

CHEMISTRY

BOOKS - MS CHOUHAN CHEMISTRY (HINGLISH)

CARBOXYLIC ACIDS AND THEIR DERIVATIVES

Solved Problem

1. Which carboxylic acid would ou expect to be stronger A or B?

$$O_2N$$
 Or O_2N B

2. Suggest epxplanation for the following
The pK_{a1} for all of the dicarboxylic acids in
Table 17.2 is smaller tyhan the pK_a for a

monocarboxylic acid with the same number of carbon atoms.

View Text Solution

3. Suggest epxplanation for the following

The difference between pK_{a1} and pK_{a2} for dicarboxylic acid of the type $HO_2C(CH_2)_nCO_2H$ decreases as n increases.

4. N,N-Diethyl-3-methylbenzamide (also called N,N-diethyl-m-toluamide. Or DEET) is used many insect repellants. Write its structure.

View Text Solution

5. Give stereochemical formulas for A-D. are enantiomers of each of other.

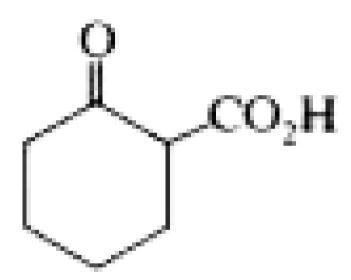
(R)-2-Butanol
$$\xrightarrow{C_1H_1SO_1C1}$$
 $A \xrightarrow{HO^-/H_1O}$ $B \subset H_1SO_2$
 C_2H_2COC1 $C \xrightarrow{HO^-/H_2O}$ $D \subset H_2CO_2$

6. Provide the missing compound A-C, in the following synthesis

$$\begin{array}{c|c}
 & \xrightarrow{H_1 \text{CrO}_1} \mathbf{A} (C_3 H_{10} O_2) & \xrightarrow{\mathbf{B}} & \bigcirc \\
 & & \downarrow \mathbf{C} \\
 & & \downarrow \mathbf{C}
\end{array}$$

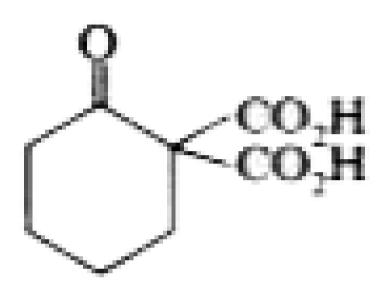
7. At first glance the conversion of bromobenzene to benzenitrile looks simple just cary out a nucleophilic substitution using

cyanide ion as the nucleophile. Then we remember that bromobenzene does not undergo either an S_N1 or an S_N2 reaction (Section 6.14A). The conversion can be accomplishes. however, though it involves severals steps. Outline possible steps.

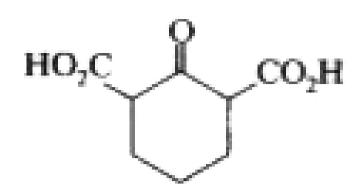


View Text Solution

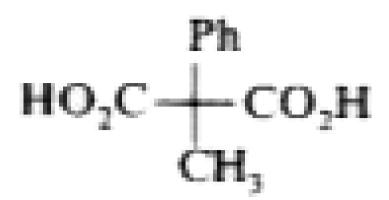
8. Provide structures for A and B.

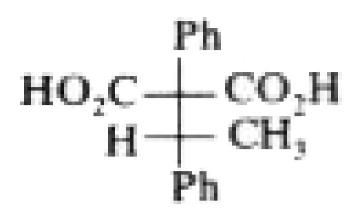

OH
$$\xrightarrow{H:CrO_i}$$
 $A(C_2H_{12}O_3)$
heat
$$B(C_nH_{12}O) + CO_2$$

9. Identify the product obtained when following acids, undergo prolonged heating,

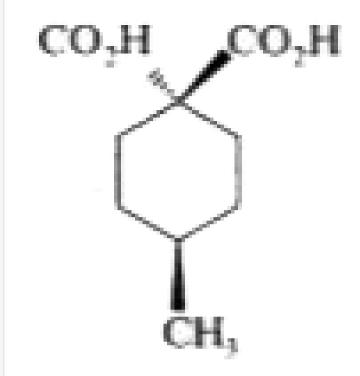


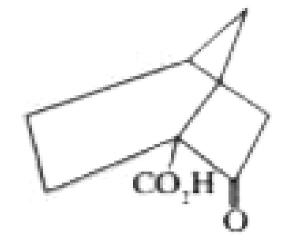
10. Identify the product obtained when following acids, undergo prolonged heating,




13. Identify the product obtained when following acids, undergo prolonged heating,

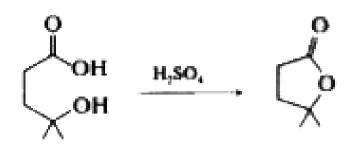
$$PH-C-CH_2-C-OH$$





17. Following β ketoacid will not undergo decarboxylation on heating Give reasons.

18. Provided detailed curved arrow mechanisms for the following reactions:


$$\downarrow$$
 OH $\xrightarrow{H_2SO_4}$ \downarrow OCH

19. Provided detailed curved arrow mechanisms for the following reactions:

20. Provided detailed curved arrow mechanisms for the following reactions:

21. Provided detailed curved arrow mechanisms for the following reactions:

22. Provided detailed curved arrow mechanisms for the following reactions:

23. Provided detailed curved arrow mechanisms for the following reactions:

Additional Objective Questions Single Correct Choice Type

1. Choose the structure that is an intermediate in the base catalyzed hydrolysis of acetonitrile into acetamide.

$$CH_3-C\equiv N \xrightarrow{OH^-} CH_3 \xrightarrow{C} NH_2$$

Answer: D

View Text Solution

2. What is the major product of the following reaction?

Answer: C

3. Which of the following are most reactive compounds for nucleophilic acyl substitution?

Answer: D

4. Which of the following reaction do not yield cyclohexanone as major product?

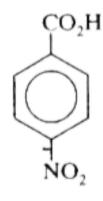
B.
$$OEt \xrightarrow{H_3O^+}$$

Answer: D

5. Which of the following carboxylic acids undergo decar boxylation easily?

A.
$$C_6H_5CO-CH_2COOH$$

B.
$$C_6H_5CO-COCOOH$$


C.
$$C_6H_5-CH_2-COOH$$

D.
$$C_6H_5CH_2-COOH$$
 $\mid NH_2$

Answer: A

$$(CH_3) \xrightarrow{Br_2} (A) \xrightarrow{Sn/HCl} (B) \xrightarrow{NaNO_2 + HCl} (C)$$

$$NO_2 \xrightarrow{Fe} (A) \xrightarrow{Sn/HCl} (B) \xrightarrow{KMnO_4} (E)$$

6.

Answer: C

View Text Solution

7. Choose the order that has the following benzoyl compounds correctly arranged with

respect to increasing reactivity.

$$\mathsf{A}.\left(i\right)<\left(ii\right)<\left(iii\right)$$

$$\mathsf{B.}\left(i\right)<\left(iii\right)<\left(ii\right)$$

$$\mathsf{C.}\left(ii\right)<\left(ii\right)<\left(iii\right)$$

Answer: B

8. When propionic acid is treated with aqueous $NaHCO_3,\,CO_2$ is liberated. The .C. of CO_2 comes from

A. methyl group

B. carboxylic acid group

C. methylene group

D. bicarbonate.

Answer: D

9. Which of the following carboxylic acids will

have the largest K_a value ?

A.
$$CH_3CO_2H$$

B.
$$ClCH_2CO_2H$$

$$\mathsf{C}.\,C_6H_5CO_2H$$

D.
$$CF_3CO_2H$$

Answer: D

10. The reactivity of carboxylic acid derivatives from highest reactivity to lowest reactivity is

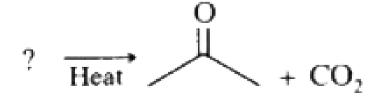
A. acid anhydride > acid chloride > ester > amide

B. acid chloride > acid anhydride > ester > amide

C. acid anhydride > ester > amide >

acid chloride

D. amide > ester > acid anhydride >


acid chloride

Answer: B

View Text Solution

11. What starting material is required for the following reaction?

Answer: D

View Text Solution

12. In which of the reaction CO_2 gas will evolve?

A.
$$Ph-\stackrel{O}{C}-CH_2-\stackrel{||}{C}-OH \stackrel{|}{\longrightarrow}$$

B. Ph-CH
$$\stackrel{CO,H}{\longleftarrow}$$

$$\mathsf{C.}\,Ph-CO_2H \xrightarrow{NaHCO_3}{\Delta}$$

D. All

Answer: D

13.
$$Ph-\stackrel{\mid \ \mid}{\underset{14}{C}}-OH\stackrel{NaHCO_3\,/\,\Delta}{\longrightarrow}(A)$$

A.
$$CO_2$$

B. CO_2

 $\mathsf{C}.\,H_2$

D. NH_3

Answer: A

View Text Solution

14. In the following reaction sequence, the correct structures of E, F and G are

$$Ph \xrightarrow{\bullet} OH \xrightarrow{Heat} [E] \xrightarrow{I_2} [F] + [G]$$

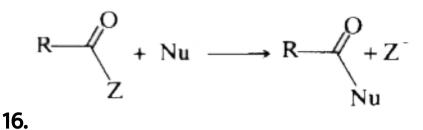
$$\mathbf{A}_{\bullet} \quad \mathbf{E} = \mathbf{P}_{h} \quad \mathbf{CH}_{1} \quad \mathbf{F} = \mathbf{P}_{h} \quad \mathbf{O} \quad \mathbf{N}_{a} \quad \mathbf{G} = \mathbf{CHI}_{1}$$

$$B_{\bullet} \quad \text{E=ph} \quad \text{CH}_{i} \quad \text{F=ph} \quad \text{O'}_{N_a^i} \quad \text{G=CHI}_{i}$$

Answer: C

15. The product of mixing an acyl halide and an acid is

A. an acid


B. an amide

C. anhydride

D. an aldehyde

Answer: C

- A. Cl
- $\mathsf{B.}\,OCOCH_3$
- $\mathsf{C}.\,OC_2H_5$
- D. NH_2

Answer: A

17. Which of the following lossses chirality

when heated?

D.
$$CO_2H$$

Answer: B

18. What is the productof the following

reaction?

Answer: D

Additional Objective Questions Linked Comprehension Type Paragraph For Questions

1. 4 A neutral, resolvable organic compound A has molecular formula $(C_8H_{16}O_2)$. A on treatment with $LiAlH_4$ gives isomeric B and $C(C_4H_{10}O)$ of which only B is optically active. B on treatment with acidified dichromate solution gives $D(C_4H_8O)$, which on refluxing with dilute NaOH followed by acidification of

product gave $E(C_8H_{14}O)$. E on heating with N_2H_4 in alkaline medium affords $F(C_8H_{16})$ on treatment with B.H/H,O,/HO produced a resolvable G $(C_8H_{18}O)$. G on treatment with acidified dichromate solution produced $H(C_8H_{16}O)$, which on treatment with MCPBA produces A.

Compound (A) is

Answer: B

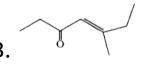
View Text Solution

2. 4 A neutral, resolvable organic compound A has molecular formula $(C_8H_{16}O_2)$. A on treatment with $LiAlH_4$ gives isomeric B and $C(C_4H_{10}O)$ of which only B is optically active. B on treatment with acidified dichromate solution gives $D(C_4H_8O)$, which on refluxing

with dilute NaOH followed by acidification of product gave $E(C_8H_{14}O)$. E on heating with N_2H_4 in alkaline medium affords $F(C_8H_{16})$ on treatment with B.H/H,O,/HO which produced a resolvable G $(C_8H_{18}O)$. G on treatment with acidified dichromate solution produced $H(C_8H_{16}O)$, which on treatment with MCPBA produces A.

Compound (B) is

Answer: B



View Text Solution

3. 4 A neutral, resolvable organic compound A has molecular formula $(C_8H_{16}O_2)$. A on treatment with $LiAlH_4$ gives isomeric B and $C(C_4H_{10}O)$ of which only B is optically active.

B on treatment with acidified dichromate solution gives $D(C_4H_8O)$, which on refluxing with dilute NaOH followed by acidification of product gave $E(C_8H_{14}O)$. E on heating with N_2H_4 in alkaline medium affords $F(C_8H_{16})$ which on treatment with B.H/H,O,/HO produced a resolvable G $(C_8H_{18}O)$. G on treatment with acidified dichromate solution produced $H(C_8H_{16}O)$, which on treatment with MCPBA produces A.

Compound (E)

D. None of these

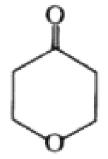
Answer: B

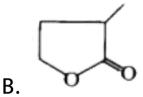
View Text Solution

4. 4 A neutral, resolvable organic compound A has molecular formula $(C_8H_{16}O_2)$. A on treatment with $LiAlH_4$ gives isomeric B and $C(C_4H_{10}O)$ of which only B is optically active.

B on treatment with acidified dichromate solution gives $D(C_4H_8O)$, which on refluxing with dilute NaOH followed by acidification of product gave $E(C_8H_{14}O)$. E on heating with N_2H_4 in alkaline medium affords $F(C_8H_{16})$ which on treatment with B.H/H,O,/HO produced a resolvable G $(C_8H_{18}O)$. G on treatment with acidified dichromate solution produced $H(C_8H_{16}O)$, which on treatment with MCPBA produces A.

Compound (H) is


Answer: B


View Text Solution

5. A neutral organic compound $A(C_5H_8O_2)$ does not decolorize Bayer.s reagent and on hydrolysis with dilute H_2SO_4 produces

 $B(C_2H_{10}O_3)$, which is diastereomeric. B on heating with concentrated H_2SO_4 undergoes dehydration producing $C(C_5H_8O_2)$, which shows geometrical isomerism. Also B on treatment with acidic dichromate solution produced $D(C_5H_8O_2)$, which is enantiomeric and gives a yellow precipitate with NaOI. D on gentle heating produces E (C_4H_8O) , which is non-resolvable. Compound (A) is

A.

Answer: C

6. A neutral organic compound $A(C_5H_8O_2)$ does not decolorize Bayer.s reagent and on hydrolysis with dilute H_2SO_4 produces $B(C_2H_{10}O_3)$, which is diastereomeric. B on heating with concentrated H_2SO_4 undergoes dehydration producing $C(C_5H_8O_2)$, which shows geometrical isomerism. Also B on treatment with acidic dichromate solution produced $D(C_5H_8O_2)$, which is enantiomeric and gives a yellow precipitate with NaOI. D on gentle heating produces E (C_4H_8O) , which is non-resolvable.

Compound (B) is

Answer: C

7. A neutral organic compound $A(C_5H_8O_2)$ does not decolorize Bayer.s reagent and on hydrolysis with dilute H_2SO_4 produces $B(C_2H_{10}O_3)$, which is diastereomeric. B on heating with concentrated H_2SO_4 undergoes dehydration producing $C(C_5H_8O_2)$, which shows geometrical isomerism. Also B on treatment with acidic dichromate solution produced $D(C_5H_8O_2)$, which is enantiomeric and gives a yellow precipitate with NaOI. D on gentle heating produces E (C_4H_8O) , which is non-resolvable.

Compound (C) is

Answer: C

8. A neutral organic compound $A(C_5H_8O_2)$ does not decolorize Bayer.s reagent and on hydrolysis with dilute H_2SO_4 produces $B(C_2H_{10}O_3)$, which is diastereomeric. B on heating with concentrated H_2SO_4 undergoes dehydration producing $C(C_5H_8O_2)$, which shows geometrical isomerism. Also B on treatment with acidic dichromate solution produced $D(C_5H_8O_2)$, which is enantiomeric and gives a yellow precipitate with NaOI. D on gentle heating produces E (C_4H_8O) ,which is non-resolvable.

Compound (E)is

Answer: B

View Text Solution

Additional Objective Questions Matrix Match Type

Column-1	Column-II
(a) HO,C CH, H D D	(p) Diastereomers
(b) HO ₂ C	(q) Racemic mixture
CO,H	(r) Meso compound
(d) CO ₂ H	(s) CO_1 gas will evolve

1.

