

CHEMISTRY

JEE (MAIN AND ADVANCED) CHEMISTRY

COMPLEX COMPOUNDS

Example

1. Which ions can be tested in a solution of Mohr's salt?

Watch Video Solution

2. Identify the ligands and central metal ion in $\left[Co(NH_3)_2(en)_2\right]^{3+}$, Calculate the oxidation number and coordination number of metal ion.

3. Which type of complex is cryolite?

4. List out the wrong among the following according to IUPAC and write the correct formula: (a) $\left[Zn(OH)_4\right]K_2$, (b)

$$\left[CoCl \left(NH_3 \right)_4 \left(H_2O \right) \right] Cl_2, \quad \text{(c)} \left[Ag(CN)_2 \right] \left[Ag \left(NH_3 \right)_2 \right] \quad \text{and} \quad$$

(d)

 $\left[Pt \left(NH_3 \right)_2 Cl \left(NO_2 \right) \right].$

5. Write the IUPAC names of the following coordination compounds: (a) $\left[CoCl_2(en)_2\right]Cl$, (b) $\left[Ni(CO)_4\right]$, (c) $\left[Pt\left(NH_3\right)_2Cl\left(NO_2\right)\right]$, (d)

$$\left[Cr\left(NH_3\right)_6\right]\left[Co(CN)_6\right]$$

- **6.** Write the formula of the following coordination compounds:
- (a) Ammine bromid och loridonitrito-O-platinum (II) ion
- (b)Dichloridobis(ethane-1,2-diammine)platinum(IV) nitrate
- (c) Diaquatetrahydroxoaluminate(III) ion
- (d) Mercury(I) tetrathiocyanatocobaltate(III).

7. Arrange the complexes $CoCl_3$. $6NH_3$, $CoCl_3$. $5NH_3$, $CoCl_3$. $4NH_3$ and $CoCl_2$. $3NH_3$ in the descending order of conductivity of their aqueous solutions.

8. When excess ammonia gas is passed through aq $CrCl_3$ solution, complexes A and B are formed. Complex A gives 2 particles and complex B gives 4 charges. Write the formula of complexes.

9. When excess of silver nitrate solution is added to the aqueous solution containing 0.1 mole of $CoCl_3$. xNH_3 , if 28.7g of silver chloride precipitated, what is the value of x?

10. The secondary valence of Pt^{4+} is six. Calculate the number of moles of AgCl participated, when excess of $AgNO_3$ solution is added to 2L of 0.1M $PtCl_4$. $4NH_3$ solution.

11. If $[PtCl_6]^{x-}$ follows the Sidgwick rule of stability, what is the oxidation state of Pt and complex ?

12. If $[Fe(CO)_x]$ follows the Sidgwick rule of stability, what is the value of 'x'?

13. The spin only magnetic moment of $\left[MnBr_4\right]^{2-}$ is 5.9BM. Predict the geometry of the complex ion.

14. How the gem stones ruby exhibits red colour and emerald exhibits green colour ?

15. Anhydrous copper sulphate is colourless, but hydrated copper sulphate is blue. Explain ?

16. Why hexaquamanganese(II)ion contains five unpaired electrons, while the hexacyno manganese (II)ion contains only one unpaired electron?

17. How many unpaired electrons present in the square planar $\left[Pt(CN)_4\right]^{2-}$ ion ?

18. Why $\left[Co(NH_3)_6\right]^{3+}$ is an inner orbital complex where is $\left[Ni(NH_3)_6\right]^{2+}$ is an outer orbital complex?

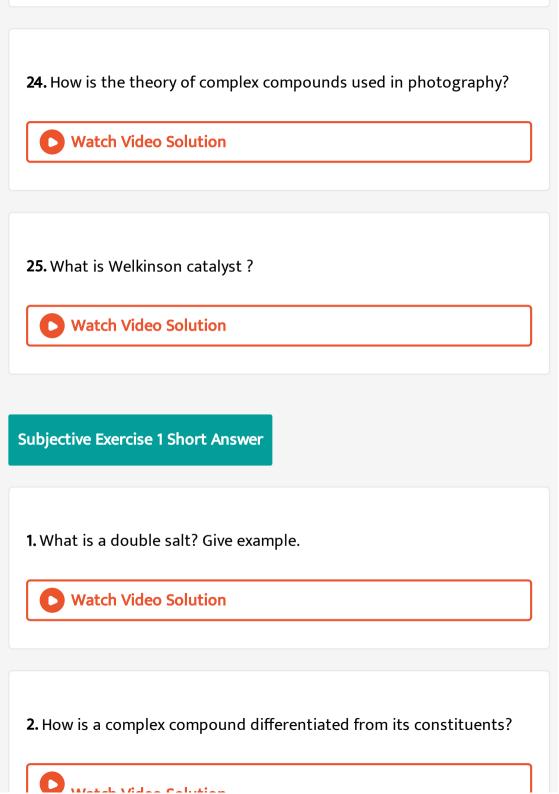
19. $Ag^+ + NH_3 \Leftrightarrow \left[Ag(NH_3) \right]^+, K_1 = 3.5 \times 10^{-3}$

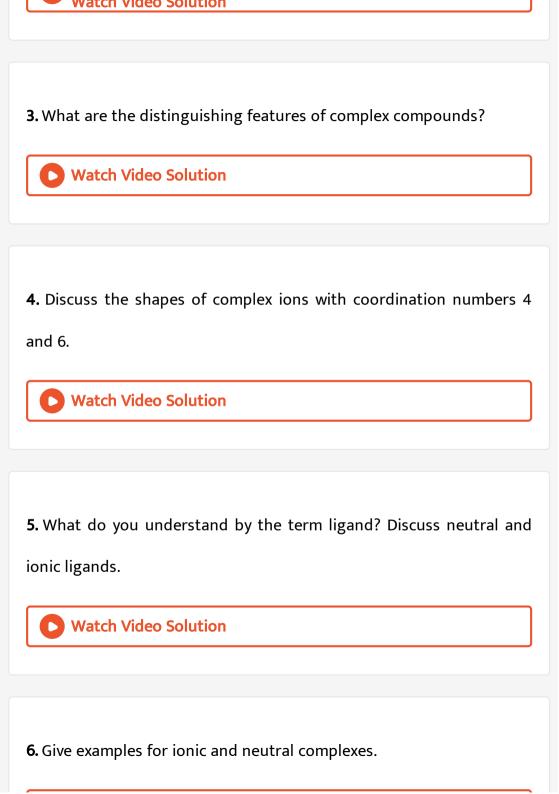
, $\left[Ag\left(NH_3\right)\right]^+ + NH_3 \Leftrightarrow \left[Ag\left(NH_3\right)_2\right]^+$, $K_2 = 1.7 \times 10^{-3}$. Calculate

the formation constant of $\left[Ag\left(NH_3\right)_2\right]^+$. What is the instability constant?

20. $CoCl_3$. xNH_3 exhibits geometrical isomerism. What is the value of x?

21. What type of isomerism is exhibited by the complex $(Cr(gly)_3)$?




22. Which type of isomerisms are possible with the molecular formula $Co(NO_2)_3$. $2H_2NCH_2CH_2NH_2$.

23. How is the theory of complexes used to sperate Fe_2O_3 and Al_2O_3 ?

Subjective Exercise 2 Short Answer

- 1. Write the structures of following compounds:
- (i) Tetraamminecopper(II) sulphate, (ii) Trichlorotriammine cobalt(III),
- (iii) Tetracarbonylnickel(0) ,(iv)Dichlorodiammineplatinum(II) and (v)

Trinitrotriamminecobalt(III)

Watch Video Solution

2. Give the IUPAC name for the following compounds

$$\left[Ag\left(NH_3\right)_2\right]Cl$$

- (ii) $K_3 [Fe(CN)_5NO]$
- (iii) $\left[Cr \left(PPh_3 \right) (CO)_3 \right]$

(iv)
$$\left[Ag\left(NH_3\right)_2\right]^+$$

(v) $\left[FeF_6\right]^{4-}$

Subjective Exercise 3 Long Answer

- **1.** Explain Werner's theory. Give the Werner's structures of $CoCl_3$. $6NH_3$, $CoCl_3$. $5NH_3$, $CoCl_3$. $4NH_3$ and $CoCl_3$. $3NH_3$.
 - Watch Video Solution

- **2.** Define EAN. Calculate the EAN of the following metals in their respective complexes: $\left[Cu \Big(NH_3 \Big)_4 \right] (OH)_2$ and $K_4 \Big[Fe(CN)_6 \Big]$
 - Watch Video Solution

3. Most important concept of valence bond theory is

Subjective Exercise 3 Short Answer

1. Identify the primary valency of the central metal in the tetra coordinated $CuSO_4$ and hexa coordinated $Cr(NO_3)_3$. $6H_2O$

2. A linear complex $AgCl.\ 2NH_3$ undergoes complete ionizaiton. What are the ions formed?

3. Explain the formation of $\left[Co(NH_3)_6\right]Cl_3$ and $\left[Cu(NH_3)_4\right]SO_4$ on the basis of VBT.

4. How many chlorides will be precipitated from the compelx compounds $CoCl_3$. $4NH_3$?

5. What kind of hybridization is undergone by 'Co' in the complex

$$\left[Co(NH_3)_6\right]^{3+}$$
?

1. Write the important features of Sidwick's EAN
Watch Video Solution
2. Write short notes on primary valency of a metal ion.
Watch Video Solution
3. Which of the following is a complex compound? Potash alum,
tetrammine copper (II) sulphate, Potasium hydrogen fluoride.
Watch Video Solution
4. On addition of $AgNO_3$ solution to 1M $CoCl_3$. $5NH_3$ solution, how
many moles of AgCl are produced ?
Watch Video Solution

5. The compound $TiCl_4$. $2H_2O$ is a nonconductor of electricity. Give the Werner's structure.

Subjective Exercise 4 Long Answer

1. Explain structural isomerism with examples.

2. Explain geometrical isomerism in complexes with coordination number 4 and 6 with examples.

Subjective Exercise 4 Short Answer

- 1. Explain optical isomerism in octahedral complexes.
 - Watch Video Solution

- **2.** What kind of isomerism is shown by the pairs of following complex compounds?
- (a) $\left[Pt\left(H_2O\right)_4Cl_2\right]Cl_22H_2O$ and $\left[Pt\left(H_2O\right)_5Cl\right]Cl_3$. H_2O
- (b) $\left[Cu \left(NH_3 \right)_4 \right] \left[Ni \left(CN \right)_4 \right]$ and $\left[Ni \left(NH_3 \right)_4 \right] \left[Cu \left(CN \right)_4 \right]$.
 - Watch Video Solution

Subjective Exercise 4 Very Short Answer

1. $Co(NH_3)_5 Br. SO_4$, when it is treated with $AgNO_3$ gives yellow precipitate, give its structure.

2. Mention the colours exhibited by $CrCl_3$. $6H_2O$ in its hydrate isomers

3. Write a pair of optical isomers along with their structures .

4. Define Racemic mixture

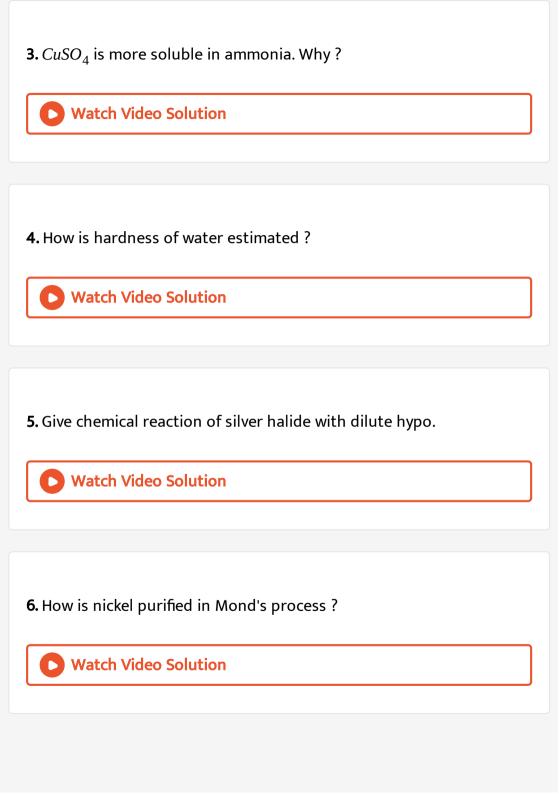
Subjective Exercise 5 Short Answer

1. Give an example of a complex that is formed in qualitative analysis.

2. How is silver halide used in photography? What is the complex formed?

3. How is concept of complexes used in metallurgy?

4. Mention a complex that is present in biological systems. Is Heme-b,
an example of complex compound?
Watch Video Solution


Subjective Exercise 5 Very Short Answer

1. Give the central metal and its oxidation state in haemoglobin and chlorophyll.

2. What is Nessler's reagent? Give its use.

7. Mention one application of complex compound useful in biosystems.

Watch Video Solution

Objective Exercise 1

1. Carnallite is an example of

A. mixed salt

B. complex salt

C. basic salt

D. double salt

Answer: D

Watch Video Solution

2. Ligand in a metal carbonyl complex is

A. CO_2

B. CO

 $\mathsf{C.}\ CoCl_2$

D. $C_2O_4^{2-}$

Answer: B

Watch Video Solution

3. Which of the following is an example of a complex salt

A. Cuprammonium sulphate

B. Ferrous ammonium sulphate

C. Bleaching powder

D. Potassium bisulphate

Answer: A Watch Video Solution 4. In complex compounds the metal atom or ion acts as a A. Lewis acid B. Lewis base C. Bronsted acid D. Bronsted base Answer: A **Watch Video Solution** 5. A ligand should contain A. odd electrons

B. even number of electrons

C. lone pair of electrons to donate

D. vacant orbital to accept the lone pair

Answer: C

Watch Video Solution

6. The oxidation state of Fe in $\left[Fe(CN)_6\right]^{-3}$ ion is

A. + 1

B. + 2

C. +3

D. Zero

Answer: C

Watch Video Solution

7. In which of the following compounds iron has zero oxidation state

A.
$$Fe(CO)_5$$

 $\mathsf{B.}\mathit{Fe}_2O_3$

C. FeO

D. Fe_3O_4

Answer: A

Watch Video Solution

8. The charge on cobalt in $[Co(CN)_6]^{3-}$ is

A. - 3

B. + 3

C. - 6

D.	+	6

Answer: B

Watch Video Solution

- 9. A bidentate ligand is
 - A. pyridine
 - B. thiocyanate
 - C. ethylene diammine
 - D. water

Answer: C

Watch Video Solution

A.
$$\left[Co\left(NH_3\right)_4Cl_2\right]Cl$$

B. $NaFe \left[Fe(CN)_6 \right]$

 $C. \left[Cr \left(H_2O \right)_5 Cl \right] Cl_2$

 $\mathsf{D.} \left\lceil \mathit{Co}_2 \Big(\mathit{NH}_3 \Big)_6 (\mathit{OH})_3 \right\rceil \mathit{Cl}_3$

11. A ligand can not be (A) neutral, (B) anionic, (C) anionic

Answer: D

Watch Video Solution

- - A. B only
 - B. C only
 - C. A and B
 - D. none

Answer: D

12. Example of neutral complex compound in the following list

A. $CoCl_3$. $6NH_3$

B. $CoCl_3$. $5NH_3$

C. *CoCl*₃. 4*NH*₃

D. $CoCl_3$. $3NH_3$

Answer: D

13. Which of the following is a complex salt?

A. $KCl. MgCl_2. 6H_2O$

B. $FeSO_4$. $\left(NH_4\right)_2SO_4$. $6H_2O$

C. 4KCN. $Fe(CN)_2$

D. K_2SO_4 . $Al_2(SO_4)_3$. $24H_2O$

Answer: C

Watch Video Solution

14. EDTA is aligand.

A. tetradentate

B. Hexadentate

C. Bidentate

D. Tridentate

Answer: B

Watch Video Solution

15. Alum in aqueous solution gives positive test for (A) K^+ , (B) Al^{3+} , (C) SO_4^{2-}

A. A only

B. B only

C. A and B

D. A,B and C

Answer: D

Watch Video Solution

16. $Ni(CO)_4$ is an example of

A. cationic complex

B. neutral complex

C. anionic complex

Answer: B Watch Video Solution	
17. Donor atoms in ethylenediamine are	
A. N and N	
B. N and H	
C. N and C	
D. C and H	
Answer: A	
Watch Video Solution	

D. poly nuclear complex

18. First theory to explain the formation of complexes was proposed by A. Werner B. Pauling C. Sidgwick D. Mullikan Answer: A

19. Primary valency denotes

A. coordination number

B. number of ligands

C. oxidation number

D. effective atomic number

Answer: C

Watch Video Solution

20. The coordination number of a central metal atom in a complex is determined by

A. the number of ligands around a metal ion bonded by dative bonds

- B. he number of only anionic ligands bonded to the metal ion
- C. the number of ligands around a metal ion bonded by ionic bonds
- D. the number of ligands around a metal ion bonded by covalent bonds

Answer: A

Watch Video Solution

- 21. Primary valency is satsified by
 - A. only negative ligands
 - B. only positive ligands
 - C. negative and neutral ligands
 - D. positive and neutral ligands

Answer: A

Watch Video Solution

- **22.** Structure of the complex with sp^3 hybridisation
 - A. planar triangular

C. tetrahedral

B. square planar

D. octahedral

Answer: C

Watch Video Solution

- **23.** The effective atomic number of $._{24}Cr$ in $\left[Cr(NH_3)_6\right]Cl_3$ is
 - A. 24
 - B. 27
 - C. 30

D. 33

Answer: D

Watch Video Solution

24. The coordination number and oxidation number of M in the compound $M(SO_4)(NH_3)_5$ will be

- A. 6 and 3
- B. 2 and 6
- C. 6 and 2
- D. 3 and 6

Answer: C

- **25.** The oxidation number of Fe in $\left[Fe(CN)_6\right]^{4-}Cr$ in $\left[Cr\left(NH_3\right)_3\left(NO_2\right)_3\right]$ and Ni in $Ni(CO)_4$ are respectively
 - A. 0,+3,+2

B. +3, +3, 0

C. +3, 0, +3

D. + 2, + 3, 0

Answer: D

Watch Video Solution

26. Inner complex is also called

A. spin free complex

B. low spin complex

C. weak field complex

D. ionic complex

Answer: B

27. The primary valency of 'Fe' in the complex $K_4 \Big[Fe(CN)_6 \Big]$ is

A. 2

B. 3

C. 6

D. 4

Answer: A

Watch Video Solution

28. The hybridisation of metal ion in square planar complexes in

A. dsp^2

 $B. sp^3d$

 $C. d^3sp^3$

D. sp^3

Answer: A

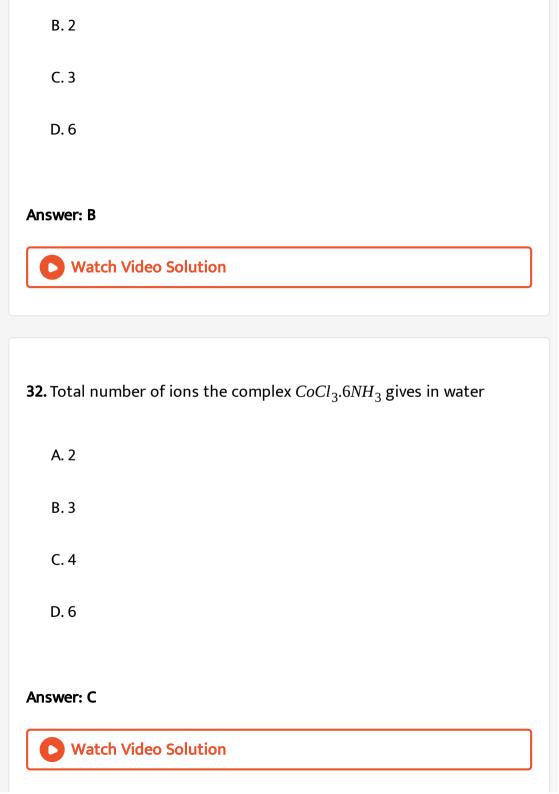
Watch Video Solution

- **29.** The hybridisation of Iron in $K_4[Fe(CN)_6]$ is
 - A. dsp^2
 - $B. sp^3$
 - $C. d^2sp^3$
 - D. sp^3d^2

Answer: C

30. One mole of the complex compound $CoCl_3xNH_3$ gives 3 moles of ions on dissolution in water. One mole of the same complex reacts with two moles of $AgNO_3$ solution to yield two moles of AgCl. The value of x is

- A. 5
- B. 4
- C. 3
- D. 2


Answer: A

Watch Video Solution

31. Number of chlorides satisfying secondary valency in $CoCl_3$. $4NH_3$

A. 1

33. Effective atomic number of transition metal in potassium ferrocyanide

- A. 24
- B. 26
- C. 35
- D. 36

Answer: D

Watch Video Solution

34. Which of the following is homoleptic complex

- A. $\left[Co\left(NH_3\right)_6\right]Cl_3$ B. $\left[Co\left(NH_3\right)_4Cl_2\right]Cl$

$$\mathsf{C.}\left[\mathit{Co}\big(\mathit{NH}_3\big)_3\mathit{Cl}_3\right]$$

D.
$$\left[Co(NH_3)_5 Cl \right] Cl_2$$

Answer: A

Watch Video Solution

35. In the formation of some complexes, electrons in the metal orbital may undergo pairing against

- A. Pauli's principle
- B. Uncertainity principle
- C. Hund's principle
- D. Auf-bau rule

Answer: C

36. According to pauling the orbitals involved in the hybridisation to form a complex are

- A. Orbitals filled with two electrons each
- B. Orbitals filled with one electron each
- C. Orbitals not filled with electrons
- D. Orbitals filled with one or two electrons

Answer: C

Watch Video Solution

37. Violet coloured complex among the following list of compounds is

A.
$$\left[Ni\left(H_2O\right)_6\right]^{2+}$$

B.
$$\left[Ni\left(H_2O\right)(en)\right]^{2+}$$

C.
$$\left[Ni\left(H_2O\right)_2(en)_2\right]^{2+}$$

D.
$$[Ni(en)_3]^{2+}$$

Answer: D

View Text Solution

38. Ethylendiamine (en)

A. Monodendate ligand and can occupy one position in coordination polyhedron

B. Bidendate ligand and can occupy two positions in coordinaton

polyhedron

C. Polydendate ligand

D. Tridendate ligand and occupy three positions in coordination polyhedron

Answer: A

Watch Video Solution

39. Identify the correct statements from the following

(I)In
$$\left[CoCl(NH_3)_5\right]^{2+}$$
, the Lewis acid is Co^{3+}

(II)An example for heteroleptic complex is
$$\left[Co(NH_3)_6 \right]^{3+}$$

(III)The hybridisation of Mn in
$$\left[\mathit{MnBr}_4\right]^{2-}$$
 is dsp^2

(IV)In
$$\left[\mathit{Ni}(\mathit{CO})_4 \right]$$
 , the metal-carbon bond possesses σ and π character

A. I,ii,iii,iv

B. I,iv

C. ii,iii

D. I,iii,iv

Answer: B

40. Hydrazinium ion is chemically

- A. $N_2H_3^-$
- B. $N_2H_3^+$
- $C. N_2 H_5^+$
- D. $N_2H_5^-$

Answer: C

- **41.** A prefix penta is used in naming the complex
 - A. $CrCl_3$. $6NH_3$
 - B. $CrCl_3$. $5NH_3$
 - C. $CrCl_3$. $4NH_3$

D. $CrCl_3$. $3NH_3$

Answer: B

Watch Video Solution

42. Tetrammine diaqua copper (II) hydroxide is given by the formula

A.
$$\left[Cu\left(NH_3\right)_4\right](OH)_2$$
. $2H_2O$

B.
$$\left[Cu\left(NH_3\right)_4\right](OH)_2$$
. $2H_2O$

C.
$$\left[Cu\left(NH_3\right)_4\right]\left(H_2O\right)_2(OH)_2$$

D.
$$\left[Cu(NH_3)_4 (H_2O)(OH)_2 \right]$$

Answer: C

- IUPAC Name
- i) Bromo
- iii) Carbonyl
- iii) Benzoato
- 43. (v) Aquo

- Formulae of ligand
- A) CO
- B) C,H,COO
- C) H₃O
- D) Br

The correct match is

- A. i-D,ii-A,iii-B,iv-C
- B. i-D,ii-B,iii-A,iv-C
- C. i-D,ii-A,iii-C,iv-B
- D. i-D,ii-C,iii-A,iv-B

Answer: A

Watch Video Solution

44. The IUPAC name of $\left[Ni\left(NH_3\right)_4\right]\left[NiCl_4\right]$ is

- A. Tetrachloronickel (II) tetraamminenickel (II)
- ${\bf B.\ Tetraamminenickel\ (II)-tetrachloronickel(II)}$
- $C.\ Tetra amminenic kel (II) tetra chloronic kelate (II) \\$
- D. Tetrachloronickel (II) tetraamminenickelate(0)

Answer: C

Watch Video Solution

- **45.** According to IUPAC sodium nitroprusside is named as
 - A. Sodium pentacyanonitrosyl ferrate(II)
 - B. Sodium pentacyanonitrosyl ferrate(III)
 - C. Sodium nitroferriccyanide
 - D. Sodium nitroferrocyanide

Answer: A

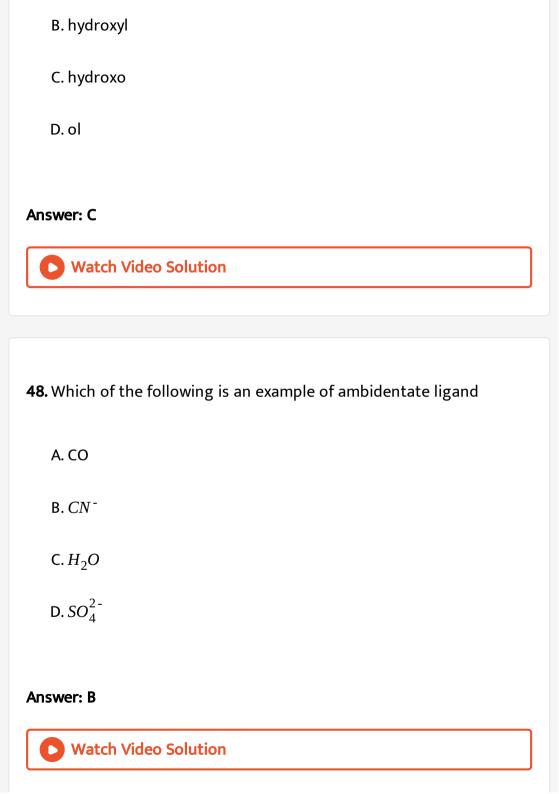
46. The hypothetical complex chlorodiaquatriam minecobalt (III) chloride can be presented as

$$\mathsf{A.}\left[\mathit{Co}\!\left(\mathit{NH}_{3}\right)_{3}\!\left(\mathit{H}_{2}\mathit{O}\right)_{3}\right]\!\mathit{Cl}_{3}$$

$$\mathsf{B.}\left[\mathit{Co}\!\left(\mathit{NH}_{3}\right)_{3}\!\left(\mathit{H}_{2}\mathit{O}\right)_{2}\!\mathit{Cl}\right]\!\mathit{Cl}$$

$$C. \left[Co(NH_3)_3 (H_2O)Cl_3 \right]$$

D.
$$\left[CoCl(NH_3)_3(H_2O) \right] Cl_2$$


Answer: D

Watch Video Solution

47. In the IUPAC version, the ligand OH^- is named as

A. hydroxide

49. Which of the following has maximum number of unpaired delectrons

A. Zn

B. Fe^{2+}

D. *Cu* +

 $C. Ni^{3+}$

Answer: B

Watch Video Solution

50. Which one of the following is tris (ethane-1, 2-diammine) cobalt (III) sulphate?

A. $\left[Co_3(en)\right]SO_4$

B. $\left[Co(en)_3 \right] SO_4$

$$C. \left[Co(en)_3 \right]_3 \left(SO_4 \right)_2$$

$$\mathsf{D.}\left[\mathit{Co}(\mathit{en})_{3}\right]_{2}\!\!\left(\mathit{SO}_{4}\right)_{\!3}$$

Answer: D

Watch Video Solution

51. The formula of 'nitrosyl' group

A. NO

 $\mathsf{B.}\,\mathit{NO}^{\,\scriptscriptstyle{+}}$

C. *NO* -

D. ONO

Answer: A

52. Name of oxalate in IUPAC version changes to
A. Oxalite
B. Oxalato
C. Oxalito
D. Oxalide
Answer: B
Watch Video Solution
53. Metal-Isothiocyanato' is indicated by its chemical symbol as
53. Metal-Isothiocyanato' is indicated by its chemical symbol as A. M-NCS
A. M-NCS
A. M-NCS B. M-SCN

Answer: A

Watch Video Solution

- **54.** The IUPAC name of $\left[Co(NH_3)_4 Cl(NO_2) Cl \right]$ is
 - A. Tetraamminechloridonitrito-N-cobalt(III) chloride
 - B. Tetraamminechloronitrocobalt(II) chloride
 - C. Tetraamminechloronitrocobalt(I) chloride
 - D. Tetraamminechloronitrocobalt(III) chloride

Answer: A

Watch Video Solution

55. In $Fe(CO)_5$, Fe-C bond possess

- A. Sigma character only
- B. Pi character only
- C. Both sigma and pi character
- D. Ionic character

Answer: C

- **56.** Considering H_2O as a weak field ligand, the number of unpaired electrons in $\left[Mn\left(H_2O\right)_6\right]^{2+}$ will be (Atomic no of Mn=25)
 - A. 2
 - B. 3
 - C. 4
 - D. 5

Answer: D

Watch Video Solution

- **57.** Geometrical shapes of the complexes formed by the reaction of Ni^{2+} with Cl^- , CN^- and H_2O , respectively, are
 - A. Octahedral, tetrahedral and square planr
 - B. Tetrahedral, square planar and octahedral
 - C. Square planar, tetrahedral and octahedral
 - D. Octahedral, square planar and octahedral

Answer: B

58. Which of the following complex species does not involve inner orbital hybridization?

A.
$$\left[Co(NH_3)_6\right]^{3+}$$

$$\mathsf{B.}\left[\mathit{Cr}\!\left(\mathit{NH}_3\right)_6\right]^{3+}$$

C.
$$[CoF_6]^{3}$$

D.
$$[Fe(CN)_6]^{3}$$

Answer: C

59. Which one of the following high spin complexes has the largest crystal field stabilization energ?

$$A. \left[Cr \left(H_2 O \right)_6 \right]^{2+}$$

$$B. \left[Cr \left(H_2 O \right)_6 \right]^{3+}$$

$$\mathsf{C.}\left[\mathit{Mn}\left(H_2O\right)_6\right]^{2+}$$

D.
$$\left[Mn\left(H_2O\right)_6\right]^{3+}$$

Answer: B

Watch Video Solution

60. Which of the following system has maximum number of the unpaired electrons in an inner octahedral complex?

- $A.d^4$
- $B.d^9$
- $C.d^7$
- D. d^{5}

Answer: A

61. Which of the following complex species does not involve d^2sp^3

hybridisation?

A.
$$[CoF_6]^{3}$$

B.
$$\left[Co(NH_3)_6 \right]^{3+}$$

C.
$$[Fe(CN)_6]^{3-}$$

D.
$$\left[Cr \left(NH_3 \right)_6 \right]^{3+}$$

Answer: A

Watch Video Solution

62. Which of the following is an outer orbital complex

A.
$$[Fe(CN)_6]^{3}$$

B.
$$[Fe(CN)_6]^{4-}$$

C.
$$[FeF_6]^{3}$$

D.
$$\left[Cr(CN)_6 \right]^{3}$$

Answer: C

Watch Video Solution

63. Which of the following is low spin complex

A.
$$\left[NiCl_4\right]^{2}$$

B.
$$[\mathit{CoF}_6]^{3}$$
-

C.
$$\left[Ni(CN)_4\right]^{2}$$

D.
$$\lceil MnCl_4 \rceil^{2-}$$

Answer: C

64. In an octahedral crystal field, the correct set of low energy orbitals are

 $A. d_{xy}, d_{xz}, d_{z2}$

B. $d_{x^2-y^2}$, d_{z^2}

 $\mathsf{C}.\,d_{xy},\,d_{xz},\,d_{yz}$

D. d_{xy} , $d_{x^2-y^2}$

Answer: C

Watch Video Solution

65. Which of the following is paramagnetic?

A. $V(CO)_6$

 $\mathsf{B.}\mathit{Fe}(CO)_{5}$

 $C. Fe_2(CO)_9$

D. $Cr(CO)_6$

Answer: A

Watch Video Solution

66. Which of the following has square planar geometry

A.
$$[FeCl_4]^{2-}$$

B.
$$\left[NiCl_4\right]^2$$

C.
$$[PdCl_4]^{2-}$$

D.
$$\left[CoCl_4\right]^{2}$$

Answer: C

67. For the same metal, stabilisation energies of tetrahedral and octahedral complexes are related as

A.
$$\Delta_t = \Delta_0$$

$$\mathsf{B.}\,\Delta_t\times 4=\Delta_0\times 6$$

$$C. \Delta_t \times 9 = \Delta_0 \times 4$$

D.
$$\Delta t \times 6 = \Delta_0 \times 4$$

Answer: C

Watch Video Solution

68. Both $\left[Ni(CO)_4\right]$ and $\left[Ni(CN)_4\right]^{2-}$, are diamagnetic. The hybridizations of nickel in these respectively, are

A.
$$sp^3$$
, sp^3

B.
$$sp^3$$
, dsp^2

C. dsp^2 , sp^3

D. dsp^2 , dsp^2

Answer: B

Watch Video Solution

- **69.** The magnetic behaviour of complexes $K_4 \left[Fe(CN)_6 \right]$ and $K_3[Fe(CN)_6]$ is
 - A. Para, Dia
 - B. Dia, Para
 - C. Dia, Ferro
 - D. Both Dia

Answer: B

70. Which one of the following cyano complexes exhibit the lowest value of paramagnetic behaviour ?

- A. $\left[Cr(CN)_6 \right]^{3}$
- B. $\left[Mn(CN)_6 \right]^{3}$
- C. $[Fe(CN)_6]^{3}$
- D. $\left[Co(CN)_6 \right]^{3}$

Answer: D

- 71. The hybridisation of nickel in tetracarbonyl nickel is
 - A. dsp^2
 - B. *sp*³
 - $C. sp^3d$

D. sp^3d^2

Answer: B

Watch Video Solution

72. The oxidation state of the metal forming the complex $K_2[PtCl_6]$ is

A. + 1

B. + 2

C. +3

D. + 4

Answer: D

73. In the complex $\left[Ni\left(H_2O\right)_2\left(NH_3\right)_4\right]^{2+}$ the number of unpaired electrons is

B. 1

C. 3

D. 2

Answer: D

Watch Video Solution

74. The correct order of increasing field strengths

$$A. Br^- > SCN^- > Cl^- > I^-$$

$$B. Br^- > SCN^- > Cl^- > I^-$$

$$C. I^- < Br^- < SCN^- < Cl^-$$

$$D.I^- < Cl^- < SCN^- < Br^-$$

Answer: C

Watch Video Solution

75. In which of the following octahedral complexes of cobalt (atomic number = 27) will the magnitude of Δ_0 be the highest?

A.
$$\left[Co\left(C_2O_4\right)_3\right]^{3-1}$$

$$\mathsf{B.}\left[\mathit{Co}\big(H_2O\big)_6\right]^{3+}$$

$$C. \left[Co(NH_3)_6 \right]^{3+}$$

D.
$$\left[Co(CN)_6 \right]^{3}$$

Answer: D

76. According to crystal field theory, the M-L bond in a complex is
A. partially covalent
B. purely ionic
C. purely covalent
D. purely co-ordinate
Answer: B Watch Video Solution
77. The number of unpaired electron in $\left[Pt(CN)_4\right]^{2-}$ ion having square planar geometry (At.No. of Pt=78) is
A. 0
B. 1
C 2

Answer: A

Watch Video Solution

78. Which one of the following is square planar in structure and has diamagnetic property?

A.
$$\left[Ni \left(H_2 O \right)_6 \right]^{2+}$$

B.
$$\left[Ni(CO)_4 \right]$$

C.
$$\left[Ni(CN)_4\right]^{2}$$

D.
$$\left[NiCl_4\right]^{2}$$

Answer: D

79. $\left[Cr\left(H_2O\right)_6\right]Cl_3$ and $\left[Cr\left(H_2O\right)_4Cl_2\right]Cl.H_2O$ are hydrate isomers.

Their colours are respectively

- A. violet and green
- B. yellow and green
- C. red and blue

D. blue and green

Answer: A

- **80.** Which of the following does not has an optical isomer?
 - A. $\left[Co(en)_2 Cl_3 \right]$
 - B. $\left[Co(en)_2Cl_2\right]Cl$
 - $\mathsf{C.}\left[\mathit{Co}\left(\mathit{NH}_3\right)_3 \mathit{Cl}_3\right]$

$$D. \left[Co(en) \left(NH_3 \right)_2 Cl_2 \right] Cl$$

Answer: C

Watch Video Solution

81. Which of the following has an optical isomer?

A.
$$\left[Co(en) \left(NH_3 \right)_2 \right]^{2+}$$

B.
$$\left[Co(H_2O)_6 \right]^{3+}$$

C.
$$\left[Co(en)_2 \left(NH_3 \right)_2 \right]^{3+}$$

D.
$$\left[Co(NH_3)_3 Cl \right]^+$$

Answer: C

82. Which of the following pairs represents linkage isomers?

A.
$$\left[Pd\left(PPh_3\right)_2(NCS)_2\right], \left[Pd\left(PPh_3\right)_2(SCN)_2\right]$$

B.
$$\left[Co(NH_3)_5NO_3\right]SO_4$$
, $\left[Co(NH_3)_5SO_4\right]NO_3$

C.
$$\left[PtCl_2(NH_3)_4\right]Br_2$$
, $\left[PtBr_2(NH_3)_4\right]Cl_2$

D.
$$\left[Cu(NH_3)_4\right]\left[PtCl_4\right], \left[Pt(NH_3)_4\right]\left[CuCl_4\right]$$

Answer: A

83. Which of the following will exhibit geometrical isomerism? (M stands for a metal, and a and b are achiral ligands (1) Ma_2b_2 , (2) Ma_4b_2 , (3) Ma_5b , (4) Ma_6

A. 1 and 2

B. 2 and 3

C. 1 and 3

D. 2 and 4

Answer: A

Watch Video Solution

84. The ionization isomer of $\left[Cr\left(H_2O\right)_4Cl\left(NO_2\right)\right]Cl$ is given as

A.
$$\left[Cr\left(H_2O\right)_4\left(O_2N\right)\right]Cl_2$$

$$B. \left[Cr \left(H_2 O \right)_4 C l_2 \right] NO_2$$

C.
$$\left[Cr \left(H_2O \right)_4 Cl(ONO) \right] Cl$$

D.
$$\left[Cr \left(H_2O \right)_4 Cl_2 \left(NO_2 \right) \right] . H_2O$$

Answer: B

85. Ionisation isomerism is possible with

A.
$$\left[Co(NH_3)_6 \right] Cl_3$$

$$B. \left[Co \left(NH_3 \right)_3 Cl_3 \right]$$

C.
$$\left[Co(NH_3)_5Cl\right]Br$$

D.
$$\left[Co(H_2O)_6 \right] Cl_3$$

Answer: C

Watch Video Solution

86. $\left[PtBrCl(NO_2)(NH_3)\right]$ I on ionisation gives the ion

A. *Cl*

B. Br

 $\mathsf{C}.I^{\mathsf{-}}$

 $D.NO_2$

Answer: C

Watch Video Solution

87. Structural differences are main in the following isomers

(A) ionisation isomerism, (B) ligand isomerism, (C) hydrate isomerism, (

D) geometrical isomerism

A. A,B,C

B. A,C,D

C. B,C,D

D. A,B,D

Answer: A

88. Which of the following is not an example of the isomerism in complex compounds

- A. Ionisation isomerism
- B. Hydrate isomerism
- C. Position isomerism
- D. Ligand isomerism

Answer: C

- **89.** The complex ion $\left[Co(en)_2Cl_2\right]^+$ exhibits
 - A. optical isomerism and linkage isomerism
 - B. Cis-trans isomerism and optical isomerism
 - C. cis-trans isomerism and linkage isomerism

D. Cis-trans isomerism only
Answer: B
Watch Video Solution
90. Optical isomers differ in
A. chemical properties
B. molecular formulae
C. physical properties
D. optical properties
Answer: D
Watch Video Solution

91. A racemic mixture has a net rotation

- A. to right of original plane B. to left of original plane C. to right or left of original plane D. zero **Answer: D Watch Video Solution** 92. Geometrical isomerism may be possible with A. tetrahedral complex
- - B. square planar complex
 - C. pentagonal pyramidal complex
 - D. square pyramidal complex

Answer: B

93.
$$\left[Fe \left(NO_2 \right)_3 Cl_3 \right]$$
 and $\left[Fe (O - NO)_3 Cl_3 \right]$ shows

- A. Linkage isomerism
- B. Geometrical isomerism
- C. Optical isomerism
- D. Hydrate isomerism

Answer: A

Watch Video Solution

94. In metallurgy the metal used to displace silver from its cyano complex is

A. Zn

B. Au

 $C.F_2$

D. Cl_2

Answer: A

Watch Video Solution

95. Which of the following releases metal slowly which gives uniform coating in electroplating

A. Metal salts

B. Double salts

C. Complex salts

D. Alums

Answer: C

96. In
$$\left[Ti(H_2O)_6\right]^{+3}$$
 complex the energy absorbed for excitation of

 $3d^1$ electron is

- A. Purple
- B. Blue
- C. Blue-green
- D. Red

Answer: C

Watch Video Solution

97. Number of dative bonds around Ag^+ ion in $\left[Ag(NH_3)_2\right]^+$

A. 2

B. 3

C. 4

D. 6

Answer: A

Watch Video Solution

98. Which of the following exhibits purple colour in solutions

A.
$$\left[Fe \left(H_2 O \right)_6 \right]^{2+}$$

$$\mathsf{B.}\left[\mathit{Ti}\big(H_2O\big)_6\right]^{3\,+}$$

$$\mathsf{C.}\left[\mathit{Cu}\big(H_2O\big)_6\right]^{2+}$$

D.
$$\left[Fe \left(H_2 O \right)_6 \right]^{3+}$$

Answer: B

99. Haemoglobin, a complex containing iron is a constituent of blood.

The oxidation state of iron in the complex is

- A. + 1
- B. + 2
- C. + 3
- D. + 4

Answer: B

Watch Video Solution

100. Which of the following is an organometallic compound?

- A. Lithium methoxide
- B. Lithium acetate

- C. Lithium dimethylamide
- D. Methyl lithium

Answer: D

Watch Video Solution

101. In photography, hypo is used in the reduction of

- A. Ag from AgBr
- B. AgBr into Ag_2SO_4
- C. AgBr into soluble thiosulphate complex
- D. Both (2) and (3)

Answer: C

102. The polydentate ligand used in the treatment of lead poisoning
A. EDTA
B. Glycinate
C. Oxalate
D. Ethylene diammine
Answer: A
Watch Video Solution
103. The ligand used in the identification of cupric copper in the laboratory
A. <i>NH</i> ₃
B. I^-
B. <i>I</i>

D. $S_2O_3^{2-}$

Answer: A

Watch Video Solution

104. Hydrometallurgy is a technique used

- A. for extracting silver from aqueous solutions
- B. for extracting sodium from aqueous solutions
- C. for extracting silver from its fused salt
- D. for extracting sodium from its fused salt

Answer: A

105. Which of the following silver halide is insoluble in water but soluble in liquid ammonia

- A. Silver fluoride
- B. Silver chloride
- C. Silver bromide
- D. Silver Iodide

Answer: B

Watch Video Solution

106. The number of moles of KI required to prepare one mole of

 $K_2[HgI_4]$ is

- A. 4
- B. 3

- C. 2
- D. 1

Answer: A

Watch Video Solution

107. Geometry of orbitals around the transition metal ion in hexacyanoferrate

- A. square planar arrangement
- B. tetrahedral arrangement
- C. plane trigonal arragement
- D. octahedral arrangement

Answer: D

108. The complex compound that gives a preciptate with $BaCl_2$ solution is

A.
$$\left[Co(NH_3)_5SO_4\right]Br$$

$$B. \left[Co \left(NH_3 \right)_5 Br \right] SO_4$$

$$\mathsf{C.}\left[\mathit{Co}\big(\mathit{NH}_3\big)_5\mathit{Br}\right]\big(\mathit{NO}_3\big)_2$$

$$D. \left[Co \left(NH_3 \right)_5 SO_4 \right] Cl$$

Answer: B

Watch Video Solution

109. Which of the following has magnesium?

A. Carbonic anhydrase

B. Haemocyanin

C. Chlorophyll

D. Vitamin B_{12}

Answer: C

Watch Video Solution

110. Ziegler-Natta catalyst is

A. Solution of $SnCl_4$ + trialkylaluminium

B. Solution of $TiCl_4$ + trialkylaluminium

C. Solution of $TiCl_4$ + trialkylchromium

D. Solution of $SnCl_4$ + Tollen's reagent

Answer: B

Objective Exercise 2

1. The primary valency of the central transition metal ion in a complex

compound
$$\left(Cr\left(NH_3\right)_4Cl_2\right]Cl$$

- A. 3
- B. 2
- C. 1
- D. 0

Answer: A

Watch Video Solution

2. The number of ions given by $\left[CO\left(NH_3\right)_3Cl_3\right]$ in aqueous solution

is

- A. 1
 - B. 2
- C. 3
- D. 0

Answer: D

- **3.** The oxidation state of Cr in $\left[Cr(NH_3)_4Cl_2\right]Cl$
 - A. + 3
 - B. + 2
 - C. + 1
 - D. 0

4. When 1 mole of $\left[Co\left(NH_3\right)_3Cl_3\right]$ is added to excess of $AgNO_3$ solution the weight of AgCl precipitated is

- A. 13.5 g
- B. 108 g
- C. 0
- D. 54g

Answer: C

Watch Video Solution

5. The secondary valency of Chromium in $\left[Cr(en)_3\right]Cl_3$ is

A. 6

- B. 3
- C. 2
- D. 4

Answer: A

Watch Video Solution

6. The deep blue complex produced by adding excess of Ammonia to CuSO₄ solution is

A.
$$\left[Cu(NH_3)_2 \right]^{2+}$$

- B. $\left[Cu \left(NH_3 \right)_4 \right]^{2+}$
- $C. \left[Cu \left(NH_3 \right)_6 \right]^{2+}$
- D. $\left[Cu(NH_3)_4 \right]^+$

Answer: B

7.
$$K_2SO_4$$
. $Al_2(SO_4)_3$. $24H_2O$ is

A. a complex salt

B. a double salt

C. a complex salt & double salt

D. a basic salt

Answer: B

The correct match in terms of the charge on the complex

A. A-3,B-2,C-5,D-1

8.

- B. A-3,B-1,C-2,D-5
- C. A-3,B-2,C-1,D-5
- D. A-4,B-3,C-2,D-1

Answer: C

Watch Video Solution

9. Number of dative bonds in the complex $CoCl_3.5NH_3$ is

A. 5 B. 6 C. 3 D. 4 **Answer: B Watch Video Solution 10.** A complex compound of Co^{3+} with molecular formula $COCl_x$. yNH_3 gives a totall of 3 ions when dissolved in water. How many Cl^- ions when the primary and secondary valency in this complex? A. 3 B. 1

C. 4

D. 0

Answer: B

Watch Video Solution

- 11. Neutral complex among the following
 - A. $CuSO_4$. $4NH_3$
 - $B. \left[Co \left(NH_3 \right)_6 \right] Cl_3$
 - $\mathsf{C}.\,Ni(CO)_4$
 - D. $\left[Pt\left(NH_3\right)_2\right]Cl_2$

Answer: C

- 12. Pick up true statement about the complex compound with formula
- $\left[Co(NH_3)_3Cl_3\right]$

- A. IUPAC name is triamminecobalt(III)chloride
- B. The complex can exhibit fac and mer isomerism
- C. The complex can show optical isomerism
- D. The hybrid state of cobalt is dsp

Answer: B

Watch Video Solution

- **13.** Cationic complex is
 - A. Potassium ferrocyanide
 - B. Cryolite
 - C. Cuprammonium (II) sulphate
 - D. Sodium argentothiosulphate

Answer: C

14. Number of unpaired electrons in
$$\left[Fe(CN)_6\right]^{4-}$$
 ion

- A. 6
- B. 5
- C. 4
- D. 0

Answer: D

Watch Video Solution

15. Which of the following is diamagnetic

- A. $\left[Fe(CO)_5 \right]$ B. $\left[Fe(CN)_6 \right]^{3-}$

$$\mathsf{C.}\left[\mathit{Cr}\left(\mathit{NH}_3\right)_6\right]^{3+}$$

D.
$$\left[Cr\left(H_2O\right)_6\right]^{3+}$$

Answer: A

Watch Video Solution

16. The number of ions formed when cupra ammonium sulphate is dissolved in water

- A. 1
- B. 2
- C. 4
- D. zero

Answer: B

- Property of transition element
 - 1) Colour of ion
- 2) Variable oxdation states
- 3) Formation of alloys
- 4) Paramagnetic

Reason for the property

- A) unpaired e in (n-1)d orbital
- B) same crystal structure
- C) d-d- transition
- D) high magnitude of positive charge
- E) slight energy between ns and (n-1)d shells

17.

The correct match is

- A. 1-C,2-E,3-A,4-B
- B. 1-C,2-E,3-B,4-A
- C. 1-C,2-B,3-E,4-A
- D. 1-B,2-A,3-E,4-B

Answer: B

18. In which of the following complexes the metal ion is in zero oxidation state?

A.
$$\left[Cu(NH_3)_4 \right] Cl_2$$

$$B. Zn_2 \Big[Fe(CN)_6 \Big]$$

$$\mathsf{C.}\,\mathit{Mn}_{2}(\mathit{CO})_{10}$$

$$D.\left[Ag\Big(NH_3\Big)_2\right]Cl$$

Answer: C

Watch Video Solution

19. Which of the following represents chelating ligand?

A. Cl

B. DMG

C. OH

 $D.H_2O$

Answer: B

Watch Video Solution

20. The liquid hydrazinium is denoted as

A. N_2H_4

 $B.N_2H_5^+$

 $C. N_2 H_3^-$

D. $N_2H_3^+$

Answer: B

21. Nickel combines with a uninegative monodentate ligand X to form a paramagnetic complex $\left[NiX_4\right]^{2-}$. The number of unpaired electron/s in the nickel and geometry of this complex ion are respectively

- A. two, square planar
- B. one, tetrahedral
- C. two, tetrahedral
- D. one, square planar

Answer: C

Watch Video Solution

22. Ammonia forms the complex ion $\left[Cu(NH_3)_4\right]^{2+}$ with copper ions in alkaline solutions but not in acidic solutions. The reason is

- A. In acidic solutions hydration protects copper ions
- B. In acidic solutions protons coordinate with ammonia molecules forming NH_4^+ ions and NH_3 molecules are not available
- C. In alkaline solutions insoluble $Cu(OH)_2$ is precipitated which is soluble in excess of any alkali
- D. Copper hydroxide is an amphoteric substance.

Answer: B

- **23.** $[PdBr_4]^{2-}$ is a sqaure planar complex. The hybridisation of Pd^{2+} is
 - A. sp^3
 - $B. dsp^2$
 - $C. sp^3d$

D. sp^3d^2

Answer: B

Watch Video Solution

24. The colour exhibited by one of the iron ions in aqueous solutions is pale green. The primary valency and secondary valency respectively in the green complex are

- A. 2,4
- B. 2,6
- C. 3,4
- D. 3,6

Answer: B

25. In nitroprusside ion, the iron and NO exist as Fe^{II} and NO^+ rather than Fe^{III} and NO. These forms can be differentiated by

A. estimatinng the concentration of iron

B. measuring the concentration of CN^-

C. measuring the solid state magnetic moment

D. thermally decomposing the compound

Answer: C

Watch Video Solution

26.
$$Ag^+ + NH_3 \Leftrightarrow \left[Ag(NH_3) \right]^+, K_1 = 3.5 \times 10^{-3}$$

, $\left[Ag(NH_3)\right]^+ + NH_3 \Leftrightarrow \left[Ag(NH_3)_2\right]^+, K_2 = 1.7 \times 10^{-3}$. Calculate

the formation constant of $\left[Ag\Big(NH_3\Big)_2\right]^+$. What is the instability

constant?

A.
$$1.7 \times 10^{-3}$$

B.
$$5.92 \times 10^{-6}$$

C.
$$1.8 \times 10^3$$

D.
$$1.7 \times 10^7$$

Answer: B

Watch Video Solution

27. The co-ordination number and the oxidation state of the element 'M' in the complex $\left[M(en)_2\left(C_2O_4\right)\right]NO_2$ [where (en) is ethan-1, 2

diamine] are respectively

Watch Video Solution

28. In the separation of Cu^{2+} and Cd^{2+} in 2nd group qualitative analysis of cations, tetrammine copper (II) sulphate and tetrammine cadmium (II) sulphate react with KCN to form the corresponding cyano complexes. Which one of the following pairs of the complexes and their relaive stability enalbles the separation of Cu^{2+} ad Cd^{2+} ?

- A. $K_2\Big[\mathit{Cu}(\mathit{CN})_4\Big]$ more stable and $K_2\Big[\mathit{Cd}(\mathit{CN})_4\Big]$ less stable
- $\operatorname{B.}K_2\Big[\operatorname{Cu}(\operatorname{CN})_4\Big]$ less stable and $K_2\Big[\operatorname{Cd}(\operatorname{CN})_4\Big]$ more stable
- $C. K_2 \left[Cu(CN)_4 \right]$ more stable and $K_2 \left[Cd(CN)_4 \right]$ less stable
- D. $K_2 \left[Cu(CN)_4 \right]$ less stable and $K_2 \left[Cd(CN)_4 \right]$ more stable

Answer: A

29. The number of bridging carbonyls respectively in $Mn_2(CO)_{10}$ and $CO_2(CO)_8$ are

A. 0,0

. 0,0

B. 1,1

C. 1,0

D. 0,2

Answer: D

30. Which complex has square planar structure?

- A. $Ni(CO)_4$
 - 7...TN(00)₄
 - B. $\left[NiCl_4\right]^{2-}$ C. $\left[Ni\left(H_2O\right)_6\right]^{2+}$

D.
$$\left[Cu \left(NH_3 \right)_4 \right]^{2+}$$

Answer: D

Watch Video Solution

- **31.** Among $\left[Ni(CO)_4\right]$, $\left[Ni(CN)_4\right]^{-2}$ and $\left[NiCl_4\right]^{-2}$ species the hybridisation state of the Ni atom are respectively?
 - A. sp^3 , dsp^2 and dsp^2
 - B. sp^3 , dsp^2 and sp^3
 - C. sp^3 , sp^3 and dsp^3
 - D. dsp^2 , sp^3 and sp^3

Answer: B

32. Which of the following statement is incorrect for metals involving in formation of alloys

A. must have almost same atomic radii

B. must have similar chemical properties, especially number of

C. must have similar crystal structures

D. must belong to same 'd' series

Answer: D

valency electrons

33. Compound that is both paramagnetic and coloured is

$$A. K_2 Cr_2 O_7$$

B.
$$[TiCl_6]$$
. $(NH_4)_2$

$$C. VOSO_4$$

D.
$$K_3$$
 $\left[Cu(CN)_4 \right]$

Answer: C

Watch Video Solution

34. Correct matching from the codes given below

List -I	List -II
(complex)	(Structure and magnetic moment)
a) [Ag(CN) ₂]"	1) square planar and 1.73 BM
b) [Cu(CN) ₄]3-	2) Linear and zero
c) [Cu(CN),]*	3) Octahedrai and zero
d) (Cu(NH),), 1*	4) tetrahedral and zero
e) [Fe(CN),]4-	5) octahedral and 1,73BM

C. a-1,b-3,c-4,d-2,e-5

D. a-4,b-5,c-2,d-1,e-3

Answer: A

Watch Video Solution

35. Strongest oxidant among the following is

A. VO_2^+

B. $Cr_2O_7^{-2}$

 $C. MnO_4$

D. MnO_4^{-2}

Answer: C

36. Tetraaminecopper (II) ion is square planar complex with one unpaired electron. According to valence bond theory the hybrid state of copper should be

37. Which of the following shall form an octahedral complex?

- A. sp^3
- $B. sp^2$
- C. dsp^2
- D. sp³d

Answer: C

- - A. d^4 (Low spin)
 - B. d^8 (High spin)
 - C. d^6 (High spin)

D. None of these

Answer: B

Watch Video Solution

38. Which of the following species represent the example of dsp hybridization?

A.
$$[Fe(CN)_6]^{3}$$

B.
$$\left[Ni(CN)_4\right]^{2}$$

C.
$$\left[Ag(CN)_2\right]^{-1}$$

D.
$$\left[Co(CN)_6 \right]^{3}$$

Answer: B

39. Consider the following complex

$$\left[Co\left(NH_3\right)_5CO_3\right]ClO_4$$

The coordination number, oxidation number, number of d-electrons and number of unpaired d-electrons, respectively, on the metal are

- A. 6,3,6,0
- B. 7,2,7,1
- C. 7,1,6,4
- D. 6,2,7,3

Answer: A

- **40.** Which of the following set is incorrect?
 - A. $Ni(CO)_4$ - Tetrahedral, paramagnetic

B. $\left[Ni(CN)_4\right]^{2-}$ - Square planar, diamagnetic

C. $Ni(CO)_4$ - Tetrahedral, diamagnetic

D. $\left[NiCl_4\right]^{2-}$ - Tetrahedral, paramagnetic

Answer: B

- **41.** Stabilisation energy of octahedral complex with d^7 configuration
- (A)1.8 Δ_0 with one unpaired electron
- (B)1.8 Δ_0 with three unpaired electron
- (C)0.8 Δ_0 with one unpaired electron
- (D) 0.8 Δ_0 with three unpaired electron
 - A. A and D
 - B. A and B
 - C. C and D

D. B and C

Answer: A

- **42.** The incorrect statement with respect to valence bond theory
 - A. The electrons in the metal orbitals may undergo regrouping even against Hund's rule.
 - B. The electrons in an incompletely filled orbitals give rise to the resultant magnetic moment.
 - C. Ligand orbitals overlap the vacant metal orbitals to form a strong coordinate covalent bond to the extent possible.
 - D. The number of electrons lost is equal to the coordination number of the metal

Answer: D

Watch Video Solution

43. Which of the following complexes is an outer orbital complex?

A.
$$[Fe(CN)_6]^{4-}$$

B.
$$\left[Ni\left(NH_3\right)_6\right]^{2+}$$

$$C. \left[Co(NH_3)_6 \right]^{3+}$$

D.
$$\left[Mn(CN)_6\right]^{4-}$$

Answer: B

Watch Video Solution

44. In octahedral complexes having co-ordination number 6, the degeneracy of the d-orbitals of central atom is removed due to ligand

electron metal electron repulsions. In the octahedral complex three orbitals have lower energy, t_{2a} set and two orbitals have higher energy, eg set. This phenomenon is formed as crystal field splitting and the energy seperation is denoted by Δ_0 . Thus the energy of the two eg orbitals will increase by $(3/5)\Delta_0$ and that of the three t_{2a} will decrease by $(2/5)\Delta_0$. The erystal field splitling, Δ_0 depends upon the field produced by the ligand and charge on the metal ion. Some ligands are able to produce strong field and in these cases, the splitting will be large whereas other produce weak fields and consequently result in small splitting of d-orbitals.

If $\Delta_0 < P$, the correct electronic configuration of d^4 system will be

A.
$$t_{2q}^4 e_q^0$$

A.
$$t_{2g}^{4}e_{g}^{0}$$
B. $t_{2g}^{3}e_{g}^{1}$

C.
$$t_{2g}^{0}e_{g}^{4}$$

D. $t_{2g}^{4}e_{g}^{2}$

D.
$$t_{2g}^4 e_g^2$$

Answer: A

45. Some statements on
$$\left[Co(NH_3)_6\right]^{3+}$$

- (a) oxidation number of Co is +3
- (b) octahedral shape
- (c) high spin complex
- d) hybridization of cobalt is d^2sp^3

The correct set of statements

- A. a,b,c
- B. a,b,d
- C. b,c,d
- D. a,d

Answer: B

46. Which of the following is not a bidentate ligand?

A. Ethylene diammine

B. Acetyl acetone

C. Carbonate

D. Chloro

Answer: D

47. Hybridization of Fe in $\left[Fe\left(H_2O\right)_5NO\right]SO_4$ (brown ring complex) is

A. dsp^2

B. sp^3d

 $C. sp^3d^2$

D. d^2sp^3

Answer: C Watch Video Solution 48. Trans-diglycinatoplatinum (II) has a shape A. trigonal B. tetrahedral C. square planar D. octahderal

49. The pair of compounds having metals in their highest oxidation state is

A.
$$[Fe(CN)_6]^{3-}$$
, $[Co(CN)_6]^{3-}$

B. CrO_2Cl_2 , MnO_4

C. TiO_2 , MnO_2

D. $\left[Co(CN)_6 \right]^{3}$, MnO_2

Answer: B

Watch Video Solution

50. When ammonia is added to cupric salt solution, the deep blue colour formed is

A. Due to double salt formed

B. Due to complex salt formed

C. Due to mixed salt formed

D. Due to basic salt formed

Answer: B

Watch Video Solution

51. Which of the following is diamagnetic

A.
$$\left[Zn\left(NH_3\right)_4\right]^{2+}$$

B.
$$\left[Cu(CN)_4 \right]^{2-}$$

C.
$$\left[NiCl_4\right]^{2}$$

D.
$$\left[Ni\left(NH_3\right)_4\right]^{2+}$$

Answer: A

Watch Video Solution

52. Which one of the following sets correctly represents the increase in the paramagnetic property of the ions ?

A.
$$Cu^{2+} < V^{2+} < Cr^{2+} < Mn^{2+}$$

53. The number of unpaired electron in the complex ion $[CoF_6]^{3-}$ is

B.
$$Cu^{2+} < Cr^{2+} < V^{2+} < Mn^{2+}$$

C.
$$Cu^{2+} < V^{2+} < Cr^{2+} < Mn^{2+}$$

D. $V^{2+} < Cu^{2+} < Cr^{2+} < Mn^{2+}$

Answer: A

Watch Video Solution

- - A. 0
 - B. 4
 - C. 2

D. 3

Answer: B

54. Crystal field theory does not explain which of the following property of coordination compounds ?

A. The covalent character of the band between metal and the ligand

B. Magnetic property

C. colour

D. Structure of coordination compounds

Answer: A

Watch Video Solution

55. Which of the following hybrid state is associated with low spin complex?

B. sp^3d^2

 $C. d^2sp^3$

D. sp^3d

Answer: C

Watch Video Solution

56. If $\Delta_0 \leq P$, the correct electronic configuration for d^4 system will be

A.
$$t_{2g}^4 e_g^0$$

B. $t_{2g}^{3}e_{g}^{1}$

C. $t_{2g}^{0}e_{g}^{4}$

D. $t_{2g}^2 e_g^2$

Answer: A

57. Indicate the hydbridisation and Magnetic nature of $Ni(CO)_4$

A. dsp^2 , Diamagnetic

 ${\sf B}.\,sp^3$, Paramagnetic

C. sp^3 , Diamagnetic

D. dsp² Paramagnetic

Answer: B

Watch Video Solution

58. Which of the following compounds is paramagnetic?

A. Tetracyanonickelate (II) ion

B. Tetraammine zinc (II) ion

C. Hexaammine chromium (III) ion

D. Diammine silver (I) ion

Answer: C

Watch Video Solution

59. The number of unpaired electrons in the square planar complex

 $\left[Pt(CN)_4 \right]^{2-}$ is

A. 2

B. 3

C. 0

D. 1

Answer: C

60. Which of the following are true for the complex $Ni(CN)_4^{2-}$ ion

- (A) Hybridisation of Ni^{2+} ion is dsp^2
- (B) Shape of the complex ion is planar square
- (C) Magnetic moment of the complex is 2.83 BM
- (D) The complex is an example for a high spin complex
 - A. A and B
 - B. C and D
 - C. A and C
 - D. B and D

Answer: A

Watch Video Solution

61. Which one of the following ionic species will impart colour to an aqueous solution ?

- A. Ti^{4+}
- B. *Cu* +
- $C. Zn^{2+}$
- D. *Cr*³⁺

Answer: D

- **62.** The spin only magnetic moment $\left[Mn(Br)_4\right]^{2+}$ is 5.9BM. Then possible hybridisation of Mn in the complex is
 - A. sp^3d
 - $B. dsp^2$
 - $C. d^2sp^3$
 - D. sp^3

Answer: D

Watch Video Solution

63. Match the following

complex

l) [Ni(H₂O)₄en]₂₂

II) $[Ni(H_2O)_2(en)_2]_{eq}^{2s}$

III) {Ni(en),], 2+

IV) Cr[(H2O),Cl]Cl2.H2O

colour

B) Violet

A) Grey-green

C) Blue/Purple

D) Pale blue

The correct match is

A. I-D,II-C,III-B,IV-A

B. I-B,II-A,III-C,IV-D

C. I-A,II-D,III-B,IV-C

D. I-C,II-A,III-D,IV-B

Answer: A

Water video Solution

64. In the complexes $\left[Fe\left(H_2O\right)_6\right]^{3+}$, $\left[Fe(CN)_6\right]^{3-}$, $\left[Fe\left(C_2O_4\right)_3\right]^{3-}$ and $\left[FeCl_6\right]^{3-}$, more stability is shown by

A.
$$\left[Fe \left(H_2 O \right)_6 \right]^{3+}$$

B.
$$\left[Fe(CN)_6 \right]^{3}$$

C.
$$\left[Fe \left(C_2 O_4 \right)^3 \right]^{3}$$

D.
$$[FeCl_6]^{3}$$

Answer: C

Watch Video Solution

65. The correct statement regarding $\left[Co\left(C_2O_4\right)_3\right]^{3+}$ complex is

A. It is inner orbital complex and diamagnetic

B. It is outer orbital complex and diamagnetic

C. It is inner orbital complex and para magnetic

D. It is outer orbital complex and para magnetic

Answer: A

Watch Video Solution

66. The complex $K_3[Fe(CN)_6]$ should have a spin only magnetic moment of

A. $\sqrt{3}$ B.M.

B. $2\sqrt{5}$ B.M.

 $C. \sqrt{5} B.M.$

D. $\sqrt{6}$ B.M.

Answer: A

67. Which of the following complex compounds is not coloured

A.
$$Na_2$$
 $\left[CuCl_4 \right]$

$$B. Na_2 \Big[CdCl_4 \Big]$$

$$\mathsf{C.}\,K_4\Big[\mathit{Fe}(\mathit{CN})_6\Big]$$

$$D.K_3[Fe(CN)_6]$$

Answer: B

Watch Video Solution

68. Potassium hexachloroplatinate (IV) is given with the chemical formula

A.
$$Pt_2[K(Cl)_6]$$

$$B. K[Pt(Cl)_6]$$

$$C. K_2[Pt(Cl)_6]$$

D.
$$K_4[Pt(Cl)_6]$$

Answer: C

Watch Video Solution

69. IUPAC name of $Li[AlH_4]$ is

- A. Lithium aluminium hydride
- B. Lithium tetrahydrido aluminate [III]
- C. Tetrahydride aluminium lithionate
- D. Aluminium lithium hydride

Answer: B

- A. Potassium hexacyanoferrate(II)
- B. Potassium hexacyanoferrate (III)
- C. Potassium hexacyanoiron (II)
- D. Tropotassium hexacyano iron (II)

Answer: B

- **71.** When $AgNO_3$ solution is added in excess to 1M solution of $CoC1_3cxNH_3$ one mole of AgCl is formed ? What is the value if 'X'?
 - A. 1
 - B. 2
 - C. 3

Answer: D

Watch Video Solution

72. The hypothetical complex chlorodiaquatriam minecobalt (III) chloride can be presented as

A.
$$\left[CoCl(NH_3)_3(H_2O)_2\right]Cl_2$$

$$B. \left[Co(NH_3)_3 (H_2O)Cl_3 \right]$$

$$\mathsf{C.}\left[\mathsf{Co}\big(\mathsf{NH}_3\big)_3\big(\mathsf{H}_2\mathsf{O}\big)_2\mathsf{Cl}\right]$$

D.
$$\left[Co(NH_3)_3(H_2O)_3\right]Cl_3$$

Answer: A

73. The IUPAC name of $\left[Co(NH_3)_4Br_2\right]^+\left[ZnCl_4\right]^-$ is

A. Dibromo tetraammine cobalt (III) tetrachlorozinc (II)

B. Tetrammine dibromo cobalt (III) tetrachlorozinc

C. Tetra ammine dibromocobalt (III) tetrachlorozincate (II)

D. Tetrachlorozinc (II) tetra ammine dibromo cobaltate (III)

Answer: C

(III) is

74. The correct structural formula of potassium tri oxalate aluminate

$$A. K_3 \left[Al \left(C_2 O_4 \right)_3 \right]$$

$$\mathrm{B.}\,K_{3}\!\left[\!Al\!\left(\!C_{2}O_{4}\right)_{2}\right]$$

$$C.K_2 \left[Al \left(C_2 O_4 \right)_2 \right]$$

$$D. K_2 \left[Al \left(C_2 O_4 \right)_3 \right]$$

Answer: A

Watch Video Solution

75. The hypothetical complex chlorodiaquatriam minecobalt (III) chloride can be presented as

A.
$$\left[Co\left(NH_3\right)_3\left(H_2O\right)_2Cl\right]Cl_2$$

B.
$$\left[Co(NH_3)_3(H_2O)Cl_3\right]$$

$$C. \left[Co \left(NH_3 \right)_3 \left(H_2 O \right)_2 Cl \right]$$

D.
$$\left[Co(NH_3)_3(H_2O)_3\right]Cl_3$$

Answer: A

- A. tetracarbonyl Nickel (II)
- B. tetracarbonyl Nickel (0)
- C. tetracarbonyl Nickelate (II)
- D. tetracarbonyl Nickelate (0)

Answer: B

Watch Video Solution

77. Ligands with which linkage isomerism is possible

- A) NO_2 B) CN^- C) SCN^-
 - A. A only
 - B. A & B
 - C. B & C

D. A,B & C

Answer: D

Watch Video Solution

78. The types of isomerism exhibited by $\left[Co(NH_3)_5(NO_2)\right](NO_3)_2$ is

- A. Geometrical and linkage
- B. Geometrical and ionization
- C. Optical and ionization
- D. Co-ordination and hydrate

Answer: B

79. Which of the following compound shows optical isomerism?

A.
$$\left[Cu \left(NH_3 \right)_4 \right]^{2+}$$

B.
$$\left[Zn(Cl)_4\right]^{2-}$$

$$C. \left[Cr \left(C_2 O_4 \right)_3 \right]^{2-}$$

D.
$$\left[Co(CN)_6 \right]^{3}$$

Answer: C

- **80.** Identify the correct statements among the following
- I) Cr in first series of d-block has highest oxidation state.
- II) Colour of MnO_4^- is due to charge transfer phenomenon.
- III) Zn can show variable oxidation state.
- IV) Ferromagnetism disappears in the solution of Fe

- A. All
- B. I & II only
- C. II & IV only
- D. II & III only

Answer: C

Watch Video Solution

81. Both geometrical and optical isomerisms are shown by

- A. $\left[Co(en)_2Cl_2\right]^+$
 - B. $\left[Co(NH_3)_5 Cl \right]^{2+}$
 - C. $\left[Co(NH_3)_4 Cl_2 \right]^+$
 - D. $[Cr(ox)_3]^{3}$

Answer: A

82. Which of the following represents largest number of possible isomers?

A.
$$\left[Ru(NH_3)_4 Cl_2 \right]^+$$

$$\mathsf{B.}\left[\mathit{Co(en)}_{2}\mathit{Cl}_{2}\right]^{+}$$

C.
$$\left[Ni(CO)_4\right]$$

$$\mathsf{D.}\left[\mathit{Co}\!\left(\mathit{NH}_{3}\right)_{4}\!\mathit{Cl}_{2}\right]^{+}$$

Answer: B

Watch Video Solution

83. $\left[Co(en)_2(NH_3)_2\right]Cl_3$ can exhibit

(A) ionisation isomerism

- (B) geometrical isomerism
 - (C) optical isomerism
 - A. A,B
 - B. B,C
 - C. A,C
 - D. A,B,C

Answer: B

- 84. Coordination isomerism is exhibited by
 - A. $\left[Cr \left(H_2 O \right)_6 \right] Cl_3$
 - $\mathsf{B.} \left[\mathit{Cr} \left(\mathit{NH}_3 \right)_6 \right] \left[\mathit{Co} (\mathit{CN})_6 \right]$
 - C. $\left[Cr(en)_2 \right] NO_2$

D.
$$\left[Ni\left(NH_3\right)_6\right]\left[BF_4\right]_2$$

Answer: B

Watch Video Solution

85. Geometrical isomerism in square planar complexes is given by

- A. Ma_4 type complex
- B. Ma_3b type complex
- C. Ma_2b_2 type complex
- D. Mb_4 type complex

Answer: C

 $\textbf{86.} \ \textbf{Which of the following compounds is expected to be coloured:} \\$

- $A. Ag_2SO_4$
- $B. \, CuF_2$
- $\mathsf{C}.\mathit{MgF}_2$
- D. CuCl

Answer: B

Watch Video Solution

87. The orbitals having lower energy in tetrahedral complexes according to CFT are

- $A. d_{xy}, d_{xz}, d_{z^2}$
- B. d_{xy} , d_{yz} , $d_{x^2-y^2}$
- $\mathsf{C.}\,d_{\mathit{xy}},d_{\mathit{yz}},d_{\mathit{zx}}$

D.
$$d_{x^2-y^2}$$
, d_{z^2}

Answer: D

Watch Video Solution

88. $K_3[Fe(CN)_6]$ is a

A. double salt

B. complex compound

C. neutral molecule

D. Simple salt

Answer: B

89. According to CFT the energy of t_{2g} orbitals in an octahedral complex

- A. decrease by $\frac{2}{5}\Delta_0$
- B. increase by $\frac{2}{5}\Delta_0$
- C. increase by $\frac{3}{5}\Delta_0$
- D. decrease by $\frac{3}{5}\Delta_0$

Answer: A

- 90. A similarity between optical and geometrical isomerism is that
 - A. Each gives equal number of isomers for a given compound
 - B. If in a compound one is present then so is the other
 - C. Both are included in stereoisomers

D. They have no similarity

Answer: C

Watch Video Solution

91. Which one of the following will not show geometrical isomerism?

A.
$$\left[Cr(NH_3)_4 Cl_2 \right] Cl$$

$$\mathsf{B.}\left[\mathit{Co(en)}_{2}\mathit{Cl}_{2}\right]\mathit{Cl}$$

$$\mathsf{C.} \mathit{Co} \left(\mathit{NH}_3 \right)_6 \mathit{NO}_3 \left] \mathit{Cl}_2 \right.$$

D.
$$\left[Pt \left(NH_3 \right)_2 Cl_2 \right]$$

Answer: C

- 92. Transition elements form complexes due to
 - A. Small size
 - B. High nuclear charge
 - C. Presence of vacant d orbitals
 - D. All the above

Answer: D

- **93.** Select the correct IUPAC name of $\left[Co(NH_3)_5C(CO_3)\right]CI$.
 - A. Penta ammine chloro cobalt (III) chloride
 - B. Penta amino chloro cobalt (III) carbonate
 - C. Penta ammine carbonato cobalt (III) chloride

D. Penta amino carbonato chloro cobalt (III)

Answer: C

Watch Video Solution

- **94.** $\left[Co\left(NH_3\right)_6SO_4\right]Br$ and $\left[Co\left(NH_3\right)_6Br\right]SO_4$ are a pair of _____ isomers .
 - A. Ionization
 - B. Ligand
 - C. Co-ordination
 - D. Hydrate

Answer: A

a) [Pt(NH₃),Cl]₂[PtCl₄]
& [Pt(NH₁)₂Cl₃]
 b) [Cr(NH₁)₆][Co(CN)₆]
& [Co(NH₃)₆][Cr(CN)₆]
 c) Coordination
 c) [Co(NH₄)₅(NO₃)] Cl₂
& [Co(NH₃)₅(ONO)]Cl₂
 D) Polymerisation d)[Co(SO₄)(NH₃)₅]Br

& [Co(Br)(NH,),] SO,

A. A-a,B-b,C-c,D-d

95.

- B. A-b,B-a,C-d,D-c
- C. A-d,B-c,C-b,D-a
- D. A-d,B-b,C-c , D-a

Answer: C

- **96.** Which of the following statements is true
- A) Ma_3b_3 type of complex exhibits fac-mer isomerism

- B) Tetrahedral complexes do not exhibit optical isomerism C)
- $[Co(en)_3]^{3+}$ shows optical isomerism
- D) $\left[Pt(en)_2Cl_2\right]$ does not exhibit optical isomerism
 - A. A,B,C are correct
 - B. B, C, D are correct
 - C. A, C, D are correct
 - D. All are correct

Answer: A

97. Example showing ionisation isomerism

- A. $\left[Co(NO_3)(NH_3)_5\right]SO_4 \& \left[Co(SO_4)(NH_3)_5\right]NO_3$
- B. $\left[Co(NH_3)_4Cl_2\right]Cl \& \left[Co(NH_3)_5Cl\right]Cl_2$

C.
$$\left[Cr\left(H_2O\right)_5Cl\right]Cl_2$$
. H_2O & $\left[Cr\left(H_2O\right)_4Cl_2\right]Cl$. $2H_2O$

D.
$$\left[Pt(NH_3)_4\right]\left[PtCl_4\right] \& \left[Pt(NH_3)_3Cl\right]_2\left[PtCl_4\right]$$

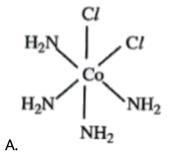
Answer: A

98. Which of the following exhibits linkage isomerism?

A.
$$\left[Co(NH_3)_5 SO_4 \right] Br$$

$$B. \left[CO \left(H_2 O \right)_6 \right] Cl_3$$

$$C. \left[CO(NH_3)_5 (NO_2) \right] Cl_2$$


D.
$$\left[CO(NH_3)_6\right]\left[Cr(CN)_6\right]$$

Answer: C

99. Which one of the following structures is indicative of meridonial

isomer?

$$\begin{array}{c|c} O_2N & NH_2 \\ \hline O_2N & NH_2 \\ \hline O_2N & NH_2 \\ \hline NO_2 & NH_2 \\ \end{array}$$

$$H_2N$$
 Co
 NH_2
 NH_2
 NH_2

$$\begin{array}{c|c} O_2N & NH_2 \\ \hline O_2N & NO_2 \\ \hline O_2N & NH_2 \\ D. & NH_2 \end{array}$$

Answer: C

Watch Video Solution

100. The number of geometrical isomers of $\left[Co(NH_3)_3(NO_3)_3\right]$ is

- A. 4
- B. 2
- C. 6
- D. 3

Answer: A

Watch Video Solution

101. The number of isomers possible for the octahedral complex

$$\left[CoCl_2(en)\left(NH_3\right)_2\right]^+$$
 is,

- A. Two
- B. Three
- C. No isomer
- D. Four isomers

Answer: D

Watch Video Solution

102. Which of the following can exhibit geometrical isomerism?

- A. Tetrahedral $\left[Zn \left(NH_3 \right)_2 Cl_2 \right]$
- B. Square planar $\left[Pt(NH_3)_2Cl_2\right]$
- C. Octahedral $\left[Co(NH_3)_5 Cl \right]^{2+}$
- D. Linear $\left[Cu(CN)_2 \right]^+$

Answer: B

103. How do we differentiate between Fe^{3+} and Cr^{3+} in group III ?

A. By adding excess of NH_4OH solution

B. By increasing NH_4^+ ion concentration

C. By decreasing OH^- ion concentration

D. Both (2) and (3)

Answer: D

Watch Video Solution

104. Nickel is purified using the concept of complex compounds. The complex related is

A. $Ni(CO)_6$

B. $\left[Ni\left(NH_3\right)_4\right]^{2+}$

 $C. Ni(CO)_{\Lambda}$

D. $\left[Ni\left(NH_3\right)_6\right]^{2+}$

Answer: C

Watch Video Solution

A. hydrogenation of oils

B. hydrogenation of alkenes

105. $\left[\left(Ph_3P \right)_3 RhCl \right]$ is a familiar catalyst used in

C. dehydration of alcohols

D. dehydration of aldehydes

Answer: B

106.
$$(Ph_3P)_3RhCl$$
 is

- A. Zieglar nutta catalyst
- B. Wilkinsons catalyst
- C. Developer in photography
- D. Bio catalyst

Answer: B

Watch Video Solution

107. Ammonium cations can be detected using the complex

A.
$$\left[Cu(NH_3)_4 \right]^{2+}$$

B.
$$[HgI_4]^{2-}$$

C.
$$\left[Ag(CN)_2\right]^{-1}$$

D. $\left[HgI_{2}\right]$
Answer: B
Watch Video Solution
108. Hardness of water is estimated by simple titration using
A. formate
B. acetate
C. edta
D. glyoxile
Answer: C
Watch Video Solution

109. In photography silver bromide dissolves in hypo to give

A.
$$Na_2 \left[Ag \left(S_2 O_3 \right)_2 \right]$$

$$B. Na \left[Ag \left(S_2 O_3 \right)_2 \right]$$

$$C. Na_3 \left[Ag \left(S_2 O_3 \right)_2 \right]$$

D.
$$Na_4 \left[Ag \left(S_2 O_3 \right)_2 \right]$$

Answer: C

Watch Video Solution

110. Organometallic compound used in purification of its metals is

A.
$$Ni(CO)_4$$

B.
$$Pb(C_2H_5)_4$$

$$D. Na_2 [Ni(CN)_4]$$

Answer: A

Objective Exercise 3 Previous Neet Aipmt

1. Among the following, which is not the π - bonded organomentallic compound

A.
$$\left(CH_3\right)_4$$
Sn

$$B. K[PtCl]_3 \left(\eta^2 - C_2 H_6 \right)$$

$$\mathsf{C.} Fe \Big(\eta^5 - C_5 H_5 \Big)_2$$

D.
$$Cr\left(\eta^6 - C_6H_6\right)_2$$

Answer: A

Watch Video Solution

2. The number of unpaired electron in the complex ion $[CoF_6]^{3-}$ is

A. 0
B. 2
C. 3
D. 4
Answer: D
Watch Video Solution
3. Which of the following coordination compounds would exhibit
optical isomerism ?
A. trans-dicyanobis (ethylenediamine) chromium (III) chloride
B. tris-ethylenediamine) cobalt (III) bromide
C. pentaamminenitrocobalt (III) iodide
D. diamminedichloroplatinum (II)

Answer: B

Watch Video Solution

4. Among $\left[Ni(CO)_4\right]$, $\left[Ni(CN)_4\right]^{-2}$ and $\left[NiCl_4\right]^{-2}$ species the hybridisation state of the Ni atom are respectively?

A.
$$sp^3$$
, sp^3 , dsp^2

B.
$$dsp^2$$
, sp^3 , sp^3

$$C. sp^3, dsp^3, dsp^2$$

D.
$$sp^3$$
, dsp^2 , sp^3

Answer: D

Watch Video Solution

5. CN^{-} is a strong field ligand. This is due to the fact that

- A. it can accept electron from metal species
- B. it forms high spin complexes with metal species
- C. it carries negative charge
- D. none of the above

Answer: D

- **6.** Considering H_2O as a weak field ligand, the number of unpaired electrons in $\left[Mn\left(H_2O\right)_6\right]^{2+}$ will be (Atomic no of Mn=25)
 - A. 2
 - B. 4
 - C. 3
 - D. 5

Answer: D

Watch Video Solution

7. Which of the following does not have a metal carbon bond?

A.
$$K[pt(C_2H_4)Cl_3]$$

- B. $Ni(CO)_4$
- $C.Al(OC_2H_5)_3$
- D. C_2H_5MgBr

Answer: C

Watch Video Solution

8. Which of the following is considered to be an anti cancer species.

Answer: C

Watch Video Solution

9. Which one of the following is expected to exhibit optical isomerism

?

A. trans-
$$\left[Co(en)_2 Cl_2 \right]$$

B. trans-
$$\left[Pt\left(NH_3\right)_2Cl_2\right]$$

C. cis-
$$\left[Pt\left(NH_3\right)_2Cl_2\right]$$

D. cis- $\left[Co(en)_2Cl_2\right]$

Answer: D

Watch Video Solution

10. Which of the following is an inner orbital complex as well as diamagnetic in nature?

A.
$$\left[Cr\left(NH_3\right)_6\right]^{3+}$$

$$\mathsf{B.}\left[\mathit{Co}\!\left(\mathit{NH}_{3}\right)_{6}\right]^{3\,+}$$

$$\mathsf{C.}\left[\mathit{Ni}\left(\mathit{NH}_{3}\right)_{6}\right]^{2+}$$

$$D. \left[Zn \left(NH_3 \right)_6 \right]^{2+}$$

Watch Video Solution

11. $\left[Cr\left(H_2O\right)_6\right]Cl_3$ (at. no. of Cr=24) has a magnetic moment of 3.83

BM. The correct distribution of 3d-electrons in the chromium of the complex

A.
$$3d_{xy}^1$$
, $3d_{yz}^1$, $3d_{xz}^1$

B.
$$3d_{xy}^1$$
, $3d_{yz}^1$, $3d_{z^2}^1$

C.
$$(3d_{x^2-y^2}^1)$$
, $3d_{z^2}^1$, $3d_{xz}^1$

D.
$$3d_{xy}^1$$
, $\left(3d_{x^2-y^2}^1\right)$, $3d_{xz}^1$

Answer: A

12.
$$\left[Co(NH_3)_4(NO_2)_2\right]Cl$$
 exhibits

A. ionization isomerism, geometrical isomerism and optical isomerism

- B. linkage isomerism, geometrical isomerism and optical isomerism
- C. linkage isomerism, ionization isomerism and optical isomerism
- D. linkage isomerism, ionization isomerism and geometrical isomerism

Answer: D

13. The d-electron configuration of Cr^{2+} , Mn^{2+} , Fe^{2+} and Co^{2+} are d^4 , d^5 , d^6 and d^7 respectively. Which one of the following will exhibit

minimum paramagnetic behaviour? (At. Nos. Cr=24, Mn=25, Fe=26,

Co=27)

A.
$$\left[Fe\left(H_2O\right)_6\right]^{2+}$$

B.
$$\left[Ni\left(H_2O\right)_6\right]^{2+}$$
C. $\left[Cr\left(H_2O\right)_6\right]^{2+}$

$$D. \left[Mn \left(H_2 O \right)_6 \right]^{2+}$$

Answer: B

Watch Video Solution

A.
$$\left[Cr \left(NH_3 \right)_6 \right] \left[Co(CN)_6 \right]$$

14. Which of the following will give a pair of enantiomorphs?

B.
$$\left[Co(en)_2Cl_2\right]Cl$$

$$C. \left[Pt \left(NH_3 \right)_4 \right] \left[PtCl_6 \right]$$

$$\mathsf{D.}\left[\mathit{Co}\!\left(\mathit{NH}_{3}\right)_{4}\!\mathit{Cl}_{2}\right]\!\mathit{NO}_{2}$$

Answer: B

Watch Video Solution

15. Which of the following complexes exhibits the highest paramagnetic behaviour ? (gly = glycine, en = ethylenediamine and bipy = bipyridyl)

A.
$$\left[Fe(en)(bipy) \left(NH_3 \right)_2 \right]^{2+}$$

B.
$$\left[Co(Ox)_2(OH)_2 \right]^{-1}$$

C.
$$\left[Ti \left(NH_3 \right)_6 \right]^{3+}$$

D.
$$\left[V(gly)_2(OH)_2(NH_3)_2\right]^+$$

Answer: A

Watch Video Solution

16. Out of TiF_6^{2-} , Cu_2Cl_2 , $NiCl_4^{2-}$ and CoF_6^{3-} (Z of Ti=22 , Co=27 , Cu=29,

Ni=28) the colourless species are

- A. CoF_6^{3} and $NiCl_4^{2}$
- B. TiF_6^{2-} and Cu_2Cl_2
- C. Cu_2Cl_2 and $NiCl_4^2$
- D. TiF_6^2 and CoF_6^3

Answer: D

Watch Video Solution

17. Which one of he following complexes is not expected to exhibit isomerism?

A.
$$\left[Ni\left(NH_3\right)_4\left(H_2O\right)_2\right]^{2+}$$

$$B. \left[Pt \left(NH_3 \right)_2 Cl_2 \right]$$

$$\mathsf{C.}\left[\mathit{Ni}\Big(\mathit{NH}_3\Big)_2\mathit{Cl}_2\right]$$

D.
$$[Ni(en)_3]^{2+}$$

Answer: C

Watch Video Solution

18. The existence of two different coloured complexes with the composition of $\left[Co\left(NH_3\right)_4Cl_2\right]^{+1}$ is due to the isomerism

- A. linkage
- B. geometrical
- C. coordination
- D. ionisation

Answer: D

19. Which of the following does not show geometrical isomerism?

A.
$$[Co(en)_3]^{3+}$$

$$\mathbf{B.}\left[\mathit{Co(en)}_{2}\mathit{Cl}_{2}\right]^{+}$$

$$C. \left[Co \left(NH_3 \right)_3 Cl_3 \right]^0$$

$$\mathsf{D.}\left[\mathit{Co(en)Cl}_{2}\!\left(\!\mathit{NH}_{3}\right)_{\!2}\right]^{+}$$

Answer: C

Watch Video Solution

20. Crystal field stabilization energy for high spin d^4 octahedral complex is

A. -
$$1.8\Delta_0$$

B. -
$$1.6\Delta_0 + P$$

C. -
$$1.2\Delta_0$$

D. -
$$1.6\Delta_0$$

Answer: D

Watch Video Solution

21. Which of the following complex ion is not expected to absorb visible light ?

A.
$$\left[Ni(CN)_4\right]^{2}$$

$$B. \left[Cr \left(NH_3 \right)_6 \right]^{3+}$$

$$\mathsf{C.}\left[\mathit{Fe}\big(H_2O\big)_6\right]^{2+}$$

$$D. \left[Ni \left(H_2 O \right)_6 \right]^{2+}$$

Answer: A

22. The complex,
$$[Pt(py)(NH_3)BrCl]$$
 will have how many geometrical isomers?

- A. 2
- В. 3
- C. 4
- D. 0

Answer: B

Watch Video Solution

23. The complexes $\left[Co(NH_3)_6\right]\left[Cr(CN)_6\right]$ and

 $\left[Cr \left(NH_3 \right)_6 \right] \left[Co \left(CN \right)_6 \right]$ are the example of which type of isomerism?

- A. Geometrical
- B. Linkage
- C. Ionization
- D. Coordination

Answer: D

Watch Video Solution

- **24.** The d-electron configuration of Cr^{2+} , Mn^{2+} , Fe^{2+} and Co^{2+} are d^4 , d^5 , d^6 and d^7 respectively. Which one of the following will exhibit minimum paramagnetic behaviour? (At. Nos. Cr=24, Mn=25, Fe=26, Co = 27)
 - A. $\left[Cr(H_2O)_6\right]^{2+}$
 - B. $\left[Mn\left(H_2O\right)_6\right]^{2+}$
 - C. $\left[Fe \left(H_2 O \right)_6 \right]^{2+}$

$$D. \left[Co \left(H_2 O \right)_6 \right]^{2-}$$

Answer: D

Watch Video Solution

- 25. Of the following complex ions, which is diamagnetic in nature?
 - A. $[CoF_6]^{3}$
 - B. $\left[NiCl_4\right]^{2}$
 - $\mathsf{C.}\left[\mathit{Ni}(\mathit{CN})_4\right]^{2}$
 - D. $\left[CuCl_4 \right]^{2}$

Answer: C

Watch Video Solution

26. Which one of the following is an outer orbital complex and exhibits paramagnetic behaviour?

A.
$$\left[Cr(NH_3)_6\right]^{3+}$$

B.
$$\left[Co(NH_3)_6 \right]^{3+}$$

$$C. \left[Ni \left(NH_3 \right)_6 \right]^{2+}$$

D.
$$\left[Zn \left(NH_3 \right)_6 \right]^{2+}$$

Answer: C

27. Low spin complex of d^6 - cation in an octahedral field willhave the following energy. (Δ_0 = crystal field splitting energy in an octahedral field, P= Electron pairing energy)

A.
$$\frac{-12}{5}\Delta_0 + P$$

$$D. \frac{-2}{5} \Delta_0 + P$$

B. $\frac{-12}{5}\Delta_0 + 3P$

c. $\frac{-2}{5}\Delta_0 + 2P$

Answer: B

Watch Video Solution

28. A magnetic moment of 1.73 B.M. will be shown by a complex among the following

A.
$$\left[Ni(CN)_4\right]^{2}$$

B. $TiCl_{\Lambda}$

C. $\left[CoCl_6\right]^{4-}$

D. $\left[Cu \left(NH_3 \right)_4 \right]^{2+}$

Answer: D

29. An excess of $AgNO_3$ is added to 100 mL of a 0.01 M solution of dichlorotetraaqua chromium (III) chloride. The number of moles of AgCl precipitated would be

- A. 0.002
- B. 0.003
- C. 0.01
- D. 0.001

Answer: D

Watch Video Solution

30. Among the following complexes the one which shows zero crystal field stabilisation energy is

A.
$$\left[Mn\left(H_2O\right)_6\right]^{3+}$$

$$B. \left[Fe \left(H_2 O \right)_6 \right]^{3+}$$

$$\mathsf{C.}\left[\mathit{Co}\big(H_2\mathsf{O}\big)_6\right]^{2+}$$

$$D. \left[Co \left(H_2 O \right)_6 \right]^{3+}$$

Answer: B

Watch Video Solution

- 31. Which of the following complexes is used as an anti-cancer agent?
 - A. mer- $\left[Co(NH_3)_3Cl_3\right]$
 - B. cis- $\left[PtCl_2(NH_3)_2\right]$
 - C. cis- K_2 $\left[PtCl_2Br_2 \right]$
 - D. Na₂CoCl₄

Answer: B

Watch Video Solution

32. Which of these statement about $\left[Co(CN)_6\right]^{3-}$ is true?

- A. $\left[Co(CN)_6\right]^{3-}$ has four unpaired electrons and will be in a high-spin configuration
- B. $\left[Co(CN)_6 \right]^{3-}$ has no unpaired electrons and will be in a high-spin configuration
- C. $\left[Co(CN)_6 \right]^{3-}$ has no unpaired electrons and will be in a lowspin configuration
- D. $\left[Co(CN)_6 \right]^{3-}$ has four unpaired electrons and will be in a low-spin configuration

Answer: C

well-vell-colour

watch video Solution

33. Cobalt (III) chloride forms several octahedral complexes with ammonia. Which of the following will not give test for chloride ions with silver nitrate at $25\,^{\circ}C$?

- A. $CoCl_3$. $5NH_3$
- B. *CoCl*₃. 6*NH*₃
- C. CoCl₃. 3NH₃
- D. CoCl₃. 4NH₃

Answer: C

Watch Video Solution

34. The name of complex ion $[Fe(CN)_6]^{3-}$ is

A. Tricyanoferrate (III) ion

B. Hexacyanidoferrate (III) ion

C. Hexacyanoiron (III) ion

D. Hexacyanitoferate (III) ion

Answer: B

Watch Video Solution

35. The hybridization involved in the complex $\left[Ni(CN)_4\right]^{2-}$ is (At. No.

Ni = 28)

A. d^2sp^2

 $C. dsp^2$

B. d^2sp^3

D. sp^3

Answer: C

36. The co-ordination number and the oxidation state of the element 'M' in the complex $\left[M(en)_2\left(C_2O_4\right)\right]NO_2$ [where (en) is ethan-1, 2 diamine] are respectively

- **A.** 7
- B. 8
- C. 9
- D. 6

Answer: C

Watch Video Solution

37. Number of possible isomers for the complex $[co(en)_3Cl_3]Cl$ will be

: (en = ethylenediamine)

- A. 3
- B. 4
- C. 2
- D. 1

Answer: A

Watch Video Solution

38. Which of the following has longest C - O bond length? (Free C - O bond length in CO is $1.128 A^{\circ}$)

- A. $[Fe(CO)_4]^{2-}$
- B. $\left[Mn(CO)_6 \right]^+$
- $C. Ni(CO)_{\Delta}$
- D. $\left[Co(CO)_4 \right] \Theta$

Answer: A

Watch Video Solution

39. Jahn-Teller effect is not observed in high spin complexes of

- A. d^7
- $B.d^8$
- $C.d^4$
- $D.d^9$

Answer: B

Watch Video Solution

40. Pick out the correct statement with respect to $\left[Mn(CN)_6\right]^{3}$

- A. It is dsp^2 hybridised and square planar
- B. It is sp^3d^2 hybridised and octahedral
- C. It is sp^3d^2 hybridised and tetrahedral
- D. It is d^2sp^3 hybridised and Octahedral

Answer: D

 $AgNO_3$

Watch Video Solution

41. The correct order of the stiochiometers of AgCl formed when

treated

with

the

complexes.

CoCl₃. 6NH₃, CoCl₃. 5NH₃, CoCl. 4NH₃ respectively is:

is

excess

A. 2AgCl, 3AgCl, 1AgCl

in

- B. 1AgCl, 3AgCl, 2AgCl
- C. 3AgCl, 1AgCl, 2AgCl
- D. 3AgCl, 2AgCl, 1AgCl

Answer: D Watch Video Solution

- 42. An example of a sigma bonded organometallic compounds is
 - A. Cobaltocene
 - B. Ruthenocene
 - C. Grignard's reagent
 - D. Ferrocene

Answer: C

43. Correct increasing order for the wavelength of absorption in the visible region for the complexes of Co^{3+} is

A.
$$\left[Co(NH_3)_6 \right]^{3+}$$
, $\left[Co(en)_3 \right]^{3+}$, $\left[Co(H_2O)_6 \right]^{3+}$

B.
$$[Co(en)_3]^{3+}$$
, $[Co(NH_3)_6]^{3+}$, $[Co(H_2O)_6]^{3+}$

C.
$$\left[Co(H_2O)_6 \right]^{3+}$$
, $\left[Co(en)_3 \right]^{3+}$, $\left[Co(NH_3)_6 \right]^{3+}$
D. $\left[Co(H_2O)_6 \right]^{3+}$, $\left[Co(H_2O)_6 \right]^{3+}$, $\left[Co(en)_3 \right]^{3+}$

Answer: B

A. trinuclear

44. Iron carbonyl, $Fe(CO)_5$ is

B. mononuclear

C. tetranuelear

D. dinuclear

Answer: B

- **45.** The type of isomerism shown by the complex $\left[CoCl_2(en)_2 \right]$ is
 - A. Ionization isomerism
 - B. Coordination isomerism
 - C. Geometrical isomerism
 - D. Linkage isomerism

Answer: C

46. The geometry and magnetic behavior of the complex $\left[Ni(CO)_4\right]$ are

A. square planar geometry and paramagnetic

- B. tetrahedral geometry and diamagnetic
- C. square planar geometry and diamagnetic
- D. tetrahedral geometry and paramagnetic

Answer: B

Watch Video Solution

Objective Exercise 4

- **1.** (A) : Structure of $\left[Co(NH_3)_6\right]^{+3}$ ion is octahedral
- (R): The coordination number of the metal ion is 6
 - A. Both Assertion & Reason are true ,Reason is the correct
 - explanation of Assertion
 - B. Both Assertion & Reason are true, Reason is not correct
 - explanation of Assertion

- C. Assertion is true, Reason is false
- D. Assertion is false, Reason is false

Answer: A

Watch Video Solution

- **2.** Assertion : The IUPAC name of the complex compound
- $\left[Co\left(H_2O\right)_4Cl_2\right]Cl.\ 2H_2O$ is tetra aquadichlorocobalt (III) chloride.

Reason: Tetrahedral complexes exhibit geometrical isomerism.

- A. Both Assertion & Reason are true ,Reason is the correct
 - explanation of Assertion
- B. Both Assertion & Reason are true, Reason is not correct
 - explanation of Assertion
- C. Assertion is true, Reason is false
- D. Assertion is false, Reason is false

Answer: D

Watch Video Solution

- **3.** (A) : $\left[Co_2(OH)_3(NH_3)_6\right]Cl_3$ is an example of polynuclear complex compound
- (R): Compound in which the number of central metal atoms is more than one is called polynuclear compound
 - A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion
 - B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion
 - C. Assertion is true, Reason is false
 - D. Assertion is false, Reason is false

Answer: A

- **4.** (A): IUPAC name of [Pt Br (en) Cl, is dibromobis (1, 2-ethane diamine) platinum (IV) chloride.
- (R): (en) represents ethylenediamine and it is a ligand where prefix diis already included in its designation.
 - A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion
 - B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion
 - C. Assertion is true, Reason is false
 - D. Assertion is false, Reason is false

Answer: A

Watch Video Solution

5. Assertion: Chlorophyll is a magnesium corrin complex

 ${\it Reason: Chlorophyll is \ not \ useful \ to \ perform \ photosynthesis \ in \ plants}$

A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion

B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion

C. Assertion is true , Reason is false

D. Assertion is false, Reason is false

Answer: D

6. Assertion: A cis-isomer has a net dipole moment zero.

Reason: cis- isomers has two ligands of the different type occupying adjacent positions.

- A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion
- B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion
- C. Assertion is true, Reason is false
- D. Assertion is false, Reason is false

Answer: D

- **7.** Assertion: The complex $CoCl_3$. $6NH_3$ gives white precipitate with silver nitrate solution.
- Reason: chlorine is present Outside co-ordination sphere of the complex $CoCl_3$. $6NH_3$.

- A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion
- B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion
- C. Assertion is true, Reason is false
- D. Assertion is false, Reason is false

Answer: A

- **8.** Assertion:Co-ordination compounds are generally formed by transition metals.
- Reason : Transition metals generally have partly filled d-orbitals in n^{th} shell.

- A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion
- B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion
- C. Assertion is true, Reason is false
- D. Assertion is false, Reason is false

Answer: C

explanation of Assertion

- **9.** Assertion: Complexes containing ambidentate ligands exhibit coordination isomerism.
- Reason: Co-ordination isomerism is shown by anionic complexes only.
 - A. Both Assertion & Reason are true ,Reason is the correct

- B. Both Assertion & Reason are true, Reason is not correct
 - explanation of Assertion
- C. Assertion is true, Reason is false
- D. Assertion is false, Reason is false

Answer: D

Watch Video Solution

10. Assertion: The complex $\left[Co\left(NH_3\right)_3Cl_3\right]$ gives no precipitate with

 $AgNO_3$ solution

Reason: The given complex is non-ionizable

- A. Both Assertion & Reason are true ,Reason is the correct
 - explanation of Assertion
- B. Both Assertion & Reason are true, Reason is not correct
 - explanation of Assertion

- C. Assertion is true, Reason is false
- D. Assertion is false, Reason is false

Answer: A

Watch Video Solution

11. Assertion: $\left[Cu(CN)_4\right]^{2-}$ is more stable than $\left[Cu\left(H_2O\right)_4\right]^{2+}$ Reason: On heating $\left[Cu\left(H_2O\right)_4\right]^{2+}$ with NH_3 , $\left[Cu\left(NH_3\right)_4\right]^{2+}$ is formed.

- A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion
- B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion
- C. Assertion is true, Reason is false

D. Assertion is false, Reason is false

Answer: B

Watch Video Solution

- 12. (A): [Fe(edta)] complex is octahedral in shape
- (R): edta ligand is hexadentate and forms six bonds with the metal atom undergoing d^2sp^3 hybridization
 - A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion
 - B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion
 - C. Assertion is true, Reason is false
 - D. Assertion is false, Reason is false

Answer: A

Watch Video Solution

13. Assertion: $Ni(CO)_4$ complex is tetrahedral in shape

Reason: Ni atom undergoes sp^3 hybridization in $Ni(CO)_4$.

- A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion
- B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion
- C. Assertion is true, Reason is false
- D. Assertion is false, Reason is false

Answer: A

Watch Video Solution

14. (A): All square planar complexes can exhibit geometrical isomerism (R): In square planar complexes metal generally assumes dsp^2 hybrid state.

A. Both Assertion & Reason are true Reason is the correct explanation of Assertion

B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion

C. Assertion is true, Reason is false

D. Assertion is false, Reason is false

Answer: D

Watch Video Solution

15. Assertion: $(Ph_3P)_3RhCl$ is Wilkinson's catalyst.

Reason: $(Ph_3P)_3RhCl$ can show optical isomerism but does not show

geometrical isomerism.

A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion

B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion

C. Assertion is true, Reason is false

D. Assertion is false, Reason is false

Answer: C

Watch Video Solution

16. Assertion: Willkinson's catalyst contains Ti^{4+} as the metal cation

Reason: Willkinson's catalyst has the composition $\left[\left(C_6H_5\right)_3P\right]_3$ *PhCl*.

- A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion
- B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion
- C. Assertion is true, Reason is false
- D. Assertion is false, Reason is false

Answer: D

- **17.** Assertion: Optical isomerism is not shown by square planar complexes.
- Reason: Square planar complexes do not possess chiral structures.
 - A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion

- B. Both Assertion & Reason are true, Reason is not correct
 - explanation of Assertion
- C. Assertion is true, Reason is false
- D. Assertion is false, Reason is false

Answer: A

Watch Video Solution

- **18.** Assertion: $\left[Cu(en)_2\right]^{2+}$ is more stable than $\left[Cu(NH_3)_4\right]^{2+}$
- Reason: Both these complexes have a square planar shape.
 - A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion
 - B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion

- C. Assertion is true, Reason is false
- D. Assertion is false, Reason is false

Answer: B

Watch Video Solution

19. Assertion: The ligands nitro and nitrito are called ambidentate ligands

Reason: Nitro and nitrite ligands give linkage isomers.

- A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion
- B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion
- C. Assertion is true, Reason is false
- D. Assertion is false, Reason is false

Answer: B

Watch Video Solution

20. Assertion: The total number of isomers shown by $\left[Co(en)_2Cl_2\right]^+$ complex ion is three

Reason: $\left[Co(en)_2 Cl_2 \right]^+$ complex ion has an octahedral geometry.

A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion

B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion

C. Assertion is true, Reason is false

D. Assertion is false, Reason is false

Answer: B

Watch Video Solution

21. Assertion: Number of unpaired electrons present in

$$\left[Cu(NH_3)_2\right]$$
 (+) complex is zero

Reason: The complex $\left[Cu \left(NH_3 \right)_2 \right]^+$ is linear with sp-hybridization.

A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion

- B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion
- C. Assertion is true, Reason is false
- D. Assertion is false, Reason is false

Answer: B

View Text Solution

22. Assertion: The number of unpaired electrons in $Ni(CO)_4$ complex is zero.

Reason : 4s electrons of Ni atom enter the inner d-orbitals to facilitate the sp^3 hybridization in Ni atom.

A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion

B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion

C. Assertion is true , Reason is false

D. Assertion is false, Reason is false

Answer: A

23. Assertion: The coordination entity of the type $\left[PtCl_2(en)_2\right]^{+2}$

shows geometrical isomerism.

Reason: Trans isomer of $\left[PtCl_2(en)_2\right]^{+2}$ shows optical activity.

A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion

B. Both Assertion & Reason are true, Reason is not correct

C. Assertion is true, Reason is false

explanation of Assertion

D. Assertion is false, Reason is false

Answer: C

24. Assertion: The spin only magnetic moment of $[MnBr_4]^{2-}$ is 5.9 BM

Reason: $\left[MnBr_4\right]^{2-}$ is tetrahedral with sp^3 hybridisation of Mn^{2+} having $3d^5$ configuration

A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion

B. Both Assertion & Reason are true, Reason is not correct

C. Assertion is true, Reason is false

explanation of Assertion

D. Assertion is false, Reason is false

Answer: A

Watch Video Solution

25. Assertion: $\left[Fe(CN)_6\right]^{3-}$ is weakly paramagnetic while $\left[Fe(CN)_6\right]^{4-}$ is diamagnetic

Reason: Both $\left[Fe(CN)_6\right]^{3-}$ and $\left[Fe(CN)_6\right]^{4-}$ involve d^2sp^3 hybridisation. In $\left[Fe(CN)_6\right]^{3-}$ singly occupied d-orbital is available but in $\left[Fe(CN)_6\right]^{4-}$ paired electrons are present

A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion

B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion

C. Assertion is true, Reason is false

D. Assertion is false , Reason is false

Answer: A

26. Assertion:In a complex prefixes cis- and trans - are used to designate adjacent and opposite geometric location of the ligands

Reason: With in the coordination sphere ligands are named after the metal atom (or) ion

A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion

B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion

C. Assertion is true, Reason is false

D. Assertion is false, Reason is false

Answer: C

27. Assertion: The geometrical isomers of the complex $\left[M\left(NH_3\right)_4Cl_2\right]$ are optically inactive

Reason: Both geometrical isomers of the complex $M(NH_3)_4Cl_2$

possess axis of symmetry

A. Both Assertion & Reason are true Reason is the correct explanation of Assertion

B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion

C. Assertion is true, Reason is false

D. Assertion is false, Reason is false

Answer: A

Watch Video Solution

28. Assertion: The number of unpaired electrons present in $|CuCl_2|^{-1}$ complex is zero

Reason: The complex is linear in the solid state with sp-hybridization

A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion

B. Both Assertion & Reason are true, Reason is not correct explanation of Assertion

C. Assertion is true, Reason is false

D. Assertion is false, Reason is false

Answer: B

29. Assertion: IUPAC name of $K_3[Fe(CN)_6]$ is potassium hexacyanoferrate (II)

Reason: $K_3[Fe(CN)_6]$ is commonly called potassium ferricyanide

A. Both Assertion & Reason are true ,Reason is the correct

explanation of Assertion

- B. Both Assertion & Reason are true, Reason is not correct
 - explanation of Assertion
- C. Assertion is true, Reason is false
- D. Assertion is false, Reason is false

Answer: D

Watch Video Solution

- **30.** Assertion: Geometrical isomers of $Co(NH_3)_4Cl_2^+$ differ in their colours
- Reason: All geometrical isomers of compounds have different colours.
 - A. Both Assertion & Reason are true ,Reason is the correct explanation of Assertion
 - B. Both Assertion & Reason are true, Reason is not correct
 - explanation of Assertion

C. Assertion is true, Reason is false

D. Assertion is false, Reason is false

Answer: C

Problem

- - Watch Video Solution

2. Identify the ligands and central metal ion in $\left[Co \left(NH_3 \right)_2 (en)_2 \right]^{3+}$, Calculate the oxidation number and coordination number of metal ion.

1. Which ions can be tested in a solution of Mohr's salt?

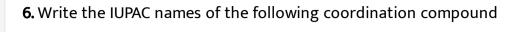
Watch Video Solution

- 3. Which type of complex is cryolite?
 - Watch Video Solution

4. List out the wrong among the following according to IUPAC and

write the correct formula: (a) $\Big[\mathit{Zn}(OH)_4 \Big] K_2$,

$$\left[CoCl \left(NH_3 \right)_4 \left(H_2O \right) \right] Cl_2, \quad \text{(c)} \left[Ag(CN)_2 \right] \left[Ag \left(NH_3 \right)_2 \right] \quad \text{and} \quad \text{(d)}$$


(b)

$$[Pt(NH_3)_2Cl(NO_2)].$$

- **5.** Write the IUPAC names of the following coordination compounds:
- (a) $\left[CoCl_2(en)_2 \right] Cl$, (b) $\left[Ni(CO)_4 \right]$, (c) $\left[Pt \left(NH_3 \right)_2 Cl \left(NO_2 \right) \right]$, (d)

$$\left[Cr(NH_3)_6 \right] \left[Co(CN)_6 \right]$$

$$\left[Ni(CO)_4\right]$$

7. Write the IUPAC names of the follow coordination compounds.

$$\left[Pt\left(NH_3\right)_2Cl\left(NO_2\right)\right]$$

8. Write the IUPAC names of the following coordination compound

$$\left[Cr \left(NH_3 \right)_5 \right] \left[Co \left(CN \right)_6 \right]$$

- **9.** Write the formula of the following coordination compounds:
- (a) Ammine bromid och loridonitrito-O-platinum (II) ion
- (b)Dichloridobis(ethane-1,2-diammine)platinum(IV) nitrate
- (c) Diaquatetrahydroxoaluminate(III) ion
- (d) Mercury(I) tetrathiocyanatocobaltate(III).
 - Watch Video Solution

10. Write the formulae for the follow Co-ordination compounds

Dichlorido bis-(ethane-1,2-diamine) platinum (IV) nitrate

- 11. Write the formula of the following coordination compounds:
- (a) Amminebromidochloridonitrito-O-platinum(II) ion
- (b)Dichloridobis(ethane-1,2-diammine)platinum(IV) nitrate

- (d) Mercury(I) tetrathiocyanatocobaltate(III).

 Watch Video Solution
 - **12.** Write the formula of the following coordination compound Mercury(I) tetrathiocyanatocobaltate (III).

(c) Diaquatetrahydroxoaluminate(III) ion

13. Arrange the complexes $CoCl_3$. $6NH_3$, $CoCl_3$. $5NH_3$, $CoCl_3$. $4NH_3$ and $CoCl_2$. $3NH_3$ in the descending order of conductivity of their aqueous solutions.

14. When excess ammonia gas is passed through aq $CrCl_3$ solution, complexes A and B are formed. Complex A gives 2 particles and complex B gives 4 charges. Write the formula of complexes.

15. When excess of silver nitrate solution is added to the aqueous solution containing 0.1 mole of $CoCl_3$. xNH_3 , if 28.7g of silver chloride precipitated, what is the value of x?

16. The secondary valence of Pt^{4+} is six. Calculate the number of moles of AgCl participated, when axcess of $AgNO_3$ solution is added to 2L of 0.1 M $PtCl_4$. $4NH_3$ solution.

17. If $[PtCl_6]^{x-}$ follows the Sidgwick rule of stability, what is the oxidation state of Pt and complex ?

18. If $[Fe(CO)_x]$ follows the Sidgwick rule of stability, what is the value of 'x'?

19. The spin only magnetic moment of $\left[MnBr_4\right]^{2-}$ is 5.9BM. Predict the geometry of the complex ion.

20. How the gem stones ruby exhibits red colour and emerald exhibits green colour ?

21. Anhydrous copper sulphate is colourless, but hydrated copper sulphate is blue. Explain ?

22. Why hexaquamanganese(II)ion contains five unpaired electrons, while the hexacyno manganese (II)ion contains only one unpaired electron?

23. How many unpaired electrons present in the square planar $\left[Pt(CN)_4\right]^{2-}$ ion ?

24. Why $\left[Co(NH_3)_6\right]^{3+}$ is an inner orbital complex where is $\left[Ni(NH_3)_6\right]^{2+}$ is an outer orbital complex?

 $25. Ag^+ + NH_3 \Leftrightarrow \left[Ag\left(NH_3\right)\right]^+, K_1 = 3.5 \times 10^{-3}$, $\left[Ag\left(NH_3\right)\right]^+ + NH_3 \Leftrightarrow \left[Ag\left(NH_3\right)_2\right]^+, K_2 = 1.7 \times 10^{-3}$. Calculate the formation constant of $\left[Ag\left(NH_3\right)_2\right]^+$. What is the instability

constant?

26. $CoCl_3$. xNH_3 exhibits geometrical isomerism. What is the value of x?

27. Which type of isomerisms are possible with the molecular formula $Co(NO_2)_3$. $2H_2NCH_2CH_2NH_2$.

28. How is the theory of complexes used to sperate Fe_2O_3 and Al_2O_3 ?

Subjective Exercise 1 Short Answer Questions

1. What are double salts? Write examples. Watch Video Solution 2. How is a complex compound differentiated from its constituents? **Watch Video Solution** 3. Discuss the shapes of complex ions with coordination numbers 4 and 6. **Watch Video Solution** 4. What do you understand by the term ligand? Discuss neutral and ionic ligands. **Watch Video Solution**

5. Give examples for ionic and neutral complexes.

Watch Video Solution

Subjective Exercise 2 Short Answer Questions

1. Write the structures of following compounds:

(i) Tetraamminecopper(II) sulphate, (ii) Trichlorotriammine cobalt(III),

(iii) Tetracarbonylnickel(0) ,(iv)Dichlorodiammineplatinum(II) and (v)

Trinitrotriamminecobalt(III)

2. Write the structures of following compounds:

Trichlorotriammine cobalt (III)

3. Write the structures of following compounds:

Trichloronylnickel (0)

Watch Video Solution

- 4. Write the structures of following compounds:
- (i) Tetraamminecopper(II) sulphate, (ii) Trichlorotriammine cobalt(III),
- (iii) Tetracarbonylnickel(0) ,(iv)Dichlorodiammineplatinum(II) and (v)

Trinitrotriamminecobalt(III)

Watch Video Solution

5. Write the structures of following compounds:

Trichlorotriammine cobalt (III)

Watch Video Solution

- **6.** K_3 $\left[Fe(CN)_6 \right]$ is a

 - **Watch Video Solution**

7. Write the IUPAC names of the following complexes

8. Write the IUPAC names of the following complexes

$$\left[Pt\left(NH_3\right)_6\right]\left(SO_4\right)_2$$

- **Watch Video Solution**

 $KFe^{III} [Fe(CN)_6]$

Watch Video Solution

9. Write the IUPAC names of the following complexes Cs_2 Co^IICl_4

10. Write the IUPAC names of the following complexes

$$[CoF_6]^{-3}$$

Subjective Exercise 3 Long Answer Questions

1. Explain Werner's theory. Give the Werner's structures of $CoCl_3$. $6NH_3$, $CoCl_3$. $5NH_3$, $CoCl_3$. $4NH_3$ and $CoCl_3$. $3NH_3$.

2. Define EAN. Calculate the EAN of the following metals in their respective complexes: $\left[Cu(NH_3)_4\right](OH)_2$ and $K_4\left[Fe(CN)_6\right]$

3. Most important concept of valence bond theory is

Subjective Exercise 3 Short Answer Questions

1. Identify the primary valency of the central metal in the tetra coordinated $CuSO_4$ and hexa coordinated $Cr(NO_3)_3$. $6H_2O$

2. A linear complex $AgCl.\ 2NH_3$ undergoes complete ionizaiton. What are the ions formed?

3. Explain the formation of $\left[Co(NH_3)_6\right]Cl_3$ and $\left[Cu(NH_3)_4\right]SO_4$ on the basis of VBT.

4. How many chlorides will be precipitated from the compelx compounds $CoCl_3$. $4NH_3$?

5. What kind of hybridization is undergone by 'Co' in the complex

$$\left[Co(NH_3)_6\right]^{3+}?$$

1. Write the important features of Sidwick's EAN **Watch Video Solution** 2. Write short notes on primary valency of a metal ion. **Watch Video Solution** 3. Which of the following is a complex compound? Potash alum, tetrammine copper (II) sulphate, Potasium hydrogen fluoride. **Watch Video Solution 4.** On addition of $AgNO_3$ solution to 1M $CoCl_3$. $5NH_3$ solution, how many moles of AgCl are produced? **Watch Video Solution**

5. The compound $TiCl_4$. $2H_2O$ is a nonconductor of electricity. Give the Werner's structure.

Watch Video Solution

Subjective Exercise 4 Long Answer Questions

1. Explain structural isomerism with examples.

Watch Video Solution

2. Explain geometrical isomerism in complexes with coordination number 4 and 6 with examples.

Watch Video Solution

Subjective Exercise 4 Short Answer Questions

- 1. Explain optical isomerism in octahedral complexes.
 - Watch Video Solution

- **2.** What kind of isomerism is shown by the pairs of following complex compounds ?
- (a) $\left[Pt\left(H_2O\right)_4Cl_2\right]Cl_22H_2O$ and $\left[Pt\left(H_2O\right)_5Cl\right]Cl_3.H_2O$
- (b) $\left[Cu \left(NH_3 \right)_4 \right] \left[Ni \left(CN \right)_4 \right]$ and $\left[Ni \left(NH_3 \right)_4 \right] \left[Cu \left(CN \right)_4 \right]$.
 - Watch Video Solution

Subjective Exercise 4 Very Short Answer Questions

1. $Co(NH_3)_5 Br. SO_4$, when it is treated with $AgNO_3$ gives yellow precipitate, give its structure.

2. Mention the colours exhibited by $CrCl_3$. $6H_2O$ in its hydrate isomers

3. Write a pair of optical isomers along with their structures .

4. Define Racemic mixture

Subjective Exercise 5 Short Answer Questions

1. Give an example of a complex that is formed in qualitative analysis.

2. How is silver halide used in photography? What is the complex formed?

3. How is concept of complexes used in metallurgy?

Watch Video Solution

Watch Video Solution

2. What is Nessler's reagent? Give its use.

3. $CuSO_4$ is more soluble in ammonia. Why ?
Watch Video Solution
4. Give chemical reaction of silver halide with dilute hypo
Watch Video Solution
Objective Exercise 1 Complex Comounds
1. Carnallite is an example of
A. mixed salt
B. complex salt
C. basic salt
D. double salt

Answer: D **Watch Video Solution** 2. Which of the following is an example of a complex salt A. Cuprammonium sulphate B. Ferrous ammonium sulphate C. Bleaching powder D. Potassium bisulphate Answer: A **Watch Video Solution** 3. Ligand in a metal carbonyl complex is A. CO_2

В.	СО
c	Cot

 $\mathsf{C.}\,\mathit{CoCl}_2$

D. $C_2O_4^{2-}$

Answer: B

Watch Video Solution

- 4. In complex compounds the metal atom or ion acts as a
 - A. Lewis acid
 - B. Lewis base
 - C. Bronsted acid
 - D. Bronsted base

Answer: A

- 5. A ligand should contain
 - A. odd electrons
 - B. even numer of electrons
 - C. lone pair of electrons to donate
 - D. vacant orbital to accept the lone pair

- **6.** The oxidation state of Fe in $\left[Fe(CN)_6 \right]^{-3}$ ion is
 - A. + 1
 - B. + 2
 - **C.** +3

Watch Video Solution

7. In which of the following compounds iron has zero oxidation state

A. $Fe(CO)_5$

 $\mathsf{B.}\mathit{Fe}_2O_3$

 $\mathsf{C}.\mathit{FeO}$

 $D.Fe_3O_4$

Answer: A

- **A.** -3
- B. + 3
- C.-6
- D. + 6

Answer: B

- 9. A bidentate ligand is
 - A. pyridine
 - B. thiocyanate
 - C. ethylene diammine
 - D. water

Watch Video Solution

10. Which of the following is a polynuclear compound

A.
$$\left[Co(NH_3)_4 \right] Cl$$

B.
$$NaFe$$
 $\left[Fe(CN)_6\right]$

$$C. \left[Cr \left(H_2O \right)_5 Cl \right] Cl_2$$

D.
$$\left[Co_2(NH_3)_6(OH)_3\right]Cl_3$$

Answer: D

Watch Video Solution

11. A ligand can not be (A) neutral, (B) anionic, (C) anionic

A. B only
B. C only
C. A and B
D. none

Answer: D

- 12. Example of neutral complex compound in the following list
 - A. $CoCl_3$. $6NH_3$
 - B. *CoCl*₃. 5*NH*₃
 - C. *CoCl*₃. 4*NH*₃
 - D. $CoCl_3$. $3NH_3$

Answer: D

13. Alum in aqueous solution gives positive test for (A) K^+ , (B) Al^{3+} , (C) SO_4^{2-}

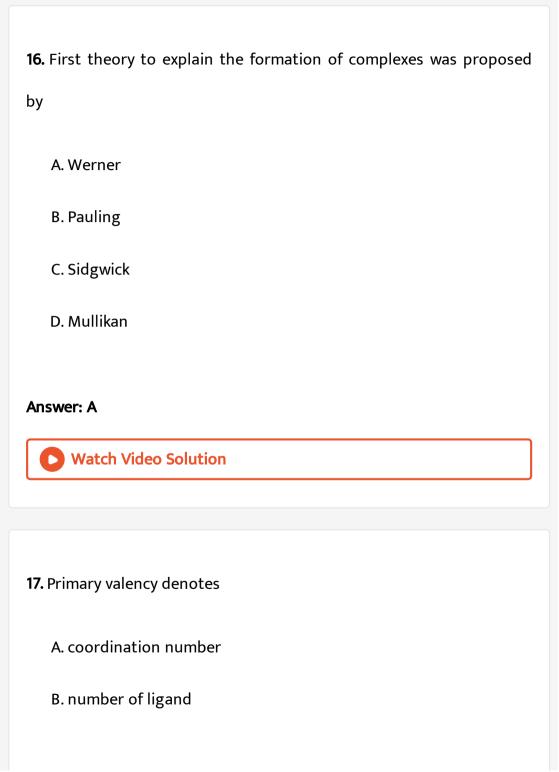
A. A only

B. B only

C. A and B

D. A, B and C

Answer: D


Watch Video Solution

14. $Ni(CO)_4$ is an example of

A. cationic complex

C. anionic complex D. poly nuclear complex **Answer: B Watch Video Solution** 15. Donor atoms in ethylenediamine are A. N and N B. N and H C. N and C D. C and H **Answer: A Watch Video Solution**

B. neutral comolex

- C. oxidation number
- D. effective atomic number

Watch Video Solution

18. Primary valency is satsified by

- A. only negative ligands
- B. only positive ligands
- C. negative and neutral ligands
- D. positive and neutral ligands

Answer: A

19. The coordination number of a central metal atom in a complex is determined by

A. the number of ligands around a metal ionbonded by dative bonds

B. the number of only anionic ligands bonded to the metal ion

C. the number of ligands around a metal ion bonded by ionic bonds

D. the number of ligands around a metal ion bonded by covalent bonds

Answer: A

20. Structure of the complex with sp^3 hybridisation

A. planar triangular B. square planar C. tetrahedral D. octahedral **Answer: C Watch Video Solution** 21. Inner complex is also called A. spin free complex B. low spin complex C. weak field complex D. ionic complex **Answer: B**

22. The primary valency of 'Fe' in the complex $K_4 \Big[Fe(CN)_6 \Big]$ is

A. 2

B. 3

C. 6

D. 4

Answer: A

Watch Video Solution

23. The hybridisation of metal ion in square planar complexes in

A. dsp^2

 $B. sp^3d$

 $C. d^3sp^3$

D. sp^3

Answer: A

Watch Video Solution

24. The hybridisation of Iron in $K_4[Fe(CN)_6]$ is

A. dsp^2

 $B. sp^3$

 $C. d^2sp^3$

D. sp^3d^2

Answer: C

25. One mole of the complex compound $CoCl_3xNH_3$ gives 3 moles of ions on dissolution in water. One mole of the same complex reacts with two moles of $AgNO_3$ solution to yield two moles of AgCl. The value of x is

26. Number of chlorides satisfying secondary valency in $CoCl_3$. $4NH_3$

- A. 5
- B. 4
- C. 3
- D. 2

Answer: A

- - **A.** 1
 - B. 2

	-
(-
٠.	_

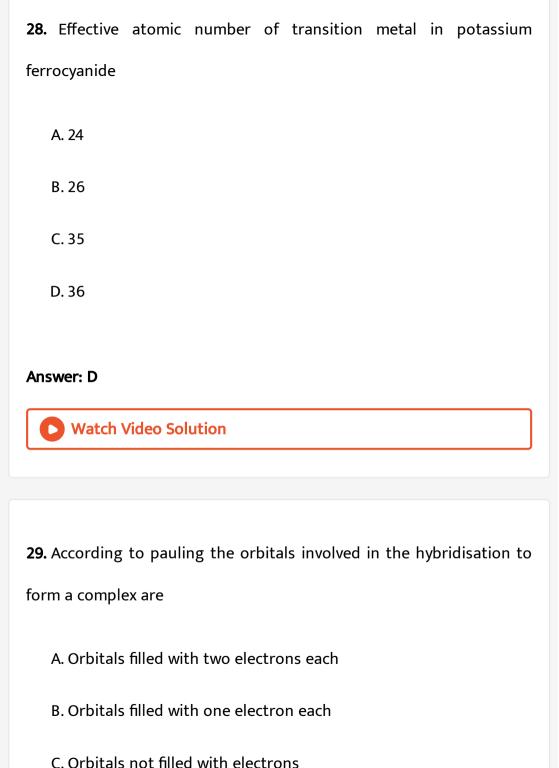
D. 6

Answer: B

Watch Video Solution

27. Total number of ions the complex $CoCl_3.6NH_3$ gives in water

A. 2


B. 3

C. 4

D. 6

Answer: C

D. Orbtials filled with one or two electrons

Answer: C

Watch Video Solution

30. In the formation of some complexes, electrons in the metal orbital may undergo pairing against

- A. Pauli's principle
- B. Uncertainity principle
- C. Hund's principle
- D. Auf -bau rule

Answer: C

Objective Exercise 1 Iupac Notations

1.	The	formula	of	'nitrosyl	group
••	1110	IOIIIIaia	\circ .	111C1 O 3 y 1	Sicap

A. NO

 $B.NO^+$

C. *NO* -

D. ONO

Answer: A

- **2.** Name of oxalate in IUPAC version changes to
 - A. Oxalite
 - B. Oxalato

D. Oxalide
Answer: B
Watch Video Solution
3. In the IUPAC version, the ligand OH^- is named as
A. hydroxide
B. hydroxyl
C. hydroxo
D. ol
Answer: C
Watch Video Solution

C. Oxalito

- **4.** $K_3[Fe(CN)_6]$ is a
 - A. potassium ferrocyanide
 - B. potassium ferricyanide
 - C. potassium hexacyanoferrate (II)
 - D. potassium hexacyanoferrate (III)

Answer: D

- **5.** Hydrazinium ion is chemically
 - A. $N_2H_3^-$
 - B. $N_2H_3^+$
 - $C. N_2 H_5^+$
 - D. $N_2H_5^-$

Watch Video Solution

- 6. A prefix penta is used in naming the complex
 - A. $CrCl_3$. $6NH_3$
 - B. $CrCl_3$. $5NH_3$
 - C. CrCl₃. 4NH₃
 - D. $CrCl_3$. $3NH_3$

Answer: B

Watch Video Solution

7. Tetrammine diaqua copper (II) hydroxide is given by the formula

A.
$$\left[Cu\left(NH_3\right)_4\right](OH)_2$$
. $2H_2O$

B.
$$\left[Cu\left(NH_3\right)_4\right](OH)_2$$
. $2H_2O$

C.
$$\left[Cu\left(NH_3\right)_4\right]\left(H_2O\right)_2(OH)_2$$

$$\mathsf{D.}\left[\mathit{Cu}\Big(\mathit{NH}_3\Big)_4\Big(\mathit{H}_2\mathit{O}\Big)(\mathit{OH})_2\right]$$

IUPAC Name Formulae of ligand

- i) Bromo A) CO
- ii) Carbonyl B) C₆H₅COO
- iii) Benzoato C) H₂O iv) Aquo D) Br
- 8. The correct match is

The correct match is

Answer: A

- **9.** Metal-Isothiocyanato' is indicated by its chemical symbol as
 - A. M-NCS
 - B. M-SCN
 - C. M-CNS
 - D. M-CSN

Answer: A

10. Which of the following is an example of ambidentate ligand

A. CO

B. *CN* ⁻

 $\mathsf{C}.\,H_2O$

D. SO_4^{2-}

Answer: B

Watch Video Solution

11. Which of the following has maximum number of unpaired delectrons

A. Zn

B. Fe^{2+}

 $C. Ni^{3+}$

D. *Cu* +

Answer: B

Watch Video Solution

12. Which one of the following is tris (ethane-1, 2-diammine) cobalt (III) sulphate?

A.
$$\left[Co_3(en)\right]SO_4$$

$$B.\left[\mathit{Co(en)}_{3}\right]\!\mathit{SO}_{4}$$

$$\mathsf{C.}\left[\mathit{Co}(\mathit{en})_{3}\right]_{3}\!\!\left(\mathit{SO}_{4}\right)_{2}$$

D.
$$\left[Co(en)_3\right]_2 \left(SO_4\right)_3$$

Answer: D

Objective Exercise 1 Theories

1. Which of the following is paramagnetic?

- A. $V(CO)_6$
- $B. Fe(CO)_5$
- $C. Fe_2(CO)_q$
- D. $Cr(CO)_6$

Answer: A

Watch Video Solution

magnetic behaviour of complexes $K_4[Fe(CN)_6]$ and **2.** The $K_3[Fe(CN)_6]$ is

A. Para, Dia

- B. Dia, Para
- C. Dia, Ferro
- D. Both Dia

Answer: B

Watch Video Solution

- **3.** Which one of the following cyano complexes exhibit the lowest value of paramagnetic behaviour ?
 - A. $\left[Cr(CN)_6 \right]^{3}$
 - B. $\left[Mn(CN)_6 \right]^{3}$
 - $\mathsf{C.}\left[\mathit{Fe}(\mathit{CN})_{6}\right]^{3}$
 - D. $\left[Co(CN)_6 \right]^{3}$

Answer: D

- 4. Which of the following has square planar geometry
 - A. $\left[FeCl_4 \right]^{2}$
 - B. $[NiCl_4]^2$
 - C. $[PdCl_4]^{2-}$
 - D. $\left[CoCl_4 \right]^{2-}$

- **5.** In $Fe(CO)_5$, Fe-C bond possess
 - A. sigma character only
 - B. Pi character only

	C. both sigma and pi character
	D. ionic character
An	nswer: C
	Watch Video Solution
	Which of the following system has maximum number of the paired electrons in an inner octahedral complex?
	A. d^4
	B. d^9
	$C.d^7$

D. d^5

Answer: A

7. Which of the following complex species does not involve d^2sp^3

hybridisation?

A.
$$\left[CoF_6 \right]^{3}$$

$$B. \left[Co \left(NH_3 \right)_6 \right]^{3+}$$

C.
$$\left[Fe(CN)_6 \right]^{3}$$

D.
$$\left[Cr \left(NH_3 \right)_6 \right]^{3+}$$

Answer: A

Watch Video Solution

8. Which of the following is an outer orbital complex

A.
$$\left[Fe(CN)_6 \right]^{3}$$

B.
$$\left[Fe(CN)_6 \right]^{4}$$

C.
$$[FeF_6]^{3}$$

D.
$$\left[Cr(CN)_6 \right]^{3}$$

Watch Video Solution

- 9. Which of the following is low spin complex
 - A. $\left[NiCl_4\right]^{2}$
 - B. $[CoF_6]^{3}$
 - C. $\left[Ni(CN)_4\right]^{2}$
 - D. $\left[MnCl_4\right]^2$

Answer: C

10. In an octahedral crystal field, the correct set of low energy orbitals are

$$A. d_{xy}, d_{xz}, d_{z2}$$

B.
$$d_{x^2.y^2}$$
, d_{z^2}

$$\mathsf{C.}\,d_{\mathsf{x}\mathsf{y}},\,d_{\mathsf{x}\mathsf{z}},\,d_{\mathsf{y}\mathsf{z}}$$

D.
$$d_{xy}$$
, d_{x2-y2}

Answer: C

Watch Video Solution

11. The correct order of increasing field strengths

$$A. Br^- > SCN^- > Cl^- > I^-$$

$$B. Br^- < SCN^- < Cl^- < I^-$$

$$C.I^{-} < Br^{-} < SCN^{-} < Cl^{-}$$

$$D.I^- > Cl^- > SCN^- > Br^-$$

Answer: C

Watch Video Solution

12. In which of the following octahedral complexes of cobalt (atomic number = 27) will the magnitude of Δ_0 be the highest?

A.
$$\left[Co\left(C_2O_4\right)_3\right]^{3-1}$$

$$\mathsf{B.} \left[\mathsf{Co} \left(H_2 O \right)_6 \right]^{3+}$$

$$C. \left[Co(NH_3)_6 \right]^{3+}$$

D.
$$\left[Co(CN)_6 \right]^{3}$$

Answer: D

13. For the same metal, stabilisation energies of tetrahedral and octahedral complexes are related as

A.
$$\Delta_t = \Delta_0$$

$$\mathsf{B.}\,\Delta_t \times \mathsf{4} = \Delta_0 \times \mathsf{6}$$

$$C. \Delta_t \times 9 = \Delta_0 \times 4$$

D.
$$\Delta_t \times 6 = \Delta_0 \times 4$$

Answer: C

Watch Video Solution

Objective Exercise 1 Isomerism

1. Which of the following is not an example of the isomerism in coordination compounds

A. ionisation isomerism

B. hydrate isomerism

C. Position isomerism

D. ligand isomerism

Answer: C

Watch Video Solution

2. Ionisation isomerism is possible with

A. $\left[Co(NH_3)_6 \right] Cl_3$

B. $\left[Co(NH_3)_3 Cl_3 \right]$

C. $\left[Co(NH_3)_5Cl\right]Br$

D. $\left[Co(H_2O)_6 \right] Cl_3$

Answer: C

- **3.** $\left[PtBrCl \left(NO_2 \right) \left(NH_3 \right) \right]$ I on ionisation gives the ion
 - A. Cl
 - $B.Br^-$
 - $\mathsf{C}.\,I^{\mathsf{-}}$
 - D. NO_2

Answer: C

Watch Video Solution

- 4. Structural differences are main in the following isomers
- (A) ionisation isomerism, (B) ligand isomerism, (C) hydrate isomerism, (
- D) geometrical isomerism

A. A, B, C

- B. A, C, D
- C. B, C, D
- D. A, B, D

Watch Video Solution

- 5. Optical isomers differ in
 - A. chemical properties
 - B. molecular formulae
 - C. physical properties
 - D. optical properties

Answer: D

- 6. A racemic mixture has a net rotation
 - A. to right of original plane
 - B. to left of original plane
 - C. to right or left of original plane
 - D. zero

Answer: D

- 7. Geometrical isomerism may be possible with
 - A. tetrahedral complex
 - B. square planar complex
 - C. pentagonal pyramidal complex

D. square pyramidal complex

Answer: B

Watch Video Solution

8. $\left[Cr\left(H_2O\right)_6\right]Cl_3$ and $\left[Cr\left(H_2O\right)_4Cl_2\right]Cl.H_2O$ are hydrate isomers.

Their colours are respectively

A. violet and green

B. yellow and green

C. red and blue

D. blue and green

Answer: A

Objective Exercise 1 Applications

- 1. Hydrometallurgy is a technique used
 - A. for extracting silver from aqueous solutions
 - B. for extracting sodium from aqueous solutions
 - C. for extracting silver from its fused salt
 - D. for extracting sodium from its fused salt

Answer: A

- 2. Which of the following silver halide is insoluble in water but soluble in liquid ammonia
 - A. Silver fluoride

B. Silver chloride

C. Silver bromide

D. Silver lodide

Answer: B

Watch Video Solution

3. The number of moles of KI required to prepare one mole of

 $K_2[HgI_4]$ is

A. 4

B. 3

C. 2

D. 1

Answer: A

4. Geometry of orbitals around the transition metal hexacyanoferrate

A. square planar arrangement

B. tetrahedral arrangement

C. plane trigonal arragement

D. octahedral arrangement

Answer: D

Watch Video Solution

5. The complex compound that gives a preciptate with $BaCl_2$ solution is

A. $\left| Co(NH_3)_5 SO_4 \right| Br$

B.
$$\left[Co\left(NH_3\right)_5 Br\right] SO_4$$
C. $\left[Co\left(NH_3\right)_5 Br\right] \left(NO_3\right)_2$

D.
$$\left[Co(NH_3)_5SO_4\right]Cl$$

6. In metallurgy the metal used to displace silver from its cyano complex is

A. Zn

 $C.F_2$

B.Au

D. Cl_2

Answer: A

7. Which of the following releases metal slowly which gives uniform coating in electroplating

- A. Metal salts
- B. Double salts
- C. Complex salts
- D. Alums

Answer: C

Watch Video Solution

8. In $\left[Ti(H_2O)_6\right]^{+3}$ complex the energy absorbed for excitation of

 $3d^1$ electron is

- A. Purple
- B. Blue
- C. Blue-green
- D. Red

Answer: C

Watch Video Solution

9. Number of dative bonds around Ag^+ ion in $\left[Ag(NH_3)_2\right]^+$

- - A. 2

B. 3

- C. 4
- D. 6

10. Which of the following exhibits purple colour in solutions

A.
$$\left[Fe \left(H_2 O \right)_6 \right]^{2+}$$

$$\mathsf{B.}\left[\mathit{Ti}\big(H_2O\big)_6\right]^{3+}$$

$$\mathsf{C.}\left[\mathit{Cu}\big(H_2O\big)_6\right]^{2+}$$

D.
$$\left[Fe \left(H_2 O \right)_6 \right]^{3+}$$

Answer: B

Watch Video Solution

11. The polydentate ligand used in the treatment of lead poisoning

A. EDTA

B. Glycinate

C. Oxalate

D. Ethylene diammine

Answer: A

Watch Video Solution

12. The ligand used in the identification of cupric copper in the laboratory

A. NH_3

 $\mathsf{B}.I^{\mathsf{-}}$

C. *CN* ⁻

 $D.S_2O_3^{2-}$

Answer: A

13. (A) : Structure of
$$\left[Co(NH_3)_6\right]^{+3}$$
 ion is octahedral

(R): The coordination number of the metal ion is 6

A. Both A & R are true, R is the correct explanation of A

B. Both A & R are true, R is not correct explanation of A

C. A is true, R is false

D. A is false, R is true

Answer: A

Watch Video Solution

- **14.** (A) : IUPAC name of $\left[Co\left(H_2O\right)_4Cl_2\right]Cl.2H_2O$ is tetraaquadichlorocobalt(III) chloride.
- (R): Water of crystallisation is represented by Arabic numerical before

its name

- A. Both A & R are true, R is the correct explanation of A
- B. Both A & R are true, R is not correct explanation of A
- C. A is true, R is false
- D. A is false, R is true

Answer: D

- **15.** (A) : $\left[Co_2(OH)_3(NH_3)_6\right]Cl_3$ is an example of polynuclear complex compound
- (R) : Compound in which the number of central metal atoms is more than one is called polynuclear compound
 - A. Both A & R are true, R is the correct explanation of A
 - B. Both A & R are true, R is not correct explanation of A
 - C. A is true, R is false

D. A is false, R is true

Answer: A

Watch Video Solution

- 16. (A): IUPAC name of [Pt Br (en) Cl, is dibromobis (1, 2-ethane diamine)
- platinum (IV) chloride.
- (R): (en) represents ethylenediamine and it is a ligand where prefix di-
- is already included in its designation.
 - A. Both A & R are true, R is the correct explanation of A
 - B. Both A & R are true, R is not correct explanation of A
 - C. A is true, R is false
 - D. A is false, R is true

Answer: A

- 17. (A): Chlorophyll contains one magnesium atom
- (R): Chlorophyll is useful to perform photosynthesis in plants
 - A. Both A & R are true, R is the correct explanation of A
 - B. Both A & R are true, R is not correct explanation of A
 - C. A is true, R is false
 - D. A is false, R is true

- **18.** Why is Cr^{2+} reducing and Mn^{3+} oxidizing even though both have the same d^4 electronic configuration.
 - A. Both A & R are true, R is the correct explanation of A

- B. Both A & R are true, R is not correct explanation of A
- C. A is true, R is false
- D. A is false, R is true

- **19.** (A): One mole of $CrCl_3$. $5NH_3$ in aqueous solutions can give two moles of AgCl on addition with excess $AgNO_3$ solution
- (R): $CrCl_3$. $5NH_3$ has octahedral shape.
 - A. Both A & R are true, R is the correct explanation of A
 - B. Both A & R are true, R is not correct explanation of A
 - C. A is true, R is false
 - D. A is false, R is true

Watch Video Solution

- **20.** (A) : $CoCl_3$. $3NH_3$ does not ionise in aqua solution.
- (R): $CoCl_3$. $3NH_3$ is an example of aionic compounds.
 - A. Both A & R are true, R is the correct explanation of A
 - B. Both A & R are true, R is not correct explanation of A
 - C. A is true, R is false
 - D. A is false, R is true

Answer: C

21. (A): A cis-isomer has a net dipole moment zero.

(R): A cis-isomers has two ligands of the same type occupying adjacent positions.

- A. Both A & R are true, R is the correct explanation of A
- B. Both A & R are true, R is not correct explanation of A
- C. A is true, R is false
- D. A is false, R is true

Answer: D

shell.

Watch Video Solution

22. Assertion:Co-ordination compounds are generally formed by transition metals.

Reason : Transition metals generally have partly filled d-orbitals in n^{th}

- A. Both A & R are true, R is the correct explanation of A
- B. Both A & R are true, R is not correct explanation of A
- C. A is true, R is false
- D. A is false, R is true

Answer: C

- 23. (A) : Aqueous solution of Mohr's salt exhibits the test for
- NH_4^+ , Fe^{2+} and SO_4^{2-} ions.
- (R): Mohr's salt is a double salt .
 - A. Both A & R are true, R is the correct explanation of A
 - B. Both A & R are true, R is not correct explanation of A
 - C. A is true, R is false
 - D. A is false, R is true

- **24.** (A): Complexes containing ambidentate ligands exhibit coordination isomerism.
- (R): Co-ordination isomerism is shown by the compounds in which both cation and anions are complexes.
 - A. Both A & R are true, R is the correct explanation of A
 - B. Both A & R are true, R is not correct explanation of A
 - C. A is true, R is false
 - D. A is false, R is true

Answer: D

- 25. (A): Metalcarbonyls can be called organometallics.
- (R): Metal carbonyls do contain metal-carbon bond.
 - A. Both A & R are true, R is the correct explanation of A
 - B. Both A & R are true, R is not correct explanation of A
 - C. A is true, R is false
 - D. A is false, R is true

- **26.** Assertion: The complex $\left[Co(NH_3)_3Cl_3\right]$ gives no precipitate with
- AgNO₃ solution

Reason: The given complex is non-ionizable

A. Both A & R are true, R is the correct explanation of A

- B. Both A & R are true, R is not correct explanation of A
- C. A is true, R is false
- D. A is false, R is true

Watch Video Solution

27. Assertion: $\left[Cu(CN)_4\right]^{2-}$ is more stable than $\left[Cu(H_2O)_4\right]^{2+}$

Reason: On heating $\left[Cu \Big(H_2 O \Big)_4 \right]^{2+}$ with NH_3 , $\left[Cu \Big(NH_3 \Big)_4 \right]^{2+}$ is formed.

- A. Both A & R are true, R is the correct explanation of A
- B. Both A & R are true, R is not correct explanation of A
- C. A is true, R is false
- D. A is false, R is true

- **28.** (A): Chelates are relatively more stable than non-chelated complexes.
- (R): Complexes containing ligands which can be easily replaced by other ligands are called labile complexes.
 - A. Both A & R are true, R is the correct explanation of A
 - B. Both A & R are true, R is not correct explanation of A
 - C. A is true, R is false
 - D. A is false, R is true

Answer: B

- 29. (A): [Fe(edta)] complex is octahedral in shape
- (R): edta ligand is hexadentate and forms six bonds with the metal atom undergoing d^2sp^3 hybridization
 - A. Both A & R are true, R is the correct explanation of A
 - B. Both A & R are true, R is not correct explanation of A
 - C. A is true, R is false
 - D. A is false, R is true

- **30.** Assertion: $Ni(CO)_{4}$ complex is tetrahedral in shape
- Reason: Ni atom undergoes sp^3 hybridization in $Ni(CO)_4$.
 - A. Both A & R are true, R is the correct explanation of A
 - B. Both A & R are true, R is not correct explanation of A

C. A is true, R is false

D. A is false, R is true

Answer: A

Watch Video Solution

31. (A): All square planar complexes can exhibit geometrical isomerism

(R): In square planar complexes metal generally assumes dsp^2 hybrid state.

A. Both A & R are true, R is the correct explanation of A

B. Both A & R are true, R is not correct explanation of A

C. A is true, R is false

D. A is false, R is true

Answer: D

Water video Solution

32. (A): Ethylenediaminetetraacetate ion forms a 1:1 stoichiometric complex with Co^{2+} ion

(R): It has six donor atoms which coordinate simultaneously to the metal ion.

A. Both A & R are true, R is the correct explanation of A

B. Both A & R are true, R is not correct explanation of A

C. A is true, R is false

D. A is false, R is true

Answer: A

Watch Video Solution

Objective Exercise 2 Complex Comounds

1. The primary valency of the central transition metal ion in a complex compound $\left(Cr\left(NH_3\right)_4Cl_2\right)Cl$

A. 3

B. 2

C. 1

D. 0

Answer: A

Watch Video Solution

- **2.** The number of ions given by $\left[CO(NH_3)_3Cl_3\right]$ in aqueous solution
 - A. 1

is

B. 2

C. 3

D. zero

Answer: D

Watch Video Solution

3. The oxidation state of Chromium in the complex, $\left[Cr(NH_3)_4Cl_2\right]Cl$ is

A. + 3

B. + 2

C. + 1

D. 0

Answer: A

4. When 1 mole of $\left[Co(NH_3)_3Cl_3\right]$ is added to excess of $AgNO_3$ solution the weight of AgCl precipitated is

- A. 143.5g
- B. 108g
- C. zero
- D. 54 g

Answer: C

- **5.** The secondary valency of Chromium in $[Cr(en)_3]Cl_3$ is
 - A. 6
 - B. 3

C. 2

D. 4

Answer: A

Watch Video Solution

6. The deep blue complex produced by adding excess of Ammonia to

$$CuSO_4$$
 solution is

A.
$$[CuNH_3]_2^{2+}$$

B.
$$\left[Cu(NH_3)_4 \right]^{2+}$$

$$C. \left[Cu \left(NH_3 \right)_6 \right]^{2+}$$

D.
$$\left[Cu(NH_3)_4 \right]^+$$

Answer: B

7.
$$K_2SO_4$$
. $Al_2(SO_4)_3$. $24H_2O$ is

A. a complex salt

B. a double salt

C. a complex salt & double salt

D. a basic salt

Answer: B

Watch Video Solution

8. Number of dative bonds in the complex $CoCl_3.5NH_3$ is

A. 5

B. 6

C. 3

9.

Watch Video Solution

LIST - I (complex)	LIST - II (Charge
	on co-ord. sphere)
A) CoCl ₃ .6NH ₃	1) +1
B) $CoCl_3.5NH_3$	2) +2
C) CoCl ₃ .4NH ₃	3) +3
D) $CoCl_3$.3NH ₃	4) +4
- +	5) 0

The correct match in terms of the charge on the complex

Answer: C

Watch Video Solution

10. A complex compound of Co^{3+} with molecular formula $COCl_x$. yNH_3 gives a totall of 3 ions when dissolved in water. How many Cl^{-} ions when the primary and secondary valency in this complex ?

- A. 3
- B. 1
- C. 4
- D. zero

Answer: B

11. Pick up true statement about the complex compound with formula

$$\left[Co(NH_3)_3 Cl_3 \right]$$

A. IUPAC name is triamminecobalt (III) chloride

B. The complex can exhibit fac and mer isomerism

C. The complex can show optical isomerism

D. The hybrid state of cobalt is dsp^3

Answer: B

Watch Video Solution

12. Neutral complex among the following

A. $CuSO_4$. $4NH_3$

 $B. \left[Co(NH_3)_6 \right] Cl_3$

 $C. Ni(CO)_4$

$$\mathsf{D.}\left[\mathit{Pt}\!\left(\mathit{NH}_{3}\right)_{2}\right]\!\mathit{Cl}_{2}$$

Answer: C

Watch Video Solution

- 13. Cationic complex is
 - A. Potassium ferrocyanide
 - B. Cryolite
 - C. Cuprammonium (II) sulphate
 - D. Sodium argentothiosulphate

Answer: C

14. Number of unpaired electrons in $\left[Fe(CN)_6\right]^{4-}$ ion

A. 6

B. 5

C. 4

D. zero

Answer: D

Watch Video Solution

15. Which of the following is diamagnetic

A.
$$\left[Fe(CO)_5 \right]$$

B.
$$[Fe(CN)_6]^{3}$$

$$\mathsf{C.}\left[\mathit{Cr}\left(\mathit{NH}_3\right)_6\right]^{3+}$$

D.
$$\left[Cr\left(H_2O\right)_6\right]^{3+}$$

Answer: A

Watch Video Solution

- **16.** The number of ions formed when cupra ammonium sulphate is dissolved in water
 - **A.** 1
 - B. 2
 - C. 4
 - D. zero

Answer: B

Property of transition Reason for the element property A) unpaired e- in (n-1)d 1) Colour of ion orbital B) Same crystal Variable structure oxdation states

- 3) formation of alloys C) d-d- transition D) high magnitude of 4) paramagnetic positive charge E) slight energy between
- ns and (n-1)d shells
- B. 1-C, 2-E, 3-B, 4-A

A. 1-C, 2-E, 3-A, 4-B

17.

- C. 1-C, 2-B, 3-E, 4-A
- D. 1-B, 2-A, 3-E, 4-B

Answer: B

- A. In acidic solutions hydration protects copper ions
- B. In acidic solutions protons coordinate with ammonia molecules forming NH_4^+ ions and NH_3 molecules are not available
- C. In alkaline solutions insoluble $Cu(OH)_2$ is precipitated which is soluble in excess of any alkali
- D. Copper hydroxide is an amphoteric substance.

Answer: B

Watch Video Solution

19. Nickel combines with a uninegative monodentate ligand X to form a paramagnetic complex $\left\lceil NiX_4 \right\rceil^{2-}$. The number of unpaired electron/s in the nickel and geometry of this complex ion are respectively

A. two, square planar

B. one, tetrahedral

C. two, tetrahedral

D. one, square planar

Answer: C

Watch Video Solution

20. $\left[PdBr_4\right]^{2^-}$ is a sqaure planar complex. The hybridisation of Pd^{2^+} is

A. sp^3

 $B. dsp^2$

 $C. sp^3d$

D. sp^3d^2

Answer: B

Objective Exercise 2 Theories

- **1.** Stabilisation energy of octahedral complex with d^7 configuration
- (A)1.8 Δ_0 with one unpaired electron
- (B)1.8 Δ_0 with three unpaired electron
- (C)0.8 Δ_0 with one unpaired electron
- (D)0.8 Δ_0 with three unpaired electron
 - A. A and D
 - B. A and B
 - C. C and D
 - D. B and C

Answer: A

- **2.** If $\Delta_0 < P$, the correct electronic configuration for d^4 system will be
 - A. $t_{2g}^4 e_g^0$
 - B. $t_{2g}^{3}e_{g}^{1}$
 - C. $t_{2g}^{0}e_{g}^{4}$
 - D. $t_{2q}^2 e_q^2$

Answer: B

- 3. Which of the following is an outer orbital complex
 - A. $[Fe(CN)_6]^{4-}$
 - B. $\left[Ni\left(NH_3\right)_6\right]^{2+}$
 - $C. \left[Co(NH_3)_6 \right]^{3+}$

D.
$$\left[Mn(CN)_6\right]^{4-}$$

Answer: B

Watch Video Solution

4. Which of the following statement is incorrect for metals involving in formation of alloys

A. must have almost same atomic radii

B. must have similar chemical properties, especially number of

valency electrons

C. must have same crystal structures

D. must belong to same 'd' series

Answer: D

5. Match the lists I and II and pick the correct matching from the codes

given below

- a) [Ag(CN)₂]⁻ 1) square planar and 1.73 BM
- b) [Cu(CN)₄]³⁻ 2) Linear and zero
- c) [Cu(CN)₆]⁴⁻ 3) Octahedral and zero
- d) [Cu(NH)₃)₄]²⁺ 4) tetrahedral and zero
- e) [Fe(CN)₆]⁴⁻ 5) octahedral and 1.73BM

Answer: A

6. Compound that is both paramagnetic and coloured is

$$A. K_2 Cr_2 O_7$$

 $\mathsf{B.}\left[\mathit{TiCl}_{6}\right]\!.\left(\mathit{NH}_{4}\right)_{2}$

 $\mathsf{C}.\mathit{VOSO}_4$

 $D. K_3 \Big[Cu(CN)_4 \Big]$

Answer: C

Watch Video Solution

7. Strongest oxidant among the following is

A.
$$VO_2^+$$

B.
$$Cr_2O_7^{-2}$$

$$C. MnO_4$$

D.
$$MnO_4^{-2}$$

Answer: C

Watch Video Solution

Objective Exercise 2 Properties

1. The number of unpaired electrons in the square planar complex

$$\left[Pt(CN)_4\right]^{2-}$$
 is

- A. 2
- B. 3
- C. 0
- D. 1

Answer: C

- **2.** The correct statement regarding $\left[Co\left(C_2O_4\right)_3\right]^{3+}$ complex is
 - A. It is inner orbital complex and diamagnetic
 - B. It is outer orbital complex and diamagnetic
 - C. It is inner orbital complex and paramagnetic
 - D. It is outer orbital complex and para magnetic

Answer: A

Watch Video Solution

3. Match the following

- I) $[Ni(H_2\Theta)_4 en]_{a0}^{-2+}$
- II) $[Ni(H_2O)_2(en)_2]_{aq}^{2+}$
- III) $[Ni(en)_3]_{so}^{2+}$
- IV) $Cr[(H,\Theta),Cl]Cl,H,\Theta$

The correct match is

colour

- A) Grey-green
- B) Violet
- C) Blue/Purple
- D) Pale blue

Answer: A

Watch Video Solution

possible hybridisation of Mn in the complex is

4. The spin only magnetic moment $\left[Mn(Br)_4\right]^{2+}$ is 5.9BM. Then

7

A. sp^3d

B. dsp²

C. d^2sp^3

D. sp^3

1

Answer: D

Watch Video Solution

Objective Exercise 2 Nomenclature

- **1.** Write the IUPAC names of $\left\lceil Ni(CO)_4 \right\rceil$ co-ordination compounds.
 - A. tetracarbonyl Nickel(II)
 - B. tetracarbonyl Nickel (O)
 - C. tetracarbonyl Nickelate (II)
 - D. tetracarbonyl Nickelate (O)

Answer: B

2. Potassium hexachloroplatinate (IV) is given with the chemical formula

A.
$$Pt[K(Cl)_6]$$

$$\mathsf{B.}\, K \Big[\mathit{Pt}(\mathit{Cl})_6 \Big]$$

$$C. K_2[Pt(Cl)_6]$$

$$\mathsf{D.}\, K_4 \Big[Pt \Big(Cl_6 \Big) \Big]$$

Answer: C

Watch Video Solution

3. IUPAC name of $Li[AlH_4]$ is

A. Lithium aluminium hydride

B. Lithium tetrahydrido aluminate[III]

C. Tetrahydride aluminium lithionate

D. Aluminium lithium hydride

Answer: B

Watch Video Solution

- **4.** When $AgNO_3$ solution is added in excess to 1M solution of $CoC1_3cxNH_3$ one mole of AgCl is formed ? What is the value if 'X'?
 - **A.** 1
 - B. 2
 - C. 3
 - D. 4

Answer: D

5. The IUPAC name of the coordination compound
$$K_3[Fe(CN)_6]$$

- A. Potassium hexacyanoferrate(II)
- B. potassium hexacyanoferrate (III)
- C. potassium hexacyanoiron (II)
- D. tropotassium hexacyano iron (II)

Answer: B

Objective Exercise 2 Isomerism

- 1. Example showing ionisation isomerism
- A. $\left[Co(NO_3)(NH_3)_5 \right] SO_4 \& \left[Co(SO_4)(NH_3)_5 \right] NO_3$
 - B. $\left[Co(NH_3)_4Cl_2\right]Cl \otimes \left[Co(NH_3)_5Cl\right]Cl_2$

C.
$$\left[Cr\left(H_2O\right)Cl\right]Cl_2$$
. $H_2O\&\left[Cr\left(H_2O\right)_4Cl_2\right]Cl$. $2H_2O$

D.
$$\left[Pt(NH_3)_4 \left[PtCl_4 \right] & \left[Pt(NH_3)_3 Cl \right]_2 \left[PtCl_4 \right] \right]$$

Answer: A

Watch Video Solution

- 2. Geometrical isomerism in square planar complexes is given by
 - A. Ma_4 type complex
 - B. Ma_3b type complex
 - $C. Ma_2b_2$ type complex
 - D. Mb_4 type complex

Answer: C

- 3. Ligands with which linkage isomerism is possible
- A) NO_2 B) CN^- C) SCN^-
 - A. A only
 - B. A & B
 - C. B &C
 - D. A, B &C

Answer: D

- 4. Which of the following compound shows optical isomerism?
- A. $\left[Cu \left(NH_3 \right)_4 \right]^{2+}$
 - B. $\left[Zn(Cl)_4\right]^{2}$
 - $C. \left[Cr \left(C_2 O_4 \right)_3 \right]^{2-}$

D.
$$\left[Co(CN)_6 \right]^{3}$$

Answer: C

- 5. Identify the correct statements among the following
- I) Cr in first series of d-block has highest oxidation state.
- II) Colour of MnO_4^- is due to charge transfer phenomenon.
- III) Zn can show variable oxidation state.
- IV) Ferromagnetism disappears in the solution of Fe
 - A. All
 - B. I & II only
 - C. II & IV only
 - D. II & III only

6. The types of isomerism exhibited by
$$\left[Co(NH_3)_5(NO_2)\right](NO_3)_2$$
 is

- A. Geometrical and linkage
- B. Linkage and ionization
- C. Optical and ionization
- D. Co-ordination and hydrate

Answer: B

Watch Video Solution

7. Which of the following compounds is expected to be coloured:

- $A. Ag_2SO_4$
 - B. CuF_2

 $\mathsf{C}.\mathit{MgF}_2$

D. CuCl

Answer: B

Watch Video Solution

8. The orbitals having lower energy in tetrahedral complexes according to CFT are

 $A. d_{xy}, d_{yz}, d_{z^2}$

B. d_{xy} , d_{yz} , $d_{x^2-y^2}$

 $\mathsf{C}.\,d_{xy},\,d_{yz},\,d_{zx}$

D. $d_{x^2-y^2}$, d_{z^2}

Answer: D

9.
$$K_3[Fe(CN)_6]$$
 is a

A. double salt

B. complex compound

C. neutral molecule

D. Simple salt

Answer: B

- 10. According to CFT the energy of t_{2g} orbitals in an octahedral complex
- A. decrease by $\frac{2}{5}\Delta_0$
 - B. increase by $\frac{2}{5}\Delta_0$
 - C. increase by $\frac{3}{5}\Delta_0$

D. decrease by $\frac{3}{5}\Delta_0$

Answer: A

Watch Video Solution

- 11. Transition elements form complexes due to
 - A. small size
 - B. high nuclear charge
 - C. Presence of vacant d orbitals
 - D. All the above

Answer: D

12. The IUPAC name of
$$\left[Co(NH_3)_4Cl(NO_2)Cl\right]$$
 is

- A.) Penta ammine chloro cobalt (III) chloride
- B. Penta amino chloro cobalt (III) carbonate
- C. Penta ammine carbonato cobalt(III) chloride
- D. Penta amino carbonato chloro cobalt (III)

Answer: C

- **13.** $\left[Co\left(NH_3\right)_6SO_4\right]Br$ and $\left[Co\left(NH_3\right)_6Br\right]SO_4$ are a pair of _____ isomers .
 - A. Ionization
 - B. Ligand

C. Co-ordination D. Hydrate Answer: A **Watch Video Solution** Objective Exercise 2 Applications 1. Hardness of water is estimated by simple titration using A. formate B. acetate C. edta D. glyoxile

Answer: C

2. In photography silver bromide dissolves in hypo to give

A.
$$Na_2 \left[Ag \left(S_2 O_3 \right)_2 \right]$$

B.
$$Na \left[Ag \left(S_2 O_3 \right)_2 \right]$$

$$C. Na_3 \left[Ag \left(S_2 O_3 \right)_2 \right]$$

D.
$$Na_4 \left[Ag \left(S_2 O_3 \right)_2 \right]$$

Answer: C

- **3.** Nickel is purified using the concept of complex compounds. The complex related is
 - A. $Ni(CO)_6$

D. $\left[Ni\left(NH_3\right)_6\right]^{2+}$

B. $\left[Ni\left(NH_3\right)_4\right]^{2+}$

 $C. Ni(CO)_{\Lambda}$

Answer: C

4. $\left[\left(Ph_3P \right)_3 RhCl \right]$ is a familiar catalyst used in

A. hydrogenation of oils

B. hydrogenation of alkenes

C. dehydration of alcohols

D. dehydration of aldehydes

Answer: B

5. Ammonium cations can be detected using the complex

A.
$$\left[Cu(NH_3)_4 \right]^{2+}$$

B.
$$[HgI_4]^{2-}$$

C.
$$\left[Ag(CN)_2\right]^{-1}$$

D.
$$\lceil HgI_2 \rceil$$

Answer: B

Watch Video Solution

6. $(Ph_3P)_3RhCl$ is

A. Ziegler natta catalyst

B. Wilkinsons catalyst

C. Developer in photography

D. Bio catalyst

Answer: B

Watch Video Solution

Practice Exercise

1. The primary and secondary valencies of the central metal ion in the complex $\left[Co\left(NH_3\right)_6\right]Cl_3$ respectively are

A. 6 and 3

B. 6 and 6

C. 3 and 3

D. 3 and 6

Answer: D

.....

2. The complex compound which does not give precipitate with $AgNO_3$ solution is

A.
$$\left[Co(NH_3)_5 Cl \right] Cl_2$$

B.
$$\left[Co(NH_3)_6 \right] Cl_3$$

$$\mathsf{C.} \left[\mathsf{Co} \left(\mathsf{NH}_3 \right)_4 \mathsf{Cl}_2 \right] \mathsf{Cl}$$

D.
$$\left[Co(NH_3)_3 Cl_3 \right]$$

Answer: D

Watch Video Solution

3. the configuration of an element 'X' is $4s^13d^{10}$. The wrong statement regarding the element 'X' is

A. it forms complexes

B. it exhibits variable valency

C. it forms paramagnetic ions only

D. It can form coloured salts

Answer: C

Watch Video Solution

- **4.** The primary valency of Iron in $K_4 \Big[Fe(CN)_6 \Big]$ is satisfied by
 - A. Six CN^- ions
 - B. Two CN^- ion
 - C. Four K^+ ions
 - D. Two K^+ ions

Answer: B

5. Which of the following is wrong with respect to
$$\left[Co(NH_3)_5Cl\right]Cl_2$$

A. central metal ion is Co and the ligands are $N\!H_3$ and Cl^- ion

B. oxidation number of Co is +2

C. co-ordination number of Co is 6

D. the number of ions formed when I mole of the compound dissolves in water is 3 moles

Answer: B

6. A complex in which central atom carries zero oxidation state is

A.
$$\left[Co(NH_3)_3 Cl_3 \right]$$

D. $Na_2[(Ni(CN)_4)]$

B. $PtCl_4$. $2NH_3$

 $C. Ni(CO)_{\Delta}$

Answer: C

$$B. + 6, + 2$$

Watch Video Solution

Answer: A

7. Oxidation number of metal in the complex $\left[Co(NH_3)_4Cl_2\right]^+$ is

LIST - I LIST - H

- A)Ti3+ 1) Charge transfer phenomenon
- B)MnO₄ 2) Impurities
- C)F₂ 3) s-s transitions
- D)Gems 4) d-d transitions
 - 5) Excitation of electrons

8.

The correct match which is responsible for colour

A B C D

A. ₄ 1 2 5

A B C D

B. 4 1 5 2

c. A B C D
4 5 1 2

A B C D

D. _{5 2 3 4}

Answer: B

9. Give the correct increasing order of electrical conductivity of aqueous solutions of following complex entities

I)
$$\left[Pt\left(NH_3\right)_6\right]Cl_4$$
 II) $\left[Cr\left(NH_3\right)_6\right]Cl_3$

III)
$$\left[Co(NH_3)_4 Cl_2 \right] Cl \text{ IV) } K_2 \left[PtCl_6 \right]$$

$$A. III < IV < II < I$$

$$C. II < I < IV < III$$

Answer: A

Watch Video Solution

10. Coordination number of Cr is 6. A complete entity with $C_2O_4^{-2}$, en superoxide as ligands is $\left[Cr\left(C_2O_4\right)_x(en)_y\left(O_2\right)_z\right]^+$. The ratio of x: y: z

is
A. 1:1:2
B.1:1:1
C.1:2:2
D. 2:1:1
Answer: A
Watch Video Solution
11. In Aqueous solution meta aluminate ion exists as
11. In Aqueous solution meta aluminate ion exists as A. Neutral complex
A. Neutral complex
A. Neutral complex B. Cationic complex

12. How many EDTA molecules are required to make an octahedral complex with a Co^{2+} ion ?

A. Two

Watch Video Solution

- B. Six
- C. Three
- D. one

Answer: D

Watch Video Solution

13. Which of the following is neutral molecular complex

- A. $CoCl_3$. $3NH_3$
- B. $Ni(CO)_{\Delta}$

 $C. PtCl_{\Delta}. 2NH_{3}$

- D. All

Answer: D

Watch Video Solution

- - A. $\left[Cu(NH_3)_4 \right] SO_4$

14. The following complex representation violates IUPAC rule

- $B. K_4 [Fe(CN)_6]$
- $C. \left[Co(NH_3)_3 \right] Cl$
- D. TiCl₃. 6H₂O

Answer: D

15. Effective atomic number of central metal ion in
$$\left[Co(NH_3)_6\right]Cl_3$$
 is

- A. 24
- B. 27
- C. 35
- D. 36

Watch Video Solution

16. Complex in which effective atomic number is not equal to atomic number of the noble gas

A.
$$\left[Ni(CN)_4\right]^{2}$$

B. $\left[Fe(CN)_6 \right]^{4}$

C. $\left[Ni(CO)_4\right]$

D. $\left[Co(NH_3)_6 \right]^{3+}$

Answer: A

Watch Video Solution

A. potassium alumino oxalte

17. IUPAC name of $K_3 \left[Al \left(C_2 O_4 \right)_3 \right]$

B. potassium trioxalato aluminate (III)

C. potassium aluminium oxalate (III)

D. potassium trioxalato aluminate (VI)

Answer: B

18. The neutral complex, diamminedibromodichloroplatinum(IV) is best represented as

A.
$$\left[Pt\left(NH_3\right)_2Br_2Cl_2\right]$$

$$B. \left[PtCl_2Br_2 \left(NH_3 \right)_2 \right]$$

C.
$$PtBr_2Cl_2(NH_3)_2$$

$$\mathrm{D.}\left[\mathrm{Pt}\!\left(\!\mathrm{NH}_3\right)_{\!2}\!\mathrm{Cl}_2\!\mathrm{Br}_2\right]$$

Answer: A

Watch Video Solution

19. IUPAC name of `[Fe(CN)_(6)]^(4-) is

A. ferrocyanide

B. hexacyanoferrate(II)

- C. ferricyanide
- D. hexacyanoferrate (III)

Answer: B

Watch Video Solution

Complex

- A) $CoCl_3$. $3NH_3$
- B) Na₂ZnCl₄
- 20. C) PtCl₄. 5NH₃

The correct match is

- A. A- ii, B-iii, C-i
- B. A -iii, B -i, C-ii
- C. A-ii, B-i, C-iii
- D. A-iii,B-ii,C-i

Type

- i) Anionic complex
- ii) Cationic complex
- iii) Neutral complex

Answer: B

Watch Video Solution

21. Consider the following complexes

- 1) *K*₂*PtCl*₆ 2) *PtCl*₄. 2*NH*₃
- 3) PtCl₄. 3NH₃ 4) PtCl₄. 5NH₃

Their electrical conducatance in aqueous solutions are

- A. 256, 0, 97 and 404 respectively
- B. 404, 0, 97 and 256 respectively
- C. 256, 97, 0 and 404 respectively
- D. 404, 97, 256 and 0 respectively

Answer: A

22. The IUPAC name of the complex $\left[Co(NO_2)(NH_3)_5\right]Cl_2$ is

A. pentaammine nitrito-N-cobalt(III) chloride

 ${\bf B.\ nitrito\hbox{-}N\hbox{-}penta} ammine cobalt (III)\ chloride$

C. nitrito-N-pentaamminecobalt(II) chloride

D. pentaamminenitrito-N-cobalt(II) chloride

Answer: A

23. When two ligands of the same type occupy opposite positions to each other in a coordination polyhydron, the isomer is called

A. trans-

B. cis-

C. fac-

D. mer-

Answer: A

Watch Video Solution

24. Both geometrical and optical isomerisms are shown by

A.
$$\left[Pt\left(NH_3\right)_2Cl_2\right]$$

B.
$$\left[Pt\left(NH_3\right)_4Cl_2\right]$$

$$C. Pt [(en)_2 Cl_2]$$

D.
$$\left[Pt(en)_3 \right]$$

Answer: C

- 25. Optical isomerism is exhibited by a complex with
 - A. coordination number 4, with a bidentate ligand
 - B. coordination number 4, with two bidentate ligands
 - C. coordination number 6, with a bidentate ligand
 - D. coordination number 6, with three tridentate ligands

Answer: C

- 26. Optical isomers have
- A) property of chirality
- B) almost identical chemical properties
- C) almost identical physical properties
- D) similar rotation of plane polarised light

- A. A,B,C are correct
- B. B,C,D are correct
- C. A,C,D are correct
- D. A,B,D are correct

Answer: A

Watch Video Solution

27. What is wrong about the following pair of compounds?

$$\left[Cr\left(H_2O\right)_6\right]Cl_3$$
 and $\left[Cr\left(H_2O\right)_5Cl\right]Cl_2$. H_2O

- A. They are hydration isomers
- B. They have different colours
- C. Their 0.1M aqueous solutions have same molar conductivity
- D. They have different IUPAC name

Answer: C

Watch Video Solution

28. Geometrical isomerism is possible in:

- A. Tetrahedral complex
- B. Square planar complex
- C. Tined complexes
- D. planar triangle complexes

Answer: B

29. Which of the following has the maximum number of unpaired electrons

A.
$$Mg^{+2}$$

B.
$$Ti^{+3}$$

C.
$$V^{+3}$$

D.
$$Fe^{+2}$$

Watch Video Solution

30. The brown ring complex is formulated as $\left[Fe\left(H_2O\right)_5NO^+\right]SO_4$

The Oxidation state of Fe is X what is the value of X?

$$D.+4$$

Answer: A

Watch Video Solution

31. The oxidation number of Pt in $\left[Pt\left(C_2H_4\right)Cl_3\right]^{-1}$ is

A. + 1

B. + 2

C. + 3

D. + 4

Answer: B

Watch Video Solution

32. What is magnetic moment of $[FeF_6]^{-3}$?

- A. 6.92 BM
- B. 5.92BM
- C. 7.62 BM
- D. 3.14 BM

Answer: B

Watch Video Solution

33. The hybridisatio nand unpaired electrons in $\left[Fe\left(H_2O\right)_6\right]^{2+}$ ion are

- A. sp^3d^2 , 4
- B. d^2sp^3 , 3
- C. $sp^{3}d$, 4
- D. sp^3d^2 , 2

Answer: A

Watch Video Solution

34.
$$\left[Fe \left(H_2 O \right)_6 \right]^{2+}$$
 is

- A. Pale green complex
- B. Blue coloured complex
- C. Red coloured complex
- D. Violet coloured complex

Answer: A

Watch Video Solution

35. Metals those can be extracted with aqueous solution of sodium cyanide as complexes are

- A. Au and Ag
- B. Fe and Ag
- C. Au and Hg
- D. Hg and Fe

Answer: A

Watch Video Solution

36. In the process of electroplating, large amounts of Ag^+ ions can be used in the electrolyte as the complex

- A. $K_3 \Big[Ag(CN)_4 \Big]$
- $B. K \Big[Ag(CN)_2 \Big]$
- $\mathsf{C.}\,K_2\Big[\mathit{Ag}(\mathit{CN})_3\Big]$
- $D. K_2 \Big[Ag(CN)_2 \Big]$

Answer: B

Watch Video Solution

37. In the qualitative analysis of group 3 cations blood red colouration is a test for

- A. iron using cyanide as ligand
- B. chromium using cyanide as ligand
- C. iron using thiocyanide as ligand
- D. chromium using thiocyanide as ligand

Answer: C

Watch Video Solution

38. A recemic substance is composed of

- A. 25% D- form and 75% L form
- B. 50% D-form and 25% L form
- C. 75% d-form and 25% 1 form
- D. 50% d- form and 50% 1 form

- **39.** Basic structure of all Chlorophylls comprises
 - A.

$$-CH_3$$
, $-C_2H_5$, $-CH = CH_2$, $-COOCH_3$ and $-CH_2CH_2COOC_{20}H_{39}$

- В.
- $-CH_3$, $-C_2H_5$, $-CH = CH_2$, $-COCH_3$ and $-CH_2CH_2COOC_{20}H_{39}$

-CHO, - C_2H_5 , -CH = CH_2 , -COC H_3 and - $CH_2CH_2COOC_{20}H_{30}$

D.

-CHO, - C_2H_5 , -CH = CH_2 , -COOC H_3 and - $CH_2CH_2COOC_{20}H_{39}$

Answer: D

Watch Video Solution

40. Explain the formation of $\left[Co(NH_3)_6\right]Cl_3$ and $\left[Cu(NH_3)_4\right]SO_4$ on the basis of VBT.

A. Ionisation isomers

B. Coordination isomers

C. Linkage isomers

D. Ligand isomers

Watch Video Solution

41. Which among the following arrangements are not geometrical isomers ?

III)
$$Pt$$
 Py
 Br
 $IV)$
 Py
 Pt
 Br

A. I and II only

B. II & III only

C. I, II, IV

D. III & IV only

Watch Video Solution

42. Linkage isomerism may be observed in

A.
$$Co(NH_3)_6^{3+}$$

B.
$$Co(NH_3)_5NO_2^{2+}$$

$$C. Co(NH_3)Cl_3$$

D.
$$Co(NH_3)_4Cl_2^+$$

Answer: B

Watch Video Solution

43. Magnetic moment of the complex $\left[Fe(CN)_6^{3+} \right]$ is approximately

- A. 5.91 BM
- B. 4.89 BM
- C. 2.84 BM
- D. 1.73 BM

Watch Video Solution

44. The two compounds $\left[Cr(NH_3)_5Br\right]Cl$ and $\left[Cr(CN_3)_5Cl\right]Br$ can be distinguised by reagent A and the two compounds exhibit isomerism (B) . Then (A) and (B) are

- A. $AgNO_3$, ionisation
- $\operatorname{B.}\mathit{BaCl}_2, \mathsf{ionisation}$
- $C. AgNO_3$, co-ordination
- D. BaCl₂, Co-ordination

Answer: A

Watch Video Solution

- **45.** The reaction of O_2 and CO with hemoglobin gives
 - A. only oxygen heme complex
 - B. only Co heme complex
 - C. both, but oxygen heme complex is more stable
 - D. both , but CO- heme complex is more stable

Answer: D

