

India's Number 1 Education App

CHEMISTRY

BOOKS - MTG CHEMISTRY (ENGLISH)

THE P-BLOCK ELEMENTS

Mcqs

- 1. Fill in the blanks by choosing an appropriate option.
- (i) "-----" is a synthetic radioactive element of group 15 having electronic configuration (ii) "------"

A.
$${ii} \atop {115}Mc \quad [Rn]5f^{14}6d^{10}7s^27p^3$$
B. ${ii} \atop {115}Mc \quad [Xe]5f^{14}6d^{10}7s^27p^3$

C.
$$(Xe)^{5}f^{14}6d^{10}7s^{2}7p^{3}$$

C.
$$_{116}^{\prime}Lv~~[Rn]5f^{14}6d^{10}7s^{2}7p^{4}$$

D.
$${(i) \choose 114} {(ii) \choose 114} {(Rn]} 5f^{14} 6d^{10} 7s^2 7p^2$$

Answer: A

2. The oxidation state of nitrogen is highest in

- - A. N_3H
 - B. NH_3
 - C. NH_2OH
 - D. N_2H_4

Answer: A

3. Which of the following shows nitrogen with its increasing order of oxidation number.

A.
$$N_2O < NO < NO_2 < NO_3^- < NH_4^+$$

B.
$$NH_4^{\,+} < N_2O < NO < NO_2 < NO_3^{\,-}$$

C.
$$NH_4^{\,+} < N_2O < NO_2 < NO_3^{\,-} < NO$$

D.
$$NH_4^{\,+} < NO < N_2O < NO_2 < NO_3^{\,-}$$

Answer: B

- **4.** Nitrogen forms N_2 but phosphorous when forms P_2 gets readily converted into P_4 because
 - A. $p\pi-p\pi$ bonding is strong in phosphorus
 - B. $p\pi-p\pi$ bonding is weak in phosphorus

C. triple bond is present in phosphorus

D. single P - P bond is weaker than N -N bond.

Answer: B

Watch Video Solution

5. The decreasing order of boiling points of the following hydrides is

A. $SbH_3 > AsH_3 > PH_3 > NH_3$

B. $NH_3 > SbH_3 > AsH_3 > PH_3$

C. $SbH_3 > NH_3 > AsH_3 > PH_3$

D. $PH_3 > AsH_3 > SbH_3 > NH_3$

Answer: C

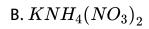
6. Nitrogen can form only one chloride with chlorine which is NCl_3 whereas P can form PCl_3 and PCl_5 . This is

A. due to absence of d-orbitals in nitrogen

B. due to difference in size of N and P

C. due to higher reactivity of P towards Cl than N

D. due to presence of multiple bonding in nitrogen.


Answer: A

Watch Video Solution

7. On heating a mixture of NH_4Cl and KNO_2 , we get

A. NH_4NO_3

 $\mathsf{C.}\ N_2$

D. NO

Answer: C

Watch Video Solution

8. Nitrogen is relatively inactive element because

A. its atoms has a stable electronic configuration

B. it has low atomic radius

C. its electronegativity is fairly high

D. dissociation energy of its molecule is fairly high.

Answer: D

9. Nitrogen comnines with metals to form

A nitrites

B. nitrates

C. nitrosyl chloride

D. nitrides

Answer: D

Watch Video Solution

10. Nitrogen is used to fill electric bulbs because

A. it is lighter than air

B. it makes the bulb to glow

C. it does not support combustion

D. it is non-toxic.

Answer: C

Watch Video Solution

11. Which of the following compounds will not give ammonia on heating?

A. $(NH_4)_2SO_4$

B. NH_2CONH_2

C. NH_4NO_2

D. NH_4Cl

Answer: C

Watch video Solution

12. Which of the following factors would favour the formation of ammonia?

A. High pressure

B. Low temperature

C. High volume

D. Low pressure

Answer: A

Watch Video Solution

13. Ammonia is a Lewis base. It forms complexes with cations.

Which one of the following cations does not form complex with

ammonia?

A. Ag^{-}	+
-------------	---

B.
$$Cu^{2+}$$

C.
$$Cd^{2+}$$

D.
$$Pb^{2+}$$

Answer: D

CuO

Watch Video Solution

14. Ammonia is used in detection of $Cu^{2\,+}$ ion because

A. 1. aqueous solution of NH_3 reacts with $Cu^{2\,+}$ ion to form deep blue coloured complex

B. 2. NH_3 reacts with $Cu^{2\,+}$ ion to give blue precipitate of

C. 3. aqueous solution of NH_3 reacts with $Cu^{2\,+}$ ion to form

white coloured complex

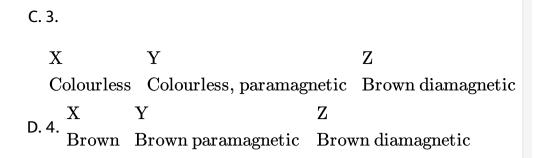
D. 4. NH_3 reacts with Cu_{2+} ion to give green precipitate.

Answer: A

15. Consider the following sequence of conversion.

$$\underbrace{2NO + O_2}_{(X)} \Leftrightarrow 2NO_2 \overset{ ext{cool}}{\Longleftrightarrow} N_2O_4$$

X, Y and Z can be described as


A. 1.

B. 2.

X Y \mathbf{Z} Colourless Brown paramagnetic Colourless diamagnetic

X Y

 \mathbf{Z} Brown Colourless diamagnetic Brown paramagnetic

Answer: A

16. Which oxide of nitrogen is obtained on heating ammonium nitrate at $250\,^{\circ}\,C$?

- A. Nitric oxide
- B. Nitrous oxide
- C. Nitrogen dioxide
- D. Dinitrogen tetraoxide

Answer: B

Watch Video Solution

17. Which of the following oxides is an anhydride of nitrous acid?

- A. N_2O_3
- B. NO_2
- $\mathsf{C}.\,NO$
- D. N_2O_4

Answer: A

18. A gas (X) is obtained when copper reacts with dilute HNO_3 . The gas thus formed reacts with oxygen to give brown fumes of (Y). (Y) when dissolved in water gives an important acid (Z) and the gas (X). X, Y and Z respectively are

- A. NO, NO_2, HNO_3
- B. NO_2 , NO, HNO_3
- $\mathsf{C}.\,N_2O,\,NO,\,HNO_2$
- D. NO, N_2O, HNO_3

Answer: A

- 19. Complete the given equations:
- (i) $Cu + 8HNO_3
 ightarrow 3Cu(NO_3)_2 + frac{W}{2}.... + 4H_2O$

(ii) $4Zn+10HNO_3
ightarrow 4Zn(NO_3)_2+5H_2O+\overset{X}{...}.$

(iii)
$$l2+10HNO_3
ightarrow \stackrel{Y}{\dots} +10NO_2+4H_2O$$

A. $rac{W}{2NO_2} rac{X}{NO} rac{Y}{5HIO_3}$ B. $rac{W}{2NO} rac{X}{N_2O} rac{Y}{2HIO_3}$ C. $rac{W}{N_2} rac{X}{NO_2} rac{Y}{HI}$

D. $rac{\mathrm{W}}{N_2O}$ $rac{\mathrm{X}}{NO_2}$ $rac{\mathrm{Y}}{3HI}$

Answer: B

20. Atomicity of phosphorus is

- A. 1. one
- B. 2. two
- C. 3. three

D.	4.	four	

Answer: D

Watch Video Solution

- 21. The structure of white phosphorus is
 - A. square planar
 - B. pyramidal
 - C. tetrahedral
 - D. trigonal planar

Answer: C

22. Each of the following is true for white and red phosphorus except that they

A. 1. are both soluble in CS_2

B. 2. can be oxidized by heating in air

C. 3. consist of the same kind of atoms

D. 4. can be converted into one another.

Answer: A

23. When white phosphorus is heated at 473 K under high pressure, what will happen?

A. lpha-Black phosphorus is formed.

B. β -Black phosphorus is formed.

C. Red phosphorus is formed.

D. No change would be observed.

Answer: B

Watch Video Solution

24. Phosphine is prepared by the action of

A. 1. P and H_2SO_4

B. 2. P and NaOH

C. 3. P and H_2S

D. 4. P and HNO_3

Answer: B

25. Fill in the blanks:

(i)
$$Ca_3P_2+6HCl
ightarrow 3CaCl_2+....p....$$

(ii)
$$P_4+3NaOH+3H_2O
ightarrow...q...+3NaH_2PO_2$$

(iii)
$$PH_4I+KOH
ightarrow KI+H_2O+...r...$$
 p, q and r respectively

are

A. a. $PH_3,\,H_3PO_3,\,Pl_3$

B. b. PH_3, PH_3, PH_3

C. c. PCl_3 , H_3PO_4 , PH_3

D. d. PCl_5, PH_3, P_4O_6

Answer: B

- A. 1. calcium carbide
- B. 2. calcium phosphide
- C. 3. calcium carbide and calcium phosphide
- D. 4. calcium carbide and aluminium carbide.

Answer: C

27. A translucent white waxy solid (A) reacts with excess of chlorine to give a yellowish white powder (B). (B) reacts with organic compounds containing -OH group converting them into chloro derivatives. (B) on hydrolysis gives (C) and is finally converted to phosphoric acid. (A), (B) and (C) are

A. 1. P_4 , PCl_3 , H_3PO_4

B. 2. P_4 , PCl_5 , H_3PO_3

C. 3. P_4 , PCl_5 , $POCl_3$

D. 4. P_4 , PCl_3 , $POCl_3$

Answer: C

28. Which of the following is not correctly matched?

A. PCl_5-sp^3d hybridisation

B. PCl_3-sp^3 hybridisation

 $\mathsf{C.}\,PCl_5\;\;\mathrm{(solid)}\;\;-\left[PtCl_4\right]^+\left[PtCl_6\right]^-$

D. PCl_5 - brownish powder

Answer: D

29. On reaction with Cl_2 , phosphorus forms two types of halides 'A' and 'B'. Halide 'A' is yellowish-white powder but halide 'B' is colourless oily liquid. What would be the hydrolysis products of 'A' and 'B' respectively?

- A. H_3PO_4, H_3PO_3
- B. $HOPO_3, H_2PO_2$
- $C. H_3PO_3, H_3PO_4$
- D. HPO_3, H_3PO_3

Answer: A

30. Which of the following statements is not correct about the structure of PCl_5 ?

- A. PCl_5 has a trigonal bipyramidal structure.
- B. Three equatorial P-Cl bonds are equivalent.
- C. The two axial bonds are different and longer than equatorial bonds.
- D. Equatorial bond pairs suffer more repulsion than that of the axial bond pairs.

Answer: D

Watch Video Solution

31. Why all P - F bonds in PF_5 are not equivalent?

- A. PF_5 has sp^3d hybridisation, out of five P-F bonds three are equatorial which have different lengths.
- B. $PF_5 \;\; {
 m has} \;\; sp^3$ hybridisation, out of five P-F bonds two are equatorial which have different lengths.
- C. Out of five P-F bonds two are axial and three equatorial. All five bonds have different bond lengths.
- D. PF_5 is made up of two types of bonds namely covalent and coordinate, hence are not equivalent.

Answer: A

32. The number of P-O-P bonds in cyclotrimetaphosphoric acid, $\left(HPO_3\right)_3$ is

A. Four
B. Three
C. Two
D. One
Answer: B
Watch Video Solution
33. Which of the following is a tetrabasic acid?
A. Hypophosphorous acid
B. Metaphosphoric acid
C. Pyrophosphoric acid
D. Orthophosphoric acid

Answer: C

Watch Video Solution

34. Phosphorous acid on heating gives the following products:

 $4H_3PO_3 \stackrel{\Delta}{\longrightarrow} 3H_3PO_4 + PH_3$ The above reaction is an example of

- A. oxidation
- B. thermal decomposition
- C. disproportionation
- D. reduction

Answer: C

35. Group 16 elements have lower value of first ionisation enthalpy as compared to group 15 elements because

- A. half filled p-orbitals in group 15 elements are more stable
- B. group 16 elements have smaller size than group 15 elements
- C. group 16 elements contain double bond while group 15 elements have triple bond
- D. group 16 elements have more number of electrons in porbitals.

Answer: A

Watch Video Solution

36. Covalency of oxygen cannot exceed 2 unlike sulphur which can show +4 or +6 because

- A. oxygen atom does not have d-orbitals
- B. oxygen atom has two unpaired electrons in its valence shell
- C. oxygen can form a double bond with another oxygen atom
- D. electrons of oxygen atom cannot be promoted to d-orbitals due to its small size.

Answer: A

37. Arrange the following hydrides of group 16 elements in order of increasing stability.

A.
$$H_2 S < H_2 O < H_2 T e > H_2 S e$$

B.
$$H_2O < H_2Te < H_2Se < H_2S$$

C.
$$H_2O < H_2S < H_2Se < H_2Te$$

D. $H_2Te < H_2Se < H_2S < H_2O$

Answer: D

Watch Video Solution

38. Name of the synthetic radioactive element of group 16 having atomic number 116 is

- A. Livermorium
- B. Tennessine
- C. Livernorium
- D. Moscovium

Answer: A

39. On heating $KCIO_3$ we get :

A.
$$KClO_2 + O_2$$

B.
$$KCI + O_2$$

$$\mathsf{C}.\,KCl+O_3$$

$$\operatorname{D.}KCl + O_2 + O_3$$

Answer: B

40. Select the correct option regarding the properties of dioxygen?

A. 1. Dioxygen never reacts with metals.

B. 2. Dioxygen is diamagnetic in nature.

C. 3. Combination of dioxygen with other elements is highly

exothermic process.

D. 4. Dioxygen liquefies at 55 K and freezes at 90 K.

Answer: C

41. Which of the following is not correctly matched?

A. Acidic oxides - $P_2O_5,\,NO_2,\,Cl_2O_7$

B. Basic oxides - $Na_2O,\,CaO,\,MgO$

C. Neutral oxides - CO_2 , CO, BeO

D. Amphoteric oxides - ZnO, SnO, Al_2O_3

Answer: C

42. The correct order of acidic strength is

A.
$$K_2O>CaO>MgO$$

B.
$$CO_2>N_2O_5>SO_3$$

C.
$$Na_2O>MgO>Al_2O_3$$

D.
$$Cl_2O_7 > SO_2 > P_4O_{10}$$

Answer: D

Watch Video Solution

43. Which of the following is the wrong statement?

A. Ozone is paramagnetic gas.

B. The two oxygen -oxygen bond length in ozone are identical.

- C. O_3 molecule is bent.
- D. Ozone is violet-black in solid state.

Answer: A

Watch Video Solution

- **44.** Which one is not a property of ozone?
 - A. it acts as an oxidising agent in dry state.
 - B. oxidation of KI into KIO_2 .
 - C. PbS is oxidised to $PbSO_4$
 - D. Hg is oxidised to Hg_2O .

Answer: B

45. Sulphur molecule is
A. diatomic
B. triatomic
C. tetratomic
D. octa-atomic
Answer: D Watch Video Solution
46. Choose the correct statements from the following?
A. Rhombic sulphur is blue in colour.
B. Rhombic sulphur is soluble in water but insoluble in organic
solvents.

C. Rhombic and monoclinic sulphur have S6 molecules.

D. In Cyclo- S_6 molecule, the ring adopts chair form.

Answer: D

Watch Video Solution

47. Which of the following is correct representation of reaction of acidified permanganate solution with sulphur dioxide?

A.
$$2MnO_4^- + 5SO_2 + 2H_2O
ightarrow 5SO_4^{2-} + 2Mn^{2+} + 4H^+$$

B.
$$MnO_4^- + SO_2 + 2H_2O
ightarrow S + Mn^{2\,+} + 4H^{\,+}$$

C.

$$2MnO_4^{\,-} + 5SO_2 + 2H_2O
ightarrow 4SO_3^{2\,-} + S + 2Mn^{2\,+} + 4H^{\,+}$$

D.
$$3MnO_4^- + 2SO_2 + 2H_2O
ightarrow 2S + 3Mn^{2\,+} + 4H^{\,+}$$

Answer: A

Watch Video Solution

- 48. Why is sulphur dioxide considered as an air pollutant?
 - A. It increases the temperature of the atmosphere.
 - B. It is used as insecticide which causes air pollution.
 - C. It causes acid rain due to formation of sulphuric acid on combining with O_2 and H_2O .
 - D. It is a strong oxidising agent hence oxidises the other components of air.

Answer: C

49. Dry SO_2 does not bleach dry flowers because

A. nascent hydrogen responsible for bleaching is produced only in presence of moisture

B. water is the actual reducing agent responsible for bleaching

C. water is stronger acid than SO_2

D. the OH^- ions produced by water cause bleaching.

Answer: A

Watch Video Solution

50. Which of the following statements is not correct for SO_2 gas?

A. It acts as bleaching agent in moist conditions.

B. Its dilute solution is used as disinfectant.

- C. Its molecules have linear geometry.
- D. Acidified $KMnO_4$ is decolourised when SO_2 is passed through it.

Answer: C

- **51.** Which of the following statements is not correct?
 - A. 1. Oxygen molecule is paramagnetic with two unpaired electrons.
 - B. 2. Sulphur shows maximum covalency of four.
 - C. 3. Ozone can be easily detected by mercury.
 - D. 4. Both sulphurous and sulphuric acid are dibasic in nature.

Answer: B

Watch Video Solution

52. The oxyacid of sulphur that contains a lone pair of electrons in sulphur is

- A. 1. sulphurous acid
- B. 2. sulphuric acid
- C. 3. peroxodisulphuric acid
- D. 4. pyrosulphuric acid.

Answer: A

53. In which of the following sulphur is present in +5 oxidation state?

- A. 1. Dithionic acid
- B. 2. Sulphurous acid
- C. 3. Sulphuric acid
- D. 4. Disulphuric acid

Answer: A

Watch Video Solution

54. The oxidation states of sulphur in the anions SO_3^{2-} , $S_2O_4^{2-}$, and $S_2O_6^{2-}$ follow the order

A.
$$S_2 O_6^{2\,-} \, < S_2 O_4^{2\,-} \, < S O_3^{2\,-}$$

B.
$$S_2 O_4^{2-} < S O_3^{2-} < S_2 O_6^{2-}$$

C.
$$SO_3^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$$

D.
$$S_2O_4^- \, + \, < S_2O_6^{2-} \, < SO_3^{2-}$$

Answer: B

Watch Video Solution

55. The hybridisation state of the central atom and shape of the molecules is given below. Mark the incorrect combination.

- A. SO_3-sp^2 hybridisation, planar triangular
- B. SO_2-sp^2 hybridisation, V-shaped
- C. $H_2SO_4-sp^2$ hybridisation, V-shaped
- D. O_3-sp^2 hybridisation, angular

Answer: C

56. Sulphur trioxide is not directly dissolved in water to form sulphuric acid because

- A. 1. SO_3 does not react with water to form acid
- B. 2. SO_3 gets oxidised to H_2SO_3 when dissolved in water
- C. 3. it results in the formation of dense fog of sulphuric acid
 - which is difficult to condense
- D. 4. sulphur trioxide is insoluble in water due to its covalent nature.

Answer: C

57. Which of the following pairs is not correctly matched.

- A. Allotropic form of sulphur which is more stable at room temperature Rhombic
- B. The hydride of group 16 which is liquid at room temperature
 - Water
- C. The gas formed in the upper layers of atmosphere by action of UV radiations Nitrogen
- D. The catalyst used in the manufacture of H_2SO_4 by contact process Vanadium pentoxide

Answer: C

58. Fill in the blanks by choosing the appropriate option.

Cone. H_2SO_4 chars paper, wood and sugar by removing (i) from them. It is also known as (ii) It is manufactured by (iii) process. It is a strong (iv) and (v) acid.

 H_2O oil of vitriol Contact oxidising dibasic

B. (i) (ii) (iii) (iv) (v) O_2 oil of vitriol Oleum dehydrating monobasic

C. (i) (ii) (iii) (iv) (v) H_2O oil of olay Solvay dehydrating dibasic

D.

 SO_2 oil of winter green Contact oxidising monobasic

(iii)

(iv)

(iii) (iv)

(v)

(v)

Answer: A

(i)

A. (i)

(ii)

(ii)

59. An amorphous solid (X) burns in air to form a gas (Y) which turns lime water milky. This gas decolourises aqueous solution of acidified $KMnO_4$. Gas (Y) reacts with oxygen to give another gas (Z) which is responsible for acid rain. X, Y and Z are

A. $\frac{{
m X}}{C} \ \ \, \frac{{
m Y}}{CO} \ \ \, \frac{{
m Z}}{CO_2}$ B. $\frac{{
m X}}{S} \ \ \, \frac{{
m Y}}{SO_2} \ \ \, \frac{{
m Z}}{SO_3}$ C. $\frac{{
m X}}{P} \ \ \, \frac{{
m Y}}{P_2O_3} \ \ \, \frac{{
m Z}}{P_2O_5}$ D. $\frac{{
m X}}{S} \ \ \, \frac{{
m Y}}{SO_3} \ \ \, \frac{{
m Z}}{H_2SO_4}$

Answer: B

60. The correct order of increasing electron affinity of halogens is

A.
$$I < Br < Cl$$

 $\operatorname{B.}Br < I < Cl$

C. Cl < Br < I

D. I < Cl < Br

Answer: A

61. Which of the following gives correct arrangement of compounds involved based on their bond strength?

A.
$$HF > HCl > HBr > HI$$

B. HI > HBr > HCl > HF

C. HCl > HF > HBr > HI

D. HF > HBr > HCl > HI

Answer: A

Watch Video Solution

62. The comparatively high b.pt. of HF is due to

- A. high reactivity of fluorine
- B. small size of hydrogen atom
- C. formation of hydrogen bonds
- D. small size of fluorine.

Answer: C

63. Fill in the blanks.

The high reactivity of fluorine is due to its ____ dissociation energy.

Its shows ____ only oxidation state. It has ____ electron affinity than chlorine. Among all hydrogen halides boiling point is highest for .

- A. low, -1, lower, HF
- B. high,+ 1, higher, HF
- C. low, +1, lower, HCl
- D. high, -1, higher, HF

Answer: A

Watch Video Solution

64. The property of halogens which is not correctly matched is

A.
$$F>Cl>Br>I$$
 (Ionisation energy)

B.
$$F>Cl>Br>I$$
 (Electronegativity)

$$\mathsf{C.}\ I > Br > Cl > F$$
 (Density)

D.
$$F>Cl>Br>I$$
 (Electron affinity)

Answer: D

65. Mark the correct statements about halogens.

A. Electron affinity of halogens is in the order

$$F > Cl > Br > I$$
.

B. HF is the strongest hydrohalic acid.

C. F_2 has lower bond dissociation energy than Cl_2

D. All halogens show variable oxidation states.

Answer: C

Watch Video Solution

66. The element of group 17 whose half life is in milliseconds only

is

- A. 1. Ts
- B. 2. Te
- C. 3. At
- D. 4. Og

Answer: A

- 67. Fluorine is the best oxidising agent because it has
 - A. 1. highest electron affinity
 - B. 2. highest reduction potential
 - C. 3. highest oxidation potential
 - D. 4. lowest electron affinity.

Answer: B

- **68.** Which of the following statements is not correct?
 - A. All the oxides of halogens are powerful oxidants.
 - B. The compounds of oxygen and fluorine are not called oxides
 - but fluorides.

- C. Oxygen fluorides form oxoacids.
- D. In oxyhalides, bonds are mainly covalent due to small difference in electronegativity of oxygen and halogens.

Answer: C

Watch Video Solution

69. Which of the following is used to prepare Cl_2 gas at room temperature from concentrated HCl ?

- A. MnO_2
- $\mathsf{B.}\,H_2S$
- C. $KMnO_4$
- D. Cr_2O_3

Answer: C

Watch Video Solution

70. If chlorine is passed through a solution of hydrogen sulphide in water, the solution turns turbid due to the formation of

- A. free chlorine
- B. free sulphur
- C. nascent oxygen
- D. nascent hydrogen

Answer: B

71. A balck powder when heated with Conc. HCI gives a greenish yellow. Gas. The gas as an oxidising and bleaching agent. When it is passed over slake lime, a white poweder is formed which is a ready source of gas. The back powder and white powder respectively are

- A. $KClO_3$ and $NaClO_3$
- B. MnO_2 and $Ca(OCl)_2$
- $\mathsf{C}.\,MnO_2$ and $KClO_3$
- D. $MnCl_4$ and $COCl_2$

Answer: B

A.
$$NaCl + H_2SO_4 \stackrel{420K}{\longrightarrow}$$

B.
$$NaHSO_4 + NaCl \stackrel{820K}{\longrightarrow}$$

C.
$$NaNO_3 + H_2SO_4$$

D. both (a) and (b).

Answer: D

Watch Video Solution

73. When three parts of cone. HCl and one part of cone. HNO_3 is mixed, a compound 'X' is formed. The correct option related to 'X' is

A. 'X' is known as aqua-regia

B. $\ 'X'$ is used for dissolving gold

C. 'X' is used for decomposition of salts of weaker acids

D. both (a) and (b).

Answer: D

Watch Video Solution

74. The correct order of acidity of oxoacids of halogens is

A.
$$HCIO < HCIO_2 < HClO_3 < HClO_4$$

B.
$$HClO_4 < HCIO_3 < HClO_2 < HCIO$$

$$\mathsf{C.}\ HCIO < HCIO_4 < HClO_3 < HCIO_2$$

D.
$$HClO_4 < HClO_2 < HClO_3 < HClO$$

Answer: A

75. The following acids have been arranged in order of decreasing acid strength. Identify the correct order.

ClOH (I), BrOH (II), IOH(III)

A.
$$I>II>III$$

B.
$$II > I > III$$

C.
$$III > II > I$$

$$\mathsf{D}.\,I > III > II$$

Answer: A

76. Which of the following increasing order is not correct as mentioned in the property with it?

A. $HCIO < HClO_2 < HClO_3 < HClO_4$ (thermal stability)

B. $HClO_4 < HClO_3 < HClO_2 < HClO$ (oxidising power)

C. $F^- < Cl^- < Br^- < I^-$ (reducing nature)

D. $HIO_4 < ICl < I_2 < HI$ (oxidation number of iodine)

Answer: D

77. Match the column I with column II and mark the appropriate choice.

Column I		Column II	
(A)	(CN) ₂	(i)	Hydrogen bonding
(B)	IF ₇	(ii)	Deacon's process
(C)	Cl ₂	(iii)	Pseudohalogen
(D)	HF	(iv)	sp ³ d ³ hybridisation

A.
$$(A)
ightarrow (iv), (B)
ightarrow (i), (C)
ightarrow (iii), (D)
ightarrow (ii)$$

$$\mathtt{B.}\,(A) \rightarrow (ii), (B) \rightarrow (iii), (C) \rightarrow (iv), (D) \rightarrow (i)$$

 $\mathsf{C}.\,(A) o (iii), (B) o (iv), (C) o (ii), (D) o (i)$

 $\mathsf{D}.\,(A) \to (i), (B) \to (ii), (C) \to (iv), (D) \to (iii)$

Answer: C

78. Interhalogen compounds are more reactive than the individual halogens because

A. they are prepared by direct combination of halogens

B. X-X' bond is weaker than X-X or X' -X' bonds

C. they are thermally more stable than halogens

D. there is a large difference in their electronegativity.

Answer: B

79. Xenon has closed shell configuration but is known to give

79. Xenon has closed shell configuration but is known to give compounds with fluorine because

A. Xe atom has large size and lower ionisation potential as compared to other noble gases

B. Xe has unpaired electrons which can form covalent bonds

C. Xe has highest boiling point hence it can form compounds with fluorine

D. fluorine is the smallest element hence it can react with all noble gases.

Answer: A

80. Which compound is prepared by the following reaction?

$$Xe + F_2 \xrightarrow[(2:1 \text{ volume ratio})]{Ni} \xrightarrow{673K}$$

- A. XeF_4
- B. XeF_2
- C. XeF_6
- D. None of these.

Answer: B

Watch Video Solution

at high pressure.

81. Which of the following statements is not correct about XeF_2 ?

A. It can be obtained by direct reaction between F_2 and Xe

- B. XeF_2 undergoes alkaline hydrolysis to give O_2 and Xe.
- C. XeF_2 is a powerful oxidising agent.
- D. XeF_2 contains two bond pairs and three lone pairs.

Answer: C

Watch Video Solution

82. In the clathrates of xenon with water the nature of bonding in

Xe and H_2O molecule is

- A. covalent
- B. hydrogen bonding
- C. coordinate
- D. dipole-induced dipole.

Watch Video Solution

83. Complete the following reactions by filling the appropriate choice.

$$A.~6\mathrm{XeF_4} + 12\mathrm{H_2O}
ightarrow 4\mathrm{Xe} + 2\mathrm{XeO_3} + (i) + (ii)$$

$$B.~{
m XeF_6} + 3{
m H_2O}
ightarrow (iii) + 6{
m HF}$$

- A. $\stackrel{\mbox{(i)}}{F_2}$ $\stackrel{\mbox{(ii)}}{H_2O}$ $\stackrel{\mbox{(iii)}}{XeOF_4}$
- B. $\frac{\mathrm{(i)}}{24HF}$ $\frac{\mathrm{(ii)}}{3O_2}$ $\frac{\mathrm{(iii)}}{XeO_3}$
- C. $\frac{\mathrm{(i)}}{2HF}$ $\frac{\mathrm{(ii)}}{2H_2O}$ $\frac{\mathrm{(iii)}}{XeO}$
- D. $\stackrel{ ext{(i)}}{HF} \stackrel{ ext{(ii)}}{H_2O} \stackrel{ ext{(iii)}}{Xe_2O_3}$

Answer: B

84. Among the following molecules

$$(i) XeO_3(ii) XeOF_4(iii) XeF_6$$

those having same number of lone pairs on Xe are

- A. (i) and (ii) only
- B. (i) and (iii) only
- C. (ii) and (iii) only
- D. (i), (ii) and (iii)

Answer: D

Watch Video Solution

85. In XeF_2, XeF_4 and $XeF_6,$ the number of the lone pairs of

Xe respectively are

- A. 2, 3, 1
- B. 1,2,3
- C. 4, I, 2
- D. 3, 2, 1

Answer: D

- 86. Oganesson has been synthetically produced by collision of
 - A. Ra and Ca
 - B. Cf and Ca
 - C. Cf and Cu
 - D. Ra and He

Answer: B

87. Fill in the blanks by choosing the appropriate option. The noble gases can form compounds with (i) and (ii) . The mixture of (iii) and (iv) is used for respiration by divers.

- A. $\frac{(i)}{iodine}$ $\frac{(ii)}{oxygen}$ $\frac{(iii)}{oxygen}$ $\frac{(iv)}{argon}$
- $B. \begin{array}{lll} \text{(i)} & \text{(ii)} & \text{(iii)} & \text{(iv)} \\ \text{fluorine} & \text{oxygen} & \text{helium} & \text{oxygen} \end{array}$
- C. $\frac{(i)}{\text{xenon}}$ $\frac{(ii)}{\text{platinum}}$ $\frac{(iii)}{\text{argon}}$ $\frac{(iv)}{\text{krypton}}$
- D. (i) (ii) (iii) (iv) helium oxygen xenon argon

Answer: B

- **88.** Which of the following is not a use of noble gases?
 - A. Argon is widely used for filling incandescent electric bulbs.
 - B. Neon is used in safety devices for protecting electrical instruments.
 - C. Radon is used in radiotherapy of cancer.
 - D. Helium is filled in tubes of cycles and scooters tyres.

Answer: D

- 89. Which of the following statements is not correct?
 - A. Helium has the lowest boiling point among the noble gases
 - B. Argon is used in electric bulbs

- C. Krypton is obtained during radioactive disintegration
- D. Xe forms XeF_6 .

Answer: C

Watch Video Solution

Hots

- 1. White phosphorus reacts with chlorine and the product hydrolyses in the presence of water. Calcualte the mass of HCl obtained by the hydrolysis of the product formed by the reaction of 62 g of white phosphorus with chlorine in the presence of water.
 - A. 200 g
 - B. 400 g

C. 219 g

D. 100 g

Answer: C

Watch Video Solution

2. Oxyacids of phosphorous and the starting materials for their preparation are given below.

Ocyacid Matereifal for preparation

$$(A)$$
 H_3PO_2 (i) $\operatorname{Red} P + \operatorname{alpali}$

$$(B) \ \ H_3P_3 \ \ \ \ (ii) \ \ \ P_4O_{10} + H_2O$$

$$(C)$$
 H_3PO_4 (iii) $P_2O_3+H_2O$

(D)
$$H_4P_2O_6$$
 (iv) White P+ alkali

Choose the correct answer from the codes given below:

D. (A) - (ii), (B) - (iii), (C) - (i), (D) - (iv)

Answer: A

Watch Video Solution

- 3. Which of the following statements are incorrect?
 - A. SO_3 is a stronger oxidising agent and more acidic than SO_2

•

- B. Selenium forms only two oxoacids i.e., selenous acid
- (H_2SeO_3) and selenic acid (H_2SeO_4) .
- C. The acidic strength and oxidising power of oxoacids is greater in +6 oxidation state than in +4 oxidation state.
- D. The thermal stability of oxides of group 16 elements

decreases in the order : $SO_2 > SeO_2 > TeO_2 > PoO_2$

Answer: D

Watch Video Solution

- **4.** Consider the following substances:
- 1. OF_2 2. Cl_2O 3. Br_2O

The correct sequence X - O - X bond angle is

A.
$$1 > 2 > 3$$

Answer: B

5. The reactions of CI_2 gas with cold-dilute and hot-concentrated NaOH in water give sodium salts of two different oxioacids of chlorine, P and Q, respectively. The CI_2 gas reacts with SO_2 gas, in presence of charocal, to give a product R reacts with white phosphorus to give a compound S. On hydrolysis, S gives an oxoacid of phosphorus.

R, S and T, respectively, are

- A. SO_2Cl_2 , PCl_5 and H_3PO_4
- $\mathsf{B.}\,SO_2Cl_2,\,PCl_3\ \ \mathrm{and}\ \ H_3PO_3$
- $C. SOCl_2, PCl_3 \text{ and } H_3PO_2$
- D. $SOCl_2$, PCl_5 and H_3PO_4

Answer: A

6. The reactions of CI_2 gas with cold-dilute and hot-concentrated NaOH in water give sodium salts of two different oxioacids of chlorine, P and Q, respectively. The CI_2 gas reacts with SO_2 gas, in presence of charocal, to give a product R reacts with white phosphorus to give a compound S. On hydrolysis, S gives an oxoacid of phosphorus.

P and Q, respectively, are the sodium salts of

- A. hypochlorous and chloric acids
- B. hypochlorous and chlorous acids
- C. chloric and perchloric acids
- D. chloric and hypochlorous acids.

Answer: A

- 7. Which among the following statements is incorrect?
 - A. 1. XeF_4 and SbF_5 combine to form salt.
 - B. 2. He and Ne do not form clathrates.
 - C. 3. He has highest boiling point in its group.
 - D. 4. He diffuses through rubber and polyvinyl chloride.

Answer: C

Examplar Problems

1. On addition of conc. H_2SO_4 to a chloride salt, colourless fumes are evolved but in case of iodide salt, violet fumes come out. This is because

- A. 1. H_2SO_4 reduces HI to I_2
- B. 2. HI is of violet colour
- C. 3. HI gets oxidised to I_2
- D. 4. HI changes to HIO_3 .

Answer: C

- **2.** In qualitative analysis when H_2S is passed through an aqueous solution of salt acidified with dil. HCl, a black precipitate is obtained. On boiling the precipitate with dil. HNO_3 , it forms a solution of blue colour. Addition of excess of aqueous solution of ammonia to this solution gives
 - A. 1. deep blue precipitate of $Cu(OH)_2$

- B. 2. deep blue solution of $\left[Cu(NH_3)_4
 ight]^{2+}$
- C. 3. deep blue solution of $Cu(NO_3)_2$
- D. 4. deep blue solution of $Cu(OH)_2$. $Cu(NO_3)_2$

Answer: B

- **3.** In a cyclotrimetaphosphoric acid molecule, how many single and double bonds are present ?
 - A. 3 double bonds, 9 single bonds
 - B. 6 double bonds, 6 single bonds
 - C. 3 double bonds, 12 single bonds
 - D. Zero double bonds, 12 single bonds

Answer: C

Watch Video Solution

- **4.** Which of the following elements can be involved in $p\pi-d\pi$ bonding ?
 - A. Carbon
 - B. Nitrogen
 - C. Phosphorus
 - D. Boron

Answer: C

5. Which of the following pairs of ions are isoelectronic and isostructural?

A.
$$CO_3^{2-}$$
 , NO_3^{-}

B.
$$ClO_3^-$$
 , CO_3^{2-}

C.
$$SO_3^{2-}$$
 , NO_3^-

D.
$$ClO_3^-$$
 , SO_3^{2-}

Answer: A

6. Affinity for hydrogen decreases in the group from fluorine to iodine. Which of the halogen acids should have highest bond dissociation enthalpy?

C. 3. HBr
D. 4. HI
Answer: A
Watch Video Solution
7. On heating with concentrated NaOH solution in an inert
atmosphere of CO_2 , white phosphorus gives a gas. Which of the
following statements is incorrect about the gas ?
A. 1. It is highly poisonous and has smell like rotten fish.
B. 2. Its solution in water decomposes in the presence of light.
C. 3. It is more basic than $NH_{ m 3}$

A. 1. HF

B. 2. HCl

D. 4. It is less basic than NH_3 .

Answer: C

Watch Video Solution

8. Which of the following acids forms three series of salts?

A. H_3PO_2

 $\mathsf{B.}\,H_3BO_3$

 $\mathsf{C}.\,H_3PO_4$

D. H_3PO_3

Answer: C

- **9.** Strong reducing behaviour of H_3PO_2 is due to
 - A. 1. low oxidation state of phosphorus
 - B. 2. presence of two OH groups and one P-H bond
 - C. 3. presence of one OH group and two P-H bonds
 - D. 4. high electron gain enthalpy of phosphorus.

Answer: C

- **10.** On heating lead nitrate forms oxides of nitrogen and lead. The oxides formed are :
 - A. 1. $N_2O,\,PbO$
 - B. 2. NO_2, PbO
 - $\mathsf{C.\,3.}\,NO,PbO$

D. 4. NO, PbO_2

Answer: B

Watch Video Solution

- 11. Which of the following elements does not show allotropy?
 - A. 1. Nitrogen
 - B. 2. Bismuth
 - C. 3. Antimony
 - D. 4. Arsenic

Answer: B

12. Maximum covalency of nitrogen is :
A. 3
B. 5
C. 4
D. 6
Answer: C
Watch Video Solution
13. Which of the following statements is wrong?
A. Single N-N bond is stronger than the single P-P bond.
B. PH_{3} can act as a ligand in the formation of coordination
compound with transition elements.
C. NO_2 is paramagnetic in nature.

D. Covalency of nitrogen in $N_2 O_5$ is four.

Answer: A

Watch Video Solution

14. A brown ring is formed in the ring test for NO_3^- ion. It is due to the formation of

A.
$$igl[Fe(H_2O)_5(NO)igr]^{2+}$$

B.
$$FeSO_4 \cdot NO_2$$

C.
$$\left[Fe(H_2O)_4(NO)_2\right]^{2+}$$

D.
$$FeSO_4 \cdot HNO_3$$

Answer: A

View Text Solution

15. Elements of group 15 form compounds in +5 oxidatin state.

However, bismuth forms only one well characterised compound in

A. Bi_2O_5

 $+\,5$ oxidation state. The compound is

- B. BiF_3
- C. $BiCl_5$
- D. Bi_2S_5

Answer: B

View Text Solution

16. On heating ammonium dichromate and barium azide separately we get

- A. N_2 in both cases
- B. N_2 with ammonium dichromate and NO with barium azide
- C. N_2O with ammonium dichromate and N_2 with barium azide
- D. N_2O with ammonium dichromate and NO_2 with barium azide.

Answer: A

A. 2

B. 3

C. 4

D. 6

Answer: A

Watch Video Solution

18. The oxidation state of central atom in the anion of compound

 NaH_2PO_2 will be

 $\mathsf{A.} + 3$

 $\mathsf{B.}+5$

 $\mathsf{C.} + 1$

D.-3

Answer: C

• Watch video Solution

19. Which of the following is not tetrahedral in shape?

- A. NH_4^+
- B. $SiCl_4$
- C. SF_4
- D. $SO_4^{2\,-}$

Answer: C

20. Which of the following are peroxoacids of sulphur?

A. H_2SO_5 and $H_2S_2O_8$

 $B. H_2SO_5$ and $H_2S_2O_7$

C. $H_2S_2O_7$ and $H_2S_2O_8$

D. $H_2S_2O_6$ and $H_2S_2O_8$

Answer: A

Watch Video Solution

21. Hot conc. H_2SO_4 acts as moderately strong oxidising agent. It oxidises both metals and non-metals. Which of the following elements is oxidised by conc. H_2SO_4 into two gaseous products ?

A. Cu

B. S

C. C

D. Zn

Answer: C

A.
$$-3$$
 to $+3$

$$B. - 3 \ to 0$$

$$C. -3 \text{ to } +5$$

D. 0 to
$$-3$$

Answer: A

23. In the preparation of compounds of Xe, Bartlett had taken

 $O_2^+ PtF_6^{\,-}$ as a base compound. This is because

A. both $O_2 \ {
m and} \ Xe$ have same size

B. both ${\it O}_2 \ {
m and} \ {\it Xe}$ have same electron gain enthalpy

C. both O_2 and Xe have almost same ionisation enthalpy

D. both Xe and O_2 are gases.

Answer: C

24. In solid state, PCl_5 is a......

A. covalent solid

B. octahedral structure

C. ionic solid with $[PCl_6]^+$ octahedral and $[PCl_4]^-$ tetrahedral $[PCl_4]^+$ D. ionic solid with $[PCl_4]^+$ tetrahedral and $[PCl_6]^-$ octahedral

Answer: D

25. Which of the following is isoelectronic pair?

A. ICl_2 , ClO_2

B. $BrO_2^-BrF_2^{\ +}$

C. ClO_2, BrF

D. CN^-, O_3

Answer: B

Watch Video Solution

Assertion Reason

1. Assertion : The covalence of nitrogen in $N_2 O_5$ is 5

Reason: Nitrogen can expand its covalence beyond 4.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: D

2. Assertion: Catenation tendency is weaker in nitrogen.

Reason: Nitrogen exists as diatomic gas.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

3. Assertion: Ammonia acts as a ligand.

Reason : A lone pair of electrons on nitrogen can be donated to acceptor.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

4. Assertion : White phosphorus is more reactive than red phosphorus.

Reason : It readily catches fire in air to give dense white fumes of $P_4O_{10}.$

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

5. Assertion: In trigonal bipyramidal structure two axial bonds are longer than the equatorial bonds.

Reason: Axial bonds suffer more repulsion as compared to equatorial bonds.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

6. Assertion : Acidic character of group 16 hydrides increases from H_2O to H_2Te .

Reason: Thermal stablility of hydrides decreases down the group.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

7. Assertion: Ozone layer in the upper region of atmosphere protects earth from UV radiations of sun.

Reason: Ozone is a powerful oxidising agent as compared to oxygen.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

8. Assertion : O_3 acts as a powerful oxidising agent.

Reason : O_3 oxidises lead sulphide to lead sulphate and iodide ions to iodine.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

9. Assertion: In vapour state sulphur is paramagnetic in nature.

Reason : In vapour state sulphur exists as S_2 molecule.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

Watch Video Solution

10. Assertion : Sulphuric acid reacts with sodium chloride in the following way: $2NaCl + H_2SO_4
ightarrow 2HCl + Na_2SO_4$

Reason: Sulphuric acid because of its low volatility can be used to manufacture more volatile acids from their corresponding salts.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

11. Assertion : Fluorine combines with sulphur to form SF_6 but no other halogen forms hexahalide with sulphur.

Reason: The reactivity of halogens increases as the atomic number increases.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: C

12. Assertion: Fluorine oxidises water to oxygen whereas chlorine and bromine react with water to form corresponding hydrohalic

and hypohalous acids.

Reason: The reactivity of halogens increases down the group.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: C

Watch Video Solution

13. Assertion: $HClO_4$ is a stronger acid than $HClO_3$.

Reason: Oxidation state of Cl in $HClO_4$ is +VII and in

 $HClO_3 + V$.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

14. Assertion: Interhalogen compounds are more reactive than halogens (except fluorine)

Reason: They all undergo hydrolysis giving halide ion derived from the smaller halogen and anion derived from larger halogen.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

15. Assertion :Solubility of noble gases in water decreases with increases in atomic size

Reason :Solubility of noble gases in water is due to instantaneous dipole induced dipole interaction

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

Group 15 Elements The Nitrogen Family

- 1. Fill in the blanks by choosing an appropriate option.
- (i) "-----" is a synthetic radioactive element of group 15 having electronic configuration (ii) "------
 - $\begin{array}{l} \text{A.} & (i) & (ii) \\ & \\ & \\ 115 Mc & [Rn] 5f^{14} 6d^{10} 7s^2 7p^3 \\ \\ \text{B.} & (i) & (ii) \\ & \\ 115 Mc & [Xe] 5f^{14} 6d^{10} 7s^2 7p^3 \\ \\ \text{C.} & (i) & (ii) \\ & \\ 116 Lv & [Rn] 5f^{14} 6d^{10} 7s^2 7p^4 \\ \\ \text{D.} & (i) & (ii) \\ & \\ 114 Fl & [Rn] 5f^{14} 6d^{10} 7s^2 7p^2 \end{array}$

Answer: A

2. The oxidation state of nitrogen is highest in

A. N_3H

- B. NH_3
- C. NH_2OH
- D. N_2H_4

Answer: A

- **3.** Which of the following shows nitrogen with its increasing order of oxidation number.
 - A. $N_2O < NO < NO_2 < NO_3^- < N{H_4^+}$
 - B. $NH_4^{\,+} \, < N_2O < NO < NO_2 < NO_3^{\,-}$
 - C. $NH_4^{\,+} < N_2O < NO_2 < NO_3^{\,-} < NO$
 - D. $NH_4^{\,+} < NO < N_2O < NO_2 < NO_3^{\,-}$

Answer: B

Watch Video Solution

4. Nitrogen forms N_2 but phosphorous when forms P_2 gets readily converted into P_4 because

A. $p\pi-p\pi$ bonding is strong in phosphorus

B. $p\pi-p\pi$ bonding is weak in phosphorus

C. triple bond is present in phosphorus

D. single P - P bond is weaker than N -N bond.

Answer: B

5. The decreasing order of boiling points of the following hydrides is

A.
$$SbH_3>AsH_3>PH_3>NH_3$$

$$\operatorname{B.}NH_3 > SbH_3 > AsH_3 > PH_3$$

C.
$$SbH_3 > NH_3 > AsH_3 > PH_3$$

$$\mathsf{D}.\,PH_3>AsH_3>SbH_3>NH_3$$

Answer: C

6. Nitrogen can form only one chloride with chlorine which is

 NCl_3 whereas P can form PCl_3 and PCl_5 . This is

A. due to absence of d-orbitals in nitrogen

- B. due to difference in size of N and P
- C. due to higher reactivity of P towards Cl than N
- D. due to presence of multiple bonding in nitrogen.

Answer: A

Watch Video Solution

Dinitrogen

- **1.** On heating a mixture of NH_4Cl and KNO_2 , we get
 - A. NH_4NO_3
 - $\mathsf{B.}\,KNH_4(NO_3)_2$
 - C. N_2
 - $\mathsf{D}.\,NO$

Answer: C

Watch Video Solution

- 2. Nitrogen is relatively inactive element because
 - A. its atoms has a stable electronic configuration
 - B. it has low atomic radius
 - C. its electronegativity is fairly high
 - D. dissociation energy of its molecule is fairly high.

Answer: D

Watch Video Solution

3. Nitrogen comnines with metals to form

B. nitrates
C. nitrosyl chloride
D. nitrides
Answer: D
Watch Video Solution
4. Nitrogen is used to fill electric bulbs because
A. it is lighter than air
B. it makes the bulb to glow
C. it does not support combustion
D. it is non-toxic.

A. nitrites

Answer: C

Watch Video Solution

Ammonia

1. Which of the following compounds will not give ammonia on heating?

A.
$$(NH_4)_2SO_4$$

B.
$$NH_2CONH_2$$

C.
$$NH_4NO_2$$

D.
$$NH_4Cl$$

Answer: C

2. Which of the following factors would favour the formation of
ammonia?
A. High pressure

B. Low temperature

C. High volume

D. Low pressure

Answer: A

Watch Video Solution

3. Ammonia is a Lewis base. It forms complexes with cations. Which one of the following cations does not form complex with ammonia?

B.
$$Cu^{2+}$$

C.
$$Cd^{2+}$$

D.
$$Pb^{2+}$$

Answer: D

CuO

- **4.** Ammonia is used in detection of Cu^{2+} ion because
 - A. 1. aqueous solution of NH_3 reacts with $Cu^{2\,+}$ ion to form deep blue coloured complex
 - B. 2. NH_3 reacts with Cu^{2+} ion to give blue precipitate of

C. 3. aqueous solution of NH_3 reacts with $Cu^{2\,+}$ ion to form

white coloured complex

D. 4. NH_3 reacts with Cu_{2+} ion to give green precipitate.

Answer: A

Oxides Of Nitrogen

1. Consider the following sequence of conversion.

$$\underbrace{2NO + O_2}_{(Y)} \Leftrightarrow 2NO_2 \overset{\operatorname{cool}}{\underset{\operatorname{heat}}{\Longleftrightarrow}} N_2O_4$$

X, Y and Z can be described as

A. 1.

X Y Z
Colourless Brown paramagnetic Colourless diamagnetic

A. Nitric oxide

B. Nitrous oxide

C. Nitrogen dioxide

D. Dinitrogen tetraoxide

Answer: B

Watch Video Solution

- 3. Which of the following oxides is an anhydride of nitrous acid?
 - A. N_2O_3
 - $\mathsf{B.}\,NO_2$
 - $\mathsf{C}.\,NO$
 - D. N_2O_4

Answer: A

1. A gas (X) is obtained when copper reacts with dilute HNO_3 . The gas thus formed reacts with oxygen to give brown fumes of (Y). (Y) when dissolved in water gives an important acid (Z) and the gas (X). X, Y and Z respectively are

- A. NO, NO_2, HNO_3
- $\mathsf{B}.\,NO_2,\,NO,\,HNO_3$
- $\mathsf{C}.\,N_2O,\,NO,\,HNO_2$
- D. NO, N_2O, HNO_3

Answer: A

2. Complete the given equations:

(i)
$$Cu + 8HNO_3 \rightarrow 3Cu(NO_3)_2 + {\stackrel{\scriptstyle W}{\dots}} + 4H_2O$$

(ii)
$$4Zn+10HNO_3
ightarrow 4Zn(NO_3)_2+5H_2O+\stackrel{X}{\dots}$$

(iii)
$$l2 + 10HNO_3 \rightarrow + 10NO_2 + 4H_2O$$

A. $rac{ ext{W}}{2NO_2}$ $rac{ ext{X}}{NO}$ $5HIO_3$

B. $rac{W}{2NO}$ $rac{X}{N_2O}$ $rac{Y}{2HIO_3}$

C. $egin{array}{cccc} W & X & Y \ N_2 & NO_2 & HI \end{array}$

D. $rac{\mathrm{W}}{N_2O}$ $rac{\mathrm{X}}{NO_2}$ $rac{\mathrm{Y}}{3HI}$

Answer: B

Watch Video Solution

Phosphorous Allotropic Forms

1. Atomicity of phosphorus is
A. 1. one
B. 2. two
C. 3. three
D. 4. four
Answer: D
Watch Video Solution
Watch Video Solution
2. The structure of white phosphorus is
2. The structure of white phosphorus is

D. trigonal planar

Answer: C

- **3.** Each of the following is true for white and red phosphorus except that they
 - A. 1. are both soluble in CS_2
 - B. 2. can be oxidized by heating in air
 - C. 3. consist of the same kind of atoms
 - D. 4. can be converted into one another.

Answer: A

4. When white phosphorus is heated at 473 K under high pressure, what will happen?

A. α -Black phosphorus is formed.

B. β -Black phosphorus is formed.

C. Red phosphorus is formed.

D. No change would be observed.

Answer: B

Watch Video Solution

Phosphine

1. Phosphine is prepared by the action of

- A. 1. P and H_2SO_4
- B. 2. P and NaOH
- C. 3. P and H_2S
- D. 4. P and HNO_3

Answer: B

Watch Video Solution

- 2. Fill in the blanks:
- (i) $Ca_3P_2+6HCl
 ightarrow 3CaCl_2+....p....$
- (ii) $P_4+3NaOH+3H_2O
 ightarrow ...q...+3NaH_2PO_2$
- (iii) $PH_4I+KOH
 ightarrow KI+H_2O+...r...$ p, q and r respectively

are

A. a. $PH_3,\,H_3PO_3,\,Pl_3$

B. b. PH_3, PH_3, PH_3

C. c. PCl_3, H_3PO_4, PH_3

D. d. PCl_5, PH_3, P_4O_6

Answer: B

Watch Video Solution

- 3. Holme's signal uses chemical compound
 - A. 1. calcium carbide
 - B. 2. calcium phosphide
 - C. 3. calcium carbide and calcium phosphide
 - D. 4. calcium carbide and aluminium carbide.

Answer: C

Phosphorus Halides

1. A translucent white waxy solid (A) reacts with excess of chlorine to give a yellowish white powder (B). (B) reacts with organic compounds containing -OH group converting them into chloro derivatives. (B) on hydrolysis gives (C) and is finally converted to phosphoric acid. (A), (B) and (C) are

- A. 1. P_4, PCl_3, H_3PO_4
- B. 2. P_4, PCl_5, H_3PO_3
- C. 3. P_4 , PCl_5 , $POCl_3$
- D. 4. P_4 , PCl_3 , $POCl_3$

Answer: C

watch video Solution

2. Which of the following is not correctly matched?

A.
$$PCl_5 - sp^3d$$
 hybridisation

B. PCl_3-sp^3 hybridisation

C.
$$PCl_5$$
 (solid) $-[PtCl_4]^+[PtCl_6]^-$

D. PCl_5 - brownish powder

Answer: D

Watch Video Solution

3. On reaction with Cl_2 , phosphorus forms two types of halides 'A' and 'B'. Halide 'A' is yellowish-white powder but halide 'B' is colourless oily liquid. What would be the hydrolysis products of 'A' and 'B' respectively?

- A. $H_3PO_4,\,H_3PO_3$
- $\mathsf{B}.\,HOPO_3,\,H_2PO_2$
- C. H_3PO_3 , H_3PO_4
- D. HPO_3, H_3PO_3

Answer: A

equatorial bonds.

- **4.** Which of the following statements is not correct about the structure of PCl_5 ?
 - A. PCl_5 has a trigonal bipyramidal structure.
 - B. Three equatorial P-Cl bonds are equivalent.
 - C. The two axial bonds are different and longer than

D. Equatorial bond pairs suffer more repulsion than that of the axial bond pairs.

Answer: D

- **5.** Why all P F bonds in PF_5 are not equivalent?
 - A. PF_5 has sp^3d hybridisation, out of five P-F bonds three are equatorial which have different lengths.
 - B. $PF_5 \;\; {
 m has} \;\; sp^3$ hybridisation, out of five P-F bonds two are equatorial which have different lengths.
 - C. Out of five P-F bonds two are axial and three equatorial. All five bonds have different bond lengths.

D. PF_5 is made up of two types of bonds namely covalent and coordinate, hence are not equivalent.

Answer: A

Watch Video Solution

Oxoacids Of Phosphorus

1. Match the column I with column II and mark the appropriate choice.

Column I		Column II	
(A)	Laughing gas	(i)	Hydrazoic acid
(B)	Anhydride of HNO ₃	(ii)	Nitrous oxide
(C)	Anhydride of HPO ₃	(iii)	Nitrogen pentoxide
(D)	Acid hydride of nitrogen	(iv)	Phosphorus pentoxide

A. (A)
ightarrow (i), (B)
ightarrow (ii), (C)
ightarrow (iii), (D)
ightarrow (iv)

 $\mathtt{B.}\,(A) \rightarrow (iv), (B) \rightarrow (i), (C) \rightarrow (ii), (D) \rightarrow (iii)$

 $\mathsf{C.}\left(A
ight)
ightarrow (ii), (B)
ightarrow (iii), (C)
ightarrow (iv), (D)
ightarrow (i)$

D. (A)
ightarrow (iii), (B)
ightarrow (iv), (C)
ightarrow (i), (D)
ightarrow (ii)

Answer: C

2. The number of P-O-P bonds in cyclotrimetaphosphoric acid, $(HPO_3)_3$ is

A. Four

B. Three

C. Two

D. One

Answer: B

Watch Video Solution

- **3.** Which of the following is a tetrabasic acid?
 - A. Hypophosphorous acid
 - B. Metaphosphoric acid
 - C. Pyrophosphoric acid
 - D. Orthophosphoric acid

Answer: C

4. Match the column I and column II and mark the appropriate choice.

	Column I		Column II	
(A)	H ₃ PO ₂	(i)	+3 O.S. of P	
(B)	H ₃ P ₃ O ₉	(ii)	Cyclic oxoacid	
(C)	H ₄ P ₂ O ₆	(iii)	Monobasic acid	
(D)	H ₃ PO ₃	(iv)	One P - P bond	

A.
$$(A)
ightarrow (i), (B)
ightarrow (iii), (C)
ightarrow (ii), (D)
ightarrow (iv)$$

$$\mathsf{B.}\,(A) \rightarrow (ii), (B) \rightarrow (iv), (C) \rightarrow (iii), (D) \rightarrow (i)$$

$$\mathsf{C}.\,(A)
ightarrow (iii), (B)
ightarrow (ii), (C)
ightarrow (iv), (D)
ightarrow (i)$$

$$\mathsf{D}.\,(A) \to (iv), (B) \to (i), ((C)) \to (ii), (D) \to (iii)$$

Answer: C

5. Phosphorous acid on heating gives the following products:

 $4H_3PO_3 \stackrel{\Delta}{\longrightarrow} 3H_3PO_4 + PH_3$ The above reaction is an example of

- A. oxidation
- B. thermal decomposition
- $\hbox{C. disproportionation}\\$
- D. reduction

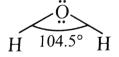
Answer: C

Group 16 Elements The Oxygen Family

- **1.** Group 16 elements have lower value of first ionisation enthalpy as compared to group 15 elements because
 - A. half filled p-orbitals in group 15 elements are more stable
 - B. group 16 elements have smaller size than group 15 elements
 - C. group 16 elements contain double bond while group 15
 - D. group 16 elements have more number of electrons in porbitals.

Answer: A

elements have triple bond


2. Covalency of oxygen cannot exceed 2 unlike sulphur which can show +4 or +6 because

- A. oxygen atom does not have d-orbitals
- B. oxygen atom has two unpaired electrons in its valence shell
- C. oxygen can form a double bond with another oxygen atom
- D. electrons of oxygen atom cannot be promoted to d-orbitals due to its small size.

Answer: A

3. Bond angle in $H_2O(104.5^\circ)$ is higher than the bond angle of $H_2S(92.1^\circ)$. The difference is due to

A. O is diatomic and S is tetra-atomic

- B. difference in electronegativity of S and O
- C. difference in oxidation states of S and O
- D. difference in shapes of hybrid orbitals of Sand O.

Answer: B

- **4.** Arrange the following hydrides of group 16 elements in order of increasing stability.
 - A. $H_2S < H_2O < H_2Te > H_2Se$
 - B. $H_2O < H_2Te < H_2Se < H_2S$
 - C. $H_2O < H_2S < H_2Se < H_2Te$
 - $\mathsf{D}.\,H_2Te < H_2Se < H_2S < H_2O$

Answer: D Watch Video Solution 5. Name of the synthetic radioactive element of group 16 having atomic number 116 is

- A. Livermorium
- B. Tennessine
- C. Livernorium
- D. Moscovium

Answer: A

1. On heating $KCIO_3$ we get :

A.
$$KClO_2 + O_2$$

B.
$$KCI + O_2$$

$$\mathsf{C.}\,KCl + O_3$$

D.
$$KCl + O_2 + O_3$$

Answer: B

Watch Video Solution

2. Select the correct option regarding the properties of dioxygen?

A. 1. Dioxygen never reacts with metals.

B. 2. Dioxygen is diamagnetic in nature.

C. 3. Combination of dioxygen with other elements is highly

exothermic process.

D. 4. Dioxygen liquefies at 55 K and freezes at 90 K.

Answer: C

Watch Video Solution

Simple Oxides

1. Which of the following is not correctly matched?

A. Acidic oxides - $P_2O_5,\,NO_2,\,Cl_2O_7$

B. Basic oxides - $Na_2O,\,CaO,\,MgO$

C. Neutral oxides - CO_2 , CO, BeO

D. Amphoteric oxides - $ZnO,\,SnO,\,Al_2O_3$

Answer: C

Watch Video Solution

2. The correct order of acidic strength is

A.
$$K_2O>CaO>MgO$$

$$\operatorname{B.}CO_2 > N_2O_5 > SO_3$$

C.
$$Na_2O>MgO>Al_2O_3$$

D.
$$Cl_2O_7 > SO_2 > P_4O_{10}$$

Answer: D

1. Which of the following is the wrong statement?
A. Ozone is paramagnetic gas.
B. The two oxygen -oxygen bond length in ozone are identical.
C. O_3 molecule is bent.
D. Ozone is violet-black in solid state.
Answer: A
Watch Video Solution
2. Which one is not a property of ozone?
A. it acts as an oxidising agent in dry state.

B. oxidation of KI into KIO_2 .

C. PbS is oxidised to $PbSO_4$

D. Hg is oxidised to Hg_2O .

Answer: B

Watch Video Solution

Sulphur Allotropic Forms

1. Sulphur molecule is

A. diatomic

B. triatomic

C. tetratomic

D. octa-atomic

Answer: D

Water video Solution

2. Choose the correct statements from the following?

A. Rhombic sulphur is blue in colour.

B. Rhombic sulphur is soluble in water but insoluble in organic solvents.

C. Rhombic and monoclinic sulphur have S6 molecules.

D. In Cyclo- S_6 molecule, the ring adopts chair form.

Answer: D

Watch Video Solution

Sulphur Dioxide

1. Which of the following is correct representation of reaction of acidified permanganate solution with sulphur dioxide?

A.
$$2MnO_4^- + 5SO_2 + 2H_2O
ightarrow 5SO_4^{2\,-} + 2Mn^{2\,+} + 4H^{\,+}$$

B.
$$MnO_4^- + SO_2 + 2H_2O
ightarrow S + Mn^{2\,+} + 4H^{\,+}$$

C.

$$2MnO_4^{\,-} + 5SO_2 + 2H_2O
ightarrow 4SO_3^{2\,-} + S + 2Mn^{2\,+} + 4H^{\,+}$$

D.
$$3MnO_4^- + 2SO_2 + 2H_2O
ightarrow 2S + 3Mn^{2+} + 4H^+$$

Answer: A

2. Why is sulphur dioxide considered as an air pollutant?

A. It increases the temperature of the atmosphere.

- B. It is used as insecticide which causes air pollution.
- C. It causes acid rain due to formation of sulphuric acid on combining with $O_2 \ {
 m and} \ H_2O$.
- D. It is a strong oxidising agent hence oxidises the other components of air.

Answer: C

- **3.** Dry SO_2 does not bleach dry flowers because
 - A. nascent hydrogen responsible for bleaching is produced only in presence of moisture
 - B. water is the actual reducing agent responsible for bleaching
 - C. water is stronger acid than SO_2

D. the $OH^{\,-}$ ions produced by water cause bleaching.

Answer: A

- **4.** Which of the following statements is not correct for SO_2 gas?
 - A. It acts as bleaching agent in moist conditions.
 - B. Its dilute solution is used as disinfectant.
 - C. Its molecules have linear geometry.
 - D. Acidified $KMnO_4$ is decolourised when SO_2 is passed through it.

Answer: C

Oxoacids Of Sulphur

1. Which of the following statements is not correct?

A. 1. Oxygen molecule is paramagnetic with two unpaired electrons.

B. 2. Sulphur shows maximum covalency of four.

C. 3. Ozone can be easily detected by mercury.

D. 4. Both sulphurous and sulphuric acid are dibasic in nature.

Answer: B

2. The oxyacid of sulphur that contains a lone pair of electrons in sulphur is

- A. 1. sulphurous acid
- B. 2. sulphuric acid
- C. 3. peroxodisulphuric acid
- D. 4. pyrosulphuric acid.

Answer: A

- **3.** In which of the following sulphur is present in +5 oxidation state?
 - A. 1. Dithionic acid
 - B. 2. Sulphurous acid
 - C. 3. Sulphuric acid
 - D. 4. Disulphuric acid

Answer: A

Watch Video Solution

4. The oxidation states of sulphur in the anions $SO_3^{2-}, S_2O_4^{2-},$ and $S_2O_6^{2-}$ follow the order

A.
$$S_2 O_6^{2\,-}\, < S_2 O_4^{2\,-}\, < S O_3^{2\,-}$$

B.
$$S_2 O_4^{2-} < SO_3^{2-} < S_2 O_6^{2-}$$

c.
$$SO_3^{2-} < S_2O_4^{2-} < S_2O_6^{2-}$$

D.
$$S_2O_4^- \, + \, < S_2O_6^{2\,-} \, < SO_3^{2\,-}$$

Answer: B

5. The hybridisation state of the central atom and shape of the molecules is given below. Mark the incorrect combination.

A. SO_3-sp^2 hybridisation, planar triangular

B. SO_2-sp^2 hybridisation, V-shaped

C. $H_2SO_4-sp^2$ hybridisation, V-shaped

D. O_3-sp^2 hybridisation, angular

Answer: C

6. Match the column I with column II and mark the appropriate choice.

	Column I	Column II			
(A)	Thiosulphuric acid	(i)	H ₂ SO ₅		
(B)	Caro's acid	(ii)	H ₂ S ₂ O ₆		
(C)	Marshall's acid	(iii)	H ₂ S ₂ O ₃		
(D)	Dithionic acid	(iv)	H ₂ S ₂ O ₈		

A. 1.
$$(A)
ightarrow (i), (B)
ightarrow (ii), (C)
ightarrow (iii), (D)
ightarrow (iv)$$

B. 2.
$$(A)
ightarrow (iv), (B)
ightarrow (iii), (C)
ightarrow (ii), (D)
ightarrow (i)$$

C. 3.
$$(A)
ightarrow (iii), (B)
ightarrow (i), (C)
ightarrow (iv), (D)
ightarrow (ii)$$

D. 4.
$$(A)
ightarrow (ii), (B)
ightarrow (iii), (C)
ightarrow (i), (D)
ightarrow (iv)$$

Answer: C

Watch Video Solution

7. Match the column I with column II and mark the appropriate choice.

	Column I		Column II
(A)	H ₂ SO ₃	(i)	+6, dibasic
(B)	H ₂ SO ₅	(ii)	+5, dibasic
(C)	H ₂ S ₂ O ₆	(iii)	+6, monobasic
(D)	H ₂ SO ₄	(iv)	+4, dibasic

A. 1.
$$(A)
ightarrow (i), (B)
ightarrow (ii), (C)
ightarrow (iii), (D)
ightarrow (iv)$$

B. 2.
$$(A)
ightarrow (ii), (B)
ightarrow (iii), (C)
ightarrow (i), (D)
ightarrow (iv)$$

C. 3.
$$(A)
ightarrow (iii), (B)
ightarrow (iv), (C)
ightarrow (ii), (D)
ightarrow (i)$$

D. 4.
$$(A)
ightarrow (iv), (B)
ightarrow (iii), (C)
ightarrow (ii), (D)
ightarrow (i)$$

Answer: D

Watch Video Solution

Sulphuric Acids

1. Sulphur trioxide is not directly dissolved in water to form sulphuric acid because

A. 1. SO_3 does not react with water to form acid

B. 2. SO_3 gets oxidised to H_2SO_3 when dissolved in water

C. 3. it results in the formation of dense fog of sulphuric acid which is difficult to condense

D. 4. sulphur trioxide is insoluble in water due to its covalent nature.

Answer: C

2. Which of the following pairs is not correctly matched.

- A. Allotropic form of sulphur which is more stable at room temperature Rhombic
- B. The hydride of group 16 which is liquid at room temperature
 Water
- C. The gas formed in the upper layers of atmosphere by action of UV radiations Nitrogen
- D. The catalyst used in the manufacture of H_2SO_4 by contact process Vanadium pentoxide

Answer: C

3. Fill in the blanks by choosing the appropriate option.

Cone. H_2SO_4 chars paper, wood and sugar by removing (i) from

a strong (iv) and (v) acid.

A. (i) (ii) (iii) (iv) (v) H_2O oil of vitriol Contact oxidising dibasic

B. (i) (ii) (iii) (iv) (v) O_2 oil of vitriol Oleum dehydrating monobasic (i) (ii) (ii) (iii) (iv) (v)

them. It is also known as (ii) It is manufactured by (iii) process. It is

 O_2 oil of vitriol Oleum dehydrating monobasic C. (i) (ii) (iii) (iv) (v) H_2O oil of olay Solvay dehydrating dibasic

(iii)

Contact

(iv)

(v)

oxidising monobasic

 SO_2 oil of winter green

(i)

D.

Answer: A

(ii)

4. An amorphous solid (X) burns in air to form a gas (Y) which turns lime water milky. This gas decolourises aqueous solution of acidified $KMnO_4$. Gas (Y) reacts with oxygen to give another gas

(Z) which is responsible for acid rain. X, Y and Z are

$$egin{array}{ccccc} {\sf A.} & {
m X} & {
m Y} & {
m Z} \ {
m } & {
m } & {
m } & {
m } & {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m } {
m }$$

c.
$$egin{array}{ccccccc} X & Y & Z \\ P & P_2O_3 & P_2O_5 \\ D. & Y & Z \\ S & SO_3 & H_2SO_4 \\ \end{array}$$

Answer: B

Group 17 Elements The Halogen Family

- 1. The correct order of increasing electron affinity of halogens is
- A. I < Br < Cl
 - B. Br < I < Cl
 - C. Cl < Br < I

D.
$$I < Cl < Br$$

Answer: A

Watch Video Solution

2. Which of the following gives correct arrangement of compounds involved based on their bond strength?

A.
$$HF > HCl > HBr > HI$$

$$B.\,HI>HBr>HCl>HF$$

$$\mathsf{C}.\,HCl>HF>HBr>HI$$

D.
$$HF > HBr > HCl > HI$$

Answer: A

3. The comparatively high b.pt. of HF is due to
A. high reactivity of fluorine
B. small size of hydrogen atom
C. formation of hydrogen bonds
D. small size of fluorine.
Answer: C
Watch Video Solution
4. Fill in the blanks.
The high reactivity of fluorine is due to its dissociation energy.
Its shows only oxidation state. It has electron affinity
than chlorine. Among all hydrogen halides boiling point is highest
for

- A. low, -1, lower, HF
- B. high,+ 1, higher, HF
- C. low, +1, lower, HCl
- D. high, -1, higher, HF

Answer: A

- 5. The property of halogens which is not correctly matched is
 - A. F>Cl>Br>I (Ionisation energy)
 - B. F > Cl > Br > I (Electronegativity)
 - ${\rm C.}\,I>Br>Cl>F \hspace{0.5cm}\hbox{(Density)}$
 - ${\rm D.}\, F>Cl>Br>I\qquad \hbox{(Electron affinity)}$

Answer: D

Watch Video Solution

- 6. Mark the correct statements about halogens.
 - A. Electron affinity of halogens is in the order

$$F > Cl > Br > I$$
.

- B. HF is the strongest hydrohalic acid.
- C. F_2 has lower bond dissociation energy than Cl_2
- D. All halogens show variable oxidation states.

Answer: C

7. Which one is the correct observation when Br_2 is treated with NaF, NaCl and NaI taken in three test tubes labelled as (I), (II) and (III) ?

- A. 1. F_2 is liberated in (X) and Cl_2 in (Y).
- B. 2. Only I_2 is liberated in (Z).
- C. 3. Only Cl_2 is liberated in (Y).
- D. 4. Only F_2 is liberated in (X).

Answer: B

- 8. The element of group 17 whose half life is in milliseconds only is
 - A. 1. Ts

- B. 2. Te
- C. 3. At
- D. 4. Og

Answer: A

Watch Video Solution

- **9.** Fluorine is the best oxidising agent because it has
 - A. 1. highest electron affinity
 - B. 2. highest reduction potential
 - C. 3. highest oxidation potential
 - D. 4. lowest electron affinity.

Answer: B

- 10. Which of the following statements is not correct?
 - A. All the oxides of halogens are powerful oxidants.
 - B. The compounds of oxygen and fluorine are not called oxides but fluorides.
 - C. Oxygen fluorides form oxoacids.
 - D. In oxyhalides, bonds are mainly covalent due to small difference in electronegativity of oxygen and halogens.

Answer: C

1. Which	of the	following	is	used	to	prepare	Cl_2	gas	at	room
temperat	ure fro	m concent	rat	ed HC	l ?					

- A. MnO_2
- B. H_2S
- C. $KMnO_4$
- D. Cr_2O_3

Answer: C

Watch Video Solution

2. If chlorine is passed through a solution of hydrogen sulphide in water, the solution turns turbid due to the formation of

A. free chlorine

- B. free sulphur
- C. nascent oxygen
- D. nascent hydrogen

Answer: B

- **3.** A balck powder when heated with Conc. HCI gives a greenish yellow. Gas. The gas as an oxidising and bleaching agent. When it is passed over slake lime, a white poweder is formed which is a ready source of gas. The back powder and white powder respectively are
 - A. $KClO_3$ and $NaClO_3$
 - B. MnO_2 and $Ca(OCl)_2$

 $\mathsf{C}.\,MnO_2$ and $KClO_3$

D. $MnCl_4$ and $COCl_2$

Answer: B

4. Match the column I with column II and mark the appropriate choice.

	Column I	Column II		
(A)	H ₂ SO ₄	(i)	Highest electron gain enthalpy	
(B)	CCl ₃ NO ₂	(ii)	Chalcogen	
(C)	Cl ₂	(iii)	Tear gas	
(D)	Sulphur	(iv)	Storage batteries	

A.
$$(A)
ightarrow (iv), (B)
ightarrow (iii), (C)
ightarrow (i), (D)
ightarrow (ii)$$

$$\mathsf{B.}\,(A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (i), (D) \rightarrow (ii)$$

 $\mathsf{C}.\,(A) o (iv), (B) o (i), (C) o (ii), (D) o (iii)$

 $\texttt{D.}\,(A) \rightarrow (ii), (B) \rightarrow (i), (C) \rightarrow (iii), (D) \rightarrow (iv)$

Answer: A

Watch Video Solution

Hydrogen Chloride

1. HCl can be prepared by

A.
$$NaCl + H_2SO_4 \stackrel{420K}{\longrightarrow}$$

B.
$$NaHSO_4 + NaCl \stackrel{820K}{\longrightarrow}$$

C.
$$NaNO_3 + H_2SO_4$$

D. both (a) and (b).

Answer: D

- **2.** When three parts of cone. HCl and one part of cone. HNO_3 is mixed, a compound 'X' is formed. The correct option related to 'X' is
 - A. 'X' is known as aqua-regia
 - B. 'X' is used for dissolving gold
 - C. 'X' is used for decomposition of salts of weaker acids
 - D. both (a) and (b).

Answer: D

Oxoacids Of Halogens

1. The correct order of acidity of oxoacids of halogens is

A.
$$HCIO < HCIO_2 < HClO_3 < HClO_4$$

B.
$$HClO_4 < HCIO_3 < HClO_2 < HCIO$$

$$\mathsf{C}.\,HCIO < HCIO_4 < HClO_3 < HCIO_2$$

$$\mathsf{D}.\,HClO_4 < HClO_2 < HClO_3 < HClO$$

Answer: A

Watch Video Solution

2. The following acids have been arranged in order of decreasing acid strength. Identify the correct order.

CIOH (I), BrOH (II), IOH(III)

A.
$$I>II>III$$

$$\mathrm{B.}\,II>I>III$$

C.
$$III > II > I$$

Answer: A

3. Which of the following increasing order is not correct as mentioned in the property with it?

A.
$$HCIO < HClO_2 < HClO_3 < HClO_4$$
 (thermal stability)

B.
$$HClO_4 < HClO_3 < HClO_2 < HClO$$
 (oxidising power)

C.
$$F^- < Cl^- < Br^- < I^-$$
 (reducing nature)

D.
$$HIO_4 < ICl < I_2 < HI$$
 (oxidation number of iodine)

Answer: D

Watch Video Solution

Interhalogen Compounds

- **1.** Interhalogen compounds are more reactive than the individual halogens because
 - A. they are prepared by direct combination of halogens
 - B. X-X' bond is weaker than X-X or X' -X' bonds
 - C. they are thermally more stable than halogens
 - D. there is a large difference in their electronegativity.

Answer: B

2. Match the column I with column II and mark the appropriate choice.

Column I		Column II		
(A)	ClF ₃	(i)	Pentagonal bipyramidal	
(B)	IF ₅	(ii)	Square pyramidal	
(C)	IF ₇	(iii)	Bent T-shaped	
(D)	BrF ₃	(iv)	Square planar	

A.
$$(A)
ightarrow (iii), (B)
ightarrow (i), (C)
ightarrow (iv), (D)
ightarrow (ii)$$

$$\mathsf{B.}\,(A) \rightarrow (i), (B) \rightarrow (ii), (C) \rightarrow (iii), (D) \rightarrow (iv)$$

$$\mathsf{C}.\,(A) o (ii), (B) o (iv), (C) o (iii), (D) o (i)$$

$$\mathsf{D}.\,(A) \rightarrow (iii), (B) \rightarrow (ii), (C) \rightarrow (i), (D) \rightarrow (iii)$$

Answer: D

Group 18 Elements The Noble Gases

- **1.** Xenon has closed shell configuration but is known to give compounds with fluorine because
 - A. Xe atom has large size and lower ionisation potential as compared to other noble gases
 - B. Xe has unpaired electrons which can form covalent bonds
 - C. Xe has highest boiling point hence it can form compounds with fluorine
 - D. fluorine is the smallest element hence it can react with all noble gases.

Answer: A

2. Which compound is prepared by the following reaction?

$$Xe+F_2 \xrightarrow[(2:1 \text{ volume ratio})]{Ni} \xrightarrow{673K}$$

- A. XeF_4
- B. XeF_2
- C. XeF_6
- D. None of these.

Answer: B

Watch Video Solution

3. Which of the following statements is not correct about XeF_2 ?

A. It can be obtained by direct reaction between F_2 and Xe

at high pressure.

B. XeF_2 undergoes alkaline hydrolysis to give ${\cal O}_2$	and	Xe.

C. XeF_2 is a powerful oxidising agent.

D. XeF_2 contains two bond pairs and three lone pairs.

Answer: C

Watch Video Solution

4. In the clathrates of xenon with water the nature of bonding in

Xe and H_2O molecule is

A. covalent

B. hydrogen bonding

C. coordinate

D. dipole-induced dipole.

Answer: D

Watch Video Solution

5. Complete the following reactions by filling the appropriate choice.

$$A.~6\mathrm{XeF_4} + 12\mathrm{H_2O}
ightarrow 4\mathrm{Xe} + 2\mathrm{XeO_3} + (i) + (ii)$$

$$B.~{
m XeF_6} + 3{
m H_2O}
ightarrow (iii) + 6{
m HF}$$

A.
$$\stackrel{\mbox{(i)}}{F_2} \stackrel{\mbox{(ii)}}{H_2O} \stackrel{\mbox{(iii)}}{XeOF_4}$$

B.
$$\frac{\mathrm{(i)}}{24HF}$$
 $\frac{\mathrm{(ii)}}{3O_2}$ $\frac{\mathrm{(iii)}}{XeO_3}$

C.
$$\frac{\mathrm{(i)}}{2HF}$$
 $\frac{\mathrm{(ii)}}{2H_2O}$ $\frac{\mathrm{(iii)}}{XeO}$

$$\stackrel{ extsf{C.}}{=} 2HF \ \ 2H_2O \ \ XeO$$

D.
$$\stackrel{ ext{(i)}}{HF} \stackrel{ ext{(ii)}}{H_2O} \stackrel{ ext{(iii)}}{Xe_2O_3}$$

Answer: B

6. Among the following molecules

$$(i)XeO_3(ii)XeOF_4(iii)XeF_6$$

those having same number of lone pairs on Xe are

- A. (i) and (ii) only
- B. (i) and (iii) only
- C. (ii) and (iii) only
- D. (i), (ii) and (iii)

Answer: D

Watch Video Solution

7. Match the column I with column II and mark the appropriate choice.

	Column I		Column II	
(A)	XeF ₄	(i)	sp^3d^2	
(B)	XeF ₆	(ii)	sp^3d^3	
(C)	XeOF ₂	(iii)	sp^3d	
(D)	XeO ₃	(iv)	sp ³	

A.
$$(A)
ightarrow (i), (B)
ightarrow (ii), (C)
ightarrow (iii), (D)
ightarrow (iv)$$

$$\mathtt{B.}\,(A) \rightarrow (iv), (B) \rightarrow (iii), (C) \rightarrow (ii), (D) \rightarrow (i)$$

$$\mathsf{C}.\,(A) \rightarrow (iii), (B) \rightarrow (iv), (C) \rightarrow (i), (D) \rightarrow (ii)$$

$$\texttt{D}.\,(A) \rightarrow (ii), (B) \rightarrow (iii), (C) \rightarrow (iv), (D) \rightarrow (i)$$

Answer: A

8. Match the list of noble gas compounds in column I with their shapes in column II and mark the appropriate choice.

Column I		Column II		
(A)	XeF ₄	(i)	Distorted octahedral	
(B)	XeF ₆	(ii)	Tetrahedral	
(C)	XeO ₃	(iii)	Square planar	
(D)	XeO ₄	(iv)	Trigonal pyramidal	

A.
$$(A)
ightarrow (iv), (B)
ightarrow (iii), (C)
ightarrow (ii), (D)
ightarrow (i)$$

$$\mathtt{B.}\,(A) \rightarrow (i), (B) \rightarrow (ii), (C) \rightarrow (iii), (D) \rightarrow (iv)$$

$$\mathsf{C.}\left(A
ight)
ightarrow (ii), (B)
ightarrow (iii), (C)
ightarrow (iv), (D)
ightarrow (i)$$

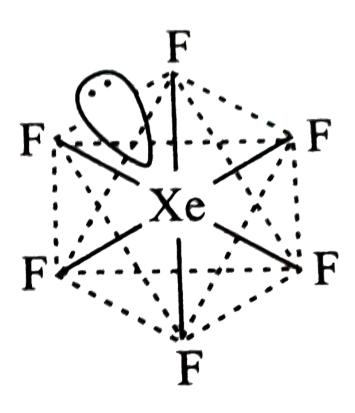
$$\texttt{D.}\,(A) \rightarrow (iii), (B) \rightarrow (i), (C) \rightarrow (iv), (D) \rightarrow (ii)$$

Answer: D

- **9.** In XeF_2, XeF_4 and $XeF_6,$ the number of the lone pairs of Xe respectively are
 - A. 2, 3, 1

- B. 1,2,3
- C. 4, I, 2
- D. 3, 2, 1

Answer: D



Watch Video Solution

- 10. Oganesson has been synthetically produced by collision of
 - A. Ra and Ca
 - B. Cf and Ca
 - C. Cf and Cu
 - D. Ra and He

Answer: B

11. Which of the following is not correct about xenon hexafluoride?

A. It has oxidation state of +6.

B. The hybridisation involved in XeF_6 is sp^3d^3

C. The shape of XeF_6 is distorted octahedral and can be represented as

D. On hydrolysis it gives Xe, HF and O_2 .

Answer: D

Watch Video Solution

12. Fill in the blanks by choosing the appropriate option. The noble gases can form compounds with (i) and (ii) . The mixture of (iii) and (iv) is used for respiration by divers.

(i)(ii) (iii) (iv)iodine oxygen oxygen argon (i) (ii) (iii) (iv) B. fluorine oxygen helium oxygen (i)(ii) (iii) (iv)platinum argon krypton xenon (i) (ii) (iii) (iv)D. helium oxygen xenon argon

Answer: B

Watch Video Solution

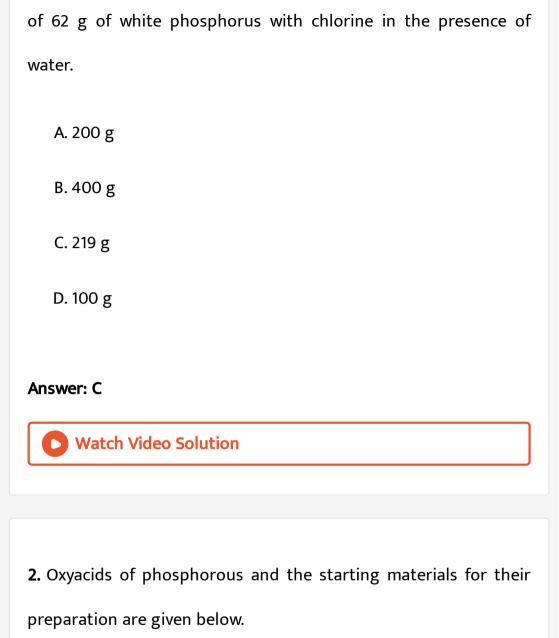
- 13. Which of the following is not a use of noble gases?
 - A. Argon is widely used for filling incandescent electric bulbs.
 - B. Neon is used in safety devices for protecting electrical instruments.
 - C. Radon is used in radiotherapy of cancer.
 - D. Helium is filled in tubes of cycles and scooters tyres.

Answer: D

Watch Video Solution

14. Which of the following statements is not correct?

A. Helium has the lowest boiling point among the noble gases


- B. Argon is used in electric bulbs
- C. Krypton is obtained during radioactive disintegration
- D. Xe forms XeF_6 .

Answer: C

Higher Order Thinking Skills

1. White phosphorus reacts with chlorine and the product hydrolyses in the presence of water. Calcualte the mass of HCl obtained by the hydrolysis of the product formed by the reaction

$$egin{array}{lll} ext{Ocyacid} & ext{Matereifal for preparation} \ (A) & H_3PO_2 & (i) & ext{Red P+ alpali} \ (B) & H_3P_3 & (ii) & P_4O_{10} + H_2O \ \end{array}$$

$$egin{array}{lll} (C) & H_3PO_4 & (iii) & P_2O_3+H_2O \ (D) & H_4P_2O_6 & (iv) & ext{White P+ alkali} \end{array}$$

Choose the correct answer from the codes given below:

C. (A) - (iv), (B) - (iii), (C) - (i), (D) - (ii)

Answer: A

3. Which of the following statements are incorrect?

A. SO_3 is a stronger oxidising agent and more acidic than SO_2

.

B. Selenium forms only two oxoacids i.e., selenous acid $(H_2SeO_3) \ {\rm and} \ {\rm selenic} \ {\rm acid} \ (H_2SeO_4).$

C. The acidic strength and oxidising power of oxoacids is greater in +6 oxidation state than in +4 oxidation state.

D. The thermal stability of oxides of group 16 elements ${\sf decreases~in~the~order:}\ SO_2>SeO_2>TeO_2>PoO_2$

Answer: D

Watch Video Solution

- **4.** Consider the following substances:
- 1. OF_2 2. Cl_2O 3. Br_2O

The correct sequence X - O - X bond angle is

- A. 1 > 2 > 3
- B. 3 > 2 > 1
- C.2 > 1 > 3
- D. 1 > 3 > 2

Answer: B

Watch Video Solution

5. The reactions of CI_2 gas with cold-dilute and hot-concentrated NaOH in water give sodium salts of two different oxioacids of chlorine, P and Q, respectively. The CI_2 gas reacts with SO_2 gas, in presence of charocal, to give a product R reacts with white phosphorus to give a compound S. On hydrolysis, S gives an

oxoacid of phosphorus.

R, S and T, respectively, are

A. SO_2Cl_2 , PCl_5 and H_3PO_4

 $B. SO_2Cl_2, PCl_3 \text{ and } H_3PO_3$

 $C. SOCl_2, PCl_3 \text{ and } H_3PO_2$

D. $SOCl_2$, PCl_5 and H_3PO_4

Answer: A

6. The reactions of CI_2 gas with cold-dilute and hot-concentrated NaOH in water give sodium salts of two different oxioacids of chlorine, P and Q, respectively. The CI_2 gas reacts with SO_2 gas, in presence of charocal, to give a product R reacts with white phosphorus to give a compound S. On hydrolysis, S gives an

oxoacid of phosphorus.

P and Q, respectively, are the sodium salts of

A. hypochlorous and chloric acids

B. hypochlorous and chlorous acids

C. chloric and perchloric acids

D. chloric and hypochlorous acids.

Answer: A

- 7. Which among the following statements is incorrect?
- A. 1. XeF_4 and SbF_5 combine to form salt.
 - B. 2. He and Ne do not form clathrates.
 - C. 3. He has highest boiling point in its group.

D. 4. He diffuses through rubber and polyvinyl chloride.

Answer: C

Watch Video Solution

Ncert Exemplar

1. On addition of conc. H_2SO_4 to a chloride salt, colourless fumes are evolved but in case of iodide salt, violet fumes come out. This is because

A. 1. H_2SO_4 reduces HI to I_2

B. 2. HI is of violet colour

C. 3. HI gets oxidised to I_2

D. 4. HI changes to HIO_3 .

Answer: C

2. In qualitative analysis when H_2S is passed through an aqueous solution of salt acidified with dil. HCl, a black precipitate is obtained. On boiling the precipitate with dil. HNO_3 , it forms a solution of blue colour. Addition of excess of aqueous solution of ammonia to this solution gives

- A. 1. deep blue precipitate of $Cu(OH)_2$
- B. 2. deep blue solution of $\left[Cu(NH_3)_4
 ight]^{2+}$
- C. 3. deep blue solution of $Cu(NO_3)_2$
- D. 4. deep blue solution of $Cu(OH)_2$. $Cu(NO_3)_2$

Answer: B

3. In a cyclotrimetaphosphoric acid molecule, how many single and double bonds are present ?

A. 3 double bonds, 9 single bonds

B. 6 double bonds, 6 single bonds

C. 3 double bonds, 12 single bonds

D. Zero double bonds, 12 single bonds

Answer: C

Watch Video Solution

4. Which of the following elements can be involved in $p\pi-d\pi$ bonding ?

- A. Carbon
- B. Nitrogen
- C. Phosphorus
- D. Boron

Answer: C

- **5.** Which of the following pairs of ions are isoelectronic and isostructural?
 - A. $CO_3^{2\,-}$, $NO_3^{\,-}$
 - $\operatorname{B.}ClO_3^-,CO_3^{2-}$
 - $\mathsf{C.}\,SO_3^{2-},NO_3^-$
 - D. ClO_3^- , $SO_3^{2\,-}$

Answer: A

Watch Video Solution

- **6.** Affinity for hydrogen decreases in the group from fluorine to iodine. Which of the halogen acids should have highest bond dissociation enthalpy?
 - A. 1. HF
 - B. 2. HCl
 - C. 3. HBr
 - D. 4. HI

Answer: A

Watch Video Solution

7. Bond dissociation enthalpy of E-H (E=element) bond is given below.

Compound	NH ₃	PH3	AsH ₃	SbH ₃
$\Delta_{diss}(E-H)/kJ \text{ mol}^{-1}$	389	322	2	255

Which of the following compounds will act as strongest reducing agent?

- A. 1. NH_3
- B. 2. PH_3
- C. 3. AsH_3
- D. 4. SbH_3

Answer: D

Watch Video Solution

8. On heating with concentrated NaOH solution in an inert atmosphere of CO_2 , white phosphorus gives a gas. Which of the following statements is incorrect about the gas ?

A. 1. It is highly poisonous and has smell like rotten fish.

B. 2. Its solution in water decomposes in the presence of light.

C. 3. It is more basic than $NH_{
m 3}$

D. 4. It is less basic than NH_3 .

Answer: C

Watch Video Solution

9. Which of the following acids forms three series of salts?

A. H_3PO_2

- $\mathsf{B.}\,H_3BO_3$
- $\mathsf{C}.\,H_3PO_4$
- $\mathsf{D.}\,H_3PO_3$

Answer: C

Watch Video Solution

- **10.** Strong reducing behaviour of H_3PO_2 is due to
 - A. 1. low oxidation state of phosphorus
 - B. 2. presence of two OH groups and one P-H bond
 - C. 3. presence of one OH group and two P-H bonds
 - D. 4. high electron gain enthalpy of phosphorus.

Answer: C

11. On heating lead nitrate forms oxides of nitrogen and lead. The oxides formed are :

A. 1.
$$N_2O$$
, PbO

B. 2.
$$NO_2, PbO$$

C. 3.
$$NO, PbO$$

D. 4. NO, PbO_2

Answer: B

Watch Video Solution

12. Which of the following elements does not show allotropy?

A. 1. Nitrogen

- B. 2. Bismuth C. 3. Antimony
- D. 4. Arsenic

Answer: B

Watch Video Solution

- 13. Maximum covalency of nitrogen is:
 - A. 3
 - B. 5
 - C. 4
 - D. 6

Answer: C

14. Which of the following statements is wrong?

A. Single N-N bond is stronger than the single P-P bond.

B. PH_3 can act as a ligand in the formation of coordination compound with transition elements.

C. NO_2 is paramagnetic in nature.

D. Covalency of nitrogen in $N_2 O_5$ is four.

Answer: A

Watch Video Solution

15. A brown ring is formed in the ring test for NO_3^- ion. It is due to the formation of

A.
$$igl[Fe(H_2O)_5(NO)igr]^{2+}$$

B.
$$FeSO_4 \cdot NO_2$$

C.
$$igl[Fe(H_2O)_4(NO)_2igr]^{2+}$$

D. $FeSO_4 \cdot HNO_3$

Answer: A

16. Elements of group 15 form compounds in ± 5 oxidatin state.

However, bismuth forms only one well characterised compound in

+5 oxidation state. The compound is

A.
$$Bi_2O_5$$

B. BiF_3

C. $BiCl_5$

D. Bi_2S_5

Answer: B

View Text Solution

- 17. On heating ammonium dichromate and barium azide separately we get
 - A. N_2 in both cases
 - B. N_2 with ammonium dichromate and NO with barium azide
 - C. N_2O with ammonium dichromate and N_2 with barium azide
 - D. N_2O with ammonium dichromate and NO_2 with barium azide.

Answer: A

View Text Colution

View Text Solution

A. 2

B. 3

C. 4

D. 6

Answer: A

Watch Video Solution

19. The oxidation state of central atom in the anion of compound

 NaH_2PO_2 will be

- A. + 3
- $\mathsf{B.}+5$
- C. + 1
- $\mathsf{D.}-3$

Answer: C

Watch Video Solution

20. Which of the following is not tetrahedral in shape?

- A. $NH_4^{\ +}$
- B. $SiCl_4$
- C. SF_4
- D. $SO_4^{2\,-}$

Answer: C

Watch Video Solution

21. Which of the following are peroxoacids of sulphur?

- A. H_2SO_5 and $H_2S_2O_8$
- $B. H_2SO_5$ and $H_2S_2O_7$
- $\mathsf{C.}\,H_2S_2O_7$ and $H_2S_2O_8$
- $D. H_2S_2O_6 \text{ and } H_2S_2O_8$

Answer: A

Watch Video Solution

22. Hot conc. H_2SO_4 acts as moderately strong oxidising agent. It oxidises both metals and non-metals. Which of the following elements is oxidised by conc. H_2SO_4 into two gaseous products ?

A. Cu

B. S

C. C

D. Zn

Answer: C

Watch Video Solution

23. A black compound of manganese reacts with a halogen acid to give greenish yellow gas. When excess of this gas reacts with

`NH_(3) an unstable trihalide is formed. In this process the oxidation state of nitrogen changes from

A.
$$-3$$
 to $+3$

B.
$$-3 \ \text{to}0$$

C.
$$-3$$
 to $+5$

D. 0 to
$$-3$$

Answer: A

- 24. In the preparation of compounds of Xe, Bartlett had taken
- $O_2^+ PtF_6^{\,-}$ as a base compound. This is because
 - A. both O_2 and Xe have same size
 - B. both $O_2 \; ext{ and } \; Xe$ have same electron gain enthalpy

- C. both O_2 and Xe have almost same ionisation enthalpy
- D. both Xe and O_2 are gases.

Answer: C

Watch Video Solution

25. In solid state, PCl_5 is a......

- A. covalent solid
- B. octahedral structure
- C. ionic solid with $\left[PCl_{6}
 ight]^{+}$ octahedral and $\left[PCl_{4}
 ight]^{-}$
 - tetrahedral

octahedral

D. ionic solid with $\left[PCl_4
ight]^+$ tetrahedral and $\left[PCl_6
ight]^-$

Watch Video Solution

26. Reduction potentials of some ions are given below. Arrange them in decreasing order of oxidising power.

Ion	ClO ₄	IO_4^-	BrO ₄
Reduction potential <i>E</i> °/V	E° =1.19 V	$E^{\circ} = 1.65 \text{ V}$	E° = 1.74 V

A.
$$ClO_4^- > IO_4^- > BrO_4^-$$

$${\rm B.}\,IO_4^- > BrO_4^- > ClO_4^-$$

$${\sf C.}\, BrO_4^- > IO_4^- > ClO_4^-$$

$${\rm D.}\, BrO_4^- > ClO_4^- > IO_4^-$$

Answer: C

27. Which of the following is isoelectronic pair?

- A. ICl_2 , ClO_2
- $\mathrm{B.}\,BrO_2^-BrF_2^{\,+}$
- C. ClO_2 , BrF
- D. $CN^{\,-}$, O_3

Answer: B

Assertion And Reason

1. Assertion : The covalence of nitrogen in $N_2 O_5$ is 5

Reason: Nitrogen can expand its covalence beyond 4.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: D

View Text Solution

2. Assertion: Catenation tendency is weaker in nitrogen.

Reason: Nitrogen exists as diatomic gas.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: B

3. Assertion: Ammonia acts as a ligand.

Reason: A lone pair of electrons on nitrogen can be donated to acceptor.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

- **4.** Assertion : White phosphorus is more reactive than red phosphorus.
- Reason : It readily catches fire in air to give dense white fumes of P_4O_{10} .

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

- **5.** Assertion: In trigonal bipyramidal structure two axial bonds are longer than the equatorial bonds.
- Reason: Axial bonds suffer more repulsion as compared to equatorial bonds.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

6. Assertion : Acidic character of group 16 hydrides increases from

 H_2O to H_2Te .

Reason : Thermal stablility of hydrides decreases down the group.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

- **7.** Assertion: Ozone layer in the upper region of atmosphere protects earth from UV radiations of sun.
- Reason: Ozone is a powerful oxidising agent as compared to oxygen.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

8. Assertion : O_3 acts as a powerful oxidising agent.

Reason : ${\cal O}_3$ oxidises lead sulphide to lead sulphate and iodide ions to iodine.

- A. If both assertion and reason are true and reason is the correct explanation of assertion.
- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

- 9. Assertion: In vapour state sulphur is paramagnetic in nature.
- Reason : In vapour state sulphur exists as S_2 molecule.
 - A. If both assertion and reason are true and reason is the correct explanation of assertion.

- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

- **10.** Assertion : Sulphuric acid reacts with sodium chloride in the following way: $2NaCl + H_2SO_4
 ightarrow 2HCl + Na_2SO_4$
- Reason: Sulphuric acid because of its low volatility can be used to manufacture more volatile acids from their corresponding salts.
 - A. If both assertion and reason are true and reason is the correct explanation of assertion.

- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

- **11.** Assertion : Fluorine combines with sulphur to form SF_6 but no other halogen forms hexahalide with sulphur.
- Reason: The reactivity of halogens increases as the atomic number increases.
 - A. If both assertion and reason are true and reason is the correct explanation of assertion.

- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: C

12. Assertion: Fluorine oxidises water to oxygen whereas chlorine and bromine react with water to form corresponding hydrohalic and hypohalous acids.

Reason: The reactivity of halogens increases down the group.

A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: C

13. Assertion: $HClO_4$ is a stronger acid than $HClO_3$.

Reason: Oxidation state of Cl in $HClO_4$ is +VII and in $HClO_3+V.$

A. If both assertion and reason are true and reason is the correct explanation of assertion.

- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

- **14.** Assertion: Interhalogen compounds are more reactive than halogens (except fluorine)
- Reason: They all undergo hydrolysis giving halide ion derived from the smaller halogen and anion derived from larger halogen.
 - A. If both assertion and reason are true and reason is the correct explanation of assertion.

- B. If both assertion and reason are true but reason is not the correct explanation of assertion.
- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

- **15.** Assertion :Solubility of noble gases in water decreases with increases in atomic size
- Reason :Solubility of noble gases in water is due to instantaneous dipole induced dipole interaction
 - A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true but reason is not the correct explanation of assertion.

- C. If assertion is true but reason is false.
- D. If both assertion and reason are false.

Answer: D

