© 'doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - BEIITIANS

ENERGY AND WORK

Formative Worksheet

1. Calculate the amount of work done, when a force of

25 N displaces a body through 10 m , in its own its
direction.
A. 125 J
B. 250 J
C. 375 J
D. 500 J

Answer:

D Watch Video Solution

2. Renatta Gass is out with her friends. Misfortune occurs and Renatta and her friends, find themselves
getting a workout. They apply a cumulative force of
1080 N to push the car 218 m to the nearest fuel station. Determine the work done on the car.
A. 2.35×10^{5} J
B. 2.35×10^{6} J
C. 2.35×10^{7} J
D. 2.35×10^{8} J

Answer:

D Watch Video Solution

3. A fork lift moves 34 m carrying a 1023 N box across
the warehouse floor. How much work is done by the fork lift.
A. 3478 J
B. 78234 J
C. 435720 J
D. 34782 J

Answer:

- Watch Video Solution

4. How much work is done by a person who uses a force of 27.5 N to move a grocery buggy 12.3 m ?
A. 1014.75 J
B. 676.5 J
C. 338.25 J
D. 169.125 J

Answer:

- Watch Video Solution

5. $55,000 \mathrm{~J}$ of work is done to move a rock 25 m . How much force was applied ?
A. 1100 N
B. 2200 N
C. 3300 N

Answer:

- Watch Video Solution

6. A person of mass 50 kg climbs a tower of height 72
metre. The work done is

$$
\left[g=9.8 \mathrm{~m} / \mathrm{s}^{2}\right]
$$

A. 35280 J
B. 32580 J
C. 52380 J
D. 58320 J

- Watch Video Solution

7. How much is the mass of a man if he has to do 2500 joule of work in climbing a tree 5 m tall ? $\left(g=10 m / s^{2}\right)$
A. 30 kg
B. 40 kg
C. 50 kg
D. 45 kg

- Watch Video Solution

8. An object of 100 kg is lifted to a height of 10 m
vertically. What will be the work done ?
$\left[g=9.8 m / s^{2}\right]$
A. 9800 J
B. 9008 J
C. 9.8 J
D. 8.9 J

- Watch Video Solution

9. A box of mass 2 kg is pushed along a floor through

2 m against a force of friction 5 N . The same box is
lifted up through a height of 2 m . What will be the
work done in both cases respectively
$\left(g=9.8 m / s^{2}\right)$
A. $10 \mathrm{~J}, 39.2 \mathrm{~J}$
B. $15 \mathrm{~J}, 36.2 \mathrm{~J}$
C. $12 \mathrm{~J}, 39.2 \mathrm{~J}$

```
D. }10\textrm{J},32.9\textrm{J
```


Answer:

- Watch Video Solution

10. A coolie lifts a box of 15 kg from the ground to a height of 2.0 m . The work done by the coolie on the box is
(Given $\mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$)
A. 250 J
B. 294 J
C. 300 J

Answer:

- Watch Video Solution

11. A work of 4900 J is done on a load of mass 50 kg to lift it to a certain height. What is the height through which the load is lifted?
A. 12 m
B. 14 m
C. 10 m
D. 18 m

- Watch Video Solution

12. Calculate the kinetic energy of a body of mass 2 kg moving with a velocity of 0.1 meter per second.
A. 0.1 J
B. 0.01 J
C. 0.001 J
D. 1 J

Answer:
13. Two bodies of equal masses move with unifor veocitits v and $3 v$ respectvely. Find the ratio of their kinetic energies.
A. $9: 1$
B. $2: 9$
C. 1:9
D. 1:1

Answer:

14. A 1 kg mass has a kinetic energy of 1 Joule when its velocity is
A. $0.45 \mathrm{~m} / \mathrm{s}$
B. $1 \mathrm{~m} / \mathrm{s}$
C. $1.4 \mathrm{~m} / \mathrm{s}$
D. $4.4 \mathrm{~m} / \mathrm{s}$

Answer:

15. An object of mass 1 kg has a potential energy of 1 J

 relative to the ground, when it is at a height of $\left[g=10 m / s^{2}\right]$A. 0.1 m
B. 1 m
C. 9.8 m
D. 32 m

Answer:

16. When you cook food in pressure cooker by placing
it over stove, the energy changes water to
steam.
A. Electrical
B. Magnetic
C. Chemical
D. Heat

Answer:

17. Which of the following is capable of doing work ?
A. Sound energy
B. Light energy
C. Heat energy
D. All

Answer:

Watch Video Solution
18. Which energy makes an electric motor to work ?

19. Chemical energy is kind of

A. Kinetic energy

B. Potential Energy

C. Both
D. None

Answer:
20. In fossil fuels, \qquad energy changes to heat energy.

- Watch Video Solution

21. When the nucleus of a heavy atom such as uranium or plutonium is smashed, it releases

- Watch Video Solution

22. In which of the following mechanical energy is
converted to heat energy

A. Drilling

B. Striking of stones
C. Water fall
D. None

Answer:

D Watch Video Solution

23. When the turbine is coupled to an electric genertor, _________energy of the turbine changes into \qquad
A. electric, mechanical
B. mechanical, electric
C. sound, light
D. electric, magnetic

Answer:

D Watch Video Solution

24. When light energy falls on silver salts coated on photographic plate, it changes into \qquad energy.
A. Electrical
B. Heat

C. Chemical

D. None

Answer:

- Watch Video Solution

25. In an electric kettle,___energy is
changed_______-_energy ?
A. electric, magnetic
B. mechanical, electric
C. electric, heat

D. electric, light

Answer:

- Watch Video Solution

Conceptive Worksheet

1. The ability to do work is called
A. Power

B. Energy

C. Charge

Answer:

- Watch Video Solution

2. The factors on which work depends is
A. Force
B. Displacement
C. Both

D. Non

3. The CGS unit of work is
A. erg
B. joule
C. watt
D. metre

Answer:
4. Name and define SI unit of work.
A. erg
B. joule
C. watt
D. metre

Answer:

Watch Video Solution
5. What is the work done by a coolie of mass 80 kg , standing with a rice bag of 50 kg on his shoulder ?
A. 130 J
B. 50 J
C. 80 J
D. Zero

Answer:

D Watch Video Solution

6. Calculate the amount of work done when moving a

567 N crate a distance of 20 meters.
A. 10340 J
B. 11340 J

C. 12340 J

D. 13440 J

Answer:

D Watch Video Solution

7. If it took a bulldozer 567.6 joules of work to push a mound of dirt 30.5 meters, how much force did the bulldozer have to apply ?
A. 9.3 N
B. 10.6 N

C. 18.6 N

D. 37.2 N

Answer:

- Watch Video Solution

8. On what factors does the kinetic energy of a body depend?
A. on its mass only
B. on its velocity only
C. on its mass as well as on its velocity

D. neither on its mass nor on its velocity

Answer:

- Watch Video Solution

9. Water stored in a dam possesses
A. only kinetic energy
B. only potential energy
C. both kinetic and potential energy
D. neither kinetic energy nor potential energy
10. Strong wind can turn the blades of a wind mill because it possesses
A. kinetic energy
B. potential energy
C. both kinetic and potential energy
D. none of these

Answer:

11. When the speed of a moving object is doubled, its
A. kinetic energy halved
B. kinetic energy decreases
C. kinetic energy is doubled
D. kinetic energy increases four times

Answer:

- Watch Video Solution

12. A flying aeroplane has
A. only kinetic energy
B. only potential energy
C. both kinetic and potential energy
D. none of these

Answer:

- Watch Video Solution

13. If the velocity an object increases 4 times, its
kinetic energy increases
A. 4 times
B. 8 times

C. 16 times

D. 32 times

Answer:

D Watch Video Solution

14. A body of mass 1 kg is lifted through a height of 1 m , then its work done is
A. 8.9 J
B. 9.8 J
C. 98 J
D. 89 J

Answer:

- Watch Video Solution

15. A man lifts a brick of mass 5 kg from the floor to a shelf 2 m high. How much work is done?
$\left(g=9.8 m / s^{2}\right)$
A. 8.9 J
B. 9.8 J
C. 98 J

Answer:

- Watch Video Solution

16. A ball of mass 1 kg is thrown up. It reaches a maximum height of 5 m . What is the work done by the
force of gravity during motion
$\left[g=9.8 m / s^{2}\right]$
A. 9 J
B. 6.9 J
C. 49 J

Answer:

- Watch Video Solution

17. A load of 100 kg is pulled upwards by 5 m .

Calculate the work done.
$\left[g=9.8 m / s^{2}\right]$
A. 4900 J
B. 9400 J
C. 9 J
D. 94.0 J

- Watch Video Solution

18. If acceleration due to gravity is $10 \mathrm{~m} / \mathrm{s}^{2}$, what will be the potential energy of a body of mass 1 kg kept at a height of 5 m ?
A. 20 J
B. 30 J
C. 40 J
D. 50 J

Answer:

D Watch Video Solution

19. Heat is a form of

D Watch Video Solution

20. When we strike a match, the \qquad energy on the match head changes into \qquad
A. sound, chemical
B. chemical, light

C. chemical, heat

D. chemical, electrical

Answer:

- Watch Video Solution

21. In electric cells or electric batteries, energy changes into \qquad energy.
A. sound, chemical
B. chemical, light
C. chemical, heat
D. chemical, electrical

Answer:

- Watch Video Solution

22. When two stones are struck against each other
sharply, mechanical energy is converted to
A. Electrical energy
B. Light energy
C. Sound energy
D. Both B and C

Answer:

D Watch Video Solution

23. When hands are rubbed, energy is
changes into \qquad energy.
A. electric, mechanical
B. mechanical, thermal
C. sound, light
D. electric, magnetic
24. During which of the following, light energy is converted to chemical energy ?
A. Photosynthesis
B. Combustion
C. Both
D. None

Answer:

- Watch Video Solution

25. In which of the following, the electric energy changes into mechanical energy ?
A. Electric motors
B. Fans
C. Grinders
D. All

Answer:

1. Ability to do work is called

D Watch Video Solution

2. When a force causes in its own direction, the work is said to be done.

- Watch Video Solution

3. Work done by a body is the product of and displacement.

D Watch Video Solution

4. One joule is the product of force of 1 N and displacement of \qquad .

Watch Video Solution

5. Energy possessed by a body by virtue of its is called potential energy.

- Watch Video Solution

6. Energy possessed by a body by virtue of its is called kinetic energy.
7. In hydroelectric dams the ______ energy of
flowing water is transformed into electric energy.

- Watch Video Solution

8. When we speak in front of a microphone, the sound energy changes into____-_-_-_ energy.

D Watch Video Solution

9. During photosynthesis, the energy changes to chemical energy.
10. Work is done when we hold a pile of books in our hands.

- Watch Video Solution

11. Work done by a body is the product of pressure and displacement.

D Watch Video Solution
12. When electric current flows through a bulb, the electric enery first changes into light energy and then heat energy.

- Watch Video Solution

13. When we speak in front of a microphone the electric energy changes into sound energy.

- Watch Video Solution

14. During photosynthesis heat energy changes into
chemical energy.
15. In charging a car battery, the chemical energy changes into electric energy.

- Watch Video Solution

16. Nuclear energy is released in the form of light energy.

- Watch Video Solution

17. When a stone is projected vertically upwards its kinetic energy changes into potential energy.

D Watch Video Solution

18. Kinetic energy of a body decreases with the increase in mass.

- Watch Video Solution

19. Unit of energy is SI system is

D Watch Video Solution
20. A stretched bow and arrow system has kinetic energy.

- Watch Video Solution

21. The energy possessed by an electric cell is chemical energy.

- Watch Video Solution

22. During photosynthesis, the light energy changes into chemical energy.
23. An electric bulb converts electric energy into heat energy.

- Watch Video Solution

24. The source of energy in a nuclear bomb is chemical energy.

D Watch Video Solution
25. A freely falling stone possesses K.E and P.E.
26. In hydroelectric stations, the potential energy of flowing water changes into electric energy.

- Watch Video Solution

27. The work done by a body is the product of force and :
A. distance
B. speed
C. displacement
D. velocity

Answer:

- Watch Video Solution

28. Name and define SI unit of work.
A. newton
B. pascal
C. joule
D. newton-metre
29. Burning of paper is an example of conversion of :
A. chemical energy into heat energy
B. chemical energy into heat and light energy
C. chemical energy into light energy
D. heat energy into light energy

Answer:

- Watch Video Solution

30. Water stored in a tank on the top of roof has:

A. potential energy
B. kinetic energy
C. potential as well as kinetic energy
D. solar energy

Answer:

D Watch Video Solution

31. Work is said to be done when :
A. force acts upon a body, but the body does not move
B. force acts upon a body and moves it in the direction of force
C. force acts upon a body, but the body does not
move in the direction of applied force
D. none of these

Answer:

32. It two boys push a table in opposite direction with equal force, then
A. work is said to done
B. no work is done
C. double work is done
D. none of these

Answer:

- Watch Video Solution

33. Which energy possessed by a speeding train.
34. Which energy possessed by a flying bird

- Watch Video Solution

35. Energy conversion in burning of coal:

- Watch Video Solution

Hots Worksheet

1. Which of the following quantities is a vector quantity?

A. Displacement

B. Distance
C. Energy
D. Work

Answer:

2. Which of the following conditions is correct for non-zero work done?
A. Force acting on the body is zero.
B. Displacement of the body is zero.
C. Displacement of body is perpendicular to the force.
D. Displacement produced by force is in opposite direction to the force.

Answer:

3. A boy carries a 10 kg load from point C to A along the path CA as shown in the figure. What is te work done by the boy against the gravitational pull of the earth ?

A. 190 J
B. 289 J
C. 392 J
D. 490 J

Answer:

- Watch Video Solution

4. 50 J of work is done against the force of gravity in
lifting a stone to a certain height. What will be the potential energy of the stone at that height ?
A. 200 J
B. 100 J
C. 50 J
D. 30 J

Answer:

- Watch Video Solution

5. The ability of a body to do some work is known as :
A. force
B. energy
C. power
D. momentum

Answer:

- Watch Video Solution

6. 20 J of work is done against the force of gravity in
lifting a stone to a certain height. What will be the potential energy of the stone at that height ?
A. 200 J
B. 100 J
C. 20 J
D. 10 J

Answer:

- Watch Video Solution

7. Cars I and II, having masses m and 2 m respectively, are moving with velocities
$2 v$ and v respectively. They are brought to rest by the application of breaks. The cars take the same time and cover the same distance before coming to rest.

What is the ratio of change in kinetic energy of car I to that of car II ?
A. $1: 2$
B. 2:1
C. 1:4
D. $4: 1$

Answer:

- Watch Video Solution

8. A car of mass 1200 kg starts from rest and acquires
a uniform velocity of $18 \mathrm{~m} / \mathrm{s}$. What is the kinetic energy of the car ?
A. 184400 J
B. 188400 J
C. 194400 J

Answer:

- Watch Video Solution

9. Which of the following statements is correct for hydro power plants ?
A. Chemical energy is converted into electrical energy.
B. Electrical energy is converted into chemical energy.
C. Mechanical energy is converted into electrical

energy.

D. Electrical energy is converted into mechanical energy.

Answer:

- Watch Video Solution

10. Which arrow diagram correctly represents the steps in energy conversion in hydropower plants?
A. Heat energy \rightarrow Kinetic energy \rightarrow Electric energy
B. Kinetic energy \rightarrow Heat energy \rightarrow Electric energy
C. Kinetic energy \rightarrow Potential energy \rightarrow

Electric energy
D. Potential energy \rightarrow Kinetic energy \rightarrow

Electric energy

Answer:

- Watch Video Solution
lit Jee Worksheet

1. You and 3 friends apply a combined force of 489.5

N to push a piano. The amount of work done is 1762.2
J. What distance did the piano move ?
A. 3.6 m
B. 4.7 m
C. 5.8 m
D. 6.9 m

Answer:

2. If a weight lifter raises a barbell with a mass of 125.7 grams doing 5,023 joules of work, what distance did he move the barbells ? Remember that you need a force, not a mass. You must firs calculate the force in order to complete your solution. HINT : Weight is a force. Weight on earth is determined by multiplying an object's mass times earth's gravitational pull (9.8 $\left.m / s^{2}\right)$.
A. 2032.2 m
B. 3253.6 m
C. 4083.7 m
D. 5465.8 m

- Watch Video Solution

3. A frontend loader needed to apply 137 newtons of force to lift a rock. A total of 223 joules of work was done. How far was the rock lifted?
A. 1.627 m
B. 2.6225 m
C. 3.2564 m
D. 4.2545 m

- Watch Video Solution

4. A young boy applied a force of 2,550 newtons on his St. Bernard dog who is sitting on the boy's tennis shoes. He was unable to move the dog. How much work did he do trying to push the dog ?
A. 10 J
B. 20 J
C. 30 J
D. none

D Watch Video Solution

5. What will be the velocity of a body of mass 100 g having a kinetic energy of 20 J ?
A. $20 \mathrm{~m} / \mathrm{s}$
B. $15 \mathrm{~m} / \mathrm{s}$
C. $10 \mathrm{~m} / \mathrm{s}$
D. $25 \mathrm{~m} / \mathrm{s}$

Answer:
6. The kinetic energy of an object of mass ' m ' moving with a velocity of $5 \mathrm{~m} / \mathrm{s}$ is 25 J . What will be its K.E when its velocity is increased three times?
A. 225 J
B. 200 J
C. 150 J
D. 100 J

Answer:

7. A car is moving with a uniform velocity of $54 \mathrm{~km} / \mathrm{h}$.

What is the K.E of a boy of mass 40 kg sitting in his

car?

A. 4500 J
B. 4000 J
C. 3500 J
D. 3000 J

Answer:

8. What will be the height through which a body of mass 0.5 kg should be lifted, if the energy spent for doing so is 1.0 joule ? $\left(g=10 \mathrm{~m} / \mathrm{s}^{2}\right)$
A. 0.1 m
B. 2 m
C. 1 m
D. 0.2 m

Answer:

9. During electrolysis, electrical energy is changed to energy.

A. Light

B. Sound
C. Chemical
D. Gravitational

Answer:

10. During burning, chemical energy is changed to

 energy.A. heat
B. light
C. both
D. none

Answer:

11. In which of the following, chemical energy is changed to electrical energy ?
A. Burning
B. dry cells
C. electric kettle
D. Solar cooker

Answer:

12. In explosive devices, such as fire crackers, bombs, etc., the chemical energy changes into energy.
A. heat
B. light
C. Sound
D. All

Answer:

- Watch Video Solution

13. Which of the following is not a form of energy?
A. Sound
B. Light
C. Heat
D. momentum

Answer:

- Watch Video Solution

14. When the nucleus of a heavy atom is smashed, it releases
A. nuclear energy

B. heat energy

C. electrical energy
D. light energy

Answer:

- Watch Video Solution

15. Heat energy is converted to mechanical energy in

16. The electric energy changes into mechanical

 energy inA. Electric motors
B. Fans
C. Grinders
D. Microphone

Answer:

17. Mathematically, work is defined as the product of froce and displacement through which force acts. If F is the applied force, ' S ' is the displacement in the direction of applied force and W is the work done, then : Work done $=$ Force \times Displacement through which force acts.
$W=F \times S$

The SI unit of work is Joule (J) and cgs unit is erg. $1 \mathrm{~J}=$ 10^{7} erg.

How much work is done by a person who uses a force of 50 N to move a grocery buggy 10 m ?

D Watch Video Solution

18. Mathematically, work is defined as the product of froce and displacement through which force acts. If F is the applied force, ' S ' is the displacement in the direction of applied force and W is the work done,
then : Work done $=$ Force \times Displacement through which force acts.
$W=F \times S$

The SI unit of work is Joule (J) and cgs unit is erg. $1 \mathrm{~J}=$ 10^{7} erg.

6000 J of work is done to move a rock 25 m . How much force was applied ?

D Watch Video Solution

19. Mathematically, work is defined as the product of froce and displacement through which force acts. If F is the applied force, ' S ' is the displacement in the direction of applied force and W is the work done, then : Work done $=$ Force \times Displacement through which force acts.
$W=F \times S$

The SI unit of work is Joule (J) and cgs unit is erg. $1 \mathrm{~J}=$ 10^{7} erg.

You and your friends apply a combined force of 800
N to push a stone. The amount of work done is 3200
J. What distance did the stone move?
20. According to law of conservation of energy.
"Energy can neither be created nor be destroyed, but
can be changed from one form to another form".
The sound energy in a microphone changes into
A. chemical energy
B. mechanical energy
C. electrical energy
D. magnetic energy

Answer:

21. According to law of conservation of energy.
"Energy can neither be created nor be destroyed, but
can be changed from one form to another form".
The electrical energy in an electromagnet changes into
A. light energy
B. heat energy
C. magnetic energy
D. chemical energy

Answer:

22. According to law of conservation of energy.
"Energy can neither be created nor be destroyed, but
can be changed from one form to another form".
During charging of a battery, the electrical energy
changes into
A. magnetic energy
B. chemical energy
C. mechanical energy
D. none of these

Answer:
23. Relation between kinetic energy and momentum Let us consider a body of mass ' m ' having a velocity 'v', then
momentum of the body $\mathrm{P}=$ mass \times velocity
$P=m \times v \Rightarrow v=\frac{P}{m}$
From definition, kinetic energy (K.E) of the body
$K . E=\frac{1}{2} m v^{2}$
Now putting the value of (1) in (2) we have
$K . E=\frac{1}{2} m\left(\frac{P}{m}\right)^{2}$
$K . E .=\frac{1}{2} m \frac{P^{2}}{m^{2}}=\frac{1}{2} \frac{P^{2}}{m}=\frac{P^{2}}{2 m}$
Thus we can write
$P^{2}=2 m \times K . E$

$$
\Rightarrow P=\sqrt{2 m \times K . E}
$$

Thus momentum $=\sqrt{2 \times \text { mass } \times \text { kinetic energy }}$
What will be the momentum of a body of mass 100 g having kinetic energy of 20 J ?
A. $2 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
B. $4 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
C. $5 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$
D. $6 \mathrm{~kg} \mathrm{~m} / \mathrm{s}$

Answer:
24. Relation between kinetic energy and momentum

Let us consider a body of mass ' m ' having a velocity
'v', then
momentum of the body $\mathrm{P}=$ mass \times velocity
$P=m \times v \Rightarrow v=\frac{P}{m}$
From definition, kinetic energy (K.E) of the body
$K . E=\frac{1}{2} m v^{2}$
Now putting the value of (1) in (2) we have
$K . E=\frac{1}{2} m\left(\frac{P}{m}\right)^{2}$
$K . E .=\frac{1}{2} m \frac{P^{2}}{m^{2}}=\frac{1}{2} \frac{P^{2}}{m}=\frac{P^{2}}{2 m}$
Thus we can write
$P^{2}=2 m \times K . E$
$\Rightarrow P=\sqrt{2 m \times K . E}$

Thus momentum $=\sqrt{2 \times \text { mass } \times \text { kinetic energy }}$
Two bodies of mass 1 kg and 4 kg possess equal momentum. The ratio of their kinetic energies is
A. $4: 1$
B. 1:4
C. 2:1
D. 1:2

Answer:

25. Relation between kinetic energy and momentum

Let us consider a body of mass ' m ' having a velocity
'v', then
momentum of the body $\mathrm{P}=$ mass \times velocity
$P=m \times v \Rightarrow v=\frac{P}{m}$
From definition, kinetic energy (K.E) of the body
$K . E=\frac{1}{2} m v^{2}$
Now putting the value of (1) in (2) we have
$K . E=\frac{1}{2} m\left(\frac{P}{m}\right)^{2}$
$K . E .=\frac{1}{2} m \frac{P^{2}}{m^{2}}=\frac{1}{2} \frac{P^{2}}{m}=\frac{P^{2}}{2 m}$
Thus we can write
$P^{2}=2 m \times K . E$
$\Rightarrow P=\sqrt{2 m \times K . E}$

Thus momentum $=\sqrt{2 \times \text { mass } \times \text { kinetic energy }}$
Two bodies masses 1 kg and 4 kg having equal kinetic energies. The ratio of their momentum is
A. $4: 1$
B. 1:4
C. 2:1
D. 1:2

Answer:

26. Relation between kinetic energy and momentum

Let us consider a body of mass ' m ' having a velocity
'v', then
momentum of the body $\mathrm{P}=$ mass \times velocity
$P=m \times v \Rightarrow v=\frac{P}{m}$
From definition, kinetic energy (K.E) of the body
$K . E=\frac{1}{2} m v^{2}$
Now putting the value of (1) in (2) we have
$K . E=\frac{1}{2} m\left(\frac{P}{m}\right)^{2}$
$K . E .=\frac{1}{2} m \frac{P^{2}}{m^{2}}=\frac{1}{2} \frac{P^{2}}{m}=\frac{P^{2}}{2 m}$
Thus we can write
$P^{2}=2 m \times K . E$
$\Rightarrow P=\sqrt{2 m \times K . E}$

Thus momentum $=\sqrt{2 \times \text { mass } \times \text { kinetic energy }}$
Two bodies A and B of unequal masses having same momentum have masses in the ratio $1: 2$ then their K.E are in the ratio
A. $2: 1$
B. 1:2
C. $4: 1$
D. 1: 4

Answer:

27. Relation between kinetic energy and momentum

Let us consider a body of mass ' m ' having a velocity
'v', then
momentum of the body $\mathrm{P}=$ mass \times velocity
$P=m \times v \Rightarrow v=\frac{P}{m}$
From definition, kinetic energy (K.E) of the body
$K . E=\frac{1}{2} m v^{2}$
Now putting the value of (1) in (2) we have
$K . E=\frac{1}{2} m\left(\frac{P}{m}\right)^{2}$
K. E. $=\frac{1}{2} m \frac{P^{2}}{m^{2}}=\frac{1}{2} \frac{P^{2}}{m}=\frac{P^{2}}{2 m}$

Thus we can write
$P^{2}=2 m \times K . E$
$\Rightarrow P=\sqrt{2 m \times K . E}$

Thus momentum $=\sqrt{2 \times \text { mass } \times \text { kinetic energy }}$
The kinetic energy of a given body is doubled. Its momentum will
A. remain unchanged
B. redoubled
C. become $\frac{1}{2}$ times
D. become $\sqrt{2}$ times

Answer:

Column I

(a) Work
28. (b) Kinetic energy
(c) Potential energy
(r) $\quad \frac{1}{2} m v^{2}$
(d) Displacement
(s) $F \times S$

Watch Video Solution

29.

Column I
(a) Work
(b) Force
(c) Displacement
(d) Acceleration due to gravity

Column II
(p) Metre
(q) Joule
(r) Metre/ second ${ }^{2}$
(s) Newton

- Watch Video Solution

Column I
(a) Electric drill (p) Heat to Mechanical
(b) Steam engine (q) Sound to Electrical
(c) Photosynthesis (r) Electrical to Mechanical
(d) Microphone
(s) Light to Chemical

- Watch Video Solution

31.

Column I
(a) Electric Generator (p) Electric to Mechanical
(b) Electric Motor
(c) Burning
(d) Hair dryer

Column II
(q) Electric to Heat
(r) Mechanical to Electric
(s) Chemical to Heat
32. How much work in Joule is done by a force of 4 N is moving a body through a distance of 2 m in its own direction?

D Watch Video Solution

33. The work done in pulling a load of 100 kg 4900 J .

What is te height in metres to which it is pulled ?
$\left[g=9.8 m / s^{2}\right]$

D Watch Video Solution

34. When mass and velocity are doubled, the kinetic energy becomes_________times the original.

- Watch Video Solution

