OH^{-}ion at $25^{\circ} \mathrm{C}$ is :
A. -228.88 kJ
B. 228.88 kJ
C. -343.52 kJ
D. -22.88 kJ

Answer: A

- Watch Video Solution

422. In a fuel cell methanol is used as fuel and oxygen gas is used as an oxidizer. The reaction is :
$\mathrm{CH}_{3} \mathrm{OH}_{(\mathrm{l})}+\frac{3}{2} \mathrm{O}_{2(\mathrm{~g})} \rightarrow \mathrm{CO}_{2}((\mathrm{~g}))+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{l})}$

At 298 K standard Gibb's energies of formation for $\mathrm{CH}_{3} \mathrm{OH}(\mathrm{l}), \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ are $-166.2,-237.2$ and $-394.4 \mathrm{kJmol}^{-1}$ respectively. If standard enthalpy of combustion of methanol is $-726 \mathrm{kJmol}^{-1}$, efficiency of the fuel cell will be :
A. 87%
B. 90 \%
C. 97%
D. 80 \%

Answer: C

- Watch Video Solution

423. Given the following equations and ΔH° values, determine the enthalpy of reaction at 298 K for the reaction :
$\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+6 \mathrm{~F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}_{4}(\mathrm{~g})+4 \mathrm{HF}(\mathrm{g})$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{F}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HF}(\mathrm{g})+2 \mathrm{HF}(\mathrm{g}), \quad \Delta H_{1}^{\circ}=-537 \mathrm{~kJ}$
$C(s)+2 F_{2}(g) \rightarrow C F_{4}(g), \quad \Delta H_{2}^{\circ}=-680 \mathrm{~kJ}$
$2 \mathrm{C}(\mathrm{s})+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g}), \quad \Delta H_{3}^{\circ}=52 \mathrm{~kJ}$
A. -1165
B. -2382
C. +1165
D. +2382

Answer: B

- Watch Video Solution

424. Consider the following reactions:

$$
C(s)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+x \mathrm{~kJ}
$$

$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})+y \mathrm{~kJ}$
The heat formation of $\mathrm{CO}(\mathrm{g})$ is :
A. $-(x+y) \mathrm{kJ} / \mathrm{mol}$
B. $(x-y) \mathrm{kJ} / \mathrm{mol}$
C. $(y-x) \mathrm{kJ} / \mathrm{mol}$
D. None of these

Answer: C

- Watch Video Solution

425. If $\Delta_{f} H^{\circ}\left(\mathrm{C}_{2} H_{4}\right)$ and $\Delta_{f} H^{\circ}\left(\mathrm{C}_{2} H_{6}\right)$ are x_{1} and $x_{2} \mathrm{kcal} \mathrm{mol}^{-1}$, then heat of hydrogenation of $\mathrm{C}_{2} \mathrm{H}_{4}$ is :
A. $x_{1}+x_{2}$
B. $x_{1}-x_{2}$
C. $x_{2}-x_{1}$
D. $x_{1}+2 x_{2}$

Answer: C

426. Determine enthalpy of formation for $\mathrm{H}_{2} \mathrm{O}_{2}(l)$, using the listed enthalpies of reaction:
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{l})+2 \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$,
$\Delta_{r} H_{1}^{\circ}=-818 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{I})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta_{r} H_{2}^{\circ}=-622 \mathrm{~kJ} / \mathrm{mol}$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta_{r} H_{3}^{\circ}=-285 \mathrm{~kJ} / \mathrm{mol}$
A. $-383 \mathrm{~kJ} / \mathrm{mol}$
B. $-187 \mathrm{~kJ} / \mathrm{mol}$
C. $-498 \mathrm{~kJ} / \mathrm{mol}$
D. None of these

Answer: B

- Watch Video Solution

427. Heat of combustion of ethanol at constant pressure and at temperature $T K$ is found to be $-q J \mathrm{~mol}^{-1}$. Hence, heat of combustion (in J mol^{-1}) of ethanol at the same temperature and at constant volume will be :
A. $R T-q$
B. $-(q+R T)$
C. $q-R T$
D. $q+R T$

Answer: A

- Watch Video Solution

428. Stearic acid $\left[\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CO}_{2} \mathrm{H}\right]$ is a fatty acid the part of fat that stores most of the energy 1.0 g of Stearic acid was burnt in a bomb calorimeter. The bomb had capacity of $652 \mathrm{~J} /{ }^{\circ} \mathrm{C}$. If the temperature of 500 g water rose from 25.0 to $39.3^{\circ} \mathrm{C}$ how much heat is released when
the stearic acid was burned?
$\left[\right.$ Given $\left.\mathrm{C}_{p}\left(\mathrm{H}_{2} \mathrm{O}\right)=4.18 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}\right]$
A. 39.21 kj
B. 29.91 Kj
C. 108 Kj
D. 9.32 Kj

Answer: a

- Watch Video Solution

429. a Coffee cup calorimeter initially contains 125 g of water, at a temperature of $24.2^{\circ} \mathrm{C}, 8$ of ammonium nitrate $\left(\mathrm{NH}_{4} \mathrm{NO}_{3}\right)$ also at $24.2^{\circ} \mathrm{Cis}$ added to the Water and the final temperature is $18.2^{\circ} \mathrm{c}$ What is the heat of solution of ammonium nitrate in $\mathrm{KJ} / \mathrm{mol}$? (The specific heat capacity of the solution is $4.2 \mathrm{~J} /{ }^{\circ} \mathrm{c}$.)
A. $33.51 \mathrm{~kJ} / \mathrm{mol}$
B. $39.5 \mathrm{~kJ} / \mathrm{mol}$
C. $32.2 \mathrm{~kJ} / \mathrm{mol}$
D. $37.3 \mathrm{~kJ} / \mathrm{mol}$

Answer: a

- Watch Video Solution

430. From the following data at $25^{\circ} \mathrm{C}$

Reaction
$\Delta_{r} H^{0} \mathrm{~kJ} / \mathrm{mol}$
${ }_{2}^{1} \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{OH}(\mathrm{g}) \quad 42$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad-242$
$\mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}(\mathrm{g})$
436
$\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{O}(\mathrm{g})$
495
Which of the following Statement (s) is /are Correct:
StatementA: $\Delta_{r} H^{\circ}$ for the reaction
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow 2 \mathrm{H}(\mathrm{g})+\mathrm{O}(\mathrm{g})$ is $925.5 \mathrm{~kJ} / \mathrm{mol}$
Statement B: $\Delta_{r} H^{\circ}$ for the reaction
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{O}(\mathrm{g})$ is $423.5 \mathrm{~kJ} / \mathrm{mol}$

Statement C:Enthalpy of formation of $\mathrm{H}(\mathrm{g})$ is- $218 \mathrm{~kJ} / \mathrm{mol}$
Statement D: Enthalpy of formation of $\mathrm{OH}(\mathrm{g})$ is $42 \mathrm{~kJ} / \mathrm{mol}$
A. Statement C
B. Statement $\mathrm{A}, \mathrm{B}, \mathrm{D}$
C. Statement B,C
D. Statement A,B only

Answer: b

- Watch Video Solution

431. Ethyl chloride $\left(\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}\right)$, is prepared by reaction of ethylene with hydrogen chloride:

$$
\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{HCl}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}(\mathrm{~g})
$$

$\Delta H=-72.3 \mathrm{~kJ} / \mathrm{mol}$
What is the value of ΔE (in kJ), if 98 g of ethylene and 109.5 g of HCl are allowed to react at 300 K
A. -64.81
B. -190.71
C. -208.41
D. -224.38

Answer: c

- Watch Video Solution

432. If the enthalpy of formation and enthalpy of solution of $\mathrm{HCl}(\mathrm{g})$ are$92.3 \mathrm{kj} / \mathrm{mol}$ and $-75.14 \mathrm{~kJ} / \mathrm{mol}$ respectively then find the enthalpy of $\mathrm{Cl}^{-}(\mathrm{aq})$:
A. $-17.16 \mathrm{~kJ} / \mathrm{mol}$
B. $-167.44 \mathrm{~kJ} / \mathrm{mol}$
C. $17.16 \mathrm{kj} / \mathrm{mol}$
D. none of these
433. The enthalpy of neutraliztion of weak base AOH and a strong base BOH by HCl are $-12250 \mathrm{cal} / \mathrm{mol}$ and $-13000 \mathrm{cal} / \mathrm{mol}$ respectively. When one mole of HCl is added to a solution containting 1 mole of A OH and 1 mole of BOH , the enthalpy change was $-12500 \mathrm{cal} / \mathrm{mol}$. In what ratio is the acid distribution between AOH and BOH ?
A. 2:1
B. 2:3
C. 1:2
D. none of these

Answer: a

- Watch Video Solution

434. Calculate $\Delta_{r} G^{\circ}$ for $\left(\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{s}\right)$ at 310 K .

Given : $\Delta_{r} H^{\circ}\left(\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{s}\right)=-314 \mathrm{kj} / \mathrm{mol}, \Delta_{r} C_{p}=0$
$S_{N_{2}(g)}^{\circ}=192 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}, S_{\mathrm{H}_{2}(\mathrm{~g})}^{\circ}=130.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$,
$S_{\mathrm{Cl}_{2}(\mathrm{~g})}^{\circ}=233 \mathrm{JKmol}^{-1}, S_{\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})}^{\circ}=99.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
All given data at 300 K
A. $-198.56 \mathrm{~kJ} / \mathrm{mol}$
B. $-426.7 \mathrm{KJ} / \mathrm{mol}$
C. $-202.3 \mathrm{KJ} / \mathrm{mol}$
D. none of these

Answer: a

- Watch Video Solution

435. The molar heat capacities at constant pressure (assumed constant with respect to temperature) of A, B and C are in ratio 3:1.5:2.0. the
enthyalpy change for the exothermic reaction $A+2 B \rightarrow 3 c$ at 300 k and 310 K is ΔH_{300} and ΔH_{310} respectively then:
A. $\Delta H_{300}>\Delta H_{310}$
B. $\Delta H_{300}<\Delta H_{310}$
C. $\Delta H_{300}=\Delta H_{310}$
D. If $T_{2}>T_{1}$ then $\Delta H_{310}>\Delta H_{300}$ and if $T_{2}<T_{1}$ then $\Delta H_{300}<\Delta H_{300}$

Answer: c

- Watch Video Solution

436. Determine ΔU° at 300 K for the following reaction using the listed enthalpies of reaction :

$$
4 \mathrm{CO}(\mathrm{~g})+8 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 3 \mathrm{CH}_{4}(\mathrm{~g})+\mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})
$$

$$
C(\text { graphite })+\frac{1}{2} O_{2}(g) \rightarrow C O(g), \Delta H_{1}^{\circ}=-110.5 \mathrm{KJ}
$$

$$
\mathrm{CO}(\mathrm{~g}) \frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}_{2}^{\circ}=-282.9 \mathrm{KJ}
$$

$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}_{3}^{\circ}=-285.8 \mathrm{KJ}$
C (graphite) $+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g}), \Delta \mathrm{H}_{4}^{\circ}=-74.8 \mathrm{KJ}$
A. -653.5 KJ
B. -686.2 KJ
C. $-747.4 K J$
D. none of these

Answer: d

- Watch Video Solution

437. When 1.0 g of oxalic acid $\left(\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}\right)$ is burnt in a bomb calorimeter whose capacity is $8.75 \mathrm{KJ} / \mathrm{K}$, the enthalpy of combustion of oxalic acid at $27^{\circ} \mathrm{C}$ is :
A. $-245.7 \mathrm{KJ} / \mathrm{mol}$
B. $-244.452 \mathrm{KJ} / \mathrm{mol}$
C. $-246.947 \mathrm{KJ} / \mathrm{mol}$
D. none of these

Answer: d

- Watch Video Solution

438. The enthalpy of neutralization of a Weak monoprotic acid (HA) in 1 M solution with a strong base is $-55.95 \mathrm{KJ} / \mathrm{mol}$. If the unionized acid required $1.4 \mathrm{KJ} / \mathrm{mol}$ heat for it's comptate ionzatation and enthalpy of netralization of the strong monobasic acid with a strong monoacidic base is $-57.3 \mathrm{KJ} / \mathrm{mol}$. What is the \% ionzation of the weak acid in molar solution?
A. 1%
B. 3.57
C. 35.7 \%
D. 10%

D Watch Video Solution

439. The enthalpy of combustion of propance $\left(C_{3} H_{8}\right)$ gas in temes of given of geven data is , Bond energy ($\mathrm{kJ} / \mathrm{mol}$)
$.{ }^{\varepsilon} C-H+x_{1} \cdot{ }^{\varepsilon} O-O+x_{2} \cdot{ }^{\varepsilon} C-O+x_{3} .{ }^{\varepsilon} O-H+x_{4} \cdot{ }^{\varepsilon} C-C+x_{5}$
[Resonance energy of CO_{2} is $-\mathrm{z} \mathrm{KJ} / \mathrm{mol}$ and
$\Delta H_{\text {vaporization }}\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right.$ is y $\left.\mathrm{KJ} / \mathrm{mol}\right]$
A. $8 x_{1}+2 x_{5}+5 x_{2}-6 x_{3}-8 x_{4}-4 y-3 z$
B. $6 x_{1}+x_{5}+5 x_{2}-3 x_{3}-4 x_{4}-4 y-3 z$
C. $8 x_{1}+2 x_{5}+6 x_{2}-8 x_{3}-4 x_{4}-y-z$
D. $8 x_{1}+x_{5}+5 x_{2}-6 x_{3}-8 x_{4}-4 y-3 z$

Answer: a

- Watch Video Solution

440. Benzene burns according to the following equation:
$2 \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+15 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 12 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta H^{\circ}=-6542 \mathrm{KJ} / \mathrm{mol}$
what is the ΔE° for the combustion of 1.5 mol of benzene?
A. $-3271 K J$
B. $-9813 K J$
C. -4906 KJ
D. none of these

Answer: d

- View Text Solution

441. ΔH_{f}° of water is $-285.5 \mathrm{KJmol}^{-1}$. If enthalpy of neutraliztion of monoacidic strong base is $-57.3 \mathrm{KJmol}^{-1}$ then ΔH_{f}° of OH^{-}ion will be :
A. $-285.5 \mathrm{KJmol}^{-1}$
B. $285.5 \mathrm{KJmol}^{-1}$
C. $114.5 \mathrm{KJmol}^{-1}$
D. $-114.5 \mathrm{KJmol}^{-1}$

Answer: a

- View Text Solution

442. For the following reaction,
$C($ diamond $)+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H=-97.6 \mathrm{kcal}$
$C($ graphite $)+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad \Delta H=-94.3 \mathrm{kcal}$
The heat change for the conversion of 1 g of C (diamond) to C (graphite)
is:
A. 1.59 kcal
B. 0.1375 kcal
C. 0.55 kcal
D. 0.275 kcal

- Watch Video Solution

443. Ethanol can undergo decompostion to form two sets of products.

If the molar ratio of $\mathrm{C}_{4} \mathrm{H}_{4}$ toCH CHO_{3} is 8:1 in a set of product gases, then the energy involved in the decomposition of 1 mole of ethanol is:
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{g}) \longrightarrow \begin{aligned} & 1 \\ & \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) ;\end{aligned} \quad \Delta H^{\circ}=45.54 \mathrm{~kJ}$
A. 65.98 KJ
B. 48.137 KJ
C. 48.46 KJ
D. 57.22 KJ

Answer: b

444. (p) Cis-2- butene \rightarrow trans -2-butene, ΔH_{1}
(Q)Cis-2-butene \rightarrow 1-buture, $\Delta \mathrm{H}_{2}$
(R) Trans -2-buture is more stable than cis-2-buture
(S) Enthalpy of combustion of 1-buture,
$\Delta H=-649.8 \mathrm{kcal} / \mathrm{mol}$
(T) $9 \Delta H_{1}+5 \Delta H_{2}=0$
(U) Enthalpy of combustion of trans -2-buture,
$\Delta H=-647.0 \mathrm{kcal} / \mathrm{mol}$
The value of ΔH_{1} and ΔH_{2} in $\mathrm{kcal} / \mathrm{mole}$ are:
A. $-1.0,1.8$
B. 1.8, - 1.0
C. $-5,9$
D. $-2,3.6$

Answer: a

445. Calculate the amount of heat released at constant pressure when 10 moles of carbon react with 6 moles of O_{2} leaving none of the reactants.
$\Delta H_{\text {combustion }}{ }^{\text {(graphite) }}$) $=-390 \mathrm{KJ} / \mathrm{mole}$,
$\Delta H_{\text {combustion }} C O(g)=-250 \mathrm{KJ} /$ mole
A. 1900KJ
B. 750 KJ
C. 3900 KJ
D. 2450 KJ

Answer: a

- Watch Video Solution

446. The reaction $\mathrm{CH}_{4}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{3} \mathrm{Cl}(\mathrm{g})+\mathrm{HCl}(\mathrm{g})$ has $\Delta \mathrm{H}=-25 \mathrm{kcal}$ Bond Bond Energy ,kcal
$\varepsilon_{C}-\mathrm{Cl} 84$
$\varepsilon_{\mathrm{H}-\mathrm{Cl}} \quad 103$
$\varepsilon_{C-H} \quad x$
$\varepsilon_{\mathrm{Cl}-\mathrm{Cl}} \quad y$
$x: y=9.5$
From the given data, what is the bond energy of $\mathrm{Cl}-\mathrm{Cl}$ bond?
A. 70kcal
B. 80kcal
C. 67.85 kcal
D. 57.85 kcal

Answer: d

447. Calculate the ethanly change for the given reaction from data provided (KJ/mole)
\(\left.\begin{array}{llll}H A(g)

(weak acid) \& + \& B(g)

(Weak base)\end{array}\right) \quad \rightarrow \quad\)| AHB (s) |
| :--- |
| (Salt) |

$\Delta H_{\text {neutralization }}\{H A(a q)$ [at infinte dilution]/B(aq)
[at infinite dilution] = -40kJ/mole
$\Delta H_{\text {solution }}[H A(a q)]=-10 \mathrm{~kJ} /$ mole $\{$ at infinite dilution $\}$
$\Delta H_{\text {soltuion }}[B(g)=-5 K J /$ mole $\{$ at infinite dilution $\}$
$\Delta H_{\text {solution }}[H A B(s)]=+8 K J /$ mole
\{at infinite dilution\}
A. -36
B. -63
C. -45
D. -37

Answer: b

448. Lattice energy of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ is $-205 \mathrm{KJ} /$ mole and hydrogen energy of Na^{+}ion and CO_{3}^{2-} ion are $-80 \mathrm{KJ} /$ mole and $-40 \mathrm{KJ} /$ mole respectively. What can be predicted abount solubility of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ in water from the above data?
A. The solubility of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ will increase with increase in temperature.
B. The solubility of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ will decrease with increase in temperature.
C. The solubility of $\mathrm{NA}_{2} \mathrm{CO}_{3}$ will remain constant.
D. The solubility of $\mathrm{Na}_{3} \mathrm{CO}_{3}$ will first decrease and then increase.

Answer: a

- Watch Video Solution

449. If x_{1}, x_{2} and x_{3} are enthalpies of $H-H, O=O$ and $O-H$ bonds respective, and x_{4} is the enthaply of vaporisation of water, estimate the standard enthalpy opf combustion of hydrogen.
A. $x_{1}+\frac{x_{2}}{2}-2 x_{3}+x_{4}$
B. $x_{1}+\frac{x_{2}}{2}-2 x_{3}-x_{4}$
C. $x_{1}+\frac{x_{2}}{2}-x_{3}+x_{4}$
D. $2 x_{3}-x_{1}-\frac{x_{2}}{2}-x_{4}$

Answer: b

- Watch Video Solution

450. $\mathrm{NH}_{3}(\mathrm{~g})+3 \mathrm{Cl}_{2} \rightarrow \mathrm{NCl}_{3}(\mathrm{~g})+3 \mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}_{1}$
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}), \Delta \mathrm{H}_{2}$
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}_{3}$
The heat of formation of $\mathrm{NCl}_{3}(\mathrm{~g})$ in the terms of
$\Delta H_{1}, \Delta H_{2}, \Delta H_{3}$ is :
A. $\Delta H_{f}=-\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
B. $\Delta H_{f}=\Delta H_{1}+\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
c. $\Delta H_{f}=\Delta H_{1}-\frac{\Delta H_{2}}{2}-\frac{3}{2} \Delta H_{3}$
D. none of these

Answer: b

- Watch Video Solution

451. For the combustion of 1 mole of liquid benzene at $27^{\circ} \mathrm{C}$ the heat of reaction at constant pressure is given by:
$\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})+\frac{15}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$,
$\Delta H=-78 \mathrm{kcal}$
What would the be heat of reaction at constant volume?
A. -78.0 kcal
B. -78.9 kcal
C. -77.1kcal
D. 816.1 Kcal

Answer: c

- Watch Video Solution

452. Consider the equation:
$4 \mathrm{PH}_{3}(\mathrm{~g})+8 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{P}_{4} \mathrm{O}_{10}(\mathrm{~s})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$,
$\Delta H^{\circ}=-4500 K J$
Calculate ΔH_{f}° of $P_{4} O_{10}(s)$ in KJmol^{-1}.
Substance $\Delta H_{f}^{\circ} \cdot \mathrm{KJmol}^{-1}$
$\begin{array}{ll}\mathrm{PH}_{3}(\mathrm{~g}) & +9.2 \\ \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) & -241.8\end{array}$
A. $-5914 K J$
B. $-4751 K J$
C. $-4249 K J$
D. $-3012 K J$

Answer: d

453. Molar enthalpy of combustion of $\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g}), \mathrm{C}_{\text {graphite }}$ and $\mathrm{H}_{2}(\mathrm{~g})$ are $-1300,-394$, and $-286 \mathrm{KJ} /$ mole respectively , then , Calculate Bond enthalpy of $C \equiv C$ bond inKJ/mole:

Given: $\Delta H_{\text {sub }}\left(C_{\text {graphite }}\right)=715 \mathrm{KJ} /$ mole
$\Delta H_{B E}(H-H)=436 K J / m o l e$
$\Delta H_{B E}(C-H)=413 K J /$ mole
A. 415
B. 610
C. 1215
D. 814

Answer: d

- Watch Video Solution

$\mathrm{CH}_{3} \mathrm{COOH}+\mathrm{OH}^{-} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}_{2} \mathrm{O}+q_{1}$ and $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}+q_{2}$, then the enthalpy change for the reaction $\mathrm{CH}_{3} \mathrm{COOH} \rightarrow \mathrm{CH}_{3} \mathrm{COO}^{-}+\mathrm{H}^{+}$ is "equal to :
A. $q_{1}+q_{2}$
B. $q_{1}-q_{2}$
C. $q_{2}-q_{1}$
D. $-q_{1}-q_{2}$

Answer: c

- Watch Video Solution

455. The enthalpy of solution, sodium and sodium oxide in large volume of water, are $-18 \mathrm{KJ} / \mathrm{mole}$ and $-238 \mathrm{KJ} / \mathrm{mol}$, respectively. If the enthalpy of formation of water is $-286 \mathrm{KJ} / \mathrm{mol}$, then what is the enthalpy of formation of sodium oxide ? All the enthalpies are at 298 K and 1 bar pressure.
[Given : reaction involved are

$$
2 \mathrm{Na}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(a q)+\mathrm{H}_{2}(g)
$$

$\mathrm{Na}_{2} \mathrm{O}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{NaOH}(a q)$
A. $+54 \mathrm{KJ} / \mathrm{mol}$
B. $-130 \mathrm{KJ} / \mathrm{mol}$
C. $-416 \mathrm{KJ} / \mathrm{mol}$
D. $+156 \mathrm{KJ} / \mathrm{Mol}$

Answer: c

- Watch Video Solution

456. Which of the following Statement are Correct ?
(1) $\Delta H=\Delta U+\Delta n_{g} R T$ for chemical and phase change
(2) $\Delta H=\Delta U f$ for the reation
(3) $\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g})$
(4) Heat of formation for $\mathrm{C}_{6} \mathrm{H}_{6}$ can be calculated by bond enthalpies only
A. 2,3
B. 1,4
C. $1,2,3$
D. 1,3

Answer: c

- View Text Solution

457. Enthalpy of atomiation of $C_{2} H_{6}(g)$ and $C_{3} h_{8}(g)$ are 620 and $880 \mathrm{KJmol}^{-1}$ respectivelty. The C-C and C-H bond energies are respectively:
A. 80 and $60 \mathrm{KJMol}^{-1}$
B. 80 and $90 \mathrm{KJmol}^{-1}$
C. 70 and $90 \mathrm{KJ} \mathrm{mol}^{-1}$
D. 100 and $80 \mathrm{Kjmol}^{-1}$
458. A 500 gm sample of water is reacted with an equimoplar amount of CaO (both at an initial temperature of $25^{\circ} \mathrm{C}$). What I sthe final emperature of the product ? [Assume that the poduct absorbs all of the heat released in the reaction heat product per mol of $\mathrm{Ca}(\mathrm{OH})_{2}$ is 65.2 KJ and specific heat $\mathrm{Ca}(\mathrm{OH})_{2}$ is $1.2 \mathrm{~J} / \mathrm{g}^{\circ} \mathrm{C}$
A. $\approx 735^{\circ} \mathrm{C}$
B. $\approx 760^{\circ} \mathrm{C}$
C. $\approx 746^{\circ} \mathrm{C}$
D. $\approx 789^{\circ} \mathrm{C}$

Answer: b

459. Use the bond energies in the table to estimate ΔH for this reaction .

$$
\mathrm{H}_{2} \mathrm{C}=\mathrm{CH}_{2}+\mathrm{Cl}_{2} \rightarrow \mathrm{ClH}_{2} \mathrm{C}-\mathrm{CH}_{2} \mathrm{Cl}
$$

Bond energies
C-C $347 \mathrm{KJmol}^{-1}$
$C=C \quad 612 \mathrm{KJmol}^{-1}$
c-Cl $331 \mathrm{KJmol}^{-1}$
C - H $\quad 414 \mathrm{KJmol}^{-1}$
Cl-Cl $243 \mathrm{KJmol}^{-1}$
A. $\Delta H=-684 K J$
B. $\Delta H=-154 K J$
C. $\Delta H=+89 K J$
D. $\Delta H=+177 K J$

Answer: b

- View Text Solution

460. $0.2 \mathrm{M}, 100 \mathrm{ml} \mathrm{NaOH}$ is mixed wih $0.4 \mathrm{M}, 100 \mathrm{~mL} \mathrm{HCl}$ solution . Determine energy released during the reaction :

Given $H^{+}(a q)_{O^{\prime}} H^{-}(a q) \rightarrow \mathrm{H}_{2} o(l)$,
$\Delta H=-57.5 \mathrm{KJmol}^{-1}$
A. 1150J
B. 1150 KJ
C. 2300J
D. 2300 KJ

Answer: a

- Watch Video Solution

461. The ΔH° for the mutarotation of glucose in aqueous solution,
α-D- glucose (aq) $\rightarrow \beta$-D-glucose (aq)
has been measured in a microcalorimeter and found to be $-1.16{\mathrm{kj} . \mathrm{mol}^{-1}}^{\text {. }}$
The enthalpies of solution of the two forms of glucose have been determined to be
α-D- glucose (aq) $\rightarrow \alpha$-D-glucose (aq)
$\Delta H^{\circ}=10.72 \mathrm{KJmol}^{-1}$
β-D- glucose (aq) $\rightarrow \beta$ - D-glucose (aq)
$\Delta H^{\circ}=4.68 \mathrm{KJmol}^{-1}$
Calculate $\quad \Delta H^{\circ}$ (in $\mathrm{KJ} / \mathrm{mol}$) for the mutarotation of soild α-D-glucose \rightarrow soild beta - D-glucose:
A. $+4.88 \mathrm{KJ} / \mathrm{mol}$
B. $-4.88 \mathrm{KJ} / \mathrm{mol}$
C. $-2.44 \mathrm{KJ} / \mathrm{mol}$
D. $+2.44 \mathrm{KJ} / \mathrm{mol}$

Answer: a

- View Text Solution

462. In a constant pressure calorimeter, 224 mL of $0.1 \mathrm{M} \mathrm{KOH}(\mathrm{aq})$ solution is reacted with 50 ml of $0.1 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(a q)$ solution then increase in temperature of solution will be 9assume heat capacity of calorimeter is negligible):

Given : Specific heat of solution $=1 \mathrm{cal} / \mathrm{g}-\mathrm{K}$ Density of solution $=1 \mathrm{~g} / \mathrm{mL}$
A. 0.5 K
B. $1 K$
C. $2 K$
D. $4 K$

Answer: a

- View Text Solution

463. $2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g})$
$\Delta U_{f}^{\circ}\left[N_{2} O_{4}(g)\right]=2 \mathrm{kcal} / \mathrm{moleand} \Delta U_{\text {reaction }}^{\circ}=-16 \mathrm{kcal} / \mathrm{mol}, \quad$ then calculate $\quad \Delta H_{\text {formation }}^{\circ}=-16 \mathrm{kcal} / \mathrm{mol}, \quad$ then calculate $\Delta H_{\text {formation }}^{\circ} o f \mathrm{NO}_{2} a t 727^{\circ} \mathrm{C}$:
A. $9 \mathrm{kcal} / \mathrm{mol}$
B. $4.5 \mathrm{kcal} / \mathrm{mol}$
C. $8 \mathrm{kcal} / \mathrm{mol}$
D. $10 \mathrm{kcal} / \mathrm{mol}$

Answer: c

D View Text Solution

464. The heat or rectin does not depend upon :
A. Number of steps in which the reaction is carried out
B. Temperature at which the reaction is carrired out
C. physical state of reactant and products
D. Whether the reaction the reaction is carried out at constant pressure or at constant volume

Answer: a

- Watch Video Solution

465. Which of the following enthalpy may be positive or negative?
A. Enthalpy of atomisation
B. Enthalpy of combustion
C. Enthalpy of solution
D. Enthalpy of hydration

Answer: c

- Watch Video Solution

466. Heat of reaction of
$C($ diamond $)+2 S(s) \rightarrow C S_{2}(l)$ is known as :
A. Heat of formation of $C S_{2}(l)$
B. Heat of transition of C (diamond)
C. Sum of Heat of formation of $\mathrm{CS}_{2}(l)$ and heat of transition of C(diamond) to c(graphite)
D. Bond energy of $(\mathrm{C}=\mathrm{S})$ bond

Answer: c

- Watch Video Solution

467. What is heat of submisation of $P_{4} O_{6}(s)$?

Given heat of sublimation of $P_{4} 0_{6}$ is $\times \mathrm{KJ} / \mathrm{mol}$ and $P-O$ bond energy is y $\mathrm{KJ} /$ mol.
A. $x+6 y$
B. $x+y$
C. $x+8 y$
D. $x+12 y$

Answer: d

468. If the enthalpy of combustion of benzene (I), carbon (s) and hydrogen (g)are $Q_{1} Q_{2}$ and Q_{3} respectively, what will be enthalpy of formation of Benzene?
A. $Q_{1}+6 Q_{2}+Q_{3}$
B. $6 Q_{2}+Q_{1}+3 Q_{3}$
C. $6 Q_{2}+3 Q_{3}+Q_{1}$
D. $6 Q_{2}+3 Q_{3}-Q_{1}$

Answer: d

- Watch Video Solution

469. The enthalpy of dissolution of $\mathrm{BaCl}_{2}(s)$ and $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ are -20.6 and $8.8 \mathrm{KJ} \mathrm{mol}^{-1}$ respectively. Calculate enthalpy of hydration forgiven reaction:
$\mathrm{BaCl}_{2}(\mathrm{~s})+2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{s})$
A. $-29.4 K J$
B. $-35.4 K J$
C. $-24.4 K J$
D. -15.2 KJ

Answer: a

- Watch Video Solution

470. the heat of atomization of methane and ethane are $360 \mathrm{KJ} / \mathrm{mol}$ and $620 \mathrm{KJ} / \mathrm{mol}$, respectively. The longest Wavelength of light capable of breaking. The c-c bond is :
(Avogadro number $=6.02 \times 10^{23}, h=6.62 \times 10^{-34} \mathrm{Js}$)
A. $1.49 \times 10^{3} \mathrm{~cm}$
B. $2.48 \times 10^{4} \mathrm{~nm}$
C. $2.48 \times 10^{3} \mathrm{~nm}$
D. $1.49 \times 10^{4} \mathrm{~nm}$

Answer: a

- Watch Video Solution

471. Calculate the standard enthalpy of formation of acetylena from the following data:
$\mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}^{\circ}=-393.5 \mathrm{KJmol}^{-1}$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}^{\circ}=-285.8 \mathrm{KJmol}^{-1}$
$2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{Co}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(10$,
$\Delta H^{\circ}=-2598.8 \mathrm{KJmol}^{-1}$
A. $226.6 \mathrm{KJmol}^{-1}$
B. $230.5 \mathrm{KJmol}^{-1}$
C. $233.8 \mathrm{KJmol}^{-1}$
D. none of these

Answer: a

472. The enthalpy of neutralisation of HCl and NaOH is $-57 \mathrm{KJmol}^{-1}$. The heat evolved at constant pressure (in KJ when 0.5 mole of $\mathrm{H}_{2} \mathrm{SO}_{4}$ reacts with 0.75 mole of NaOH is equal to :
A. $57 \times \frac{3}{4}$
B. 57×0.5
C. 57
D. 57×0.25

Answer: a

D View Text Solution

473. Calculate standard entropy change in the reaction
$\mathrm{Fe}_{2} \mathrm{O}_{3}+3 \mathrm{O}_{a}(\mathrm{~g}) \rightarrow 2 \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})$
$\Delta G^{\circ}=-2093.4 K J m o l$,
$\Delta H_{f}^{\circ} \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})=-1129.05 \mathrm{KJ} / \mathrm{mole}$,
$S_{m}^{\circ} C r(s)=24 \mathrm{~J} / \mathrm{Kmol}$,
$S_{m}^{\circ} \mathrm{Cr}_{2} \mathrm{O}_{3}(\mathrm{~s})=81 \mathrm{j} / \mathrm{Kmol}$
A. 0
B. 205J/Kmole
C. $100 \mathrm{j} / \mathrm{Kmole}$
D. $410 \mathrm{~J} / \mathrm{Kmole}$

Answer: b

- Watch Video Solution

474. Calculate standard entropy change in the reaction
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{s})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Given : $S_{m_{0}}\left(\mathrm{Fe}_{2} \mathrm{O}_{3} . S\right)=87.4, S_{m}^{\circ}(\mathrm{Fe}, \mathrm{S})=27.3$
$S_{m}^{\circ}\left(H_{2}, g\right)=130.7, S_{m}^{\circ}\left(H_{2} \mathrm{O}, \mathrm{l}\right)=69.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
A. $-212.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
B. $-215.2 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
C. $-120.9 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
D. none of these

Answer: b

D Watch Video Solution

475. Heat produced by burning 1 mol carbon with O_{2} to CO_{2} is 80 KJ and by maximum amount of heat produced on burning 30 g carbon with 48G O_{2} :
A. 40 KJ
B. 65 KJ
C. 160KJ
D. 140 KJ

Answer: d
476. $4 \mathrm{~g} \mathrm{NH}_{4} \mathrm{NO}_{3}$ were dissolved in 100 g water in bomb calorimeter with heat capacity of calorimether system $150 \mathrm{JK}^{-1}$. the temperature dropped by 1.5 K Enthalpy of solution of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ is :
A. $450 \mathrm{KJmol}^{-1}$
B. $-450 \mathrm{KJmol}^{-1}$
C. $4.5 \mathrm{KJmol}^{-1}$
D. $-4.5 \mathrm{KJmol}^{-1}$

Answer: c

- View Text Solution

477. Which of the following enthalpy is always positive ?
A. Enthalpy of solution
B. Enthalpy of formation
C. Enthalpy of phase trasition
D. none of these

Answer: d

- Watch Video Solution

478. The following sequence of reaction occurs in commercial producatio of aqueous nitric acid.
$4 \mathrm{NH}_{3}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{NO}(\mathrm{g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$,
$\Delta H=-904 K j \ldots(i)$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-112 \mathrm{KJ} . . .(\mathrm{ii})$
$2 \mathrm{NO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow 2 \mathrm{HNO}_{3}(\mathrm{aq})+\mathrm{H}_{2}(\mathrm{~g})$,
$\Delta H=-140 K J \ldots$...iii)
Determine the total heat liberated (in $\mathrm{KJ} / \mathrm{mol}$) at mole of aqueous nitric acid from NH_{3} by this process:
A. -352
B. -405
C. 246.5
D. none of these

Answer: a

- View Text Solution

479. If bond enthalpies $O f \equiv N, H-H$ and $N-H$ bonds are x_{1}, x_{2} and x_{3} respectively , ΔH_{f}° for NH_{3} will be :
A. $x_{1}+3 x_{2}-6 x_{3}$
B. $\frac{1}{2} x_{1}+\frac{3}{2} x_{2}-3 x_{3}$
C. $3 x_{3}-\frac{1}{2} x_{1}+\frac{3}{2} x_{2}$
D. $6 x_{3}-x_{1}-3 x_{2}$
480. The C-Cl bond energy can be calculated from:
A. $\Delta_{f}^{\circ}\left(\mathrm{CCl}_{4}, \mathrm{l}\right)$ only
B. $\Delta_{f}^{\circ}\left(\mathrm{CCl}_{4}, l\right)$ and $\mathrm{BE}\left(\mathrm{Cl}_{2}\right)$
C. $\Delta_{f}^{\circ}\left(C C l_{4}, l\right) B E\left(C l_{2}\right)$
D. $\Delta_{f}^{\circ}\left(C C l_{4}, l\right) B E\left(C l_{2}\right), \Delta H_{f}^{\circ}(C, g)$ and $\Delta H_{\text {vap }}^{\circ}\left(C C l_{4}\right)$

Answer: d

- Watch Video Solution

481. When 100 mL 0.2 MKOH is mixed with 100 mLO 0 M HCl in a rigid adiaabatic container ,temperature of solution increase by $t_{1}^{\circ} \mathrm{C}$ while when 300mL 0.1 M Koh is mixed with 3000 mL 0.1 M HCl then increase in temperature is $t_{2}^{\circ} \mathrm{C}$ then which one is correct? (Assume density as well as specfic heat capacity o final solution are same.)

$$
\text { A. } t_{1}=t_{2}
$$

B. $t_{1}>t_{2}$
C. $t_{1}<t_{2}$
D. none of these

Answer: b

- View Text Solution

482. oxidising power of chlorine in aqueous solution can be determined by the parameters indicated below: Calculate the energy involved in the conversion of $\frac{1}{2} \mathrm{Cl}_{2}(g) \mathrm{toCl}{ }^{-}(\mathrm{aq})$
Using the data ,
$\Delta H_{\text {disso }}^{\circ}\left(\mathrm{Cl}_{2}\right)=240 \mathrm{KJmol}^{-1}$,
$\Delta H_{\mathrm{eg}\left(C l_{2}\right)}^{\circ}=-349 \mathrm{KJmol}^{-1}$,
$\Delta H_{\text {hydroation }}^{\circ}\left(\mathrm{Cl}_{2}\right)=-381 \mathrm{KJmol}^{-1}$,
A. $+120 \mathrm{KJmol}^{-1}$
B. $+152 \mathrm{KJmol}^{-1}$
C. $-610 \mathrm{Kjmol}^{-1}$
D. $-850 \mathrm{KJmol}^{-1}$

Answer: c

D Watch Video Solution

483. Which Statement is correct at 25° Cand 1 atm pressure?
A. ΔG_{f}° for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=0 \mathrm{Kj} / \mathrm{mol}^{-1}$
B. ΔG_{f}° forI $I_{2}(l)=0 \mathrm{Kj} / \mathrm{mol}^{-1}$
C. ΔG_{f}° for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})=0 \mathrm{Kj} / \mathrm{mol}^{-1}$
D. S° for $O_{2}(g)-0 J^{\prime} \mathrm{mol}^{-1}$

Answer: a

484. Calculate the enthalpy change for the isomerization reaction as given:
$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(A) $\frac{\mathrm{NaNH}_{4}}{\Delta} \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{3}$
(B)Use the following data:
$\Delta H_{f}^{\circ}\left(\mathrm{C}_{2} \mathrm{H}_{4}\right)=-2275.5 \mathrm{KJ} / \mathrm{mol}$
$\Delta H_{f}^{\circ}\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)=-2839.2 \mathrm{KJ} / \mathrm{mol}$
Resonance energy of $\mathrm{A}=50 \mathrm{Kj} / \mathrm{mol}$
'Resonance energy of $\mathrm{B}=70 \mathrm{KJ} / \mathrm{mol}$
A. $-1692.6 \mathrm{KJ} / \mathrm{mol}$
B. $-1642.6 \mathrm{KJ} / \mathrm{mol}$
C. $-1622.6 \mathrm{~K} \frac{\mathrm{~J}}{\mathrm{~m}}$ ol
D. $-20,000 \mathrm{~J} / \mathrm{mol}$

Answer: d

- View Text Solution

485. The enthalpy of gas phase trimerzation of one mole of gaseous formaldehyde in (KJ/mole)

Bond energies (kj/mole)
Given:
$\varepsilon_{c=0} \quad \varepsilon_{c-o} \quad \varepsilon_{c-H}$
$700 \quad 360 \quad 410$
A. -20
B. -60
C. -10
D. -50

Answer: a
486. During complete combustion of one mole of butane ,2658Kj of heat is released. The thermochemical reaction for above change is
A. $2 \mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+13 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 8 \mathrm{CO}_{2}(\mathrm{~g})+10 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta_{c} H=-2658.0 \mathrm{KJmol}^{-1}$
B. $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\frac{13}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta_{c} H=-1329.0 \mathrm{KJmol}^{-1}$
C. $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\frac{13}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$\Delta_{c} H=-2658.0 \mathrm{KJmol}^{-1}$
D. $\mathrm{C}_{4} \mathrm{H}_{10}(\mathrm{~g})+\frac{13}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

$$
\Delta_{c} H=-2658.0 \mathrm{KJmol}^{-1}
$$

Answer: c

- Watch Video Solution

487. The Standard heat of formation of carbon atom gaseous state in $\mathrm{KJ} / \mathrm{mol}$ is:
ΔH° (atomisation of CO gas) $=1072 \mathrm{KJ} / \mathrm{mol}$
$\Delta H^{\circ}($ formation of 'O' gas $)=247 \mathrm{KJ} / \mathrm{mol}$
$\Delta H^{\circ}($ formation of CO gas $)=-114 \mathrm{KJ} / \mathrm{mol}$
A. 400
B. 311
C. 600
D. 711

Answer: d

- Watch Video Solution

488. On the basic of thermochemical equations (I),(II)and (III), Find out which of the algebraic relationships given in options (a)to (d) is correct ?
(I) C (graphite) $+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(g)$,
$\Delta_{r} H=X$ KJmol $^{-1}$
(II) C (graphite) $+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}(\mathrm{g})$,
$\Delta_{r} H=y \mathrm{KJmol}^{-1}$
$(\mathrm{III}) \mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(g), \Delta_{r} H=\mathrm{zKJmol}^{-1}$
A. $z=x+y$
B. $x=y-z$
C. $x=y+z$
D. $y=2 z-x$

Answer: C

- Watch Video Solution

489. Consider the reactions given below .On the basis of these reactions ,Find out which of the algebraic relations given in options (a) to(d) is correct?
$(p) C(g)+4 H(g) \rightarrow \mathrm{CH}_{4}(g), \Delta_{r} H=x \mathrm{KJmol}^{-1}$
$(Q) C($ graphite $)+2 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{CH}_{4}(\mathrm{~g})$,
$\Delta_{r} H=y \mathrm{KJmol}^{-1}$
A. $x=y$
B. $x=2 y$
C. xgty
D. xlty

Answer: d

- Watch Video Solution

490. The enthalpy of elements in their standard atates are taken as zero .The enthalpy of formation of a compound:
A. Is always negative
B. is always positive
C. may be positive or negative
D. is never negative

Answer: c

- Watch Video Solution

491. Enthalpy of sublimation of a substance is equal to :
A. Enthalpy of fusion + enthalpy of vaporisation
B. enthalpy of fusion
C. enthalpy of vaporisation
D. twice the enthalpy of vaporisation

Answer: a

- Watch Video Solution

492. For the given reaction:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}^{+}(a q)+2 \mathrm{Cl}^{-}(a q)$
$\Delta G^{\circ}=-262.4 k J$
The value of Gibbs free energy of formation $\left(\Delta G_{r}^{\circ}\right)$ for the ion $\mathrm{Cl}^{-}(a q)$ is:
A. $-131.2 \mathrm{KJmol}^{-1}$
B. $+131.2 \mathrm{KJmol}^{-1}$
C. $-262.4 \mathrm{KJmol}^{-1}$
D. $+262.4 \mathrm{KJmol}^{-1}$

Answer: a

- Watch Video Solution

493. Using the data provided, calculate the multiple bond energy $\left(\mathrm{kJmol}^{-1}\right)$ of a $\mathrm{C} \equiv \mathrm{C}$ bond in $\mathrm{C}_{2} \mathrm{H}_{2}$. That energy is (take the bond energy of a $C-H$ bond as $350 \mathrm{kJmol}^{-1}$).
$2 C_{(s)}+H_{2(g)} \rightarrow C_{2} H_{2(g)}, \Delta=225 \mathrm{kJmol}^{-1}$
$\left.2 C_{(s)} \rightarrow 2 C_{g}\right), \Delta H=1410 \mathrm{kJol}^{-1}$
$H_{2(g)} \rightarrow 2 H_{(g)}, \Delta H=330 \mathrm{kJol}^{-1}$
A. 1165
B. 837
C. 865
D. 815

Answer: d

- Watch Video Solution

494. Calculate the Enthalpy of hydrogenation of If the $\Delta_{f} \mathrm{H}$ of and

$-37 \mathrm{Kj} / \mathrm{mol}$ respectively.
A. $-199 \mathrm{KJ} / \mathrm{mol}$
B. $-238 \mathrm{KJ} / \mathrm{mol}$
C. $-59.5 \mathrm{KJ} / \mathrm{mol}$
D. $-476 \mathrm{KJ} / \mathrm{mol}$

Answer: b

- Watch Video Solution

495. The enthalpies of vombustion of formaldehyde and paraformaldehyde (a ploymer of formaldehyde) arae -134 and -732 $\mathrm{kcal} / \mathrm{mol}$ respectively .The enthalpy of polymerisation per mole of paraformaldehtde is -72 kcal the molecular formula of paraformaldehyde is:
A. $\mathrm{CH}_{2} \mathrm{O}$
B. $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
C. $c_{12} \mathrm{H}_{22} \mathrm{O}_{11}$
D. $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$

Answer: b

- Watch Video Solution

496. The Standard enthalpy of formation of gaseous $\mathrm{H}_{2} \mathrm{O}$ at 298 K is $-242 \mathrm{~mol}^{-1}$. Calculate ΔH° at 373 K given the following values of the molar feat capacities at constant pressure .

Molar heat capcity of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})=33.5 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
molar heat capacity of $\mathrm{H}_{2}(\mathrm{~g})=28.8 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
Molar heat capacity of $O_{2}(g)=29.4 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$
\{Assume that the heat capacities are independent of temperature.\}
A. $508 \mathrm{KJmol}^{-1}$
B. $-242 \mathrm{KJmol}^{-1}$
C. $-242.75 \mathrm{KJmol}^{-1}$
D. none of these

Answer: c

- View Text Solution

497. Glucose when dissolved in water leads to cooling of the solution . Suppose you take 250 mL Water at room temperature in an open container (such as a bowl) made of thermally insulated material and dissolve a sponnful of glucose in it .If you are able to accurately measure the heat absorbed by this (assuming negligible changes in the composition and the amount of solution during this process), you will be measuring :
A. the enthalpy of dissolution of the glucose in water
B. the Gibbs free energy of dissolution of the glucose in water
C. the work done by the atmosphere on the system during the dissolution proces
D. the heat capacity of the solution

Answer: a

D Watch Video Solution

498. Consider this equation and the associated value for ΔH°.
$2 \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{HCl}(\mathrm{g}), \Delta \mathrm{H}=-92.3 \mathrm{Kj}$
which statement abount this information is incorrect?
A. If the equation is reversed ,the ΔH° value equals +92.3 KJ .
B. The four HCl bonds are stronger then the four bonds in H_{2} and Cl_{2}.
C. The ΔH° value will be -92.3 KJ if the HCl is produced as a liquid.
D. 23.1 KJ of heat will be enolved when 1 mol of $\mathrm{HCl}(\mathrm{g})$ Is produced.

Answer: c

- Watch Video Solution

499. A bomb calorimeter has a heat capacity of $783 J \times{ }^{\circ} \mathrm{C}^{-1}$ and contains 254 g of water which has a specific heat of $4.184 \mathrm{~J} \times \mathrm{g}^{-1} \times{ }^{\circ} \mathrm{C}_{-1}$. How much heat is enolved or absorbed by a reaction when the temperature goes from 23.73° to26.01 ${ }^{\circ} \mathrm{C}$?
A. 1.78 KJ absorbed
B. 2.42 KJ absorbed
C. 1.78 KJ evolved
D. 4.21 KJ evolved

Answer: d

- Watch Video Solution

500. Determine the heat of reaction for this process
$\mathrm{Fe}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{FeO}(\mathrm{s}) \Delta \mathrm{H}^{\circ}=-544.0 \mathrm{KJ}$
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s}) \Delta \mathrm{H}=-1648.4 \mathrm{Kj}$
$\mathrm{Fe}_{3} \mathrm{O}_{4}(\mathrm{~s}) \rightarrow 3 \mathrm{Fe}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=-+1118.4 \mathrm{Kj}$
A. $-1074.1 K J$
B. $-22.2 K J$
C. $+249.8 K J$
D. $+2214.6 K J$

Answer: b

- Watch Video Solution

501. Use bond energy to estimate ΔH for this rection:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{~g})$
Bond BondEnergy
H-H $\quad 436 \mathrm{KJmol}^{-1}$
O-O $142 \mathrm{KJmol}^{-1}$
$O=O \quad 499 \mathrm{KJmol}^{-1}$
$\mathrm{H}-\mathrm{O} \quad 460 \mathrm{Kj}_{\mathrm{j}} \mathrm{mol}^{-1}$
A. $-127 K J$
B. -209 KJ
C. $-484 K J$
D. $-841 K j$

Answer: a

D Watch Video Solution

502. For which of these is ΔH_{f}° not equal to zone?
A. $B r_{2}(l)$
B. $F e(S)$
C. $I_{2}(s)$
D. $O_{3}(g)$

Answer: d

- Watch Video Solution

503. The enthalpy change change for which reaction represents the standard enthalpy of formation for hydrogen cyanide, HCN?
A. $\mathrm{H}(\mathrm{g})+\mathrm{C}_{\text {graphite }}+\mathrm{N}(\mathrm{g}) \rightarrow \mathrm{HCN}(\mathrm{g})$
B. $\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}_{\text {graphite }} \frac{1}{2} N_{2}(\mathrm{~g}) \rightarrow \mathrm{HCN}(\mathrm{g})$
C. $\mathrm{HCN}(\mathrm{g}) \rightarrow \frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{C}_{\text {graphite }}+\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})$
D. $\mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{C}_{\text {graphite }}+\mathrm{N}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{HCn}(\mathrm{g})$

Answer: b

- Watch Video Solution

504. What is the standed enthalpy of formation of $\mathrm{MgO}(\mathrm{s})$ is 300.9 Kj is evoled when 20.15 g of $\mathrm{MgO}(\mathrm{s})$ is formaed by the combustion when magnesium under standerd conditions?
A. $-597.3 \mathrm{KJmol}^{-1}$
B. $-300.9 \mathrm{KJmol}^{-1}$
C. $+300.9 \mathrm{KJmol}^{-1}$
D. $+597.3 \mathrm{KJmol}^{-1}$

Answer: a

- Watch Video Solution

505. For the formation of one mole of each of these gases from their elements, which reaction is most endothermic?
A. $C O\left(\Delta H_{f}^{\circ}=-110.5 \mathrm{KJmol}^{-1}\right)$
B. $N O\left(\Delta H_{f}^{\circ}=+33.9 \mathrm{KJmol}^{-1}\right)$
C. $O_{3}\left(\Delta H_{f}^{\circ}=+142.2 \mathrm{KJmol}^{-1}\right)$
D. $\mathrm{SO}_{2}\left(\Delta H_{f}^{\circ}=-300.4 \mathrm{KJmol}^{-1}\right)$

Answer: c

506. $4 \mathrm{Li}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Li}_{2} \mathrm{O}(\mathrm{s})$

At $25^{\circ} \mathrm{C}, \Delta H$ for this reaction is -598.8 kilo joules per mole of Li should be reacted with excess $\mathrm{O}_{2}(\mathrm{~g})$ in order to relaase 150 Kj ?
A. 0.874 g
B. $1 . .74 \mathrm{~g}$
C. 3.15 g
D. 7.01 g

Answer: c

- Watch Video Solution

507. The heat of formation of NO from its elements is $+90 \mathrm{KJmol}^{-1}$ What is the appoximate bond dissociation energy of the bond in NO?

Bond Bond Energy
$N \equiv N \quad 941 \mathrm{KJmol}^{-1}$
$O=O \quad 499 \mathrm{KJmol}^{-1}$
A. $630 \mathrm{KJmol}^{-1}$
B. $720 \mathrm{KJmol}^{-1}$
C. $765 \mathrm{KJmol}^{-1}$
D. $810 \mathrm{KJmol}^{-1}$

Answer: a

- Watch Video Solution

508. $\mathrm{Fe}_{2} \mathrm{O}_{2}(\mathrm{~s})+\frac{3}{2} \mathrm{C}(\mathrm{s}) \rightarrow \frac{3}{2} \mathrm{CO}_{2}(g)+2 \mathrm{Fe}(\mathrm{s})$
$\Delta H^{\circ}=+234.12 K J$
$C(s)+O_{2}(g) \rightarrow \mathrm{CO}_{2}(g) \Delta H^{\circ}=-393.5 K J$
Use these equations and ΔH° value to calculate ΔH° for this reaction :
$4 \mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$
A. $-1228.7 K j$
B. $-1255.3 K J$
C. $-1021.2 K J$
D. $-129.4 K J$

Answer: a

- Watch Video Solution

509. Which combination of solution of Hcl and NAOH would produce the largest ΔT ?
A. 50 mL of M HCl with 50 mL of 1 M NaOH
B. 50 mL of 2 M HCl with 50 mL of 2 MNaOH
C. 100 mLof 1 M HCl with 50 mL of 2 M NAOH
D. 100 mL o f1 M HCl with 100 mL of 1 M NaOH

Answer: b

- Watch Video Solution

510. Consider this reaction .
$2 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{l}) \rightarrow 3 \mathrm{~N}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
$\Delta H=-1078 K j$
how much energy is released by this reaction during the formation of 140 g of $\mathrm{N}_{2}(\mathrm{~g})$?
A. 1078 KJ
B. 1797 KJ
C. 3234 KJ
D. 5390 KJ

Answer: b

- Watch Video Solution

511. Use the information in the table to calculate the enthalpy of this reaction.
$\mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})+\frac{7}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
Reaction
$\Delta H_{f}^{\circ} \mathrm{KJ.mol}^{-1}$
$2 \mathrm{C}(\mathrm{s})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}_{2} \mathrm{H}_{6}(\mathrm{~g})-84.7$
$2 \mathrm{C}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}) \quad-393.5$
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad-285.8$
A. $-764 K J$
B. $-1560 K J$
C. $-1664 K J$
D. $-3120 K J$

Answer: b

- Watch Video Solution

512. 50.0 mL of 0.10 M HCl is mixed with 50.0 mL of 0.10 M NaOH .The solution temperature rises by 3.0° CCalculate the enthalpy of
neutralization per mole of HCl .
solution Values
C_{p}
4.18J. $\mathrm{g}^{-1 \circ} \mathrm{C}^{-1}$

Density $1.0 . \mathrm{mL}^{-1}$
A. $-2.5 \times 10^{2} K J$
B. $-1.3 \times 10^{2} K J$
C. $-8.4 \times 10^{1} K J$
D. $-6.3 \times 10^{1} K J$

Answer: a

D Watch Video Solution

513. The boiling point of chorofrom, CHCl_{3}, is61.7 ${ }^{\circ} \mathrm{C}$ and its enthalpy of vaporization is $31.4 \mathrm{KJ}^{-\mathrm{mol}^{-1}}$ Calculate the molar entropy of vaporization for chlorofrom:
A. $10.7 \mathrm{~J}^{\times} \mathrm{mol}^{-1} . \mathrm{K}^{-1}$
B. $93.8 \mathrm{~J} \times \mathrm{mol}^{-1} . \mathrm{K}^{-1}$
C. $301 \mathrm{~J}^{\times} \mathrm{mol}^{-1} . \mathrm{K}^{-1}$
D. $509 \mathrm{~J}^{\times} \mathrm{mol}^{-1} . \mathrm{K}^{-1}$

Answer: b

- View Text Solution

514. Calcualte the amount of energy released when 0.100 mol of diborane , $B_{2} H_{6}$, reacts with oxygen to produce soild $B_{2} \mathrm{O}_{3}$ and steam:

$$
\Delta_{f} H\left({\mathrm{~kJ} . \mathrm{mol}^{-1}}\right)
$$

$B_{2} H_{6}(\mathrm{~g}) \quad 35$
$\mathrm{B}_{2} \mathrm{O}_{3}(\mathrm{~g})$ - 1272
$\mathrm{BH}_{2} \mathrm{O}(\mathrm{l})$-285
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \quad-241$
A. 203 KJ
B. 216 KJ
C. 330KJ
D. 343 KJ

Answer: a

- Watch Video Solution

515. Given the thermochemical equations:
$B r_{2}(I)+F e(g) \rightarrow 2 B r F(g) \Delta H^{\circ}=-188 K J$
$B r_{2}(l)+3 F_{2}(g) \rightarrow 2 B r F_{3}(g) \Delta H^{\circ}=-768 K J$
detemine ΔH° for the reaction
$\operatorname{BrF}(g)+F_{2}(g) \rightarrow \operatorname{BrF}_{3}(g)$
A. $-956 K J$
B. -478 KJ
C. -5820 KJ
D. - 290 KJ

Answer: d

516. A liquid has a vapour pressure of 40 mm Hg at $19.0^{\circ} \mathrm{C}$ and a normal boiling point of $78.3^{\circ} \mathrm{C}$ What is its enthalpy of vaporization in $\mathrm{KJ} . \mathrm{mol}^{-1}$?
A. 42.4
B. 18.4
C. 5.10
D. 1.45

Answer: a

- Watch Video Solution

517. The combustion of 0.200 mol of liquid carbon disulphide, CS_{2} to give $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{SO}_{2}(\mathrm{~g})$ releases 215 KJ of heat. What is ΔH_{F}° for $\mathrm{CS}_{2}(\mathrm{I})$ in $\mathrm{Kj} \times \mathrm{mol}^{-1}$? ,
$\Delta H_{f}^{\circ} \quad$ kj. mol^{-1}
$\mathrm{CO}_{2}(\mathrm{~g}) \quad-393.5$
$\mathrm{SO}_{2}(\mathrm{~g})-296.8$
A. 385
B. 87.5
C. -385
D. -475

Answer: b

- Watch Video Solution

518. how should a student prepare 100 mL of a $1.0 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution from a $10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ solution?
A. Add 90 mL of $\mathrm{H}_{2} \mathrm{O}$ to10mL of $10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$.
B. Add 90 mL of $10 \mathrm{M} \mathrm{H}_{2} \mathrm{O}_{4}$ to $90 \mathrm{mLH}_{2} \mathrm{O}$.
C. Add 10 ML of $10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ to80 $\mathrm{mLof} \mathrm{H}_{2} \mathrm{O}$, Stir and dilute to 100 ML after allowing to cool.
D. Add 80 ml o $\mathrm{fH}_{2} \mathrm{Oto} 10 \mathrm{~mL}$ of $10 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$, stir and dilute to 100 mLafter allowing to cool.

Answer: c

- Watch Video Solution

519. The enthalpy change of which reaction corresponds to ΔH_{f}° for $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s}) 298 \mathrm{~K}$?
A. $2 \mathrm{Na}(\mathrm{s})+\mathrm{C}(\mathrm{s})+\frac{3}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$
B. $2 \mathrm{Na}_{2} \mathrm{O}(\mathrm{s})+\mathrm{CO}_{2}(\mathrm{~g}) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$
C. $2 \mathrm{Na}^{+}(a q)+\mathrm{CO}_{3}^{2-}(a q) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~s})$
D. $2 \mathrm{Na}^{+}(a q)+2 \mathrm{OH}^{-}(a q)+\mathrm{CO}_{2}(a q) \rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3}(s)+\mathrm{H}_{2} \mathrm{O}$

Answer: a

- Watch Video Solution

520. For the reaction shown, which which is closest to the value o $\mathrm{f} \Delta H$?

$$
\begin{aligned}
& \Delta H_{f}^{\circ} \quad\left(\mathrm{KJ.mol}^{-1}\right) \\
& \mathrm{Cr}^{3+}(a q)-143 \\
& \mathrm{Ni}^{2+}(a q)-54 \\
& 2 \mathrm{Cr}^{3+}(a q)+3 \mathrm{Ni}(s) \rightarrow 2 \mathrm{Cr}(\mathrm{~s})+3 \mathrm{Ni}^{2+}(a q)
\end{aligned}
$$

A. 124 KJ
B. 89 KJ
C. -89 Kj
D. $-124 K J$

Answer: a

- Watch Video Solution

521. When a bomb calorimeter is used to determine the heat of recation is most likely of the system under investigation is most likely to remain constant?
A. number of molecules
B. pressure
C. temperature
D. volume

Answer: d

- Watch Video Solution

522. For the reaction, $\mathrm{CH}_{4}+\mathrm{Cl}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{Cl}+\mathrm{HCl}$ which expression given
ΔH ?
Bond dissociation Kj. mol^{-1}
C-H
413
C -Cl 328
$\mathrm{Cl}-\mathrm{Cl} \quad 242$
$\mathrm{H}-\mathrm{Cl} 431$
A. $\Delta H=(413+328)-(242+431)$
B. $\Delta H=(413-328)-(242-431)$
C. $\Delta H=(413-242)-(328-431)$
D. $\Delta H=(413+242)-(328+431)$

Answer: d

- Watch Video Solution

523. Which equation represents the reaction for the stanard enthalpy of formation,ΔH_{f}°, forB $B_{5} H_{9}(g)$ at 298 K and 1atm?
A. $5 B(S)+9 H(g) \rightarrow B_{5} H_{9}(g)$
B. $2 B(S)+3 \mathrm{BH}_{3}(g) \rightarrow B_{5} H_{9}(g)$
C. $\frac{5}{2} B_{2}(g)+\frac{9}{2} H_{2}(g) \rightarrow B_{5} H_{9}(g)$
D. $5 B(\mathrm{~s})+\frac{9}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{B}_{5} H_{9}(\mathrm{~g})$
524. $\mathrm{C}_{2} \mathrm{H}_{6}(g)+\frac{7}{2} \mathrm{O}_{2}(g) \rightarrow 2 \mathrm{CO}_{2}(g)+3 \mathrm{H}_{2} \mathrm{O}(g)$
$\Delta H^{\circ}=-1427.7 K J$
If the enthalpy of vaporization for $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is $44.0 \mathrm{KJ} . \mathrm{mol}$, what is ΔH° for this reaction if $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ is formed insteat of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$?
A. $-1295.7 K J$
B. $-1383.7 K J$
C. $-1471.7 K J$
D. $-1559.7 K J$

Answer: d

- Watch Video Solution

525. Calculate the change in enthalpy,ΔH, for the combustion of 11.2 L of hydrogen gas, measured at $0{ }^{\circ} \mathrm{C}$ and 1 atm pressure, to orm $H_{\circ} O(g)$:

$$
\begin{array}{ll}
\Delta H_{f}^{\circ} & \left(\mathrm{KJ.mol}^{-1}\right) \\
\mathrm{H}_{2} \mathrm{O}(\mathrm{~g}) & -241.8
\end{array}
$$

A. $-60.5 K J$
B. $-121 K J$
C. $-484 K J$
D. $-271.8 K J$

Answer: b

- Watch Video Solution

526. Calculate ΔH° for the reaction :
$\mathrm{TiCl}_{4}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{TiO}_{2}(\mathrm{~s})+4 \mathrm{Hcl}(\mathrm{g})$
$\Delta H_{f}^{\circ} \quad\left(\mathrm{KJ} . \mathrm{mol}^{\circ}{ }^{-1}\right)$
$\mathrm{TiCl}_{4}(\mathrm{~g}) \quad-763$
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ - 286
$\mathrm{TiO}_{2}(\mathrm{~s}) \quad-945$
HCl(g) -92
A. $-264 K J$
B. 12 KJ
C. 22 KJ
D. 298 KJ

Answer: c

- Watch Video Solution

527. Use bond energies to estimate the value of ΔH° for the reaction :
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g})$
Bond EnergiesKJ/mol
H-H 436
H-N 386
$N-N 193$
$N=N 418$
$N \equiv N 941$
A. $-995 K J$
B. -590 KJ
C. -67 Kj
D. 815 KJ

Answer: c

D Watch Video Solution

528. Use the thermochemical data given to calculate Δh_{f}° for $N_{2} \mathrm{O}_{5}(\mathrm{~g})$ in $\mathrm{KJ} / \mathrm{mol}^{-1}$
$\mathrm{N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g}) \Delta \mathrm{H}^{\circ}=+180.5 \mathrm{KJ}$
$2 \mathrm{NO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=-114.1 \mathrm{Kj}$
$4 \mathrm{NO}_{2}(g)+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{~N}_{2} \mathrm{O}_{5} \Delta \mathrm{H}^{\circ}=-110.2 \mathrm{Kj}$
A. -332.8
B. -43.8
C. 11.3
D. 22.6

Answer: c

529. Which process requires the greatest amount of energy for 1 mole of $\mathrm{H}_{2} \mathrm{O}$?
A. Breaking the o-H bonds
B. Melting
C. Evaporating
D. Subliming

Answer: a

- Watch Video Solution

530. If the circles represent molecules, which diagram provides the best molecular level representation of a pure solid in the process of melting?

Answer: b

- Watch Video Solution

531. Which of these coversios has a poitive ΔS° ?
(p)combustion of charcoal
(Q) condensation of $\mathrm{Br}_{2}(\mathrm{~g})$
(R) precipitation ofAgCl(s)
A. P only
B. Qonly
C. R only
D. Qand R only

Answer: a

- Watch Video Solution

532. Given these reactions:
$A \rightarrow 2 B \Delta H=40 K J$
$B \rightarrow C \Delta H=-50 K J$
$2 C \rightarrow D \Delta H=-20 K J$

Calculate ΔH for the reaction : $D+A \rightarrow 4 C$
A. $-100 K J$
B. $-60 K J$
C. $-40 K J$
D. 100 Kj

Answer: c

- Watch Video Solution

533. Hydrazine, $\mathrm{N}_{2} \mathrm{H}_{4}$, contains aN-N single bond and $4 \mathrm{~N}-\mathrm{H}$ bonds. Use bond energies to calculate ΔH in KJ for the reaction :
$\mathrm{N}_{2}+2 \mathrm{H}_{2} \rightarrow \mathrm{~N}_{2} \mathrm{H}_{4}$
Bond Energies $\left(\mathrm{KJ.mol}^{-1}\right)$
H-H 436
H-N 386
$N-N 193$
$N=N 418$
$N \equiv N 941$
A. $-425 K J$
B. -76 KJ
C. 76 KJ
D. 245 KJ

Answer: c

D Watch Video Solution

534. Rank the enthalpy of fusion, sublimation and vaporization for water
A. sublimation =vaporization =fusion
B. vaporization> sublimation> fusion
C. fusion> sublimation > vaporization
D. fusion > vaporization >sublimation

Answer: d

- Watch Video Solution

535. The stande enthalpy of formation for $\mathrm{NH}_{3}(\mathrm{~g})$ is $-46.1 \mathrm{KJ}^{\times} \mathrm{mol}^{-1}$.Calculate ΔH° for the reaction :
$2 \mathrm{NH}_{3}(g) \rightarrow \mathrm{N}_{2}(g)+3 \mathrm{H}_{2}(g)$
A. $-92.2 K J$
B. $-46.1 K J$
C. 46.1 Kj
D. $92.2 K J$

Answer: d

- Watch Video Solution

536. Which are exothrmic processes?
(p) Combustion of ethane
(Q)Dehyration of barium choride dihdrate
A. Ponly
B. Qonly
C. Both p and Q
D. Neither P nor Q

Answer: a

- Watch Video Solution

537. Which sets of chemicals, when mixed, produce the observation (s)
listed ?

Combination		Observation
(P)	$\mathrm{NH}_{4} \mathrm{Cl}(s)$ and $\mathrm{H}_{2} \mathrm{O}(l)$	endothermic

(Q)	$9 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}(a q)$ and $\mathrm{H}_{2} \mathrm{O}(l)$	exothermic
(R)	$1 \mathrm{M} \mathrm{NaOH}(a q)$ and $1 \mathrm{M} \mathrm{HCl}(a q)$	exothermic

A. R only
B. Pand Qonly
C. Qand Ronly
D. p,Qand R

- Watch Video Solution

538. The vapour pressure of phoshorus trichoride is 100 mm Hg at 21.0° and its normal boiling point is $74.2^{\circ} \mathrm{C}$ What is the enthalpy of vaporization in KJ. mol^{-1}
A. 0.493
B. 3.93
C. 23.0
D. 32.4

Answer: d

539. Estimate the enthalpy of combustion of methane in $\mathrm{KJ}^{\text {. }} \mathrm{mol}^{-1}$

$$
\mathrm{CH}_{4}(g)+2 \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)+2 \mathrm{H}_{2} \mathrm{O}(g)
$$

Bond dissociation	Enthalpies/kJ $\cdot \mathbf{m o l}^{\mathbf{- 1}}$	
$\mathrm{C}-\mathrm{C}$	350	$\mathrm{C}-\mathrm{O}$
350		
$\mathrm{C}-\mathrm{H}$	410	$\mathrm{C}=\mathrm{O}$
$\mathrm{O}-\mathrm{H}$	462	
	$\mathrm{O}-\mathrm{O}$	180
	$\mathrm{O}=\mathrm{O}$	498

A. 668
B. 540
C. -540
D. -668

Answer: d

- Watch Video Solution

540. Which Statement is always true for an exothermic reaction?
A. The enthalpy change is negative .
B. The entropy change is negative .
C. The reaction absorbs heat from the surroundings.
D. The reaction is spontaneous.

Answer: a

- Watch Video Solution

541. For which reaction is $\Delta H_{r x n}^{\circ}$ equal to ΔH_{f}° for $\mathrm{CUSO}_{4}(s)$?
A. $\mathrm{Cu}^{2+}(a q)+\mathrm{SO}_{4}^{2-}(a q) \rightarrow \mathrm{CuSO}_{4}(\mathrm{~s})$
B. $\mathrm{CuO}(\mathrm{s})+\mathrm{SO}_{3}(\mathrm{~g}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{~s})$
C. $\mathrm{CuS}(\mathrm{s})+\mathrm{SO}_{2}(\mathrm{~g}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{~s})$
D. $\mathrm{Cu}(\mathrm{s})+\mathrm{S}(\mathrm{s})+2 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CuSO}_{4}(\mathrm{~s})$

Answer: d

542. What is the value of ΔH° (inKJ) for this reaction ?ltbr gt

$2 \mathrm{CuO}(\mathrm{s}) \rightarrow \mathrm{CuO}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})$
A. 141.5
B. 14.6
C. -14.6
D. -141.5

Answer: a
543. The heat of a reaction is measured in a bomb calorimeter. This heat is equal to which thermodynamic quantity?
A. ΔE
B. ΔG
C. ΔH
D. ΔS

Answer: a

- Watch Video Solution

544. $\mathrm{NO}(\mathrm{g}) \rightarrow \frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}), \Delta \mathrm{H}_{1}^{\circ}$
$2 \mathrm{NO}(\mathrm{g}) \rightarrow \mathrm{N}_{2} \mathrm{O}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}), \Delta \mathrm{H}_{2}^{\circ}$
Which relationship is correct ?
A. $\Delta H_{1}^{\circ}=\Delta H_{2}^{\circ}$
B. $\Delta H_{f}^{\circ} f$ or $N O(g)=\Delta H_{1}^{\circ}$
C. $\Delta H_{f}^{\circ} f$ or $N_{2} O(g)=\Delta H_{2}^{\circ}$
D. $\Delta H_{f}^{\circ} f$ or $N_{2} O(g)=\Delta H_{2}^{\circ}-2 \Delta H_{1}^{\circ}$

Answer: d

- Watch Video Solution

545. When 2.74 g of $\mathrm{Ba}(\mathrm{s})$ reacts with $\mathrm{O}_{2}(\mathrm{~g})$ at 298 K and 1 atm to from $\mathrm{Ba}(\mathrm{s}), 11,100 \mathrm{~J}$ of heat is released. What is ΔH_{f}° for $\mathrm{BaO}(\mathrm{s})$ in $\mathrm{Kj}^{\times} \mathrm{mol}^{-1}$?
A. 556
B. 221
C. -221
D. -556

Answer: d

546. What is the relationship among the magnitudes of the enthalpies of combustion $\left(\Delta H_{\text {comb }}\right)$, fusion $\left(\Delta H_{\text {fus }}\right)$ and vaporization $\left(\Delta H_{\text {vap }}\right)$ for a hydrocarbon such as hexane, $C_{6} H_{14}$?
A. $\Delta H_{\text {fus }}<\Delta H_{\text {fus }}<\Delta H_{\text {vap }}$
B. $\Delta H_{\text {vap }}<\Delta H_{\text {fus }}<\Delta H_{\text {comb }}$
C. $\Delta H_{\text {comb }}<\Delta H_{\text {vap }}<\Delta H_{\text {fus }}$
D. $\Delta H_{\text {fus }}<\Delta H_{\text {vap }}<\Delta H_{\text {comb }}$

Answer: d

- View Text Solution

547. Determine $\Delta H_{r x n}$ for the reaction in $\mathrm{KJ} . \mathrm{mol}^{-1}$
$2 \mathrm{NH}_{3}(\mathrm{~g})+\frac{5}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}(\mathrm{g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.

A. -105.4
B. -226.3
C. -452.6
D. -6377.0

Answer: c

- Watch Video Solution

548. Calculate $\Delta \mathrm{E}$ when one mole of liuid is vaporized at its boiling point ($80^{\circ} \mathrm{C}$) and 1atm pressure.

$$
\left[\Delta H_{v a p}=30.7 \mathrm{KJ} / \mathrm{mol}\right]
$$

A. 33.6 KJ
B. 31.4 Kj
C. 30.0 KJ
D. 27.8 KJ

Answer: d

- Watch Video Solution

549. Use the following data to calculate the molar enthalpy of combustion of ethane, $\mathrm{C}_{2} \mathrm{H}_{6}$:
$2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$,
$\Delta H=-2511 \mathrm{KJ} / \mathrm{mol}$
$\mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+2 \mathrm{H}_{2}(G) \rightarrow \mathrm{C}_{2} \mathrm{H}^{6}(\mathrm{~g}), \Delta \mathrm{H}=-311 \mathrm{KJ} / \mathrm{mol}$
$2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l}), \Delta \mathrm{H}=-484 \mathrm{KJ} / \mathrm{mol}$
A. $-1428 \mathrm{KJ} / \mathrm{mol}$
B. $-2684 \mathrm{KJ} / \mathrm{mol}$
C. $-2856 \mathrm{KJ} / \mathrm{mol}$
D. $-3306 \mathrm{KJ} / \mathrm{mol}$

Answer: a

- Watch Video Solution

550. Which process is exothermic ?
A. condensation
B. fusion
C. sublimation
D. vaporization

Answer: a

551. use the thermodymanmic information :
$\frac{1}{2} \mathrm{~N}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \Delta H^{\circ}=90.4 \mathrm{Kj} / \mathrm{mol}$
1
${ }_{2} \mathrm{~N}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \Delta H^{\circ}=33.8 \mathrm{KJ} / \mathrm{mol}$
$2 \mathrm{NO}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=-58.0 \mathrm{KJ} / \mathrm{mol}$
to Calcualate $\Delta H^{\circ} \mathrm{Kj} / \mathrm{mol}$ for the reaction :
$2 \mathrm{NO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{O}_{4}$
A. -171.2
B. -114.6
C. 114.6
D. 171.2

Answer: a

D View Text Solution

552. Determine the enthalpy change for the reaction of $5.00 \mathrm{~g} \mathrm{Fe}{ }_{2} \mathrm{O}_{3}$ with aluminium metal according to the equation :
$\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+2 \mathrm{Al}(\mathrm{s}) \rightarrow \mathrm{Al}_{2} \mathrm{O}_{3}(\mathrm{~s}) \mathrm{Fe}(\mathrm{l})$

A. $-26.6 K J$
B. $-28.2 K j$
C. $-52.4 K J$
D. $-77.9 K J$

Answer: a

- Watch Video Solution

553. The energies of the bonds broken in a certain eaction arae greater than the energies of the bonds formed. Which one of the following statements about this reaction must be true?
A. The reaction is endothermic.
B. The reaction is exothermic.
C. The reaction is spontaneous.
D. The reaction is non-spontaneous.

Answer: a

- Watch Video Solution

554. How much heat is reuired to convert 5.0 g of ice at $-10.0^{\circ} \mathrm{C}$ to liquid water at $15.0^{\circ} \mathrm{C}$? (Assume heart capacities are indendent o ftemperature.)

Enthalpy of fusion	$6.00 \mathrm{~kJ} \times \mathrm{mol}^{-1}$
Specific heat capacity of ice	$37.8 \mathrm{~J} \times \mathrm{mol}^{-1} \times{ }^{\circ} \mathrm{C}^{-1}$
Specific heat capacity of water	$76.0 \mathrm{~J} \times \mathrm{mol}^{-1} \times{ }^{\circ} \mathrm{C}^{-1}$

A. $4.2 \times 10^{2} j$
B. $2.1 \times 10^{3} \mathrm{~J}$
C. $9.3 \times 10^{3} \mathrm{~J}$
D. $3.8 \times 10^{4} J$

Answer: b

- View Text Solution

555. The standed enthalpies of combustion of formaldehyde , $\mathrm{H}_{2} \mathrm{C}=\mathrm{O}(\mathrm{g})$,
 ΔH° for the following reaction ?
$\mathrm{H}_{2} \mathrm{C}=\mathrm{O}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{HCOOH}(\mathrm{l})$
A. $-833 \mathrm{KJ} . \mathrm{mol}^{-1}$
B. $-293 \mathrm{KJ}. \mathrm{~mol}^{-1}$
C. $293 \mathrm{KJ.mol}^{-1}$
D. $833 \mathrm{KJ}. \mathrm{~mol}^{-1}$

Answer: b
556. for $\mathrm{Br}_{2}(\mathrm{~g}), \Delta H_{\text {vap }}^{\circ}=31 \mathrm{Kj}^{\circ} \times \mathrm{mol}^{-1}$. If S° values for $B r_{2}(g)$ and $\mathrm{Br}_{2}(\mathrm{l})$ are245J. $\mathrm{mol}^{-1} . \mathrm{K}^{-1}$ and 153Jmol ${ }^{-1} . \mathrm{K}^{-1}$ respectively , what is the normal boiling point for $\mathrm{Br}_{2}(l)$?
A. 340 K
B. 200 K
C. 130 K
D. 70 K

Answer: a

- View Text Solution

557. The combustion of 1.00 mole of mehtane, CH_{4}, produces carbon dioxide and water releases $802 \mathrm{Kj} \times \mathrm{mol}^{-1}$. when 3.00 mol oxygen reacts with a stoichiometric quantity o fmethane, what is ΔH for the reaction ?
A. $-1.20 \times 10^{3} \mathrm{Kj}$
B. $-8.02 \times 10^{2} \mathrm{KJ}$
C. $8.02 \times 10^{2} \mathrm{Kj}$
D. $1.20 \times 10^{3} \mathrm{Kj}$

Answer: a

- View Text Solution

558. $\mathrm{PCl}_{5}(\mathrm{~s})$ reacts with $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ accoding to the equation :
$\mathrm{PCl}_{5}(\mathrm{~s})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{I}) \rightarrow \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})+{ }_{5} \mathrm{HCl}(\mathrm{aq})$
What is ΔH° for this rection in $\mathrm{Kj} / \mathrm{mol}^{-1}$

A. -722.2
B. -533.2
C. 533.2
D. 722.2

Answer: b

- View Text Solution

559. A sample of NaOH (s) was added to water in a calorimeter. The temperature was monitoredas the NaOH dissolved to give the data below
. Determinethe heat released during the solution process.(Assume the solution specific heat is $4.18 \mathrm{~J} . \mathrm{g}^{-1} . \mathrm{K}^{-1}$)

Mass of water	100.00 g
Mass of $\mathrm{NaOH}(s)$	10.00 g
Initial Temperature of water	$24.0^{\circ} \mathrm{C}$
Final Temperature of solution	$48.2^{\circ} \mathrm{C}$

A. 1.01×10^{3} joules
B. 2.66×10^{3} Joules
C. 1.01×10^{4} Joules
D. 1.11×10^{4} Joules

Answer: d

- View Text Solution

560. For Which of the reaction below is (are) the heat of reaction euqal to the heat of formation?
(p) $\frac{1}{2} N_{2}(g)+\mathrm{O}_{2}(g) \rightarrow \mathrm{NO}_{2}(g) \Delta H>0$
$(Q) \mathrm{SO}_{2}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{SO}_{3}(g) \Delta H<0$
A. Ponly
B. Q only
C. Both p and Q
D. Neither P nor Q

Answer: a

- View Text Solution

561. $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+3 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ During an experiment 10.00 g of ethanol is complately burned in air to release $\mathrm{CO}_{2}(g)$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ as shown in the equation above .During the combustion ,296.6 Kj of heat energy is released. What Is the molar enthalpy ofcombution,$\Delta H_{\text {comb }}^{\circ}$?
A. $-2966 \mathrm{KJ}^{\times} \mathrm{mol}^{-1}$
B. $-1364 \mathrm{KJ}^{\times} \mathrm{mol}^{-1}$
C. $-64.36 \mathrm{Kj}^{\times} \mathrm{mol}^{-1}$
D. $-29.66 \mathrm{KJmol}^{-1}$

Answer: b

562. $\mathrm{HNO}_{2}(\mathrm{l})+\mathrm{NaCl}(\mathrm{s}) \rightarrow \mathrm{HCl}(\mathrm{g})+\mathrm{NaNO}_{2}(\mathrm{~s})$

Calculate the ΔH° value for the reaction above from the information below:

A. 157 KJ
B. 78.5 KJ
C. -78.5 Kj
D. $-157 K J$

Answer: b

563. For which reacrion (s) is the ΔH value close to the ΔE value?
$(p) \mathrm{CH}_{4}(g)+2 \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CO}(\mathrm{g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$
$(Q) \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
A. Ponly
B. Q only
C. Both p and Q
D. Neither P nor Q

Answer: b

- View Text Solution

564. What is the value of Δs° for the reaction below?

$$
\mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})+3 \mathrm{CO}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}(\mathrm{~s})+3 \mathrm{CO}_{2}(\mathrm{~g})
$$

A. $-44.0 \mathrm{~J} \times K^{-1}$
B. $-11.8 \mathrm{~J} \times K^{-1}$
C. $15.5 \mathrm{~J} \times \mathrm{K}^{-1}$
D. $42.8 \mathrm{~J} \times \mathrm{K}^{-1}$

Answer: c

- Watch Video Solution

565. the combustion of 2 - propanol $\left(M=60.0 \mathrm{~g}^{\times} \mathrm{mol}^{-1}\right)$ occurs according to the equation,
$2 \mathrm{CH}_{3} \mathrm{CHOHCH}_{3}(\mathrm{l})+90_{2}(\mathrm{~g}) \rightarrow 6 \mathrm{CO}_{2}(\mathrm{~g})+8 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

What is q for the combustion of 15.0 g of 2-propanol?

	$\mathbf{S O}_{2}(g)$	$\mathbf{O}_{2}(\mathrm{~g})$	$\mathrm{SO}_{3}(\mathrm{~g})$
$\Delta H_{f}^{\circ}, \mathrm{kJ} \cdot \mathrm{mol}^{-1}$	-296.8	-	-395.7
$S^{\circ}, \mathrm{kJ} \cdot \mathrm{mol}^{-1} \cdot \mathrm{~K}^{-1}$	0.248	0.205	0.257

A. $-5.01 \times 10^{2} K J$
B. $-1.00 \times 10^{3} \mathrm{KJ}$
C. $-2.01 \times 10^{3} \mathrm{KJ}$
D. $-4.01 \times 10^{3} \mathrm{Kj}$

Answer: a

- View Text Solution

566. At what temperature does the reaction below change from favoring products to favoring

Bond	BDE, kJ \cdot mol $^{\mathbf{- 1}}$	Bond	BDE, kJ $\cdot \mathbf{m o l}^{-1}$
$\mathrm{~N}-\mathrm{N}$	163	$\mathrm{~N} \equiv \mathrm{~N}$	944
$\mathrm{~N}=\mathrm{N}$	409	$\mathrm{~N}-\mathrm{H}$	388

A. 162 K
B. 509 K
C. 1060 K
D. 1540 K

Answer: c

D View Text Solution

567. A 10.0 g piece of gallium $(\mathrm{m}=69.7)$ at $25.0^{\circ} \mathrm{c}$ is placed in 10.0 g of $\mathrm{H}_{2} \mathrm{Oat} 55.0^{\circ} \mathrm{c}$ what is the final temperature when this system comes to equilbium ? (Assume the specific heat capacity of liquid Ga is the same as that of solid $\left.G a=0.37 \mathrm{jg}(-1){ }^{\circ} C^{-1}\right)$.

$$
\text { A. } 35.0^{\circ} \mathrm{C}
$$

B. $38.1^{\circ} \mathrm{C}$
C. $41.8^{\circ} \mathrm{C}$
D. $52.6^{\circ} \mathrm{C}$

Answer: d

- View Text Solution

568. In the Born- Haber calculation of the lattice enthalpy of LiF from its elements, which process is exothermic?
A. Dissociation energy of $F_{2}(g)$
B. electron gain enthalpy of $F(g)$
C. ionization ebergy of $\mathrm{Li}(\mathrm{g})$
D. sublimation erergy of $\mathrm{Li}(\mathrm{s})$

Answer: b

569. Given chemical equations for these reactions

$$
\begin{aligned}
& \mathrm{S}(\mathrm{~s})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{SO}_{2}(\mathrm{~g}) \Delta \mathrm{H}=-29608 \mathrm{KJ} \times \mathrm{mol}^{-1} \\
& \mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \Delta=-285.8 \mathrm{KJ} \times \mathrm{mol}^{-1} \\
& \mathrm{H}_{2}(\mathrm{~g})+\mathrm{S}(\mathrm{~s}) \rightarrow \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g}) \Delta H=-20.6 \mathrm{Kj} \times \mathrm{mol}^{-1}
\end{aligned}
$$

What is the value of ΔH for the reaction below?

$$
2 \mathrm{H}_{2} \mathrm{~S}(\mathrm{~g})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})+2 \mathrm{SO}_{2}(\mathrm{~g})
$$

A. $-603.2 \mathrm{KJ}^{\times} \mathrm{mol}^{-1}$
B. $-562.0 \mathrm{KJ}^{\times}, \mathrm{mol}^{-1}$
C. $-1206.4 \mathrm{KJ}^{\times} \mathrm{mol}^{-1}$
D. $-1124.0 \mathrm{Kj}^{\times} \mathrm{mol}^{-1}$

Answer: d

- View Text Solution

570. Calculate the energy released by the reaction 4 $\mathrm{Fe}(\mathrm{s})+3 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}(\mathrm{~s})$ when a 55.8 g sample of iron reacts ccompletely with 1.00 mole of oxygen . The enthalpy of iron reacts complately with 1.00 mole of Oxygen. The enthalpy of formation $\left(\Delta H_{f}^{\circ}\right) \mathrm{OfFe}_{2} \mathrm{O}_{3}(\mathrm{~s})$, is $-826 \mathrm{KJ} \times \mathrm{mol}^{-1}$:
A. 206 KJ
B. 413 KJ
C. 826 KJ
D. 1650KJ

Answer: b

- View Text Solution

571. The enthalpy of formation, ΔH_{f}° equals zero at $25^{\circ} \mathrm{C}$ for which of the following in their standard states?
A. elements
B. compounds
C. gases
D. solids

Answer: a

- View Text Solution

572. The ΔH_{f}° of MgO is $-602 \mathrm{KJ}^{\times} \times \mathrm{mol}^{-1}$.when 20.15 g MgO is decomposed at constant pressure according to the equation below, how much heat will be transferred?
$2 \mathrm{MgO}(\mathrm{s}) \rightarrow 2 \mathrm{MG}(\mathrm{s})+\mathrm{O}_{2}(\mathrm{~g})$
A. $1.20 \times 10^{3} \mathrm{KJof}$ heat is released
B. $6.02 \times 10^{2} \mathrm{KJof}$ heat is absorbed
C. $6.02 \times 10^{2} \mathrm{KJof}$ heat is released
D. $3.01 \times 10^{2} \mathrm{KJof}$ heat is absorbed

D View Text Solution

573. What mass of ice at $0.0^{\circ} \mathrm{C}$ must be added to $100 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ at $25.0^{\circ} \mathrm{C}$ to cool It to $0.0^{\circ} \mathrm{C}$? The heat of fusion of ice is $334 \mathrm{Jg}^{-1}$
A. $1.25 g$
B. 7.49 g
C. $31.3 g$
D. 100 g

Answer: c

- View Text Solution

574. Using the bond dissciation enthalpies (BDEO in the table, estimate
ΔH° for the disproportionation of hydrazine described in the equation

below:

$$
3 \mathrm{~N}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow 4 \mathrm{NH}_{3}(\mathrm{~g})+\mathrm{N}_{2}(\mathrm{~g})
$$

A. $+283 \mathrm{KJ}^{\times} \mathrm{mol}^{-1}$
B. $-283 \mathrm{KJ} \times \mathrm{mol}^{-1}$
C. $-393 \mathrm{KJ}^{\times} \mathrm{mol}^{-1}$
D. $-455 \mathrm{KJ}_{\times} \mathrm{mol}^{-1}$

Answer: d

- View Text Solution

575. How is the enthalpy of vaporization of a substance relateed to its enthalpy of fusion?
A. The enthalpy of vaprization is greater than the enthalpy of fusion.
B. The enthalpy of vaporization is greater than the enthalpy of fusion.
C. The enthalpy of vaporization is less than the enthalpy of fusion.
D. There is no general relationship between a substance's enthalpy of vaporization and enthalpy of fusion

Answer: a

- View Text Solution

576. The enthalpy change under standard condition for which of the reactions below would be equal to the ΔH_{f}° of $\mathrm{NaOH}(\mathrm{s})$?
A. $\mathrm{Na}(\mathrm{s})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{NaOH}(\mathrm{s})+\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g})$
B. $\mathrm{Na}(\mathrm{s})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{H}_{2}(\mathrm{~g}) \rightarrow \mathrm{NaOH}(\mathrm{s})$
C. $\mathrm{Na}(\mathrm{s})+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l}) \rightarrow \mathrm{NaOH}(\mathrm{s})$
D. $\mathrm{Na}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{NaOH}(s)$

Answer: b

- View Text Solution

577. Given the enthalpy changes:
$A+B \rightarrow C \Delta H=-35 K J \times \mathrm{mol}^{-1}$
$A+D \rightarrow E+F \Delta H=+20 K J \times \mathrm{mol}^{-1}$
$F \rightarrow C+E \Delta H=+15 K J \times \mathrm{mol}^{-1}$

What is ΔH for the reaction $2 A+B+D \rightarrow 2 F$?
A. $0 \mathrm{KJ}. \mathrm{~mol}^{-1}$
B. $-30 \mathrm{KJ}. \mathrm{~mol}^{-1}$
C. $-40 \mathrm{KJ.mol}^{-1}$
D. $-70 \mathrm{KJ}^{\times \mathrm{mol}^{-1}}$

Answer: b

D View Text Solution

578. Enthalpy of neutralization of NaOH with $\mathrm{H}_{2} \mathrm{SO}_{4}$ is $-57.3 \mathrm{KJeq}^{-1}$ and with ethanoic acid is $-55.2 \mathrm{KJ}^{\text {. eq }}{ }^{-1}$ Which of thefollowing is the best explanation of this difference?
A. Ethanioc acid is a weak acid and thus requires less NaOH for neutralization .
B. Ethanoic acid is only partly ionised, neutralization is therefore incomplete.
C. Ethanoic acid is monobasic while $\mathrm{H}_{2} \mathrm{SO}_{4}$ Is dibasic.
D. Some heat is used to ionize ethanioc acid completely.

Answer: d

- View Text Solution

579. Calculate the enthalpy of isomerization of ethanol to dimethy ether:
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}(\mathrm{l}) \rightarrow \mathrm{CH}_{3} \mathrm{OCH}_{3}(\mathrm{~g})$
Given : Enthalpy of vaporisation of equal $=41 \mathrm{KJ} / \mathrm{mole}$ bond enthalpies

C-C=348KJ/mole

C-H=415KJ/mole
$\mathrm{C}-\mathrm{o}=352 \mathrm{KJ} / \mathrm{mole}$

O-h=463KJ/mole
A. $65 \mathrm{KJ} / \mathrm{mole}$
B. $25 \mathrm{KJ} / \mathrm{mole}$
C. $125 \mathrm{KJ} / \mathrm{mole}$
D. $85 \mathrm{KJ} / \mathrm{mole}$

Answer: d

- View Text Solution

580. Determine enthalpy change for the following polymerizartion reaction per mole of $N_{2}(g)$ consumed
$n N_{2}(g)+n H_{2}(g) \rightarrow(N H-N H)_{n}(g)$

Given :

bond enthalpy :
$\mathrm{n}-=\mathrm{N}=942 \mathrm{KJ} / \mathrm{mole}$,
$\mathrm{N}-\mathrm{N}=163 \mathrm{Kj} /$ mole
$\mathrm{H}-\mathrm{H}=436 \mathrm{KJ} / \mathrm{mole}$
$\mathrm{N}-\mathrm{H}=390 \mathrm{Kj} /$ mole
A. $272 \mathrm{Kj} / \mathrm{mole}$
B. $140 \mathrm{KJ} / \mathrm{mole}$
C. $-110 \mathrm{KJ} / \mathrm{mole}$
D. $-400 \mathrm{KJ} / \mathrm{mole}$

Answer: a

- View Text Solution

581. Standar enthalpy of formation of three combustible isomers compound $\mathrm{A}, \mathrm{B}, \mathrm{C}$ are $-20 \mathrm{Kcal} / \mathrm{mol}, 30 \mathrm{kcal} / \mathrm{mol}$ and $40 \mathrm{kcal} / \mathrm{mol}$ respectively then what will be order of their enthalpy of combustion?
A. $\Delta H_{c}^{\circ}[A]<\Delta H_{c}^{\circ}[B]<\Delta H_{c}^{\circ}[C]$
B. $\Delta H_{c}^{\circ}[B]>\Delta H_{c}^{\circ}[A]>\Delta H_{c}^{\circ}[C]$
C. $\Delta H_{c}^{\circ}[A]>\Delta H_{c}^{\circ}[B]>\Delta H_{c}^{\circ}[C]$
D. $\Delta H_{c}^{\circ}[C]>\Delta H_{c}^{\circ}[A]>\Delta H_{c}^{\circ}[B]$

Answer: c

- View Text Solution

582. How much heat energy must be supplied to change 36 g of ice at
$0^{\circ} \mathrm{C}$ to Water at room temperature $25^{\circ} \mathrm{C}$?
Data for Water
$\Delta H_{\text {fusion }}^{\circ}=9 \mathrm{Kj} / \mathrm{mol}, c_{p \text { (liquid) }}=4 \mathrm{JK}^{-1} \mathrm{~g}^{-1}$
A. 18 KJ
B. 3.6 Kj
C. 22 KJ
D. 21.6 Kj

Answer: d

583. $\mathrm{H}^{+}+\mathrm{OH}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}^{\circ}=-57 \mathrm{Kj} / \mathrm{mol}$
$\Delta H_{\text {ionistion }}^{\circ}[H C N]=45 \mathrm{KJ} / \mathrm{mol}$
If 200 mL of $\frac{1}{10} \mathrm{MBa}(\mathrm{OH})_{2}$ solution is mixed in 500 mL of $\frac{1}{10} \mathrm{MHCN}$ solution ,then ,heat evolved will be :
A. 600 Joule
B. 240 Joule
C. 12 Joule
D. 480 Joule

Answer: d

- View Text Solution

584. Calculate resonance enthalpy of $\mathrm{CO}_{2}(\mathrm{~g})$ from following data:
$\Delta H_{\text {combustion }}^{\circ}\left[C_{\text {graphite }}\right]=-390 \mathrm{Kj} / \mathrm{mol}$
$\Delta H_{\text {Sublimation }}^{\circ}\left[C_{\text {graphite }}\right]=-715 \mathrm{Kj} / \mathrm{mol}$
$\Delta H_{B . E .}[O=O]=500 \mathrm{KJ} / \mathrm{mol}$
$\Delta H_{B . E .}[C=O]=875 \mathrm{KJ} / \mathrm{mol}$
A. $-40 \mathrm{KJ} / \mathrm{mol}$
B. $-145 \mathrm{KJ} / \mathrm{mol}$
C. $-72.5 \mathrm{KJ} / \mathrm{mol}$
D. $-290 K \frac{\mathrm{~J}}{\mathrm{~m}} \mathrm{ol}$

Answer: b

D View Text Solution

585. The enthalpy change at 298 K for decompostion is Given in following
steps:
Step $-1 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}(\mathrm{g})+\mathrm{OH}(\mathrm{g}) \Delta \mathrm{H}=498{\mathrm{Kj} / \mathrm{mol}^{-1}}^{-1}$
Steps $-2 O h(g) \rightarrow H(g)+O(g) \Delta H=428 \mathrm{KJ}^{2} / \mathrm{mol}^{-1}$
then value of mean bond enthalpy of $\mathrm{O}-\mathrm{H}$ bond will be :
A. $498 \mathrm{KJ} / \mathrm{mol}$
B. $463 \mathrm{KJ} / \mathrm{mol}$
C. $428 \mathrm{KJ} / \mathrm{mol}$
D. $70 \mathrm{KJ} / \mathrm{mol}$

Answer: b

- View Text Solution

586. $\mathrm{H}_{a q}^{+}+\mathrm{OH}_{a q}^{-} \rightarrow \mathrm{H}_{2} \mathrm{O}, \Delta \mathrm{H}=-105 \mathrm{Kj} / \mathrm{mol}$
$2 \mathrm{HA}(\mathrm{aq}) \rightarrow \mathrm{BaA}_{2(a q)+2 \mathrm{H}_{2} \mathrm{O}}$,
$\Delta H=-105 \mathrm{KJ} / \mathrm{mol}$
lopnistion enthalpy of weak acid Ha (aq)will be :
A. $9 \mathrm{KJ} / \mathrm{mol}$
B. $48 \mathrm{KJ} / \mathrm{mol}$
C. $4.5 \mathrm{KJ} / \mathrm{mol}$
D. $24 \mathrm{Kj} / \mathrm{mol}$

Answer: c

- View Text Solution

587. Enthalpy change when a solution is diluted from 4 M to 2 M is -1.6 $\mathrm{KJ} / \mathrm{mol}$. Enthalpy change when 5 litre of such a solution is diluted, is:
A. $-1.6 K J$
B. $-3.2 K J$
C. -32 Kj
D. -16 KJ

Answer: c

- View Text Solution

588. Boron exist in different allotropic forms .All allotropic fropm contains icosahedral units (icosahedral is a regular shape with 12 corners and 20
faces) with boron atoms at all 12 corners and all bonds are equivalent .

Icosahedron

Calculate ΔH (n KJ) per mole of boron atoms formating gaseous icosahedron if $\Delta H_{B E}(B-B)=200 \mathrm{KJ} / \mathrm{mol}$:
A. 1000
B. 600
C. 500
D. 250

Answer: c

- View Text Solution

589. When 0.684 g of sucrose (Molar mass $=342$) is burnt in a constant pressure calorimeter, the temperature rises by 5.6 K./ If enthalpy of combustion of sucrose is $-5600 \mathrm{Kj} /$ mole then heat capacity of the calorimeter system is :
A. 200J/K
B. $2 \mathrm{~J} / \mathrm{K}$
C. $2 \mathrm{Kj} / \mathrm{K}$
D. $4 \mathrm{KJ} / \mathrm{K}$

Answer: c

590. The enthalpy change for the reaction of 50 mL of acetyene with 150 mL of H_{2} to from ethane at 5 bar pressure is $-1.2 \mathrm{KJ} /$ molethen heat capacity of the calorimeter system is:
A. -1.25 KJ
B. -1.3 KJ
C. $-1.4 K J$
D. -1.15 KJ

Answer: d

- View Text Solution

591. Enthalpy of hydrogenation of one mole benzene to cyclohexane is:
[Given : Resonance energy of benzene=-70K]/mol, Enthalpy of hydrogenation of cyclohexene $=-100 \mathrm{KJ} / \mathrm{mol}]$
A. $-170 K J$
B. -30 KJ
C. $-370 K J$
D. 230 KJ

Answer: d

- View Text Solution

592. magnitude of enthalpy of neutralization is minimum for:
A. $\mathrm{HCN}+\mathrm{KOH}$
B. $\mathrm{HCl}+\mathrm{KOH}$
C. $\mathrm{HCl}+\mathrm{NH}_{4} \mathrm{OH}$
D. $\mathrm{HCN}+\mathrm{NH}_{4} \mathrm{OH}$

Answer: d
593. For the reaction
$\mathrm{N}_{2} \mathrm{H}_{4}(\mathrm{~g}) \rightarrow \mathrm{N}_{2} \mathrm{H}_{2}(\mathrm{~g})+\mathrm{H}_{2}(\mathrm{~g})$,
$\Delta H_{\text {reaction }}^{\circ}=109 \mathrm{KJ} / \mathrm{mol}$

$$
\in_{N-N}=163 \mathrm{KJ} / \mathrm{mol}
$$

$\in N-H=391 K J / m o l$

$$
\in_{H-H}=\mathrm{KJ} / \mathrm{mol}
$$

then ,then bond dissocition energy of $\mathrm{N}=\mathrm{N}$ is:
A. $500 \mathrm{KJ} / \mathrm{mol}$
B. $436 \mathrm{KJ} / \mathrm{mol}$
C. $600 \mathrm{KJ} / \mathrm{mol}$
D. $400 \mathrm{Kj} / \mathrm{mol}$

Answer: d

- View Text Solution

594. If for a chemical reaction ΔC_{p} I stemperature of reactants of this reaction bya certain amount $=q_{1}$ and heat required to increase temperature of products of the same reaction by same amount $=q_{2}$, then:
A. $q_{1}>q_{2}$
B. $q_{1}<q_{2}$
C. $q_{1}=q_{2}$
D. q_{1} may or may not be equal to q_{2} will depend on nature of reactants and products .

Answer: a

- View Text Solution

595. Born- Hyber cycle below respesents the energy changes occurring as 298 K , jwhen MO(s) is formed from its elements, wherx $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are enthalpy change elements, for corresponding proOcesses respectively

$\Delta H_{\text {sub }}$ of $M=180 \mathrm{~kJ} / \mathrm{mol}$
I. $E_{1}(M)=218 \mathrm{~kJ} / \mathrm{mol}$
I. $E_{2}(M)=384 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{\text {atomisation }}$ ofO $O_{2}=640 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H\left(O \rightarrow O^{-}\right)=-142 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H\left(O \rightarrow O^{-2}\right)=-844 \mathrm{~kJ} / \mathrm{mol}$
If ΔH_{f} of $\mathrm{MO}(\mathrm{s})$ is $-196 \mathrm{~kJ} / \mathrm{mol}$ then lattice energy of $\mathrm{MO}(\mathrm{s})$ will be:
A. $-2000 \mathrm{KJ} / \mathrm{mol}$
B. $-1000 \mathrm{KJ} / \mathrm{mol}$
C. $-1500 \mathrm{KJ} / \mathrm{mol}$
D. $-600 \mathrm{KJ} / \mathrm{mol}$

Answer: a

- View Text Solution

596. Born- Hyber cycle below respesents the energy changes occurring as 298 K , jwhen MO(s) is formed from its elements, wherx $\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{a}, \mathrm{b}, \mathrm{c}$ and d are enthalpy change elements, for corresponding proOcesses respectively

$\Delta H_{\text {sub }} \mathrm{of} M=180 \mathrm{~kJ} / \mathrm{mol}$
I. $E_{1}(M)=218 \mathrm{~kJ} / \mathrm{mol}$
I. $E_{2}(M)=384 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{\text {atomisation }}$ of $O_{2}=640 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H\left(O \rightarrow O^{-}\right)=-142 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H\left(O \rightarrow O^{-2}\right)=-844 \mathrm{~kJ} / \mathrm{mol}$
"Enthaply change of reaction"
$2 M^{2+}(g)+20^{2-}(g) \rightarrow 2 M O(s)$, is:
A. $-2000 \mathrm{~kJ} / \mathrm{mol}$
B. $-6000 \mathrm{~kJ} / \mathrm{mol}$
C. $-4000 \mathrm{~kJ} / \mathrm{mol}$
D. $-1000 \mathrm{~kJ} / \mathrm{mol}$

Answer: c

597. With the help of fthermondynamic equation of state

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

Answer the following questions for a van der Waals' gas
$P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}$
$\left(\frac{\partial U}{\partial V}\right)$ For the van der Waals' is :
A. zero
B. $\frac{-a n^{2}}{V^{2}}$
C. $\frac{-a n^{2}}{V^{2}}$
D. none of these

Answer: c

598. With the help of fthermondynamic equation of state

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

Answer the following questions for a van der Waals' gas
$P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}$
Work done for the isothermal process from $\left(P_{1} V_{1} T\right)$ to $\left(P_{2} V_{2} T\right)$ is :
A. zero
B. $a n^{2}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)$
C. $-a n^{2}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)$
D. none of these

Answer: c

599. With the help of fthermondynamic equation of state
$\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P$
Answer the following questions for a van der Waals' gas
$P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}$
Work done for the isothermal process from $\left(P_{1} V_{1} T_{1}\right.$ to $\left(P_{2} V_{2} T\right)$ is :
A. $-n R T \frac{V_{2}-n b}{V_{1}-n b}$
B. $-n R t \ln \prime \frac{V_{2}-n b}{V_{1}-n b}-a n^{2}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)$
C. $a n^{2}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)$
D. none of the above

Answer: b

- View Text Solution

600. With the help of fthermondynamic equation of state

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

Answer the following questions for a van der Waals' gas
$P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}$
Heat transfer for the isonthermal process from $\left(P_{1} V_{1} T\right)$ to $\left(P_{2} V_{2} T\right)$ is :
A. $n R T \ln \prime \frac{V_{2}-n b}{V_{1}-n b}$
B. $n R T \ln n^{\prime} \frac{V_{2}-n b}{V_{1}-n b}+a n^{2}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)$
C. $a n^{2}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)$
D. none of the above

Answer: a

- Watch Video Solution

601. With the help of fthermondynamic equation of state

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

Answer the following questions for a van der Waals' gas
$P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}$
ΔH for the insothermal process from $\left(P_{1} V_{1} T\right)$ to $\left(P_{2} V_{2} T\right)$ to is:
A. $\Delta H=\left(P_{2} V_{2}-P_{1} V_{1}\right)$
B. $\Delta H=-a n^{2}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)+\left(P_{2} V_{2}-P_{1} V_{1}\right.$
c. $\Delta H=-a n^{2}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)+n R T\left[\frac{V_{2}}{V_{2}-n b}-\frac{V_{1}}{V_{1}-n b}\right]$
D. $\Delta H=n R T\left[\frac{V_{2}}{V_{2}-n b}-\frac{V_{1}}{V_{1}-n b}\right]$

Answer: b,c

- Watch Video Solution

602. With the help of fthermondynamic equation of state

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

Answer the following questions for a van der Waals' gas
$P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}$
Work done during the process if n moles of van der Waals' gas is subjrcted to reversible adiabatic expansion from $\left(P_{1} V_{1} T_{1}\right)$ to $\left(P_{2} V_{2} T_{2}\right)$ is :
A. $n C_{V}\left(T_{2}-T_{1}\right)-a n^{2}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)$
B. $n C_{V}\left(T_{2}-T_{1}\right)$
C. $a n^{2}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)$
D. none of the above

Answer: a

603. With the help of fthermondynamic equation of state

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

Answer the following questions for a van der Waals' gas
$P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}$
Which of the following is true for van der Walls' gas involved in reversible adiabatic process ?
A. $T^{C V} / R(V-n b)=$ const.
B. $T^{R / C V}(V-n b)=$ const.
C. $(T . a)^{C V} / R(V-n b)=$ const.
D. $\left(\frac{T}{a}\right)=$ const.

Answer: a

- Watch Video Solution

604. With the help of fthermondynamic equation of state

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

Answer the following questions for a van der Waals' gas
$P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}$
Entropy change for van der Waals' gas going from $\left(P_{1}, V(1), T_{1}\right)$ to $\left(P_{2}, V_{2}, T_{2}\right)$ will be :
A. $n C_{V} \ln ^{\prime} \frac{T_{2}}{T_{1}}-n R \ln \frac{V_{2}-n b}{V_{1}-n b}$
B. $n C_{V} \ln \frac{T_{2}}{T_{1}}+n R \ln \prime \frac{V_{2}-n b}{V_{1}-n b}$
C. $n C_{V} \ln ^{\prime} \frac{T_{2}}{T_{1}}+n R \ln n^{\prime} \frac{V_{2}-n b}{V_{1} n b}+a n^{2}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)$
D. $n C_{V} \ln ^{\prime} \frac{T_{2}}{T_{1}}+n R \ln n^{\prime} \frac{V_{2}+n b}{V_{1} n b}-a n^{2}\left(\frac{1}{V_{2}}-\frac{1}{V_{1}}\right)$

Answer: b
605. With the help of fthermondynamic equation of state

$$
\left(\frac{\partial U}{\partial V}\right)_{T}=T\left(\frac{\partial P}{\partial T}\right)_{V}-P
$$

Answer the following questions for a van der Waals' gas
$P=\frac{n R T}{V-n b}-\frac{a n^{2}}{V^{2}}$
Selectg the correct statements :
A. Heat absorbed in isothermal reversible expansion for real gas is more than ideal gas for same volume change.
B. Heat liberated in isothermal reversible isothermal reversible expansion.
C. Internal energy of ral gas increases during isothermal reversible expansion.
D. Internal energy of real gas increases during isothermal reversible compresssion.

Answer: a,b,c

606. A factory, producing methanol, is based on the reaction :
$\mathrm{CO}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$ ItBRgt Hydrogen and carbon monoxide are obtained by the reaction

$$
\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}
$$

Three units of factory namely, the "reformer" for the H_{2} and CO production, the "methanol reactor" for production of methonol adn a "separator" to separate $\mathrm{CH}_{3} \mathrm{OH}$ form CO and H_{2} are schematically shown in figure.

The flow of methonal from valve-3 is $10^{3} \mathrm{~mol} / \mathrm{sec}$. The factory is so designed that $\frac{2}{3}$ of the CO is converted to $\mathrm{CH}_{3} \mathrm{OH}$. Assume that the feromer reaction goes to completion.
$\mathrm{CO}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH} \Delta_{r} \mathrm{H}=-100 \mathrm{R}$
What is the flow of CO and H_{2} at valve-2 ?
A. $\mathrm{CO}: 500 \mathrm{~mol} / \mathrm{sec}, \mathrm{H}_{2}: 1000 \mathrm{~mol} / \mathrm{sec}$
B. $\mathrm{CO}: 1500 \mathrm{~mol} / \mathrm{sec}, H_{2}: 2500 \mathrm{~mol} / \mathrm{sec}$
C. $\mathrm{CO}: 500 \mathrm{~mol} / \mathrm{sec}, \mathrm{H}_{2}: 2000 \mathrm{~mol} / \mathrm{sec}$
D. $\mathrm{CO}: 500 \mathrm{~mol} / \mathrm{sec}, \mathrm{H}_{2}: 1500 \mathrm{~mol} / \mathrm{sec}$

Answer: b

- View Text Solution

607. A factory, producing methanol, is based on the reaction :
$\mathrm{CO}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH}$ ItBRgt Hydrogen and carbon monoxide are obtained by the reaction

$$
\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}
$$

Three units of factory namely, the "reformer" for the H_{2} and CO production, the "methanol reactor" for production of methonol adn a "separator" to separate $\mathrm{CH}_{3} \mathrm{OH}$ form CO and H_{2} are schematically shown in figure.

The flow of methonal from valve -3 is $10^{3} \mathrm{~mol} / \mathrm{sec}$. The factory is so designed that $\frac{2}{3}$ of the CO is converted to $\mathrm{CH}_{3} \mathrm{OH}$. Assume that the feromer reaction goes to completion.
$\mathrm{CO}+2 \mathrm{H}_{2} \rightarrow \mathrm{CH}_{3} \mathrm{OH} \Delta_{r} \mathrm{H}=-100 \mathrm{R}$
Amount of energy released in methanol reactor in 1 minute :
A. 1200 kcal
B. 12000 kcal
C. 6000 kcal
D. none of these

Answer: b

- View Text Solution

608. One mole of a monoatomic ideal gas was isobarically heated from 300 K to 600 K at constant pressure of one atm. Subsequently, it is subjected to reversible adiabatic expansion till the volume becomes $4 \sqrt{2}$ of origingl (starting) value. After that it is subjected to isobaric cooling to
original volume.
what is the chanege in enthalpy in adiabatic process?
A. -750 R
B. +500 R
C. +750 R
D. -500 R

Answer: a

- Watch Video Solution

609. Bond dissociation enthaply of the first H-S bond in hydrogen sulphide is $376 \mathrm{Kj} /$ mole. The enthalpies of formatin of $H_{2} S(g)$ and $S(g)$ are - 20.0 and $277.0 \mathrm{kj} /$ mole respectively. The enthalpy of formation of gaseous hydrogen atomis $218 \mathrm{Kj} / \mathrm{mole}$. Using above information, answer following questions:

The bond disscociation enthalpy of the free radical HS is :
A. $138 \mathrm{~kJ} / \mathrm{mole}$
B. $276 \mathrm{~kJ} / \mathrm{mole}$
C. $357 \mathrm{~kJ} / \mathrm{mole}$
D. $376 \mathrm{~kJ} / \mathrm{mole}$

Answer: c

- View Text Solution

610. One mole of idea monoatomic gas at 300 K undergoes an adiabatic irrersible process due to which its interhnal energy decreases by 150 calories.

If the process is carried out isobarically to obtain same work then the enthalpy change of the isobaric process is :
A. 300 cal
B. -550 cal
C. 400 cal

Answer: d

- Watch Video Solution

611. Adenosine triphosphate (ATP) is the energy. Currency for celuclar processes. ATP provides the energy for both energy consuming endergonic reaction and energy releasing exerogonic reactions, which require a small input of activation energy. When the chemical bonds within ATP are broken, energy is relased and can be harnessed for celluar work. The more bonds in a molecule, the more potential energy it containsl. Because the bond in ATP is si easily broken and reformed, ATP is like a rechargeable battery that power callular processes ranging rfeom DNA replicatin to protein synthesis.

Adenosine triphosphate (ATP) is comprising of the molecule adenosinek, bound to three phosphate groups. together, these chemical groups constitute energy powerhouse.

Together the two bonds between the phosphates are equal high-energy
bonds (phosphonhydride bonds) that, when broken release sufficient energy to power a variet of cellular reaction and processes. the bond between the beta and gamma phosphate is considered "hi-energy" because wnen the bond breaks, the products [adenosine diphosphate (ADP) and one inorgnic phosphate group $\left(P_{1}\right)$ is called hydrolysis because it concumes a water molecule (hydro, meaning "water" ,and lysis, meaning separation). ATP is hydrolyzed into ADP in the followinf reaction :
$\operatorname{ATP}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{ADP}(a q)+P_{i}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \Delta_{r}=-30 \mathrm{~kJ} / \mathrm{mol}$
Like most chemical reactions, the hydrolysis of ATP to ADP is reversible.
The reverse reaction combines $A D P+P_{1}$ to regenerate ATP (adenosine diphosphate). Since ATP hydrolysis releases energy, ATP syntesis must require an input of free energy. The syntheses of ATP molecule involves oxidation of glucose by NDA^{+}(Nicotinamide dinucleotide) to pyruvate ions $\left(\mathrm{CH}_{3} \mathrm{COCOO}^{-}\right)$by reaction.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+2 \mathrm{NAD}^{+}(a q) \rightarrow 2 \mathrm{CH}_{3} \mathrm{COCO}_{2}^{-}(a q)+2 \mathrm{NDHA}(a q)+4 \mathrm{H}_{3} \mathrm{O}^{+}(a q)$,
Overall reaction :
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+2 \mathrm{NDA}^{+}(a q)+2 \mathrm{ADP}(a q)+2 \mathrm{P}_{i}(a q)+2 \mathrm{H}_{3} \mathrm{O}^{+}(a q) \rightarrow 2 \mathrm{CH}_{3} \mathrm{COCC}$
How many moles of ATP can by synthesised along with generation of maximum muscular and nervous work of 174 kJ by oxidation of glucose ?
A. 2 moles
B. 4 moles
C. 6 moles
D. 8 moles

Answer: b

D View Text Solution

612. Adenosine triphosphate (ATP) is the energy. Currency for celuclar processes. ATP provides the energy for both energy consuming endergonic reaction and energy releasing exerogonic reactions, which require a small input of activation energy. When the chemical bonds within ATP are broken, energy is relased and can be harnessed for celluar work. The more bonds in a molecule, the more potential energy it containsl. Because the bond in ATP is si easily broken and reformed, ATP is like a rechargeable battery that power callular processes ranging rfeom DNA replicatin to protein synthesis.

Adenosine triphosphate (ATP) is comprising of the molecule adenosinek, bound to three phosphate groups. together, these chemical groups constitute energy powerhouse.

Together the two bonds between the phosphates are equal high-energy bonds (phosphonhydride bonds) that, when broken release sufficient energy to power a variet of cellular reaction and processes. the bond between the beta and gamma phosphate is considered "hi-energy" because wnen the bond breaks, the products [adenosine diphosphate (ADP) and one inorgnic phosphate group $\left(P_{1}\right)$ is called hydrolysis because it concumes a water molecule (hydro, meaning "water" ,and lysis, meaning separation). ATP is hydrolyzed into ADP in the followinf reaction :

$$
\operatorname{ATP}(a q)+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{ADP}(a q)+P_{i}(a q)+\mathrm{H}_{3} \mathrm{O}^{+}(a q) \Delta_{r}=-30 \mathrm{~kJ} / \mathrm{mol}
$$

Like most chemical reactions, the hydrolysis of ATP to ADP is reversible.
The reverse reaction combines $A D P+P_{1}$ to regenerate ATP (adenosine diphosphate). Since ATP hydrolysis releases energy, ATP syntesis must require an input of free energy. The syntheses of ATP molecule involves oxidation of glucose by $N D A^{+}$(Nicotinamide dinucleotide) to pyruvate ions $\left(\mathrm{CH}_{3} \mathrm{COCOO}^{-}\right)$by reaction.
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+2 \mathrm{NAD}^{+}(a q) \rightarrow 2 \mathrm{CH}_{3} \mathrm{COCO}_{2}^{-}(a q)+2 \mathrm{NDHA}(a q)+4 \mathrm{H}_{3} \mathrm{O}^{+}(a q), L$

Overall reaction :

$$
\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}(a q)+2 \mathrm{NDA}^{+}(a q)+2 \mathrm{ADP}(a q)+2 \mathrm{P}_{i}(a q)+2 \mathrm{H}_{3} \mathrm{O}^{+}(a q) \rightarrow 2 \mathrm{CH}_{3} \mathrm{COCC}
$$ Hydrolysis of adenosine triphosphate (ATP) is used to drive biological reaction. Which of following processes can be driven by hydrolysis of one mole of ATP molecules?

A. Biosynthesis of tripeptide (3-peptide links) with each link involving

$$
\Delta_{r} G^{\circ}=17 \mathrm{~kJ} / \mathrm{mol}
$$

B. Biosynthesis of protein with 150peptide links with each link formation involving $\Delta_{r} G^{\circ}=17 \mathrm{~kJ} / \mathrm{mol}$
C. Biosynthesis of 1 mole sucrose from glucose and fructoes with

$$
\Delta_{r} G^{\circ}=23 \mathrm{~kJ} / \mathrm{mol}
$$

D. All of the above

Answer: c

(D) View Text Solution

613. Photosyntesis is a bio process by which planets make energy rich molecules from low energy molecules with the help of energy. From sunlight. The photosynthesis of glucose can be represented as :
$6 \mathrm{CO}_{2}(\mathrm{~g})+6 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})+h v \rightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}(\mathrm{s})+6 \mathrm{O}_{2}(\mathrm{~g})$
Electrochemical oxidation of glucoses to CO_{2} and $\mathrm{H}_{2} \mathrm{O}$. which is the reverse of photosyhnthesis, is an impottaint reaction and it can be used in the construction of a fuel cell. In a fule cell, a working substance celled fule is electrochemiclly oxidised by O_{2}
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{HO} \rightarrow 24_{e}^{-}+24 \mathrm{H}^{+}+6 \mathrm{CO}_{2}$
Calculate the approximate standard emf of this fuel cell at $27^{\circ} \mathrm{C}$ if ΔH° and ΔS° of above photosynthesis reaction are $-3 \times 10^{6} \mathrm{Jmol}^{-1}$ and $200 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ respectively :
A. 1.5 volt
B. 1 volt
C. 4.5 volt
D. 3 volt

Answer: a

- View Text Solution

614. $N_{2}(g)+20_{2}(g) \rightarrow 2 \mathrm{NO}_{2}(g) \Delta H_{\mathrm{rxn}}>0$

Under what temperature conditions is this reaction spontaneous at standard preassure?
A. At low temperatures only
B. At high temperatures only
C. At all temperatures
D. At no temperature

Answer: d

615. Rubber bands comprise of loosely packed chains of atoms.When stretched, the chain of atoms get neatly lined up in rows and hens the entrops of system decreases whereas when contacted the chains get tangled up in a mess increasing entropy of system. Also on strectching rubber band, it is observed that any substance brought in its contact gets heated up. Based on this information, answer the following questions.

What should happen when a rubber band is heated ?
A. It should expand and get strectched.
B. It should contract.
C. Bonds/Attractions between the molecules of rubber band will keep on weakening.
D. The chains of moleculles will get more tangled.

Answer: b,c,d

616. Rubber bands comprise of loosely packed chains of atoms.When stretched, the chain of atoms get neatly lined up in rows and hens the entrops of system decreases whereas when contacted the chains get tangled up in a mess increasing entropy of system. Also on strectching rubber band, it is observed that any substance brought in its contact gets heated up. Based on this information, answer the following questions.

Which of the following statement(s) is/are correct?
A. A van dar wallls' get at is critical condition subjected to adiabatic free expansion experiences cooling effect.
B. If for a reaction $\Delta H_{400}^{\circ} K=\Delta H_{200}^{\circ} K t h e n \Delta S_{300}^{\circ} K$ should be equal to $\Delta S_{500}^{0} K$.
C. The value of compressibility factor of a real gas is 1 at Boyle's temperature for all range of pressures.
D. Ametal peroxide has 68% by mass metal, hence equivalent mass of its chloride will be 69.5 gms .

Answer: a,b,d

D View Text Solution

617.

Column-I
Column-II
(a) Reversible isothermal expansion of an ideal gas
(p) $w=2.330 \mathrm{nRTlog}$
(b) Reversible adiabatic compression of an ideal gas
(c) Irrevesible adiabatic expansion of anideal gas
(q) $P V^{\prime}$ cosntant
(d) Irrevesiable isothermal compression of an ideal gas
(r) $\quad w=\frac{n R}{(\gamma-1)}\left(T_{2}-T_{1}\right.$
(s) $\Delta H=0$

- View Text Solution

618.

Column-I

(a) A process carried out infinitesimally
(b) A process inwhich no heat enters or leaves the system
(c) A process carried out at constant temperature
(d) A process in equilibrium
(s) $\Delta E=0 \Delta H=0$
(e) $A(s) \rightarrow A(g)$
(f) Cyclic process
(t) Reversible
(u) Isotermal
619.

Column-I
(a) $\left(\Delta G_{\text {system }}\right)_{T . P}=0$
(b) $\Delta S_{\text {system }}+\Delta S_{\text {sorrrounding }}>0$
(q) Process is non-spontaneous
(c) $\Delta S_{\text {system }}+\Delta S_{\text {Surrounding }}<0$
(r) Process is spontaneous
(d) $\left(\Delta G_{\text {system }}\right){ }^{+T, P}>0$
(s) System is unable to do useful work

- Watch Video Solution

Column-I
(a) Reversible adiabatic compression
(b) Reversible vaporisation of liquid
620.
(c) $2 N(g) \rightarrow N_{2}(g)$
Δ
(d) $\mathrm{MgCO}_{3}(s) \rightarrow \mathrm{Mg}(\mathrm{s})+\mathrm{CO}_{2}(g)$
(s) $\Delta S_{\text {sublimation }}=0$

- Watch Video Solution

Column-I
Column-II
(a) $C(\mathrm{~s}$, graphite $)+\mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$ (p) $\Delta H^{\circ}{ }_{-}$(Combustion)
621.
(b) $C(s$, graphite $) \rightarrow C(g)$
(q) ΔH° _ (combustion)
(c) $\mathrm{CO}(g)+\frac{1}{2} \mathrm{O}_{2}(g) \rightarrow \mathrm{CO}_{2}(g)$
(r) ΔH° _ (atomization)
(d) $\mathrm{CH}_{4}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+4 \mathrm{H}(\mathrm{g})$
(s) ΔH° (sublimation)

- Watch Video Solution

622.

Column-I
(a) Heating of an ideal gas at constant pressure
(b) Compression of liquid at constant temperature
(c) Reversible process for anideal gas at constant temperature
(q) $\Delta U=0$
(r) $\Delta G=V . \Delta P$
(d) Adiabatic free expansion of an ideal gas
(s) $\Delta G=n R T 1 n$

- View Text Solution

623. Match the column : (Given process does not include chemical reactionn and phase change)
(a) $\Delta H=\Delta U+\Delta(P V)$ (P) Any matter undergong any process
(b) $\Delta H=n \cdot C_{P} \Delta T$
(q) Isochoric process involving any substance
(c) $q=\Delta U$
(r) Ideal gas,under any process
(d) $\Delta H=\Delta U+n R \Delta T$
(s) Ideal gas under isothermal process
(t) Anysubstance undergoing isobaric process

- View Text Solution

624. For process
$\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\left(100^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right) \Leftrightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})\left(100^{\circ} \mathrm{C}, 1 \mathrm{~atm}\right)$
Column-I
Column-II
(a) ΔU
(p) 0
(b) ΔS (system+surrounding)
(q) ΔH
(c) work
(r) positive
(d) Heat involved
(s) Negative

- View Text Solution

625.

Column-I		Column-II	
(a)	For the process $X(l) \rightleftharpoons X(s), \Delta H$ and ΔS are	(p)	-ve, +ve
(b)	$\mathrm{C}(s)+\frac{1}{2} \mathrm{O}_{2}(g) \rightleftharpoons \mathrm{CO}(g), \Delta G$ and $\Delta \mathrm{S}$ are	(q)	$+\mathrm{ve},-\mathrm{ve}$
(c)	$\mathrm{C}(s$, diamond $) \rightleftharpoons \mathrm{C}(s$, graphite $)$, favourable conditions for formation of diamond are high pressure and high temperature then ΔH and ΔS for formation of diamond	(r)	+ve, -ve
(d)	For the given reaction $\mathrm{N}_{2} \mathrm{O}_{4}(g) \rightleftharpoons$ and $E_{\text {a(backward })}^{\rightleftharpoons}=3.2 \mathrm{~kJ}, \Delta H$ and $\Delta \mathrm{S}$ for the given reaction	(g)	$-\mathrm{ve},+\mathrm{ve}$

- View Text Solution

626.

Colvman-I (Element)		Column-IH [Sed. Entroey :$S^{\prime}\left(\mathrm{Jmol}^{-1} \mathrm{~K}^{-1}\right)$ at 298 E$]$	
(a)	C (s, diamond)	(p)	5.7
(b)	C (s, graphite)	(q)	2.37
(c)	$\mathrm{H}_{2}(\mathrm{~g})$	(r)	117.6
(d)	$\mathrm{H}(\mathrm{g})$	(s)	130.57

- View Text Solution

Column-I		Column-II	
(a)	Adiabatic process	(p)	Combustion in a rigid insulated container
(b)	Isochoric process	(q)	Polytropic index $=\infty$
(c)	Isothermal process	(r)	Movement of heat from hot body to cold body
(d)	Isobaric process	(s)	${\text { C Diamond } \longrightarrow \text { C }_{\text {Graphite }}}$
		(t)	Work is done by using internal energy

- View Text Solution

628. Match the following Columns

Column-I				Column-II	
	$\Delta_{r} H^{\ominus}$	$\triangle_{r} S^{\ominus}$	$\Delta_{r} G^{\ominus}$		
(a)	$+$	-	+	(p)	Non-spontaneous at high temperature
(b)	-	-	$+$	(q)	Spontaneous at all temperatures
(c)	-	+	-	(r)	Non-spontaneous at all temperatures

Column-I	Column-II		
(a)	Entropy of vaporisation	(p)	decreases
(b)	T (K) for spontaneous process	(q)	is always positive
(c)	Crystalline solid state	(r)	lowest entropy
(d)	ΔU in adiabatic expansion of ideal gas	(s)	$\frac{\Delta H_{\text {vap }}}{T_{b}}$

- View Text Solution

630.

(b)	$\mathrm{C}_{4} \mathrm{H}_{8}(\mathrm{~g})+6 \mathrm{O}_{2}(\mathrm{~g}) \xrightarrow[1 \mathrm{~atm}]{25^{\circ} \mathrm{C}} 4 \mathrm{CO}_{2}(\mathrm{~g})+4 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$	(q)	$\Delta \mathrm{S}_{\text {ays }}>0$
(c)	Isothermal compression of ideal gas	(r)	$\Delta H<0$
(d)	$\mathrm{H}_{2} \mathrm{O}(l) \xrightarrow[T=110^{\circ} \mathrm{C}]{1 \mathrm{~atm}} \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$	(g)	$\Delta T>0$

D Watch Video Solution

Column-I	Catmer	
(a) Isothermal expansion of ideal gas	(p)	\# >1
(b) Adiabatic expansion of ideal gas	(9)	9 P 1
(c) Isobaric expansion of ideal gas	(r)	$\boldsymbol{\triangle}$ く
(d) Isochoric heating of ideal gas	(s)	¢ <
	(t)	$\pm<1$

631.

- View Text Solution

Column-I		Column-II	
(a)	Isothermal process	(p)	Volume and temperature may change
(b)	Adiabatic process	(q)	ΔU or $\Delta H=0$
(c)	Cyclic process	(r)	$q>0$ or $q<0$
(d)	Isobaric process	(s)	$w>0$ or $w<0$
		(t)	ΔU or $\Delta H>0 ; \Delta U$ or $\Delta H<0$

632.

Columm-I		Column-II	
(a)	B.E. $_{\text {(Product })}-$ B.E $_{\text {(Reactant) }}-\Delta H_{\text {Sublimation of }}$	(p)	$-x$ kcal
(b)	$(\Delta H-\Delta U)$	(q)	0
(c)	$\Delta H_{f}(\mathrm{CO}(\mathrm{g}))$	(r)	0.3 kcal
(d)	$\Delta H_{f}\left(\mathrm{O}_{2}(\mathrm{~g})\right)$	(s)	$+x \mathrm{kcal}$

633.

- View Text Solution

Column-I (Type of process)		Columan-II (Intropy change)	
(a)	Isothermal free expansion of an ideal gas	(p)	$(\Delta S)_{\text {system }}>0$
(b)	$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g})$		
$2 \mathrm{SO}_{3}(\mathrm{~g})+\mathrm{Heat}$	(q)	$(\Delta S)_{\text {surrounding }}=0$	
(c)	Vaporisation of water at 1 atm	(r)	$(\Delta S)_{\text {system }}<0$

634.View Text Solution

| Column-I (Reactions) | | Column-II (Signs of
 thermodynamic
 parameter | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

- View Text Solution

636.

Column-I	Column-II		
(a)	$\mathrm{Sb}(s)$	(p)	$\Delta H_{f}^{\circ}=+\mathrm{ve} ; \Delta \mathrm{S}_{f}^{\prime}=+\mathrm{ve}$
(b)	$\mathrm{O}_{3}(\mathrm{~g})$	(q)	$\Delta H_{f}^{\circ}=0 ; \Delta \mathrm{S}_{f}^{\circ}=0$
(c)	$\mathrm{I}_{2}(\mathrm{~g})$	(r)	$\Delta H_{f}^{\circ}=+\mathrm{ve} ; \Delta S_{f}^{\circ}=-\mathrm{ve}$
(d)	$\mathrm{CO}(\mathrm{g})$	(s)	$\Delta H_{f}^{\circ}=+\mathrm{ve} ; \Delta S_{f}^{\circ}=+\mathrm{ve}$

- View Text Solution

637. Calculated the final temprature (in Kelvin of a sample of argon of mass 12.0 g that is expanjded reversibly and adiabatically from 1.0 L at at 273 K to 3.0 L . (Take $: 3 \sqrt{9}=2.08$)

- Watch Video Solution

638. In how many of the folowinf reaction $\left|H^{\circ}\right|>\left|\Delta E^{\circ}\right|$, assuming reacftion to be occurring at a constant temperature and pressure.
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{I})$
Combustion of $\mathrm{C}_{2} \mathrm{H}_{8}(\mathrm{~g})$ at 400 K
Dimerisation of $\mathrm{NO}_{2}(\mathrm{~g})$
Fusion of water at $0^{\circ} \mathrm{C}$
Vaporisation of any liquid at its boiling poing
Dossociation of $\mathrm{CaCO}_{3}(\mathrm{~s})$
Combustion of $\mathrm{C}_{2} \mathrm{H}_{4}$ at 300 m K
639. Calculate the final pressure of a sample of carbon dioxide that expands reversibly and adiabatically from 57.4 kPa and 1.0 to a final volume of 2.0L. Take $\gamma=1.4$

- Watch Video Solution

640. A sample of carbon dioxide of mass 2.45 g at $27.0^{\circ} \mathrm{C}$ is allowed to expand reversibly and adiabatically from 500 mL to 3.00 L What is the work done by the gass ?

Take: $\left.(6)^{0.4}=2, R=\frac{25}{3} \mathrm{~J} / \mathrm{mol} / \mathrm{K}\right]$

- Watch Video Solution

641. Calculate resonance energy for $\frac{1}{6}$ mole of naphtalene if its heat of hydrogenation is 91 kcal and heat of hydrogenation of

id 29 kcal.

- Watch Video Solution

642. Once mole of gas is subjected to a process causing a change in astate from($1.25 \mathrm{~atm}, 300 \mathrm{~K}$) to a final state of ($1 \mathrm{~atm}, 600 \mathrm{~K}$). Calculate the enthalpy change from the following information [in atm-litre]

Information 1: The process involvea 100 atm-litre of heat given to system of 20 atm-liter of work is done by the system.

Information :2 Molar mass of the gas is 49.26.
Information 3 : Density of gas as 1.25 atm and 300 K is $2 \mathrm{gm} /$ liter.
Information 4: Density of gas at 1 atm and 600 K is $1 \mathrm{gm} /$ litre.
[Given : R = 0.0821 atm-litre/mol $K=\frac{18.47}{225}$
atm-litre/mole K] (Round off your answer to nearest integer).

- View Text Solution

643. Heat of hydrogention of

- Watch Video Solution

644.4 moles of a van dr Walls'gas is subjected to 3 Kj of hrat in a closed rigid vessel of volume 20.2 L causing an increase in temperature from 300 K to 400 K . Calculate the value of ΔH (inJ) for the above change [Given data : $R=0.08 \mathrm{~L}$ bar mole ${ }^{-} K^{-1}, a=2 L^{2}$ bar mol $^{-2}, b=0.05 \mathrm{Lmole}^{-1}$

- Watch Video Solution

645. Three gases A, B and C were taken at partial pressures of 1 bar each along with excess of liquide D so thet following equation was established.
$A(g)+B(g) \Leftrightarrow C(g)+D(g)$
Calculate partial pressure of C (in pascal) when equalibrium gets established in the container at 300 k .

Given: $\Delta G^{\circ} f \mathrm{~A}(\mathrm{~g})=-200 \mathrm{kcal} / \mathrm{mole}$
$\Delta G^{\circ} f D(1)=-49.58 \mathrm{kcal} / \mathrm{mole}$
$\Delta G^{\circ} f \mathrm{~B}(\mathrm{gO}=-100 \mathrm{Kcal} / \mathrm{mole}$
$\Delta G^{\circ} f \mathrm{D}(\mathrm{g})=-49.58 \mathrm{kcal} / \mathrm{mole}$
$\Delta G^{\circ} f \mathrm{C}(\mathrm{g})=-250 \mathrm{kcal} / \mathrm{mole}$
$\mathrm{R}=2 \mathrm{cal} / \mathrm{mol} \mathrm{K}, \ln 2=0.7 \sqrt{5}=2.24$ all data are given at 300 K .
Divede your answer by 10 and fill the OMR.

- View Text Solution

646. A sustance undergoes a change represented as show $\mathrm{A}(\mathrm{I})$ [1bar,300K]
$\rightarrow A$ (s) [1bar, 300 K$]$.from the given information, calculate magnitude of change in internal energy (in Joules) when 1 mole of $\mathrm{A}(\mathrm{I})$ solidifies

Standard melting point of $\mathrm{A}(\mathrm{s})$ is 300 K .
Latent heat of fusion of A id $0.01 \mathrm{~kJ} / \mathrm{gm}$.
Specific volume of $\mathrm{A}(\mathrm{s})$ is $100 \mathrm{ml} / \mathrm{gm}$.
Moar mass of A is $50 \mathrm{gm} / \mathrm{mole}$

- Watch Video Solution

647. A substance has normal boiling point pf 400 K . if $\Delta S_{\text {vap }}$ at 1 atm and 400 K is $100 \mathrm{~J} / \mathrm{kmole}$, then calculte $|\Delta S|_{\text {surrounding }}$ at 1 atm and 200 K for the vaporization process.

Cp of substance in liquide phase $=50 \mathrm{~J} / \mathrm{mol} \mathrm{K}$ Cp of substance in vapour phase $=40 \mathrm{~J} / \mathrm{mol} \mathrm{K}$
[Express answer in J/k mole]
648. A gaseous reaction $A(g) \Leftrightarrow B(g)$ is at equilibrium under standard condition and 200 K . Calculate the equilibrium constant of the reaction at 400 K if $\Delta S_{\text {reaction }}^{\circ}=6 \times 10^{-5} \mathrm{~T}^{2} \mathrm{cal} / \mathrm{K}$, where T is temperature in kelvin. [Given : $\mathrm{R}=2 \mathrm{cal} / \mathrm{mol} \mathrm{K}$ and In $2=0.7$]

- Watch Video Solution

649. A difinite amount of an ideal gas cfhange its state from state-1 to state-2 isothermally at 300 K . If the process is carried out reversibly then work done $=-1750 \mathrm{KJ}$ and if the process is carried out irreversibly then work doneis equal to -1000kJ. Calculate $\Delta S_{\rightarrow \text { tal }}=\left(\Delta S_{\text {system }}+\Delta S_{\text {surrounding }}\right)$ in joule per kelvin for the irreversible isothermal process.

- Watch Video Solution

650. Calculate the pH which the following conversion will be at equilibrium in basic medium.
$I_{2}(s) \Leftrightarrow I^{-}(a q)+I_{3}^{-}(a q)$
When the equilibrium concentrations at 300 K are $\left[\mathrm{I}^{-}\right]=0.1 \mathrm{M}$ and $\left[\mathrm{IO}_{3}^{-}\right]=0.1 \mathrm{M}$

Given that :
$\Delta G^{\circ} f\left(I^{-}, a q\right)=-50 \mathrm{kJmol}^{-1}$
$\Delta G^{\circ} f\left(I_{3}, a q\right)=-123 . \mathrm{kJmol}^{-1}$
$\Delta G^{\circ} f\left(\mathrm{H}_{2} \mathrm{O}, \mathrm{l}\right)=-233 \mathrm{kJmol}^{-1}$
$\Delta G^{\circ} f\left(\mathrm{HO}^{-}, a q\right)=-150 \mathrm{kJol}^{-1}$
$R=\frac{25}{3} \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and $\operatorname{In} 10=2.3$

D View Text Solution

651. When one mole of A is reacted completely in an ice calorimeter at 0°

C and at 1 atm , it is found that the volume of equlibrium mixture of ice and water decreased by 0.25 MI . The $\Delta_{r} H_{273}$ "for the reaction" $2 A \rightarrow B+2 C$
is: (the densities of water and icfe at 0° and 1 atm are 1.00 and 0.96 $\mathrm{gm} / \mathrm{cm}^{3}$, respectively and latent hete of fusion of ice at $0^{\circ} \mathrm{C}$ and 1 atm is

80cal//gm) [Use:1 if $\Delta_{r} H_{273}$ is+ ve and 2 if $\Delta_{r} H_{273}$ is -ve and answer as a abc or 2 abc , where abc is magnitude of $\Delta_{r} H_{273}$]

- View Text Solution

652. When 5 moles of an ideal gas having non-linear molecules is heated from 1000 K to 2000 K at cal. Assume that all the degree of freedom in molecules are active in this temperature range and the heat capacity of gas is temperature independent. The atomicity of gas is :[in2=0.7]

- Watch Video Solution

653. It is obseved that functioning of neuronal circuits in our brain is driven by the energy available from combustion of glucose. Calculate the amount of glucose (in gm) which should be burnt per hour to produce sufficient energy for brain which operated at $\frac{128}{9}$ watts.
$\left|\Delta H^{\circ}\right| 400 \mathrm{~K}$ combustion of glucose $=3000 \mathrm{~kJ} / \mathrm{mole}$
[Geven : $\left|\Delta S^{\circ}\right| 400 \mathrm{~K}$ combustion of glucose $=180 \mathrm{~J} / \mathrm{mol} \mathrm{K}$]
654. Calculate heat relesed (in Kj) when 2 moles of gaseous methane undergoes combustion in a rigid vessel of volume 50 liters causing a change in pressure from 10 bar to 2 bar at 300K.
[Useful data: $\left.\Delta H_{f} \mathrm{H}_{2} \mathrm{O}=-280 \mathrm{k}\right] / \mathrm{mole}$,
$\Delta H_{f} C O_{2}=-390 \mathrm{~kJ} / \mathrm{mole}$,
$\left.\Delta H_{f} C H_{4}=-390 \mathrm{~kJ} / \mathrm{mole},=-70 \mathrm{~kJ} / \mathrm{mole}\right]$,

- Watch Video Solution

655. Calculate magnitude of change in Gibbs free energy (inkJ) of a reaction occurruong at 500 K :
$2 \mathrm{O}_{3}(\mathrm{~g}) \Leftrightarrow 3 \mathrm{O}_{2}$
When a sample of ozonide oxygen (having average molecular mass of the mixture $=\frac{128}{3}$ is taken at a pressure of 3 bar. Round off your answer to next highest integer.
[Given ΔG_{f}° of $O_{3}(g)=145 k \frac{\mathrm{~J}}{\mathrm{~mole}}$ and $500 \mathrm{Rln} 2=2880.8 \mathrm{~J} / \mathrm{mol}$.]
656. Consider a reaction :
$A(g)+B(g) \Leftrightarrow C(g)+D(g)$
$\mathrm{A}(\mathrm{g}), \mathrm{B}(\mathrm{g})$ and $\mathrm{C}(\mathrm{g})$ are taken in a container at 1 bar partial pressure each and adequate amount of liquid D is added. From the data give below calculate four digit number abcd.

Givin : $\Delta G_{f}^{\circ} A(g)=30 \mathrm{~kJ} / \mathrm{mole}$,
$\Delta G_{f}^{\circ} B(g)=20 \mathrm{~kJ} / \mathrm{mole}$,
$\Delta G_{f}^{\circ} C(g)=50 \mathrm{~kJ} / \mathrm{mole}$,
$\Delta G_{f}{ }^{\circ} D(g)=100 \mathrm{~kJ} / \mathrm{mole}$,
Vapour pressure of $\mathrm{G}(\mathrm{I})$ at $300 \mathrm{~K}=\frac{1}{6}$ bar
(All data at 300 K) where
Equilibrium constant of reaction (i)
Twice the partial pressure of B at equilibrium
Twice the partial pressure of B at equilibrium
Twice the partial pressure of C at equilibrium
657. Calculate enthalpy change (in Kj) when 2 mole of liquid acetic acid undergoes dissociation into $\mathrm{CH}_{4}(\mathrm{~g})$ and $\mathrm{CO}_{2}(\mathrm{~g})$ from the following date :
$\Delta H_{\text {vap }}\left[\mathrm{CH}_{3} \mathrm{COOH}\right](\mathrm{l})=50 \mathrm{~kJ} /$ mole
Resonance energy of $\Delta H_{\text {vap }}\left[\mathrm{CH}_{3} \mathrm{COOH}\right](\mathrm{g})=-50 \mathrm{~kJ} /$ mole
Resonance energy ($\mathrm{kJ} / \mathrm{mole}$): $C-H=400, C-O=350, o=o=500$
$C-C=350, O-H=450, C=O=800, H-H=400$

- Watch Video Solution

658. A substance can exists in two gaseous allotropic forms A and B. If the equibrium mixture at 2500 K consists of 80 mole percent A then calculate
$\left|\Delta G_{\text {reaction }}^{\circ}\right|$ at $2500 K$ for $B(g) \rightarrow A(g)$.
Express answer in kcal. Round off your anwer to next higher interger.

- Watch Video Solution

659. 10 moles of a van der Waals' gas are subjected to a process from $2 L, 300 K$ to $2 L, 350 K$.

$$
C_{v m}=20 \mathrm{~J} / \mathrm{mole}-K \quad b=0.04 \mathrm{~L} / \mathrm{mole}
$$

Given:

$$
C_{ \pm}=30 \mathrm{~J} / \mathrm{mole}-K \quad a=\text { negligible }
$$

Calculate $\Delta H($ in $K J)$.
[Given: $R=0.08$ litre atm $K^{-1} \mathrm{~mol}^{-1}$,
1 litre atm = 100 J]

- Watch Video Solution

660. Combustion of sucrose is used by aerobic organisms for providing energy for the life sustaining process. If all the capturing of energy from the reaction is done through electrical process (non P-V work), then calculate, maximum available energy which can be captured by combustion of 34.2 g of sucrose :
(Given : $\Delta H_{\text {combustion }}$ (sucrose) $=-6000 \mathrm{kJmol}^{-1}$
$\Delta S_{\text {combustion }}=180 \mathrm{j} / \mathrm{K}-\mathrm{mol}$ and bodyntemperature is 300 K)
661. For the followinf set of balanced reactions,
$\mathrm{N}_{2} \mathrm{O}_{5} \mathrm{O}_{2} \rightarrow 2 \mathrm{NO}_{2}+\mathrm{O}_{3} \quad \Delta \mathrm{H}=200 \mathrm{~kJ}$
$\mathrm{NO}_{2}+\mathrm{O}_{2} \rightarrow 2 \mathrm{NO}+\mathrm{O}_{3} \quad \Delta H=20 \mathrm{~kJ}$
10 moles of $\mathrm{N}_{2} \mathrm{O}_{5}$ and 30 moles of O_{2} where taken in a chamber to cause complete conversion of $\mathrm{N}_{2} \mathrm{O}_{5}$ to $\mathrm{NO}_{2} \cdot \mathrm{NO}_{2}$ partially reacts with remaining oxygen such that volume percenfagr of O_{3} is 50% Calculated overall enthaolpy change kJ.

- Watch Video Solution

662. 1.5 moles of a real gas changes its state from state A (3bar, $2 \mathrm{~L}, 200 \mathrm{~K}$) to state $\mathrm{b}\left(3^{-}, 5 L, 300 k\right)$ through isobaric process. It is then taken to state C $\left(4^{-}, 10 L 400 K\right)$ such that $\Delta U_{B C}=127$ Joules. Calculate value of $\Delta U_{A C}$ in joules.
[Given : $C_{p, m}$ ofgas $=4 R$ and $\left.R=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}\right]$

D Watch Video Solution

663. In a particular case of physisorption, magnitude of enthalpy change and entropy change were observed to be $28 \mathrm{~kJ} /$ mole and $100 \mathrm{~J} /$ mole- K . Calculate the minimum temperature (in.$^{\circ} \mathrm{C}$) above which physisorption will become non spontaneous.

- Watch Video Solution

664. 2 moles of an ideal gas A is taken in an adiabatic container fitted with a movable frictionless adiabatic piston always operation at 1 atm. The gas A gets converted to gas B as per the reaction :
$3 A(g) \rightarrow 2 B(g), \quad \Delta H=-k J / m o l e$
If 75% of A associates under the given conditions and initial temperature of teh vessel was 300 K , then calculate the final temperature of the vessel.
[Given: $C_{p, A(g)}=20 \mathrm{~J} /$ Kmole
$C_{p, B(g)}=30 \mathrm{~J} /$ Kmole]
665. Melting point of any solid depends on pressure as $\left(P_{2}-P_{1}\right)=\frac{\Delta H_{\text {fusion }}}{V l-V_{s}} \ln \frac{T_{2}}{T_{1}}$
Calculate freezing point of water $\left(\right.$ in ${ }^{\circ} \mathrm{C}$) at a pressure of 1001 bar if freezing point of water at 1 bar is $0^{\circ} \mathrm{C}$. Molar volume of ice and liquid water is 19.65 ml and 18 ml respectively and increase in enthalpy due to melting is $6600 \mathrm{~J} / \mathrm{mole}$
[In0.975 $=-0.025]$
Instruction: Neglect sign of the temperature, therefore if your answer is
$-8.65^{\circ} \mathrm{C}$,express answer as 9]

- Watch Video Solution

666. Calculate the sum of "code numbers" of all those parameters which are either "path independent" or "stste function".

S.No.	Parameter	Code No.
1.	Standard enthalpy of a reaction	23
2.	Irreversible work	20
3.	Heat exchange at constant volume	45
4.	Heat exchange	132
5.	Heat exchange at constant pressure	81
6.	Entropy of a system	33
7.	Reversible heat exchange	12

- Watch Video Solution

667. A defintie amount of diatomic ideal gas undergoes reversible adiabatic expansion from $10 L, 127^{\circ} \mathrm{C}$ to ${ }^{\prime} V^{\prime} L,-73^{\circ} \mathrm{C}$. The molar heat capacity of gas at constant volume is
$\left[\right.$ Given: $\left.R=8.3 \mathrm{JK}^{-1}, \ln 2=0.7 \cdot \ln 30=3.4\right]$

- Watch Video Solution

668. Consider the following nine phase transformations.
$\mathrm{H}_{2} \mathrm{O}(\mathrm{s}, 1 \mathrm{~atm}, 273 \mathrm{~K}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}, 1 \mathrm{~atm}, 3273 \mathrm{~K})$

$$
\begin{aligned}
& \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}, 1 \mathrm{~atm}, 300 \mathrm{~K}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}, 1 \mathrm{~atm}, 300 \mathrm{~K}) \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}, 1 \mathrm{~atm}, 200 \mathrm{~K}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}, 1 \mathrm{~atm}, 200 \mathrm{~K}) \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}, 0.5 \mathrm{~atm}, 273 \mathrm{~K}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}, 0.5 \mathrm{~atm} 273 \mathrm{~K}) \\
& \mathrm{H}_{2} \mathrm{O}(\mathrm{~s}, 2 \mathrm{~atm}, 273 \mathrm{~K}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}, 2 \mathrm{~atm}, 273 \mathrm{~K}) \\
& \left.\mathrm{H}_{2} \mathrm{O}(\mathrm{l}, 1 \mathrm{~atm}, 400 \mathrm{~K}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g}), 1 \mathrm{~atm}, 353 \mathrm{~K}\right) \\
& \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l}, 1 \mathrm{~atm}, 400 \mathrm{~K}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g}, 1 \mathrm{~atm}, 400 \mathrm{~K}) \\
& \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l}, 1 \mathrm{~atm}, 300 \mathrm{~K}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g}, 1 \mathrm{~atm}, 300 \mathrm{~K}) \\
& \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l}, 2 \mathrm{~atm}, 327 \mathrm{~K}) \rightarrow \mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{~g}, 2 \mathrm{~atm}, 323 \mathrm{~K})
\end{aligned}
$$

Given : $T_{n b p}$ of $C_{6} H_{6}(I)=353 \mathrm{~K}$
Now a four digit number abcd is fined as follows: Digit a It is number of phase transformations for which $\Delta S_{\rightarrow \text { tal }}=0$

Digit b It is number of phase transformations for which $\Delta S_{\rightarrow \text { tal }}<0$
Digit c It is number of phase transfprmation for which $\Delta S_{\rightarrow t a l}>0$ Digit d It is number of phase transformation for which $\Delta H>0$

Determine the number abcd
[Note:If $a=1, b=2, c=3$ and $d=4$, then answeris 1234]

- View Text Solution

669. Find (in terms of a) the amount of energy required to raise the temperature of a substgance from, 3 K to 5 K at constant pressure. At low temperatures, $C_{p}=a T^{3}$. Express your answer after dividing by a.

- View Text Solution

670. Work done in expansion of anideal gas from 4 litre against a constant external preesure of 2.1 atm was used to heat up 1 mole of water at 293 K . If specific heat of water is $4.2 \mathrm{~J} \mathrm{~g}^{-1} \mathrm{~K}^{-1}$, what is the final temperature of water (in K) ?

- View Text Solution

671. For ag, $\mathrm{Cp}\left(\mathrm{JK}^{-1 \mathrm{~mol}^{-1}}\right)$ is given be $24+0.006 T / \mathrm{K}$. Calculate ΔH (in KJ$)$ if 3 mole of silver are raided from $27^{\circ} \mathrm{C}$ to its meltiong point $927^{\circ} \mathrm{C}$ under 1 atm pressure.
672. What amount of ice (in g) will remain when 52 g ice is added to 100 g of water at $40^{\circ} \mathrm{C}$? Specific hate of water is $1 \mathrm{cal} / / \mathrm{g}$ and latent heat of fusion of ice is $80 \mathrm{cal} / \mathrm{g}$ Round off your answer to next interger.

- View Text Solution

673. A sample of an ideal gas is expanded $1 m^{3}$ to $3 m^{3}$ in a reversible process for which $P=K V^{2}$, with $K=6 \mathrm{bar} / \mathrm{m}^{6}$. What is work done by the gas (in kJ) ?

- Watch Video Solution

674. Find out the heat evolved in combustion if 112 litre (at 1 atm, 273 K) of water gas (mixture of equal volume of $\mathrm{H}_{2}(\mathrm{~g})$ and $\mathrm{CO}(\mathrm{g})$) is combusted with excess oxygen.
$\mathrm{H}_{2}(\mathrm{~g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g}), \Delta=-241.8 \mathrm{~kJ}$
$\mathrm{CO}(\mathrm{g})+\frac{1}{2} \mathrm{O}_{2}(\mathrm{~g}) \rightarrow \mathrm{CO}_{2}(\mathrm{~g}), \Delta=-283 \mathrm{~kJ}$
675. Calculate $\Delta H^{\circ}\left(\right.$ in $\left.\mathrm{Jmol}^{-1}\right)$ for the reaction
$\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{C}(\mathrm{g})+2 \mathrm{H}(\mathrm{g})+2 \mathrm{Cl}(\mathrm{g})$.
The average bond enthalpie of $C-H$ and $C-C 1$ bonds are $414 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

676. Calculate the enthalpy change (ΔH) in KJmol^{-1}, of the follwing reaction
$2 \mathrm{C}_{2} \mathrm{H}_{2}(\mathrm{~g})+5 \mathrm{O}_{2}(\mathrm{~g}) \rightarrow 4 \mathrm{CO}_{2}(\mathrm{~g})+2 \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$
givin average bond enthalpies of various bonds i.e.,
$C-H, C=C, O=O, O-$ Has414, $814,499,724$ and $\begin{gathered} \\ 640 \\ \mathrm{~kJ} \quad \mathrm{~mol}^{\wedge}(-1)\end{gathered}$
respectively. Express magnitude only.

- Watch Video Solution

677. Calculate free energy change for the reaction:
$\mathrm{H}_{2}(\mathrm{~g})+\mathrm{CI}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}-\mathrm{CI}(\mathrm{g})$ by using the bond energy and entropy data. Bond energies of $H-H, C I-C I$, and $H-C I$ bonds are 435, 240, and $430 \mathrm{kJmol}^{-1}$, respectively. Standard entropies of $\mathrm{H}_{2}, \mathrm{CI}_{2}$, and HCI are $130.59,222.95$, and $186.68 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$, respectively.

- Watch Video Solution

678. The increase in entropy of 1 kg of ice at 200 K which is heated to 400 K (super heated steam) at constant atmospheric pressure, will be :

Given that : $C_{p}($ ice $)=2.09 \times 10^{3} \mathrm{~J} / \mathrm{kg}$ degree,
$C_{p}($ water $)=4.18 \times 10^{3} \mathrm{~J} / \mathrm{kg}$ degree,
$C_{p}($ steam $)=2.90 \times 10^{3} \mathrm{~J} / \mathrm{kg}$ degree,
$L($ ice, 273 K$)=3.34 \times 10^{5} \mathrm{~J} / \mathrm{kg}$.
$L($ water, 273 K$)=22.6 \times 10^{5} \mathrm{~J} / \mathrm{kg}$.
Express your answer (inJK ${ }^{-1}$) by rounding off to the nearset integer.

- Watch Video Solution

679. Calculate the amount of heat evolved during the complete combustion of 100 ml liquid benzene from the following data :

18 gm of graphite on complete combustion evolve 590 kJ heat
15889 kJ heat required to dissociate all the molecules of 1 liter water into H_{2} and O_{2}

The heat of formation of liquide benxene is $50 \mathrm{~kJ} / \mathrm{mol}$
Density of $\mathrm{C}_{6} \mathrm{H}_{6}(\mathrm{l})=0.87 \mathrm{gm} / \mathrm{ml}$

- Watch Video Solution

680. For the real gases reaction,
$2 \mathrm{CO}(\mathrm{g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{CO}_{2}(\mathrm{~g}), \Delta \mathrm{H}=-560 \mathrm{~kJ}$. In 10 litre rigid vessel at 500 K the initial pressure is 70 bar and after the reaction it becomes 40 bar. The change in internal energy is :

- Watch Video Solution

681. In a constant volume calorimeter, 3.5 g of a gas with molecular weight 28 was burnt in excess oxygen at 298.0 K . The temperature of the calorimeter was found to increase from $298.0 \mathrm{~K} \rightarrow 298.45 \mathrm{~K}$ due to the combustion process. Given that the heat capacity of the calorimeter is $2.5 \mathrm{kJK}^{-1}$, find the numerical value for the enthalpy of combustion of the gas in kJmol^{-1}

- Watch Video Solution

682. Fixed amount of an ideal monoatomic gas contained in a seeled rigid vessel ($V=24.6$ litre) at 1.0 bas is change in Gibb's energy (in Joule) if entropy of gas $S=10+10^{-2} T(J / K)$

- Watch Video Solution

683. At298K, $\Delta H_{\text {combustion }}^{\circ}$ (sucrose) $=-5737 \mathrm{~kJ} / \mathrm{mol}$ and
$\Delta G_{\text {combustion }}^{\circ}$ (sucrose) $=-6333 \mathrm{~kJ} / \mathrm{mol}$. Estimate additional non-PV work
that is obtainced by raising bemperature to 310 K . Assume $\Delta_{r} C p=0$ for this temperature change.

- Watch Video Solution

684. What is the total number of intensive properties in the giben list ?

Internel energy

Pressure

Molar entropy

Volume

Density

Boiling point

Molality

- Watch Video Solution

685. For the reaction
$2 A(g)+3 B(l) \rightarrow C(g)+4 D(l), \Delta H=300 \mathrm{cal} / / \mathrm{mol}$

Calculate ΔU (in calories) of reaction when 3moles of $A(\mathrm{~g})$ react with 4 moles of $\mathrm{B}(\mathrm{I})$ at $27^{\circ} \mathrm{C} .(R=2 \mathrm{cal} / / \mathrm{mol}-\mathrm{K})$

- Watch Video Solution

686. One mole of an ideal monoatomic gas at $27^{\circ} \mathrm{C}$ undergoes the process in which $T \alpha V^{3}$. Then calculate the heat absorbed (in calories) when gas doubles it's volume ($R=2 \mathrm{cal} / / \mathrm{mol}-K$)

- Watch Video Solution

687. A certain gas in expanded from (1L, 10atm) to (4L, 5atm) against a constant external pressure of 1 atm . If the initial temperature of gas is 300 K and heat capacity for the process is $50 J^{\circ} \mathrm{C}^{-1}$, the enthalpy change during the process is: (use: $1 L-a t m=100 J$)

- Watch Video Solution

688. How many times volume of diatomic gas should be expanded reversibly and adiabatically in order to reduce it's RMS velocity to half.

- Watch Video Solution

689. Number of correct statements are :
$\Delta U=n C_{V m} \Delta T$ is applicable for ideal gas undergoing reversible process but not irreversibe (No chemical and phase change)
$\Delta S=n C_{V m} \Delta T$ is applicable for ideal gas undergoing reversible process but not irreversible (No chemical and phase change)
$\Delta S=n C_{V m} \ln \frac{T_{2}}{T_{1}}+n R \ln \frac{V_{2}}{V_{1}}$ is applicable for ideal gas undrgoing reversible as well as irreversibel process (No chemical and phase change)
$\Delta H=\Delta U+\Delta(P V)$ isapplicable for chemical and phase change carried out reversibly or irreversibly
$P V^{\gamma}=$ constant for reversible and irreversible adiabatic process involving ideal gas.
690. At $0^{\circ} \mathrm{C}$ water and ice are at equilibrium at 1 atm pressure. The value of $\Delta H_{\text {fusion }}$ for ice is (in $\mathrm{kJ} /$ mole). Give answer excluding decimal places. Given: $\Delta S_{\text {freezing }}$ of water at 1 atm and 273 K is $-20 \mathrm{JK}^{-1}$)

- Watch Video Solution

691. Find DeltaG ($\mathrm{J} / \mathrm{mol}$) for the reaction at 300 kPa and $27^{\circ} \mathrm{C}$ when all gases are in stoichimetric ratio of moles. $\mathrm{N}_{2} \mathrm{O}_{4}(\mathrm{~g}) \rightarrow 2 \mathrm{NO}_{2}(\mathrm{~g})[\ln 2=0.7]$

Given : $\Delta G_{f}^{\circ}\left(N_{2} O_{4}\right)=100 \mathrm{~kJ} / \mathrm{mol}$
$\Delta G_{f}^{\circ}\left(N O_{2}\right)=50 \mathrm{~kJ} / \mathrm{mol}$
$R=8 \mathrm{~J} / \mathrm{mol}-K$

- Watch Video Solution

692. Calculate the electron affinity of Br from following data :

Lattice energy of $\mathrm{NaBr}=-736 \mathrm{~kJ}$ mole ${ }^{-1}$
B. E. ${ }_{(\mathrm{Br} \cdot \mathrm{Br})}=192 \mathrm{~kJ} \mathrm{~mole}^{-1}$
$\Delta H_{f(\mathrm{NaBr})}=-376 \mathrm{kJmole}^{-1}$
(I. E. $)_{N a}=490 \mathrm{~kJ} \mathrm{~mole}^{-1}$
$\Delta H_{298 K}$ of sublemation of $\mathrm{Na}=109 \mathrm{~kJ} \mathrm{~mole}^{-1}$

- Watch Video Solution

693. At 100 K from tata,
$\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{NH}_{3}(\mathrm{~g}) \Delta \mathrm{H}^{\circ}=-123.77 \mathrm{kJmole}^{-1}$
Substance $\begin{array}{lll}\mathrm{N}_{2} & \mathrm{H}_{2} & \mathrm{NH}_{2}\end{array}$
Cp/R $\quad 3.5 \quad 3.54$
Calculate the heat of formation of NH_{3} to 300 K . writer your answer, excluding the decimal places.

- Watch Video Solution

694. Calculate the proton affinity of $\mathrm{NH}_{3}(\mathrm{~g})$ from the following data (in kJ/mol):

ΔH° dissociation: $\mathrm{H}_{2}(g)$	$=436$
ΔH° formation: $\mathrm{NH}_{3}(\mathrm{~g})$	$=-46$
Lattic energyof $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$	$=-683$
Ionisation enorgy of	$=130$
Electron affinity ofCl	$=380$
ΔH° dissociation: $\mathrm{Cl}_{2}(g)$	$=240$
ΔH° formation of $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$	$=-314$

- View Text Solution

695. Determine enthalpy change for,
$\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}+\mathrm{H}_{2(\mathrm{~g})} \rightarrow \mathrm{C}_{2} \mathrm{H}_{6(\mathrm{~g})}+\mathrm{CH}_{4(\mathrm{~g})}$
at $25^{\circ} \mathrm{C}$ using heat of combustion values under standard condition.
Compounds $\quad H_{2(g)} \quad \mathrm{CH}_{4(\mathrm{~g})} \quad \mathrm{C}_{2} H_{6(\mathrm{~g})} \quad C_{\text {(Graphite) }}$
$\Delta H^{\circ} \mathrm{inkJ} / \mathrm{mol}-285.8-890.0 \quad-1560.0 \quad-393.5$
The standard heat of formation of $\mathrm{C}_{3} \mathrm{H}_{8(\mathrm{~g})}$ is $-103.8 \mathrm{kJmol}^{-1}$.

- Watch Video Solution

696. The commercial production of water gas utilizes the reaction under standard conditions: $\mathrm{C}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \rightarrow \mathrm{H}_{2}+\mathrm{CO}$. The heat required for this
endothermic reaction may be supplied by adding a limited amount of air and burning some carbon to CO_{20}. How many gram of carbon must be burnt to CO_{2} to provide enough heat for the water gas conversion of 100 g carbon ? Neglect all heat losses to the environment. Also ΔH_{f}° of $\mathrm{CO}, \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$ and CO_{2} are -110.53,-241.81 and $-393.51 \mathrm{~kJ} / \mathrm{mol}$ respectively.

- Watch Video Solution

697. Calculate the heat of neutralisation from the following data:

200 mL of 1 MHCI is mixed with 400 mL of 0.5 MNaOH . The temperature rise in calorimeter was found to be $4.4^{\circ} \mathrm{C}$. Water equivalent of calorimeter is $12 g$ and specific heat is 1 calmL ${ }^{-1}$ degree ${ }^{-1}$ for solution.

- Watch Video Solution

698. Find bond enthalpy of $\mathrm{C}=\mathrm{O}$ (in $\mathrm{kJ} / \mathrm{mol}$) using following information :
$\Delta H_{\text {atomisation }}[C(s)]=700 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{f}\left[\mathrm{CO}_{2}(\mathrm{~g})\right]=-400 \mathrm{~kJ} / \mathrm{mol}$
$B E_{o=0=500} \mathrm{~kJ} / \mathrm{mol}$
Resonance energy of $\mathrm{CO}_{2}=-150 \mathrm{~kJ} / \mathrm{mol}$

- Watch Video Solution

699. 1000 gm water is heated from $27^{\circ} \mathrm{C}$ to $47^{\circ} \mathrm{C}$ at a constant pressure of 1 bar. The coefficient of volume expansion of water is $0.002 /{ }^{\circ} \mathrm{Cand}$ the molar volume of water at $0^{\circ} \mathrm{C}$ is $18.00 \mathrm{~cm}^{3} / \mathrm{mol}$. The magnitude of work done (in J) by water is:

- Watch Video Solution

700. Use the following data to answer the question below :

Calculate the resonance energy of anthracene,

- Watch Video Solution

701. What is the $S^{\circ}\left(\mathrm{OH}^{-}\right)$(in cal $/ \mathrm{mol} \mathrm{K}$) at 300 K ?

Given : $K \omega\left(\mathrm{H}_{2} \mathrm{O}\right)=10^{14}$,
$\Delta H_{\text {neut }}\left(H^{+}+\mathrm{OH}^{-}\right)=-13.5 \mathrm{kcal}$
Fill OMR excluiding decimaol places.

- Watch Video Solution

702. The external pressure 2 atm is applied on frictionless movable piston, fitted in a vessel containing 100 g of $\mathrm{X}(\mathrm{g})$ at 450 K . now heat is sulplied keeping pressure constant till 40 g of Xis evaporated to to from
$\mathrm{X}(\mathrm{g})$ at 500 K (boinling poing). Calculate change in internal (ΔU) energy in kJ for overall process. Assume vapour of $\mathrm{X}(\mathrm{I})$ behaves like an ideal gas.

Given : Molar hect capacity of $\mathrm{X}(\mathrm{I})=60 \mathrm{~J} / \mathrm{mol} \mathrm{K}: \Delta H_{\text {vaporisation }}=30 \mathrm{~kJ} / \mathrm{mol}$, $\Delta H_{\text {vaporisation }}=30 \mathrm{~kJ} / \mathrm{mol}, \mathrm{R}=8.3 \mathrm{~J} / \mathrm{mol}-\mathrm{K}$

At weight of $X=20 \mathrm{~g} / \mathrm{mol}$.

- View Text Solution

703. Some amount of diatomic van der walls' gas is kept in a rigid container of volume 20 liter and subjected to change in temperature from 300 K to 400 K . If 30 kacl of heat is required and enthalpy change of the process is observed to be $\frac{310}{9}$ kacl, then estimate the number of moles of the gas.
[Given : $b=0.1 \mathrm{~L} \mathrm{~mol}^{-1}, \mathrm{a}=1.25 \mathrm{~atm}-\mathrm{L}^{2} / \mathrm{mol}^{2}$]
704. A container is separated into two 1 litre compartments by a piston of negligible mass as shown below. In lower compartment 0.1 bar pressure and the other compartment is empty. Now the stoppers are removed so that the gas expands to 2 litre. Heat is supplied to the gas so that finally pressure of gas equals to 0.1 bar. Calculate ΔH of the process in joule.
[1barliter = 100J]

- View Text Solution

705. 2 moles of an ideal gas is compressed from (1 bar, 2 L) to 2 bar isothermally. Calculate magnitude of minimum possible work in change (in joules). (Given : 1 bar L = $100 \mathrm{~J}, \ln 2=0.7$)
706. Ram joined Kota test series, where he was asked to calculates $\Delta S_{\text {sys }}$ for a process as described below.

A diathermic container (containing an ideal gas) fitted with a piston at equilibrium (without any topper) and has initial volume 600 liter. Now the external pressure is suddenly reduced to 1 bar and allowed the piston to move upward isothermally. In this process, system absorb 600 kJ heat. He calculated $\Delta S_{\text {sys }}=2 \mathrm{~kJ} / / K$ but was awarded zero marks. To identify his mistake he contacted his Kota feiend Shyam and explained his problem.When shyam asked how Ram calculated $\Delta S_{\text {sys }}$, Ram said simple !by q / T. If you are Shyam, then help Ram in getting crrect answer (in kJ/K). [$\ln 11=2.4]$

- View Text Solution

707. Mark as true or false :

Find the number of false statements.

- View Text Solution

708. Calculate the equilibrium pressure (in Pascal) for the conversion of graphite to diamong at $25^{\circ} \mathrm{C}$. The densities of graphite and diamond
may be takes to be 2.20 and $3.40 \mathrm{~g} / / \mathrm{cc}$ respectively independent of pressure. (Express your answer in scientific notation $\mathrm{x} \times 10 \gamma$ and write the value of y.)
[Given : $\Delta G_{298}^{\circ}\left(C_{\text {graphite }} \rightarrow C_{\text {diamond }}\right)=2900 \mathrm{~J} / \mathrm{mol}$]

- View Text Solution

709. White phosphorus is a tetra-atomic solid $P_{4}(\mathrm{~s})$ at room temperature.

find bond enthalpy (P-P) in $\mathrm{kJ} / / \mathrm{mol}$.

Given : $\Delta H_{\text {sublimation }}$ of $P_{4}(\mathrm{~s})=61 \mathrm{~kL} / / \mathrm{mol}$
DeltaH_("atomisation") of $\left.P_{4}(\mathrm{~s})=1321 \mathrm{~kJ} / / \mathrm{mol}\right]$

- Watch Video Solution

710. molar standard enthalpy of combusion of ethanol is -1320 kJ , malor standard enthalpy of formation of water and $\mathrm{CO}_{2}(\mathrm{~g})$ are $-286 \mathrm{~kJ} / / \mathrm{mole}$ and $-393 \mathrm{~kJ} / /$ mole respectively. Calculate the magnitude of molar standard enthalpy of formation of ethanol.

- Watch Video Solution

711. $1 L N_{2}(\mathrm{~g})$ and $3 L H_{2}(\mathrm{~g})$ at 1 bar pressurre is allowed to react at constant pressure. The temperature of 100 gm water surrounding reaction vessel rose by $\left(\frac{1}{14}\right){ }^{\circ} \mathrm{C}$ find the magnitude of change in internal energy in joules for the process in reaction vessel. [Specific heat of $\mathrm{H}_{2} \mathrm{O}(\mathrm{I})=4.2 \mathrm{~J} /{ }^{\circ} \mathrm{C} / \mathrm{g}$, 1litre atm=$\left.=100 \mathrm{~J}\right]$
712. $A B, A_{2}$ and B_{2} are diatomic molecules.If the bond enthalpy of $A_{2}, A B$ from A_{2} and B_{2} od $-100 \mathrm{~kJ} / \mathrm{mol}$, what is the bond enthalpy of $A_{2} \mathrm{inkJ} / \mathrm{mol}$. ?

- Watch Video Solution

713. Calculate the $\Delta H_{\text {vaporization }}\left[\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{l})\right]$ in $\mathrm{kJ} / \mathrm{mol}$. Given data :

$\Delta H_{\text {molution }}\left[\mathrm{KF} \cdot \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{s})\right]$ in glacial acotic acid	-3kJruode
$\Delta H_{\text {solution }}[\mathrm{KP}(\mathrm{s})]$ in glacial acetic acid	-35k/meale
The atrength of H-bond between F(g) and $\mathrm{CH}_{3} \mathrm{COOH}(\mathrm{g})$	+ 46 kWheole
$\begin{aligned} & \text { AH OKT }^{\mathrm{CH}} \mathrm{CH}_{3} \mathrm{COOH}(\mathrm{~s}) \\ &\left.\mathrm{K}^{+}(\mathrm{g})+\mathrm{CH}_{3} \mathrm{COOH} \cdot \mathrm{~F}(\mathrm{~g})\right] \end{aligned}$	+734 klymede
Lattice enthalpy of KFF(s)	+ $797 \mathrm{~kJ} /$ mole

714. For the given real gas reaction,
$2 A(g)+B(g) \rightarrow D(g)$
carried out in a 10 liter rigid vesses, the initial pressure is 50 bar which decreases to 20 bar, during the course of reaction. If heat liberated in the reaction is 400 kJ then what is the change in magnitude of internal energy of the reaction (in kJ) ?

- Watch Video Solution

715. Calculate DeltaH (in kcal) for the following phase transformation:

A (s,1 bar, 200K) rarr A (g, 1 bar ,200 K)
Standard melting poing of $\mathrm{A}=200 \mathrm{~K}$
Standard boioling poing of $\mathrm{A}=300 \mathrm{~K}$
Standard boiling ping of $\mathrm{A}=300 \mathrm{~K}$
Latent heat of fusion of A at $200 \mathrm{~K}=60 \mathrm{cal} / \mathrm{g}$
Latent heat of vaporisation of A at $300 \mathrm{~K}=410 \mathrm{cal} / \mathrm{g}$ Molar mass of $\mathrm{A}=$
$50 \mathrm{~g} / \mathrm{mole}$
$C_{V m}$ of $\mathrm{A}(\mathrm{s})=5 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$
$C_{V m}$ of $\mathrm{A}(\mathrm{I})=10 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}$
$C_{V m}$ of $\mathrm{A}(\mathrm{g})=3 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}$
$R=2 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}$

- View Text Solution

716. For a reaction : $2 A(s)+B(g) \rightarrow 3 C(l)$
standard entropy change of reaction is $2 \mathrm{~kJ} / \mathrm{mol}-\mathrm{K}$ and standard enthalpy of combustion of A, B and C are $-100,-60,285 \mathrm{~kJ} / \mathrm{mol}$ respectively, them find the maximum useful work that can be obtained at $27^{\circ} \mathrm{C}$ and 1 bar pressure for reaction (in $\mathrm{kJ} / \mathrm{mol}$).

- Watch Video Solution

717. The heat of neturalisation between weak acid (HNC) and strong base (NaOH) is $(-56.1) \mathrm{kJ} / \mathrm{mole}$. The neutralisation between strong acid (HCl) and strong base (NaOH) is $(-57.3) \mathrm{kJ} / \mathrm{mol}$. If the weak acid (HNC) is 80% ionised in the above solution then calculate the heat of ionisation (in $\mathrm{J} / \mathrm{mol}$) for 100% ionisation of HCN in the above solution.

- Watch Video Solution

718. The increase in Gibbs' free energy in (kJ) of 20 g of water (density $=\mathrm{gcm}^{-3}$), when the pressure is increased (at constant temperature) from 1 bar to 2001 bar , is :

- Watch Video Solution

719. The entropy change of orgon is given to a good approximation by the expression :
$S_{m} / \mathrm{JK}^{-1} \mathrm{~mol}^{-1}=36+20 \ln T / K$
Calculate the change in Gibbs free energy of one mole of argon gas when it is heated from 300 K to 400 K at constant pressure. Express your answer excluding sing and decimal places.

- Watch Video Solution

720. Predict the sign of q, w,DeltaU and DeltaH for given processes.

S.No.	Process	Sign of			
	\boldsymbol{q}	\boldsymbol{w}	$\Delta \boldsymbol{U}$	$\Delta \boldsymbol{H}$	
1.	Melting of solid benzene at 1 atm and normal melting point.				
2.	Melting of ice at 1 atm and $0^{\circ} \mathrm{C}$.				
3.	Adiabatic expansion of one mole of ideal gas.				
4.	Adiabatic expansion of ideal gas into vacuum.				
5.	Isothermal expansion of an ideal gas.				
6.	Heating of perfect gas at constant P.				
7.	Cooling of perfect gas at constant volume.				

Hence, find
number process for which at least one of $q, \omega . \Delta U, \Delta H$ are zero

- View Text Solution

721. Predict the sign of q, w and ΔU for given process.

Hence, find number of process for which at least one of $q, w, \Delta U, \Delta H$ are zero.

- View Text Solution

722. In how many option (s), enthalpy change is marked incorrectly?
$\mathrm{CuSO}_{4}(\mathrm{~s})+5 \mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(\mathrm{s}), \Delta_{\text {solution }} \mathrm{H}^{\circ}\left[\mathrm{CuSO}_{4}(\mathrm{~s})\right]$
$2 \mathrm{NH}_{3}(\mathrm{~g}) \rightarrow \mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}), \mathrm{H}_{\text {atm }}^{\circ}\left[\mathrm{NH}_{3}\right]$
$\mathrm{MgCl}_{2}(s) \rightarrow \mathrm{Mg}(\mathrm{s})+\mathrm{Cl}_{2}(g), \Delta_{\text {lattice }} \mathrm{H}^{\circ}\left[\mathrm{MgCl}_{2}(s)\right]$
$\frac{1}{4} P_{4}(g) \rightarrow P(g), \Delta_{P-P} H^{\circ}$

- Watch Video Solution

723. A reversible cyclic process involves 6 steps. In step -1 and 3 system absorbs $500,800 \mathrm{~J}$ of heat from a heat reservoir at temperature 250 K and 200 K respectively. Step 2,4,6 are adiabatic such that the temperature of one reservior changes to that of next. Total work done by the the system in whole cycle is 700 J . Find the temperature during step 5 if it exchanges heat from a reservoir at temperature T_{5}

D View Text Solution

724. A Magic solution was prepared by a Kota Teacher such that :
$A(g)+10(a q) \rightarrow A .10(a q), \quad \Delta H=-10 \mathrm{~kJ} / \mathrm{mol}$
[Magic solution]
For 1 mole of $\mathrm{H}_{2} \mathrm{O}$ added to this Magic solution enthalpy of dilution is
$-5 \mathrm{~kJ} / \mathrm{mol}$, for 2 nd mole it becomes- $-\frac{5}{2} \mathrm{~kJ} / \mathrm{mol}$, for 3 rd mole it becomes $-\frac{5}{2^{2}} \mathrm{~kJ} / \mathrm{mol}$ and so on.

To mark the celebration rank-1 of IIt JEE-2016, KOTA CLASSES asked the top ranker to add a very large amount of water to this Magic solution. The hat energy released is 40% converted to useful work of buring fire crackers for celebration. Find the magnitude of useful work obtained (in $\mathrm{kJ} / \mathrm{mol}$) from such Magic solution containing 1 mole of A .

- View Text Solution

725. An ideal monoatomic gas following the process $\frac{P}{V^{2}}=$ constant will have heat capacity $\frac{11 R}{X}$. Find the value of X .

- Watch Video Solution

726. The heat of combustion of C (graphite) and $\mathrm{CO}(\mathrm{g})$ are
$-390 \mathrm{~kJ} / \mathrm{mole}$ and $-280 \mathrm{~kJ} / \mathrm{mole}$ respectively.
$\mathrm{CO}(\mathrm{g})+\mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{COCl}_{2}(\mathrm{~g}) \Delta \mathrm{H}=+208 \mathrm{~kJ}$
Calculate heat of formation (in $\mathrm{kJ} / \mathrm{mole}$) of $\mathrm{COCl}_{2}(\mathrm{~g})$ (in kJ/mole)

- Watch Video Solution

727. $2 A(\mathrm{~s}) \Leftrightarrow B(\mathrm{~g})+2 C(\mathrm{~g})+3 D(g)$

Total pressure developed in closed container by decomposition of A at equibrium is 12 atm at $727^{\circ} \mathrm{C}$. Calculate ΔG° (in kcal), of the reaction at $727^{\circ} \mathrm{C}$.
($R=2 \mathrm{cal} / \mathrm{mole}-K$, In2 $=0.7$, In = 1.1) Round off your answer to integer (without sign).

- Watch Video Solution

728. If enthalpy of neutralisation of a weak acid with strong base is -10.87 kacl mole then calculate enthalpy of ionisation of weak acid.
[Given : $\left.\mathrm{H}^{+}(a q)+\mathrm{OH}^{-}(a q) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \quad \Delta H=-13.7 \mathrm{kcal}\right]$

- Watch Video Solution

729. 3 moles of an ideal gas is heated and compressed simultaneously from $300 \mathrm{~K}, 1$ atm to $400 \mathrm{~K}, \mathrm{P}$ atm. If change in entropy of gas is $-3.3 \mathrm{cal} / \mathrm{K}$ then calculate value of P (in atm).
$C_{P}=\frac{7 R}{2}, R=2 \mathrm{cal} / \mathrm{mole}-K$
$[\ln 2=0.7, \ln 3=1.1, \ln 5=1.6]$

- Watch Video Solution

730. Certain amount of an ideal gas is expanded isobarically to double its volume. Work obtained in the process is -20 kJ . If same expantion in volume is carried out isothermally irreversibly in single step, calculate the magnitude of work (in kJ).

- Watch Video Solution

731. For the reaction
$A(g)+2 B(s) \rightarrow C(l)+D(g), \quad \Delta H=-40 \mathrm{~kJ} / \mathrm{mole}$

10 mole of each A and B are mixed in a closed rigid container and allowed to react at 300 K . Calculate the heat transfer (in kJ) occurs in the process. [Use : $R=8.3 \mathrm{~J} / \mathrm{K}-\mathrm{mole}$]

- Watch Video Solution

732. One mole of an ideal gas is heated from 300 K to 700 K at constant pressure. The change ininternal energy of the gas for this process is 8 kJ . What would be the change in enthalpy (in kJ) for the same process? ($R=8 \mathrm{~J} /$ mole $-K)$

(-) Watch Video Solution

733. A substance A has a normal melting point of 250 K of 250 K and normal boiling point 300 K. Using this information and other information given below calculate $\Delta S_{\text {sublimation }}$ at $250 \mathrm{~K}[\mathrm{in} \mathrm{cal} / \mathrm{K}-\mathrm{mole}]$ Information -1: Entropy of vapourisation at 300 K is $21 \mathrm{cal} / \mathrm{K}$-mole Information-2 : Latest heat of fusion at 250 K is $2.5 \mathrm{kcal} / \mathrm{mole}$ Information -3: C_{p} is liquid A and gaseous A is

20cal/K moleand10cal/K - mole
Information -4: $\operatorname{In} \frac{6}{3}=0.18$
[Round off your answer to nearest integer.]

- View Text Solution

734. Calculate ΔH (in atm-litre) for a real gas undergoing a change from (10 L, 20 atm) to ($50 \mathrm{~L}, 40 \mathrm{~atm}$)

Given : $\left(\frac{\partial H}{\partial P}\right)_{V}=10$ litre, $\left(\frac{\partial H}{\partial V}\right)=5 \mathrm{~atm}$

- Watch Video Solution

735. An ideal gas undergoes a process such that $P \propto \frac{1}{T}$. If molar heat capacity for this process is $C=33.24 \mathrm{~J} / \mathrm{mole}-\mathrm{K}$, then calculate A . Where $A=2 \gamma$ and γ is adiabatic index of gas.
($R=8.31 \mathrm{~J} / \mathrm{mole}-\mathrm{K}$)

- Watch Video Solution

736. A Carnot engine converts one-fifth of heat given into work. If temperature of sink is reduced by 80°, efficiency gets doubled. If temperature of sourceand sink is T_{1} and T_{2} respectively then calculate value of $\frac{T_{1}-T_{2}}{10}$

- Watch Video Solution

737. One mole of an ideal monoatomic gas at 1 atm, 300 K undergo a process in which pressure of gas is 8 atm then calculate W (in cal).

- Watch Video Solution

738. For the reaction: $2 A(g)+B(g) \rightarrow C(g)$

Change in enthalpy is $30 \mathrm{kcal} / \mathrm{mole}$ whereas ΔU is $32 \mathrm{kcal} /$ moleat certain temperature. Calculate the work done (in kcal) when 4 mole of A reacts with excess of B at constant pressure and same temperature.
739. If enthalpy change for hydrogention of ethylene is $-132 \mathrm{~kJ} / \mathrm{mole}$ and enthalpy of formation 1,3-butadience (g) and butane are 115 kJ and $-140 \mathrm{~kJ} /$ mole respesctively then calculte resonance energy of 1,3-budadiene (in kJ).

- Watch Video Solution

740. How much energy (in joule) can be released during the following reaction if 11.2 ml of $\mathrm{B}_{2} \mathrm{H}_{6}(\mathrm{~g})$ and 67.2 ml of $\mathrm{Cl}_{2}(\mathrm{~g})$ at 1 atm , are allowed to react as

$$
B_{2} \mathrm{H}_{6}(\mathrm{~g})+6 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{BCl}_{3}(\mathrm{~g})+6 \mathrm{HCL}(\mathrm{~g}), \quad \Delta H=-184 \mathrm{~kJ} / \mathrm{mole}
$$

- Watch Video Solution

741. 1 mole of CaCO_{3} is heated in a closed container fitted with a frictionless movable piston at 1 atm, 300 K . Calculate the magnitude of
work obtained (in cal)
[Use : $R=2 \mathrm{cal} / \mathrm{K}-\mathrm{mole}$]

- Watch Video Solution

742. One mole of an ideal gas at $27^{\circ}, 8.21 \mathrm{~atm}$ absorbs 420 cal of heat during a reversible isothermal expansion. Calculate the final volume (in litre) of gas. [Use: $R=0.0821$ litre-atm/K-mole]

- Watch Video Solution

743. Molar enthalpy of vaporisation of water at
$1 \mathrm{~atm}, 500 \mathrm{~K}$ is $1100 \mathrm{cal} / \mathrm{mole}$. If 2 mole of water is vapourised in a closed rigid container at 500 K then calculate the heat required.
(Assume ideal behaviour of $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$)

- Watch Video Solution

744. Which of the following are intensive properties?

Boiling point

Melting point

Heat capacity

Volume

Enthalpy

Mass

Internal energy

Molar volume

- Watch Video Solution

745. For a reaction $2 A(g)+3 B(g) \rightarrow 2 C(g)+D(g)$, calculate the magnitude of $\Delta H_{400 K}^{\circ}$ of the reaction from the given data.
$\Delta H_{f}^{\circ} A=\left(200+10^{-2} T^{2}\right) J$
$\Delta H_{f}^{\circ} B=\left(100+2 \times 10^{-3} T^{2}\right) J$
$\Delta H_{f}^{\circ} C=\left(200+2 \times 10^{-2} T^{2}\right) J$
$\Delta H_{f}^{\circ} D=\left(100+2 \times 10^{-3} T^{2}\right) J$
Express your answer in $k J$ and round off to nearest integer.

- Watch Video Solution

746. 12.5 millinmole of $\mathrm{NH}_{4} \mathrm{NO}_{3}$ dissolved in enough water to make 25.0 mL of solution. The initial temperature is $25.8^{\circ} \mathrm{C}$ and temperature after solid dissolves is $21.8^{\circ} \mathrm{C}$. Calculate the enthalpy of solution for the $\mathrm{NH}_{4} \mathrm{NO}_{3}(\mathrm{~s})$ in kcal/mole.
[Given : Density of the solution $=1 \mathrm{gm} / \mathrm{ml}$ and heat capacity of solution $\left.\frac{1 \mathrm{cal}}{\mathrm{gm}-\mathrm{K}}\right]$

- Watch Video Solution

747. A gas expands from a valume of $3 \mathrm{dm}^{3}$ to $30 \mathrm{dm}^{3}$ against a constant pressure of 7 bar at initially $27^{\circ} \mathrm{C}$. The work done during expansion is used to heat, 50 moles of water. Calculate rise in temperature (K) of water.
$\mathrm{H}_{2} \mathrm{O}$ as $4.2 \mathrm{~J} /$ gram-K and 1 litre bar $=100 \mathrm{~J}$)

- Watch Video Solution

748. Calculate ΔG (in bar-L) when a definite mass of a monoatomic ideal gas at 1 bar and $27^{\circ} \mathrm{C}$ is expanded adiabatically against vacuum from 10 L to $20 \mathrm{~L}(\ln 2=0.7)$.

- Watch Video Solution

749. In how many of the following processes, heat of neutralization released is less than 13.7 kcal (if 1gram equivalent of each is taken)?
$H C L(a q)+N A O H(a q)$
$\mathrm{HI}(\mathrm{aq})+\mathrm{NaOH}(a q)$
$\mathrm{HCN}(\mathrm{aq})+\mathrm{KOH}(a q)$
$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COOH}(a q)+\mathrm{NaOH}(a q)$
$\mathrm{HCl}(\mathrm{aq})+\mathrm{NH}_{4} \mathrm{OH}(\mathrm{aq})$
750. How much heat (in kJ) should be supplied to a rigid conducting vessel of volume V litres, so that 0.5 mole of C is formed in the reaction :
$A(g)+B(g) \rightarrow C(g), \Delta H=+7.6 k J$
Take $R=8 \mathrm{~J} / \mathrm{K}$ mole, $\mathrm{T}=300 \mathrm{~K}$
751. Find the number of Falsestatements:

D View Text Solution

752. A gaseous reaction $A(g) \Leftrightarrow B(g)$ is at equilibrium under standard condition and 200 K . Calculate the equilibrium constant of the reaction at

400 K if $\Delta S_{\text {reaction }}^{\circ}=6 \times 10^{-5} \mathrm{~T}^{2} \mathrm{cal} / \mathrm{K}$, where T is temperature in kelvin.
[Given : R = 2cal/molK and In $2=0.7$]

- Watch Video Solution

753. At 500 kbar pressure density of diamond and graphite are $3 \mathrm{~g} / \mathrm{cc}$ and $2 \mathrm{~g} /$ cc respectively, at certain temperature T . Find the value of |DeltaH-DeltaU|(in kJ/mole)for the conversion of 1 mole of graphite 1 mole of diamond at 500 kbar pressure.
(Given : 1 bar $=10^{5} \mathrm{~N} / \mathrm{m}^{2}$)

- Watch Video Solution

754. Calculate $\Delta G_{\text {reaction }}(\mathrm{kJ} / \mathrm{mol})$ for the given reaction at 300 K
$A_{2}(g)+B_{2}(g) \Leftrightarrow 2 A b(g)$
and at particle pressure of 10^{-2} bar and 10^{-4}
Given :
$\Delta H_{f}^{\circ} A B=180 \mathrm{~kJ} / \mathrm{mol}, \quad \Delta H_{f}^{\circ} A_{2}=60 \mathrm{~kJ} / \mathrm{mol}$
$\Delta H_{f}^{\circ} B_{2}=29.5 \mathrm{~kJ} / \mathrm{mol}, \quad \Delta S_{f}^{\circ} A B=210 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
$\Delta S_{f}^{\circ} A_{2}=190 \mathrm{~kJ} / \mathrm{mol}, \quad \Delta S_{f}^{\circ} B_{2}=205 \mathrm{~J} / \mathrm{K}-\mathrm{mol}$
Use : $2.303 R \times 300=5750 \mathrm{~J} / \mathrm{mole}$

- Watch Video Solution

755. An imaginary engine, is capable of expanding the gas upto 10^{13} times. If the engine expands the gas upto the maximum possible extent isothermally at 300 K , then work done by gas is x , whereas if the engine expands upto the maximum possible extent adiabatically, at an initial temperature of 300 K , the temperature falls to -160.6 Kand the work done by gas is y . If the gas is He and all process are reversible in nature, calculate by how many times x is greater than y .

- Watch Video Solution

756. The heat evolved on combustion of 1 gm of starch, $\left(\mathrm{C}_{6} \mathrm{H}_{10} \mathrm{O}_{5}\right)^{x}$, into $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at constant pressure, is 4.00 kcal . Standard Ethalpy of
formation of $\mathrm{CO}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ are -94.00 and $-65.40 \mathrm{kcal} / \mathrm{mol}$. The magnitude of standard enthalpy of formation of starch (in al/gm)is :

- Watch Video Solution

757. Identify the four digit number abcd if it is equal to sum of code numbers of all those processes in which $\Delta S>0$.

	Processes(P)	Code No.
P1	Adiabatic free expansion of an ideal gas	35
P2	Isothermal expansion of an ideal gas	22
P3	Irreversible adiabatic compression of an ideal gas	63
P4	Conversion of graphite into diamond	25
P5	Dissociation of $\mathrm{Cl}_{2}(\mathrm{~g})$ into Cl atoms	32
P6	Dissociation of ozone gas into oxygen gas	11

[For example
if only process P1 satisfies the condition then fill 0035 if both P1 and P6 satisfy then fill 0046.]
758. Consider the following six conditions. (Serial number 1 to6). Select those conditions which represent criteria for spontaneity. Answer the system to be closed.
[Report your answer by adding the serial number of selected conditions.
For example if serial number 1 and satisfy then answer would be 0003.]

Serial Number	Conditions
1	$(d G)_{\mathrm{P}, \mathrm{T}}>0$
2	$(\Delta S)_{\text {universe }}>0$
3	$(d U)_{\mathrm{S}, \mathrm{V}}>0$
4	$(d H)_{\mathrm{S}, \mathrm{P}}<0$
5	$(d S)_{\mathrm{U}, \mathrm{V}}<0$
6	$(d S)_{\mathrm{H}, \mathrm{P}}>0$

All notations have their usual meaning.

- Watch Video Solution

759. Calculate ΔG (in joule) for the reaction
$2 A(g) \rightarrow B(g)+C(g)$
when mixture contains 1 mole of $A, 2$ moles of B and 1 mole of C at total pressure of 10 atm and 300 K .
[Given : $G_{m}^{\circ}, A(g)=40 \mathrm{~kJ} \mathrm{~mol}^{-1}$,
$G_{m}^{\circ}, B(g)=60 \mathrm{~kJ} \mathrm{~mol}^{-1}$,
$G_{m}^{\circ}, C(g)=20 \mathrm{~kJ} \mathrm{~mol}^{-1}$,
$R=8.3 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$ and In $2=0.7$]

- Watch Video Solution

760. 4 mole $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, 2.5 mole $\mathrm{H}_{2}, 2.5$ mole $\mathrm{CO}(\mathrm{g})$ and 1 mole inert gas He are kept at a total pressure of 10 bar in a flask containing C (graphite) at temperature T . Calculate ΔG (inkJ) of the following reaction at the abovecondition:
$\mathrm{C}_{\text {graphite }}+\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{CO}(\mathrm{g})$
[Given : $\Delta G_{\text {formation, } \mathrm{H}_{2} \mathrm{O}(\mathrm{g})}^{\circ}=-230 \mathrm{kJmol}^{-1}$,
$\Delta G_{\text {formation, }}^{\circ} \mathrm{CO}(\mathrm{g})=-130 \mathrm{kJmol}^{-1}$ and $\left.2.303 R T=10 \mathrm{~kJ}, \log \frac{5}{4}=0.1\right]$

- Watch Video Solution

761. For the reaction,
$N_{2}(g)+O_{2}(g) \Leftrightarrow 2 N O(g), \quad \Delta G^{\circ}=18.6$ In 10kcal at 300 K.
If initially 1 bar of N_{2} and 10 bar of O_{2} is taken in a vessel at 300 K , then calculate the value of abcd. [Use : $R=2 \mathrm{cal} / \mathrm{mol}-\mathrm{K}$]
where ab = two digit number such that $K_{e q}$ (equilibrium constant of above reactio and $c d=$ two digit number such tht $P_{N O}=10^{-(c d)}$ bar.
[For example if $K_{e q}$ (equilibrium constant) $=10^{-10}$
$\therefore a b=10$ and if $P_{N O}=10^{-12}$ bar
$\therefore c d=12$ hence abcd $=1012]$

- Watch Video Solution

762. Calculate the magnitude of ring strain energy in ($\mathrm{kJ} / \mathrm{mol}$) of cyclopropane from the following data :
$\Delta_{f} H\left[C_{3} H_{6}(g)\right]=55, \Delta_{f} H[C(g)]=715.0$,
$\Delta_{f} H[H(g)]=220, B e(C-C)=355, B E(C-H)=410($ all $\mathrm{in} \mathrm{kJ} / \mathrm{mole})$

- Watch Video Solution

763. The standard molar enthalpies of formation of $\mathrm{H}_{2} \mathrm{O}(l)$ and $\mathrm{H}_{2} \mathrm{O}_{2}(l)$ are -286 and -188 "kJ"//"mol", respectively. Molar enthalpies of vaporisation of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ and $\mathrm{H}_{2} \mathrm{O}_{2}(\mathrm{l})$ are 44 and 53 kJ respectively. The bond dissociation enthalpy of $\mathrm{O}_{2}(\mathrm{~g})$ is $498 \mathrm{~kJ} / \mathrm{mol}$. calculate the bond dissociation enthalphy (inkJ/mol) of $\mathrm{O}-\mathrm{O}$ bond in $\mathrm{H}_{2} \mathrm{O}_{2}$, assuming that the bond dissociation ethalpy of $O-H$ bond is same in both H_{2} and $\mathrm{H}_{2} \mathrm{O}_{2}$.

- Watch Video Solution

764. The standard molar enthalpies of formation of $I F_{3}(g)$ and $I F_{5}(g)$ are -470 kJ and -847 kJ , respectively. Valence shell electron-pair repulsion theory predicts that $I F_{3}(g)$ is square pyramidal in shape in which all I-F bonds are equivalent while $I F_{3}(g)$ is T-shaped (based on trigonalbipyramial geometry) in which I-F bonds are of different lengths. It is observed that the axial I-F bonds in $I F_{3}$ are equivalent to the I-F bonds in
$I F_{5}$. Calculate the equitorial I-F bond strength (inkJ/mol) in $I F_{3}$.
Some other informations given are :
$I_{2}(s) \rightarrow I_{2}(g), \quad \Delta H=62 \mathrm{~kJ}$
$F_{2}(g) \rightarrow 2 F(g), \quad \Delta H=155 k J$
$I_{2}(g) \rightarrow 2 I(g), \quad \Delta H=149 k J$

- Watch Video Solution

765. Ethalpy for the reaction
$\mathrm{Ag}^{+}(a q)+\mathrm{Br}^{-}(a q) \rightarrow \mathrm{AgBr}(\mathrm{s})$ is -90 kJ.
Magnitude of enthalpy of formation of $\mathrm{Ag}^{+}(a q)$ and $\mathrm{Br}^{-}(a q)$ in the ratio
5:6 Formation of $\mathrm{Ag}^{+}(a q)$ is an endothermic process whereas formation of Br^{-}is an exothermic process. Enthalpy of formation of AgBr is $-110 \mathrm{~kJ} / \mathrm{mole}$. Calculate the enthalpy of formation of $\mathrm{Ag}^{+}(a q)$ in $\mathrm{kJ} / \mathrm{mol}$.

- Watch Video Solution

766. For the reaction $2 \mathrm{H}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{l})$. The standard entropies
$\mathrm{H}_{2}(\mathrm{~g}), \mathrm{O}_{2}(\mathrm{~g})$ and $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$ at $27^{\circ} \mathrm{C}$ are $30 \mathrm{cal} \mathrm{K}^{-1} \mathrm{~mol}^{-1}, 50 \mathrm{calK}^{-1}$ and $15 \mathrm{calK}^{-1}$

Assuming H_{2} and O_{2} to behave as ideal gas (without vibrational degree of freedom) and $C\left(\mathrm{PmH}_{2} \mathrm{O}(\mathrm{l})\right)=15.5 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}$. Determine magnitude of standard entropy (in calK ${ }^{-1}$) change for the reaction at $177^{\circ} \mathrm{C}$. Itbrlt [Given : $R=2 \mathrm{calK}^{-1} \mathrm{~mol}^{-1}$, In $1.5=0.4$]

- Watch Video Solution

767. Enthalpy of neutralization of $\mathrm{H}_{3} \mathrm{PO}_{3}$ with NaOH is $-106.68 \mathrm{~kJ} / \mathrm{mol}$. If enthalpy of neutralization of HCL with NaOH is $-55.84 \mathrm{~kJ} / \mathrm{mole}$, then calculate enthalpy of ionization of $\mathrm{H}_{3} \mathrm{PO}_{3}$ in to its ions in kJ.

- Watch Video Solution

