

India's Number 1 Education App

MATHS

JEE (MAIN AND ADVANCED) MATHEMATICS

BINOMIAL THEOREM

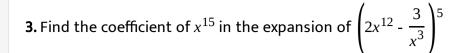
EXAMPLE

1. Find the number of terms in the expansion of $(x + 2y)^{20} + (x - 2y)^{20}$

View Text Solution

2. The number of the expansion terms in the οf $(x + a)^{20} + (x - a)^{20} + (x + ai)^{20} + (x - ai)^{20}$

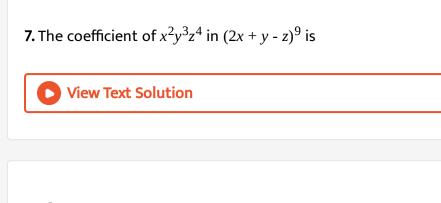
View Text Solution



4. How many middle terms are there in the expansion of $(2x + 3y)^{128}$

5. How many middle terms $(x + 2z)^{4n+1}$ possesses ?

6. The number of terms in $(2x + 3y + z - w)^{20}$ is



- **8.** n^2 1 is divisible by 8, if n is
 - Watch Video Solution

- **9.** Prove that : Find the 5^{th} term in the expansion of $(3x 4y)^7$.
 - Watch Video Solution

- **10.** Prove that : Find the 4^{th} term from the end in the expansion $(2a + 5b)^8$
 - Watch Video Solution

11. Find the number of terms in the expansion of $(4x - 7y)^{49} + (4x + 7y)^{49}$

12. Find the coefficient of x^2 in the expansion of $\left(7x^3 - \frac{2}{x^2}\right)^9$.

13. Find the middle terms are are there in the expansion of $(3a - 5b)^6$?

14. Find the middle terms are in the expansion of $(2x + 3y)^7$

15. Find the largest binomial coefficients in the expansion of $(1 + x)^{19}$

Watch Video Solution

16. Find the largest binomial coefficients in the expansion of $(1 + x)^{24}$

Watch Video Solution

17. Prove that : Find the numerically greatest term in the binomial expansion of $(1 - 5x)^{12}$ when $x = \frac{2}{3}$.

Watch Video Solution

18. Find the numerically greatest term in the expansion of $(3x - 5y)^{17}$ when $x = \frac{3}{4}, y = \frac{2}{7}$.

19. Find the value of
$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} 1$$

20. Find the value of $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} k$

21. Find the value of
$$\sum 1 \le I$$
, $\sum j \le n(1)$.

22. Find the value of $\sum 1 \le i \le \sum j \le n(1)$.

23. Find the value of $\sum 1 \le i$, $\sum j \le n(1)$.

24. Find
$$\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{k=1}^{n} (ijk)$$

25.
$$\sum_{1 \le i} \sum_{j \le n} ij = \frac{\left(\sum_{i=1}^{n} i\right)^2 - \left(\sum_{i=1}^{n} i^2\right)}{2}$$

26.
$$\sum 0 < i < \sum j \le n \left(C_i + C_j \right) = (n) \cdot 2^n$$

SOLVED EXAMPLES

- **1.** Find the number of terms in the expansion of $(2a + 3b + c)^5$
 - View Text Solution

- **2.** Find the coefficient of x^7 in $\left(1+x^2\right)^4 (1+x)^7$
 - View Text Solution

3. Find the coefficient of

$$x^{-7}$$
 in $\left(\frac{2x^2}{3} - \frac{5}{4x^5}\right)^7$

Watch Video Solution

4. Prove that : Find the coefficient of x^6 in $(3 + 2x + x^2)^6$.

- **5.** Prove that : Find the coefficient of x^6 in $(3 + 2x + x^2)^6$.
 - Watch Video Solution

- **6.** Find the coefficient of x^7 in $(1 x x^2 + x^3)^6$
 - View Text Solution

- **7.** If the coefficients of $(2r + 4)^{th}$ term and $(3r + 4)^{th}$ term in the expansion of $(1 + x)^{21}$ are equal, find r.
 - Watch Video Solution

8. If the coefficient of
$$x^7$$
 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ equals the coefficient of x^{-7} in $\left(ax - \frac{1}{bx^2}\right)^{11}$, then a and b satisfy the relation

9. Find the term independent of x in the expansion of
$$\left(\sqrt{\frac{x}{7}} - \frac{\sqrt{5}}{x^2}\right)^{10}$$

10. the tern independent of x in
$$(1 + x + 2x^2)(3x^2/2 - 1/3x)^9$$
 is

$$\left(4a + \frac{3}{2}b\right)^{11}$$

11. Find the middle term (s) in the expansion of

12. Show that the middle term in the expansion of
$$(1+x)^{2n}$$
 is $\frac{1 \cdot 3 \cdot 5 \cdot \dots \cdot (2n-1)}{n!} (2x)^n$.

13. Find the numerically greatest terms in the expansion of $(3+2a)^{15}$ when $a=\frac{5}{2}$

14. If
$$(3 + 7x - 9x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$$
 prove the $a_0 + a_1 + a_2 + \dots + a_{2n} = 1$

$$a_0 + a_2 + a_4 + \dots = \frac{1 + (-13)^n}{2}$$

Watch Video Solution

$$a_0 + a_1 + a_2 + \dots + a_{20} = 2^{10}$$

15. If $(3 + 7x - 9x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$ prove the

16. If $(1 + 3x - 2x^2)^{10} = a_0 + a_1x + a_2x^2$. $+ \dots + a_{20}x^{20}$ then prove that

17. If $(1 + 3x - 2x^2)^{10} = a_0 + a_1x + a_2x^2$. $+ \dots + a_{20}x^{20}$ then prove that

 $a_0 - a_1 + a_2 - a_3 + \dots + a_{20} = 4^{10}$

18. If
$$(1 + 3x - 2x^2)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{20}x^{20}$$
 thin prove that $a_0 + a_2 + a_4 + \dots + a_{20} = 2^9 + 2^{19}$

19. If
$$(1 + 3x - 2x^2)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{20}x^{20}$$
 thin prove that $a_1 + a_3 + a_5 + \dots + a_{19} = 2^9 - 2^{19}$

20. If the 2^{nd} , 3^{rd} and 4^{th} terms in the expansion of $(a + x)^n$ are respectively 240, 720, 1080, find a, x, n.

21. If the coefficients of x^9 , x^{10} , x^{11} in expansion of $(1 + x)^n$ are in A.P., the prove that $n^2 - 41n + 398 = 0$.

22. If n is a positive integer, then prove that $81^n + 20n$ - 1 is divisible by 100°

23. Using binomial theorem, prove that $5^{4n} + 52n - 1$ is divisible by 676 for all positive integers n.

24. 3.
$$C_0$$
 + 7. C_1 + 11. C_2 + + (4 n + 3). C_n =

25. With usual notations find the value of $3. C_1 + 5. C_2 + 7. C_3 + \dots + n$ terms

26. With usual notations prove that

$$C_1 + 2$$
. $C_2x + 3$. $C_3x^2 + \dots + 2n$. $C_{2n}x^{2n-1} = 2n(1+x)^{2n-1}$

Watch Video Solution

27. Prove that

$$\frac{{}^{20}C_1}{{}^{20}C_0} + 2.\frac{{}^{20}C_2}{{}^{20}C_1} + 3.\frac{{}^{20}C_3}{{}^{20}C_2} + \dots + 20.\frac{{}^{20}C_{20}}{{}^{20}C_{19}} = 210$$

Watch Video Solution

28. If n is a positive integer and $C_4 = {}^nC_r$ then find the value of

$$\sum_{x=1}^{n} r^2 \left(\frac{C_r}{C_{r-1}} \right)$$

29. Prove that
$$\sum_{r=1}^{n+1} \frac{2^{r+1}C_{r-1}}{r(r+1)} = \frac{3^{n+2} - 2n - 5}{(n+1)(n+2)}$$

30. Prove that $\sum_{r=0}^{\infty} r^2$. $C_r = n(n+1).2^{n-2}$

31. Prove that
$$\sum_{r=0}^{\infty} r^3$$
. $C_r = n^2(n+3).2^{n-3}$

32. If C_r denotes nC_r then show that

$$C_0 + \frac{C_1}{2} + \frac{C_2}{3}x^2 + \dots + C_n \cdot \frac{x^n}{n+1} = \frac{(1+x)^{n+1} - 1}{(n+1)x}$$

33. If $C_0, C_1, C_2, \ldots, C_n$ are the coefficient in the expansion of $(1+x)^n$

then show that

$$C_0C_r + C_1C_{r+1} + C_2C_{r+2} + \dots + C_{n-r}$$
. $C_n = \frac{(2n)!}{(n-r)!(n+r)!}$

34. With usual notations prove that

$$C_0 + 3. C_1 + 3^2. C_2 + \dots + 3^n. C_n = 4^n$$

35. With usual notations prove that

$$\frac{C_1}{C_0} + 2 \cdot \frac{C_2}{C_1} + 3 \cdot \frac{C_3}{C_2} + \dots + n \cdot \frac{C_n}{C_{n-1}} = \frac{n(n+1)}{2}$$

Hence prove that

$$\frac{15C_1}{15C_0} + 2.\frac{15C_2}{15C_1} + 3.\frac{15C_3}{15C_2} + \dots + 15.\frac{15C_{15}}{15C_{14}} = 120$$

 $(C_0 + C_1)(C_1 + C_2)....(C_{n-1} + C_n) = \frac{(n+1)^n}{n!}(C_1, C_2, C_3,...,C_n)$

- Watch Video Solution

- 37. Prove that $\sum_{r=1}^{n} r^3 \left(\frac{C_r}{\left(C_{r-1} \right)^2} \right) = \frac{n(n+1)^2 (n+2)}{12}$
 - Watch Video Solution

38. Prove that following

$$C_0 + \frac{3}{2}$$
, $C_1 + \frac{9}{3}$, $C_2 + \frac{27}{4}$, $C_3 + \dots + \frac{3^n}{n+1}$, $C_n = \frac{4^{n+1} - 1}{3(n+1)}$.

Watch Video Solution

39. Find the range of x for which the binomial expansion of the following are valid

40. Find the range of x for which the binomial expansion of the following are valid

$$(7 + 3x)^{-3}$$

41. Find the range of x for which the binomial expansion of the following are valid

$$(3 + 4x)^7$$

42. Find the range of x for which the binomial expansion of the following are valid

$$(9+5x)^{3/2}$$

43. Find the set of values of x for which the binomial expansions of the following are valid.

$$(5+x)^{3/2}$$

44. Find the set of values of x for which the binomial expansions of the following are valid. $(2+3x)^{-2/3}$

45. Write down the first three terms in the expansion of $(3 + x)^{-3/2}$

46. Write down the first three terms in the expansion of $(4 - 5x)^{-1/2}$

Watch Video Solution

47. Write down and simplify 5th term in the expansion of $(6 + 7x)^{-2}$

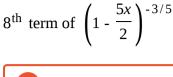
Watch Video Solution

48. Write down and simplify 7th term in the expansion of $(2 + 3x)^{-5}$

Watch Video Solution

49. Prove that: Find the

10th term of
$$\left(1 - \frac{3x}{4}\right)^{4/5}$$



51. 6th term of
$$\left(3 + \frac{2x}{3}\right)^{3/2}$$

 $(1 - 4x)^{-3}$

52. Prove that: Write the general term in the expansion of

53. Write the general term in the expansion of $\left(3 - \frac{5x}{4}\right)^{-1/2}$

54. Find the coefficient of x^5 in $(3 - 4x)^{-1}$

55. Find the coefficient of x^4 in $(8 - x)^{-1/3}$

56. Find the coefficient of x^{12} in $\frac{(1+3x)}{(1-4x)^4}$

57. If |x| is so small that x^4 and higher powers of x many be neglected , then find an approximate value of $\sqrt[4]{x^2+81}$ - $\sqrt[4]{x^2+16}$

58. If $|\mathbf{x}|$ is so small that x^2 and higher powers of \mathbf{x} many be neglected ,

prove that
$$\frac{(1+7x)^{\frac{2}{3}} \cdot (1-4x)^{-2}}{(4+7x)^{\frac{1}{2}}} = \frac{1}{2} \left(1 + \frac{283}{24} x \right)$$

59. If |x| is so small that x^2 and higher powers of x many be neglected ,

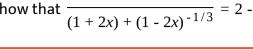
prove that
$$\sqrt{9-2x} \left(3 + \frac{4x}{5} \right)^{-1} = 1 - \frac{17}{45}x$$

60. If x is so small that x^2 and higher powers of x many be neglected ,

show that
$$\frac{\left(1 + \frac{3x}{2}\right)^{-4} (8 + 9x)^{1/3}}{\left(1 + 2x\right)^2} = 2 - \frac{77x}{4}$$

61. If x is so small that x^2 and higher powers of x many be neglected,

show that
$$\frac{\sqrt{4+x} + \sqrt[3]{8+x}}{(1+2x) + (1-2x)^{-1/3}} = 2 - \frac{5x}{2}$$



Watch Video Solution

62. Find the value of $(1.02)^{3/2}$ - $(0.98)^{3/2}$ correct to 6 decimals .

63. Find the value of $\sqrt[5]{32.16}$ correct to 4 decimals places

64. Find the value of $(627)^{1/4}$ correct to 4 decimals places

65. Show that
$$+\frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.8.12} + \dots = \sqrt{2}$$

66. Show that
$$1 + \frac{1}{2.3}/5 + \frac{1.3}{2.4} \left(\frac{3}{5}\right)^2 + \frac{1.3.5}{2.4.6} \left(\frac{3}{5}\right)^3 + \dots = \sqrt{\left[\frac{5}{2}\right]}$$

67. Sho that $\frac{3}{6} + \frac{3.5}{6.9} + \frac{3.5.7}{6.9.12} + \dots \times 3\sqrt{3} - 4$

68. Show that $1 - \frac{3}{4} + \frac{3.5}{4.8} - \frac{3.5.7}{4.8.12} + \dots \sqrt{\left(\frac{8}{27}\right)}$

69. Show that
$$\frac{4.6}{5.10} + \frac{4.6.8}{5.10.15} + \frac{4.6.8.10}{5.10.15.20} + \dots = \frac{44}{45}$$

70. Show that
$$\frac{5}{6.12} + \frac{5.8}{6.12.18} + \frac{5.8.11}{6.12.18.24} + \dots = \frac{3\sqrt[3]{4} - 4}{6}$$

71. Show that
$$\frac{4}{12.18} - \frac{4.7}{12.18.24} + \frac{4.7.10}{12.18.24.30} - \dots = 3\sqrt[3]{\frac{9}{4}} - \frac{47}{12}$$

72. If
$$x = \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \frac{1.3.5.7}{3.6.9.12} + \dots$$
 then prove that $9x^2 + 24x = 11$

74. If n is a non zero rational number then show that
$$1 + \frac{n}{2} + \frac{n(n-1)}{24} + \frac{n(n-1)(n-2)}{246} + \dots = 1 + \frac{n}{3} + \frac{n(n+1)}{36} + \frac{n(n+1)(n+2)}{369} + \dots$$

73. If $t = 1 - \frac{1}{8} + \frac{1.3}{8.16} - \frac{1.3.5}{8.16.24} + \dots$ then prove that $5t^2 = 4$

76. Prove that : Find the
$$3^{\rm rd}$$
 term from the end in the expansion of
$$\left(x^{-2/3} - \frac{3}{x^2}\right)^8.$$

75. Prove that : Find the 7th term in the expansion of $\left(\frac{4}{x^3} + \frac{x^2}{2}\right)^{14}$.

77. Prove that : Find the coefficient of x^9 and x^{10} in the expansion of

$$\left(2x^2 - \frac{1}{x}\right)^{20}.$$

78. Prove that: Find the term independent of x (that is the constant term)

in the expansion of $\left(\frac{\sqrt{x}}{3} + \frac{3}{2x^2}\right)^{10}$

79. Prove that : If the coefficients of $(2r + 4)^{th}$ and $(r - 2)^{nd}$ terms in the expansion of $(1 + x)^{18}$ are equal, find r.

80. Find the numerically greatest terms in the expansion of $(2x + 3x)^{10}$

when $x = \frac{11}{9}$

81. Find the numerically greatest terms in the expansion of

$$(3x - 4y)^{14}$$
 when $x = 8,y = 3$

82. Prove that : Suppose that n is a natural number and I, F are respectively the integral part and fractional part of $(7 + 4\sqrt{3})^n$. Then show that

(i) I is an odd integer

(ii)
$$(I + F)(I - F) = 1$$

83. Prove that : Find the coefficient of
$$x^6$$
 in $(3 + 2x + x^2)^6$.

84. The term independent of x in the expansion of $(1 + x + 2x^3)(3x^2/2 - 1/3x)^9$ is

85. Find the number of terms free of radical sign in $(5^{1/2} + 7^{1/5})^{220}$. Also

find the number of irrational terms.

86. Show that the coefficient of $x^k(0 \le k \le n)$ in the expansion of $1 + (1 + x) + (1 + x)^2 + ... + (1 + x)^n$ is ${}^{n+1}C_{K+1}$.

87. For natural numbers m, n if
$$(1-y)^m(1+y)^n = 1 + a_1y + a_2y^2 + ...$$
, and $a_1 = a_2 = 10$, then (m, n) is

88. Prove that : Find the coefficient of x^6 in $(3 + 2x + x^2)^6$.

89. Find the number of distinct terms in the expansion of
$$\left(x + \frac{2}{x} + 1\right)^{20}$$

90. Find the coefficient of
$$a^5b^3c^4$$
 in the expansion of $\left(ab + \frac{bc}{2} - \frac{ca}{3}\right)^6$

91. Prove that $x^n - y^n$ is divisible by x - y for all positive integers n.

92. Find the remainder when 7^{103} is divided by 5.

93. Find the remainder when $32^{32^{32}}$ is divided by 7.

94. Find the (i) number of rational terms

- (ii) Largest rational term in the expansion of $\left(2^{1/5} + \sqrt{3}\right)^{20}$
 - **Watch Video Solution**

95. If the coefficients of x^9 , x^{10} , x^{11} in expansion of $(1 + x)^n$ are in A.P., the prove that $n^2 - 41n + 398 = 0$.

96. Prove that : Prove that
$$2. C_0 + 7. C_1 + 12. C_2 + \dots + (5n+2)C_n = (5n+4)2_{n-1}.$$

$$C_0 + 3$$
. $C_1 + 3_2$. $C_2 + \dots + 3^n$. $C_n = 4^n$

97. Prove that: Prove that

$$\frac{C_1}{C_0} + 2 \cdot \frac{C_2}{C_1} + 3 \cdot \frac{C_3}{C_2} + \dots + n \cdot \frac{C_n}{C_{n-1}} = \frac{n(n+1)}{2}$$

99. With usual notations prove that

$$C_1 + 2$$
, $C_2x + 3$, $C_3x^2 + \dots + 2n$, $C_{2n}x^{2n-1} = 2n(1+x)^{2n-1}$

100.
$$\frac{^{20}C_1}{^{20}C_0} + 2.$$
 $\frac{^{20}C_2}{^{20}C_1} + 3.$ $\frac{^{20}C_3}{^{20}C_2} + ... + 20.$ $\frac{^{20}C_{20}}{^{20}C_{19}} = 210$

101. If n is a positive integer and $C_r = {}^nC_r$ then find the value of

$$\sum_{r=1}^{n} r^2 \left(\frac{C_r}{C_{r-1}} \right).$$

102. Prove that 5.
$$C_0 + 5^2$$
. $\frac{C_1}{2} + 5^3$. $\frac{C_2}{3} + \dots + 5^{n+1}$. $\frac{C_n}{n+1} = \frac{6^{n+1} - 1}{n+1}$ Hence show that 5. $C_0 + \frac{5^2}{2}$. $C_1 + \frac{5^3}{3}$. $C_2 + \dots + \frac{5^{11}}{11}$. $C_{10} = \frac{6^{11} - 1}{11}$

103. Prove that $1 - {}^{n}C_{1}\frac{1+x}{1+nx} + {}^{n}C_{2}\frac{1+2x}{(1+nx)^{2}} {}^{n}C_{3}\frac{1+3x}{(1+nx)^{3}} + \dots + (n+1)$

terms = 0

Watch Video Solution

104. Show that
$$\sum_{k=0}^{\infty} C_k \cdot \sin(kx) \cos(n-k)x = 2^{n-1} \sin nx \text{ where } C_r = {}^nC_r$$

Watch Video Solution

105. If n is a positive integer, prove that

$$1 - 2n + \frac{2n(2n-1)}{2!} - \frac{2n(2n-1)(2n-2)}{3!} + \dots + (-1)^{n-1} \frac{2n(2n-1)\dots(n+2)}{(n-1)!} = (-1)^{n-1} \frac{2n(2n-1)\dots(n+2)}{(n-1)!}$$

106. If
$$(1 + x + x^2)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_{2n} x^{2n}$$
, then prove that $a_0 + a_1 + a_2 \dots + a_{2n} = 3^n$

107. Find the set E of the values of x for which the binomia expansions for the following are valid $(i)(3-4x)^{\frac{3}{4}}$ $(ii)(2+5x)^{\frac{-1}{2}}$ $(iii)(7-4x)^{-5}$

108. Prove that : Find the

9th term of
$$\left(2 + \frac{x}{3}\right)^{-5}$$

109. Find the
$$9^{th}$$
 term of $\left(1 - \frac{3x}{4}\right)^{\frac{4}{5}}$

110. Prove that: Write the general term in the expansion of

$$\left(3+\frac{x}{2}\right)^{-2/3}$$

 $(2 - 3x)^{-1/3}$

111. Prove that: Write the general term in the expansion of

113. Find the coefficient of x^6 in the expansion of $(1 - 3x)^{\frac{-2}{5}}$

Watch Video Solution

114. Prove that: Find the sum of the infinite series

$$1 + \frac{2}{3} \cdot \frac{1}{2} + \frac{2.5}{3.6} \left(\frac{1}{2}\right)^2 + \frac{2.5.8}{3.6.9} \left(\frac{1}{2}\right)^3 + \dots \infty$$

115. Prove that: Find the sum of the series

$$\frac{3.5}{5.10} + \frac{3.5.7}{5.10.15} + \frac{3.5.7.9}{5.10.15.20} + \dots \infty$$

Watch Video Solution

116. If $x = \frac{1}{5} + \frac{1.3}{5.10} + \frac{1.3.5}{5.10.15} + \dots \infty$ then find $3x^2 + 6x$.

117. Find an approximate value of

- (i) $\frac{1}{\sqrt[3]{999}}$ (ii) $(627)^{\frac{1}{4}}$ corrected to 5 decimal places
 - Watch Video Solution

118. Prove that : If |x| is so small that x^3 and higher powers or x can be neglected, find approximate value of $\frac{(4-7x)^{1/2}}{(3+5x)^3}$.

119. Prove that : Find an approximate value of $\sqrt[6]{63}$ correct to 4 decimal places.

120. If |x| is so small that x^4 and higher powers of x many be neglected , then find an approximate value of $\sqrt[4]{x^2+81}$ - $\sqrt[4]{x^2+16}$

121. Prove that : Suppose that x and y are positive and x is very small when compared to y. Then find an approximate value of

$$\left(\frac{y}{y+x}\right)^{3/4} - \left(\frac{y}{y+x}\right)^{4/5}$$

122. Find the coefficient of
$$x^6$$
 in the expansion of $(1 + x + x^2 + x^3 + x^4)^6$

123. Sum the series
$$\frac{1}{3.6} + \frac{1.3}{3.6.9} + \frac{1.3.5}{3.6.9.12} + \dots$$

124. If a, b and n are positive find the value of
$$1 + \frac{na}{a+b} + \frac{n(n+1)}{2!} \left(\frac{a}{a+b}\right)^2 + \dots$$

Prove

the

value

that

of

125.

126.

$$5^{n}\left(1+\frac{n}{5}+\frac{n(n-1)}{5\cdot 10}+\frac{n(n-1)(n-2)}{5\cdot 10\cdot 15}+\ldots\infty\right)=3^{n}\left(1+\frac{n}{2}+\frac{n(n+1)}{2\cdot 4}+\frac{n(n+1)(n-2)}{2\cdot 4}+\ldots\right)$$

Show

that

 $\binom{2000}{2} + \binom{2000}{5} + \binom{2000}{8} + \dots \binom{2000}{2000} = \frac{2^{2000} - 1}{3}$

ADDITIONAL SOLVED EXAMPLES

1. Find the value of
$$\sum_{i=1}^{\infty} \sum_{i=1}^{\infty} \sum_{k=1}^{\infty} 1$$

2. Find the value of
$$\sum_{i=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n} k$$

3. Find $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} (ijk)$

4. Prove that
$$\sum_{1 \le i < \sum_{j \le n(i)} = \frac{n(n^2 - 1)}{6}$$

5.
$$\sum_{1 \le i} \sum_{1 \le i} \sum_{1 \le i} \sum_{1 \le i} \frac{\left(\sum_{i=1}^{n} i^{2}\right)^{2} - \left(\sum_{i=1}^{n} i^{2}\right)}{2}$$
Watch Video Solution

6. Prove that
$$\sum_{0 \le i} \sum_{j \le n} \left(C_i + C_j \right) = n \cdot 2^n$$

 $C_0 - C_2 + C_4 - C_6 + \dots$

8. If
$$(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$$
 then find $C_1 - C_3 + C_5 + \dots$

7. If $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n$ then

find

9. If
$$(1 + x + x^2)^n = C_0 + C_1 x + C_2 x^2 + C_3 x^3 + \dots + C_n x^n$$
 then find $C_0 + C_3 + C_6 + \dots$

10. If x is nearly equal to 1 then find the value of $\frac{mx^{m} - nx}{m - n}$

EXERCISE - 3.1 (VERY SHORT ANSWER QUESTIONS)

- 1. Expand the following using binomial theorem
- $(2a + 3b)^6$

2. Expand the following using binomial theorem

$$\left(\frac{2}{3}x + \frac{7}{4}y\right)^5$$

Watch Video Solution

3. Expand the following using binomial theorem.

$$\left(\frac{2p}{5} - \frac{3q}{7}\right)^6$$

Watch Video Solution

4. Expand the following using binomial theorem

$$\left(\frac{2}{3}l - 3m\right)^6$$

5. Find the number of terms in the expansion of

$$(3p + 4q)^{14}$$

Watch Video Solution

6. Find the number of terms in the expansion of

$$\left(\frac{3a}{4} + \frac{b}{2}\right)^9$$

Watch Video Solution

7. Find the number of terms in the expansion of $(4x - 7y)^{49} + (4x + 7y)^{49}$

Watch Video Solution

8. Find the number of terms in the expansion of $(x - 2y + 3z)^{10}$

9. Find the number of terms in the expansion of

$$(2x + 3y + z)^7$$

Watch Video Solution

10. Write down and simplify

14th term in $(3 + x)^{15}$

View Text Solution

11. Write down and simplify

 10^{th} term in $\left(\frac{3p}{4} - 5q\right)^{14}$

12. Write down and simplify

$$r^{\text{th}}$$
 term in $\left(\frac{3a}{5} + \frac{5b}{7}\right)^8$ $(1 \le r \le 9)$

13. Write down and simplify

5th term in $(3x - 4y)^7$

14. Write down and simplify

7th term in $\left(\frac{4}{x^3} + \frac{x^2}{2}\right)^{14}$

15. Prove that : Find the $3^{\mbox{\scriptsize rd}}$ term from the end in the expansion of

$$\left(x^{-2/3} - \frac{3}{x^2}\right)^8.$$

16. Write down and simplify

Find the 4th term the end in $(2a + 5b)^8$

17. Write down and simplify

Write down and simplify 6th term in $\left(\frac{2x}{3} + \frac{3y}{2}\right)^9$

$$x^{-6}$$
 in $\left(3x - \frac{4}{x}\right)^{10}$

19. Find the coefficient of
$$x^{11}$$
 in $\left(2x^2 + \frac{3}{x^3}\right)^{13}$

20. Find the coefficient of
$$x^2$$
 in $\left(7x^3 - \frac{2}{x^2}\right)^9$

21. Find the coefficient of
$$x^{-8}$$
in $\left(2x^4 - \frac{1}{3x^2}\right)^5$

22. Find the coefficient of
$$x^3$$
 in $\left(\sqrt{x^5} + \frac{3}{\sqrt{x^3}}\right)^6$

23. Find the coefficient of
$$x^9$$
 and x^{10} in $\left(2x^2 - \frac{1}{x}\right)^{20}$

24. Find the independent of x in
$$\left(\frac{x^{1/2}}{3} - \frac{4}{x^2}\right)^{10}$$

25. Find the independent of x in
$$\left(\frac{3}{\sqrt[3]{x}} + 5\sqrt{x}\right)^{25}$$

26. Find the independent of x in
$$\left(4x^3 + \frac{7}{x^2}\right)^{14}$$

$$\left(\frac{2x^2}{5} + \frac{15}{4x}\right)^9$$

28. Find the independent of x in
$$\left(3x^2 + \frac{5}{x^3}\right)^{12}$$

29. Find the independent of x in
$$\left(2x^2 - \frac{3}{x}\right)^9$$

30. Find the independent of x in
$$\left(\frac{\sqrt{x}}{3} - \frac{4}{x\sqrt{x}}\right)^{12}$$

31. Prove that : Find the term independent of x (that is the constant term)

in the expansion of $\left(\frac{\sqrt{x}}{3} + \frac{3}{2x^2}\right)^{10}$

32. Find the term independent of x in

$$(1+3x)^n\bigg(1+\frac{1}{3x}\bigg)^n.$$

33. Find the middle term (s) in the expansion of
$$\left(\frac{3x}{7} - 2y\right)^{10}$$

34. Find the middle term (s) in the expansion of
$$(4x^2 + 5x^3)^{17}$$

35. Find the middle term (s) in the expansion of $\left(\frac{3}{p^3} + 5p^4\right)^{20}$

36. Find the middle term (s) in the expansion of
$$\left(3x^2 + \frac{5}{x^3}\right)^{12}$$

Watch Video Solution

37. Find the middle terms are in the expansion of $(2x + 3y)^7$

Watch Video Solution

38. If the k^{th} term is the middle term in $\left(x^2 - \frac{1}{2x}\right)^{20}$ find T_k and T_{k+3}

Watch Video Solution

39. Find the largest binomial coefficients in the expansion of $(1 + x)^{19}$

40. Find the largest binomial coefficients in the expansion of $(1 + x)^{24}$

41. If ${}^{22}C_r$ is the largest binomial coefficient in the expansion of $(1+x)^{22}$, find the value of ${}^{13}C_r$.

42. Find the number of irrational terms in the expansion of $\left(5^{1/6} + 2^{1/8}\right)^{100}$.

43. Find the sum of last 20 coefficients in the expansions of $(1 + x)^{39}$.

44. If A and B are coefficients of x^n in the expansion of $(1+x)^{2n}$ and $(1+x)^{2n-1}$ respectively, then find the value of $\frac{A}{B}$.

EXERCISE - 3.1 (SHORT ANSWER QUESTIONS)

1. Prove that : If the coefficients of $(2r + 4)^{th}$ and $(r - 2)^{nd}$ terms in the expansion of $(1 + x)^{18}$ are equal, find r.

2. Find the sum of the coefficients of x^{32} and x^{-18} in the expansion of

$$\left(2x^3 - \frac{3}{x^2}\right)^{14}.$$

3. If the coefficient of x^{11} and x^{12} in $\left(2 + \frac{8x}{3}\right)^n$ are equal find n

4. If the coefficient of x^{10} in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ is equal to the coefficient of

 x^{-10} in $\left(ax - \frac{1}{bx^2}\right)^{11}$ then show that ab = -1

- **5.** Find the numerically greatest terms in the expansion of $(2x + 3x)^{10}$ when $x = \frac{11}{8}$
 - Watch Video Solution

6. Find the numerically greatest terms in the expansion of $(3x - 4y)^{14}$ when x = 8, y = 3

7. Find the numerically greatest terms in the expansion of
$$\left(3 + \frac{2x}{5}\right)^{12}$$
 when x = 3/4`

- **8.** Find the numerically greatest terms in the expansion of $(3y + 7x)^{10}$ when $x = \frac{1}{3}$, $y = \frac{1}{2}$
 - Watch Video Solution

9. Find the numerically greatest term (s) in the expansion of

$$(4+3x)^{15}$$
 when $x=\frac{7}{2}$

10. Find the numerically greatest term (s) in the expansion of

$$(3x + 5y)^{12}$$
 when $x = \frac{1}{2}, y = \frac{4}{3}$

11. Find the numerically greatest term (s) in the expansion of

 $(4a - 6b)^{13}$ when a = 3, b = 5

 $(3+7x)^n$ when $x=\frac{4}{5}$, n=15

13. Find the numerically greatest terms in the expansion of
$$(1 - 5x)^{12}$$
 when $x = \frac{2}{3}$

Water video Solution

14. If
$$(1 + x + x^2)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_{2n} x^{2n}$$
 then prove that $a_0 + a_1 + a_2 + \dots + a_{2n} = 3^n$

15. If
$$(1+x+x^2)^n = a_0 + a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$$
 then prove that $a_0 + a_2 + a_4 + \dots + a_{2n} = \frac{3^n + 1}{2}$

16. If
$$(1+x+x^2)^n = a_0 = a_1x + a_2x^2 + \dots + a_{2n}x^{2n}$$
 then prove that $a_1 + a_3 + a_5 + \dots + a_{2n-1} = \frac{3^n - 1}{2}$

17. If $(1 + x + x^2)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_{2n} x^{2n}$, then prove that $a_0 + a_3 + a_6 + a_9 + \dots = 3^{n-1}$

18. If $(1 + x + x^2 + x^3)^7 = b_0 + b_1 x + b^2 x^2 + \dots b_{21} x^{21}$, then find the value of

 $b_0 + b_2 + b_4 + \dots + b_{20}$

19. If $(1 + x + x^2 + x^3)^7 = b_0 + b_1 x + b^2 x^2 + \dots b_{21} x^{21}$, then find the value of

$$b_1 + b_3 + b_5 + \dots + b_{21}$$

20. Find the remainder when 2^{2013} in divided by 17.

21. Find the number of irrational terms in the expansion of $(5^{1/6} + 2^{1/8})^{100}$.

EXERCISE - 3.1 (LONG ANSWER QUESTIONS)

1. If 36, 84, 126 are three successive binomial coefficients in the expansion of $(1 + x)^n$, find n.

2. If the coefficients of 4 consecutive terms in the expansion of $(1 + x)^n$ are a_1, a_2, a_3, a_4 respectively, then show that

$$\frac{a_1}{a_1 + a_2} + \frac{a_3}{a_3 + a_4} = \frac{2a_2}{a_2 + a_3}$$

3. If the coefficient of r^{th} , $(r+1)^{th}$ and $(r+2)^{th}$ terms in the expansion of $(1+x)^n$ are in A.P then show that $n^2 - (4r+1)n + 4r^2 - 2 = 0$

4. If P and Q are the sum of odd terms and the sum of even terms respectively in the expansion of $(x + a)^n$ then prove that

$$P^2 - Q^2 = \left(x^2 - a^2\right)^n$$

5. If P and Q are the sum of odd sum terms and the sum of even terms respectively in the expansion of $(x + a)^n$ then prove that

Watch Video Solution

 $4PQ = (x + a)^{2n} - (x - a)^{2n}$

6. Using binomial theorem prove that $50^n - 49n - 1$ is divisible by 49^2 , $\forall n \in N$

7. If I, n are positive integers , 0 < f < 1 and if $(7 + 4\sqrt{3})^n = I + f$, then show that I is an odd integer

8. If I, n are positive integers , 0 < f < 1 and if $(7 + 4\sqrt{3})^n = I + f$, then show that (I + f)(1 - f) = 1

Watch Video Solution

- 9. If R, n are positive integers, n is odd,
- 0 < F < 1 and if $\left(5\sqrt{5} + 11\right)^n = R + F$, then prove that

R is an even integer and

Watch Video Solution

- 10. If R, n are positive integers, n is odd,
- 0 < F < 1 and if $\left(5\sqrt{5} + 11\right)^n = R + F$, then prove that

$$(R+F), F=4^n$$

1. Prove that following

i) 2.
$$C_0 + 5$$
. $C_1 + 8$. $C_2 + \dots + (3n+2)C_n = (3n+4).2^{n-1}$

- 2. With usual notations prove that
- 2. $C_0 + 7$. $C_1 + 12$. $C_2 + \dots + (5n + 2)$. $C_n = (5n + 4) \cdot 2^{n-1}$
 - Watch Video Solution

- **3.** $C_0 + 4$. $C_1 + 7$. $C_2 + \dots (n+1)$ terms =
 - Watch Video Solution

- **4.** Prove that $C_0 + 2$. $C_1 + 4$. $C_2 + 8$. $C_3 + \dots + 2^n$. $C_n = 3^n$
 - Watch Video Solution

5. Prove that 3. $C_0 + 6$. $C_1 + 12$. $C_2 + \dots + 3.2^n$. $C_n = 3^{n+1}$

Watch Video Solution

EXERCISE - 3.2 (LONG ANSWER QUESTIONS)

1. With usual notation prove that

$$2^{2}$$
. $C_{0} + 3^{2}$. $C_{1} + 4^{2}$. $C_{2} + \dots + (n+2)^{2}$. $C_{n} = (n^{2} + 9n + 16)2^{n-2}$

2. Prove that

$$\frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \frac{C_7}{8} + \dots = \frac{2^n - 1}{n + 1}$$

3. Prove that: If n is a positive integer, then prove that

$$C_0 + \frac{C_1}{2} + \frac{C_2}{3} + \dots + \frac{C_n}{n+1} = \frac{2^{n+1}-1}{n+1}.$$

Watch Video Solution

4. Prove that

$$C_0$$
. $C_3 + C_1$. $C_4 + C_2$. $C_5 + \dots + C_{n-3}$. $C_n = {}^{2n}C_{n+3}$

5. Prove that

$$\left({^{2n}C_0} \right)^2 - \left({^{2n}C_1} \right)^2 + \left({^{2n}C_2} \right) - \left({^{2n}C_3} \right)^2 + \dots + \left({^{2n}C_{2n}} \right)^2 = (-1)^{n2n}C_n.$$

1. Find the range of x for which the binomial expansions of the following are valid.

$$(2 + 5x)^{-1/2}$$

Watch Video Solution

2. Find the range of x for which the binomial expansions of the following are valid .

$$(7 - 4x)^{-5}$$

Watch Video Solution

 $\bf 3.$ Find the set of values of x for which the binomial expansions of the following are valid.

$$(2+3x)^{-2/3}$$

4. Find the range of x for which the binomial expansions of the following are valid.

$$(x+5)^{3/2}$$

Watch Video Solution

5. Find the range of x for which the binomial expansions of the following are valid.

$$(7 + 3x)^{-5}$$

Watch Video Solution

6. Find the range of x for which the binomial expansions of the following are valid.

$$\left(4-\frac{x}{3}\right)^{-1/2}$$

7. Find the range of x for which the binomial expansions of the following are valid.

8. Write down the first three terms is the following expansions

$$(a + bx)^r$$

$$\left(1+\frac{x}{2}\right)^{-5}$$

 $(3+4x)^{-2/3}$

Watch Video Solution

10. Write down the first three terms is the following expansions

9. Write down the first three terms is the following expansions

 $(3 + 5x)^{-3}$

$$(1+4x)^{-4}$$

12. Write down the first three terms is the following expansions

$$(8 - 5x)^{2/3}$$

13. Find the

$$6^{th}$$
 term of $\left(1+\frac{x}{2}\right)^{-5}$

14. Find the

$$7^{\text{th}}$$
 term of $\left(1 - \frac{x^2}{3}\right)^{-4}$

15. Find the

 10^{th} term of $(3 - 4x)^{-2/3}$.

16. Find the

 5^{th} term of $\left(7 + \frac{8y}{3}\right)^{7/4}$.

17. Find the general term $(r + 1)^{th}$ term in the expansion of

$$\left(1+\frac{4x}{5}\right)^{5/2}$$

18. Find the general term in the expansion of $\left(3 + \frac{x}{2}\right)^{-2/3}$

19. Find the general term in the expansion of $\left(1 - \frac{5x}{3}\right)^{-3}$

20. Find the general term in the expansion of $(4 + 5x)^{-3/2}$

21. Find the coefficient of x^6 in $(1 - 3x)^{-2/5}$

Watch Video Solution

22. Find the coefficient of x^4 in $(1 - 4x)^{-3/5}$

Watch Video Solution

EXERCISE - 3.3 (LONG ANSWER QUESTIONS)

1. Find the coefficient of x^{10} in the expansion of $\frac{1+2x}{(1-2x)^2}$.

Watch Video Solution

2. Find the coefficient of x^5 in $\frac{(1-3x)^2}{(3-x)^{3/2}}$.

3. Find the coefficient of
$$x^8$$
 in
$$\frac{(1+x)^2}{\left(1-\frac{2}{3}x\right)^3}$$
.

4. Find the coefficient of
$$x^7$$
 in $\frac{(2+3x)^3}{(1-3x)^4}$.

5. Find the coefficient of x^3 in $\frac{(1-5x)^3(1+3x^2)^{3/2}}{(3+4x)^{1/3}}$

6. If |x| is so small that x^2 and higher powers of x may be neglected show

that
$$\left(\sqrt{4-x}\right)\left(3-\frac{x}{2}\right)^{-1} = \frac{2}{3}\left(1+\frac{x}{24}\right)$$

7. If $|\mathbf{x}|$ is so small that x^2 and higher powers of \mathbf{x} may be neglected show that

$$\frac{(4+3x)^{1/2}}{(3-2x)^2} = \frac{2}{9} + \frac{41}{108}x$$

8. If |x| is so small that x^2 and higher powers of x may be neglected show that

$$\frac{\left(1 - \frac{2}{3}x\right)^{3/2} \cdot (32 + 5x)^{1/5}}{(3 - x)^3} = \frac{2}{27} \left(1 + \frac{x}{32}\right)$$

9. If $|\mathbf{x}|$ is so small that x^2 and higher powers of \mathbf{x} may be neglected show that

$$\frac{(8+3x)^{2/3}}{(2+3x)\sqrt{4-5x}} = 1 - \frac{5x}{8}$$

Watch Video Solution

10. If |x| is so small that x^2 and higher powers of x may be neglected show

$$\frac{(4-7x)^{1/2}}{(3+5x)^3} = \frac{2}{27} \left(1 - \frac{47}{8}x \right)$$

that

Watch Video Solution

11. BY neglecting x^4 and higher powers of x show $\sqrt[3]{x^2 + 64} - \sqrt[3]{x^2 + 27} = 1 - \frac{7}{432}x^2$

Watch Video Solution

12. Suppose p, q are positive and p is very small when compared to q.

that

Then find an approximate value of

$$\left(\frac{q}{q+p}\right)^{1/2} + \left(\frac{q}{q-p}\right)^{1/2}.$$

13. Suppose s and t are positive and t is very small when compared to s.

Then find an approximate value of

$$\left(\frac{s}{s+t}\right)^{1/3} - \left(\frac{s}{s-t}\right)^{1/3}.$$

14. Find the value of the $\sqrt{199}$ correct to 4 decimal places

15. Find the value of the $\sqrt[5]{242}$ correct to 4 decimal places

16. Find an approximate value of the following corrected to 4 decimal places.

$$\sqrt[7]{127}$$

17. Find the value of the $\frac{1}{\sqrt[3]{999}}$ correct to 4 decimal places

18. Find an approximate value of the following corrected to 4 decimal places.

$$\sqrt[3]{1002} - \sqrt[3]{998}$$

20. Expand $5\sqrt{5}$ in increasing power of 4/5`

21. Show that $1 + \frac{1}{3} + \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \dots = \sqrt{3}$

22. Show that $1 + \frac{2}{3.1}/2 + \frac{2.5}{3.6} \left(\frac{1}{2}\right)^2 + \frac{2.5.8}{3.6.9} \left(\frac{1}{2}\right)^3 + \dots = \sqrt[3]{4}$

$$\frac{7}{5} \left(1 + \frac{1}{10^2} + \frac{1.3}{1.2} \cdot \frac{1}{10^4} + \frac{1.3.5}{1.2.3} \cdot \frac{1}{10^6} + \dots \right)$$

24. Show that $\frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} + \dots = \sqrt{8} - 1$

25. Show that $\frac{3.5}{5.10} + \frac{3.5.7}{5.10.15} + \frac{3.5.7.9}{5.10.15.20} + \dots = \frac{5\sqrt{5}}{3\sqrt{3}} - \frac{8}{5}$

26. Show that $\frac{3}{48} - \frac{3.5}{4812} + \frac{3.5.7}{481216} - \dots = \sqrt{\frac{2}{3}} - \frac{3}{4}$

27. $\frac{1}{4} - \frac{5}{48} + \frac{5.7}{4812} - \dots =$

28. If
$$x = \frac{1}{5} + \frac{1.3}{5.10} + \frac{1.3.5}{5.10.15} + \dots \infty$$
 then find $3x^2 + 6x$.

Watch Video Solution

- **29.** If $x = \frac{5}{(2!).3} + \frac{5.7}{(3!).3^2} + \frac{5.7.9}{(4!).3^3} + \dots$
- then find the value of $x^2 + 4x$.

- **30.** If $t = \frac{4}{5} + \frac{4.6}{5.10} + \frac{4.6.8}{5.10.15} + \dots \infty$ then prove that 9t = 16
 - **Watch Video Solution**

ADDITIONAL EXERCISE

1. The term independent of x ($x > 0, x \ne 1$) in the expansion of

$$\left[\frac{(x+1)}{\left(x^{2/3}-x^{1/3}+1\right)}-\frac{(x-1)}{\left(x-\sqrt{x}\right)}\right]^{10}$$
 is

 $-(x^{2/3}-x^{1/3}+1) - (x-\sqrt{x})$

Watch Video Solution

- - **2.** Find coeff. of x^{25} in the expansion of $\sum_{k=0}^{\infty} (-1)^{k50} C_k (2x-3)^{50-k} (2-x)^k$.
 - Watch Video Solution

- **3.** If the 6th term in the expansion of $\left(\frac{1}{x^{8/3}} + x^2 \log_{10} x\right)^8$ is 5600, then the value of $x = x^2 \log_{10} x$
 - Watch Video Solution

4. Find the coefficient of x^6 in the expansion of $(1 + x^2 - x^3)^8$

5. Find the number of distinct terms in the expansion

$$(x+2y+3z+w)^{20}$$

6. Find the number of distinct terms in the expansion

$$(x + y + z)^{10} + (x + y - z)^{10}$$

7. Find the coefficient of x^{10} in the expansion of $(1+2x)^{21}+(1+2x)^{22}+\ldots+(1+2x)^{30}$

8. The expansion
$$\left[x + \left(x^3 - 1 \right)^{1/2} \right]^5 + \left[x - \left(x^3 - 1 \right)^{1/2} \right]^5$$
 is a polynomial of

degree

- **9.** If the middle term of the expansion of $(1+x)^{2n}$ is the greatest term then prove that x lies between $\frac{n}{n+1}$ and $\frac{n+1}{n}$
 - Watch Video Solution

- **10.** Show that the greatest coefficient in the expansion of $(x + y + z + w)^{15}$ is $\frac{15!}{3!(4!)^3}$
 - Watch Video Solution

- **11.** Find the sum of the coefficients of integral powers of x in $(1 + 3\sqrt{x})^{20}$
- Watch Video Solution

12. If n is integer greater than 1 show that

$$a - {^{n}C_{1}}(a - 1) + {^{n}C_{2}}(a - 2) + {^{n}C_{3}}(a - 3)..... + (-1)^{n}(a - n) = 0$$

14. Prove that

$$\frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots = \frac{2^{n-1}}{n!}$$

13. Prove that $\frac{C_0}{1} + \frac{C_2}{3} + \frac{C_4}{5} + \frac{C_6}{7} + \dots = \frac{2^n}{n+1}$

15. Show that
$$\sum_{r=0}^{50} {100 \choose r}$$
. ${200 \choose 150+r} = {300 \choose 50}$

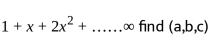
16. Show that
$$C_0 + (C_0 + C_1) + (C_0 + C_1 + C_2) + \dots + (C_0 + C_1 + \dots + C_n) = (n+2) \cdot 2^{n-1}$$

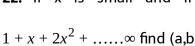
17. If x > 0, write the first negative term in the expansion of
$$(1 + 2x)^{23/2}$$

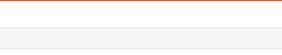
18. Find the coefficient of
$$x^n$$
 in the expansion of $\left(1 + 2x + 3x^2 + 4x^3 + \dots\right)^2$

21.

22. If x is small and if the expansion of
$$a + \frac{b}{1 + 2x} + \frac{c}{1 - 3x^2}$$
 is



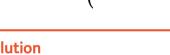




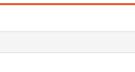
Watch Video Solution

19. Find

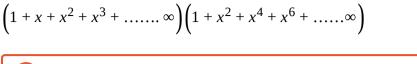
 $\left(1 + 2x + 3x^2 + 4x^3 + 5x^4 + 6x^5 + 7x^6 + 8x^7\right)^{10}$

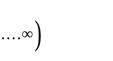


Find the coefficient of x^7 in the expansion



the coefficient of x^6





in

of

23. If x nearly equal to 1 show that $\frac{px^p - qx^q}{p - q} = x^{p+q} \text{ (nearly)}$

Watch Video Solution

- **24.** If x nearly equal to 1 show that $\frac{px^q qx^p}{x^q x^p} = \frac{1}{1 x}$ (nearly)
 - Watch Video Solution

25.
$$1 + n$$
. $\frac{2n}{1+n} + \frac{n(n+1)}{1.2} \left(\frac{2n}{1+n}\right)^2 + \dots$

1. Ratio of middle term in
$$\left(px^3 + \frac{q}{x^2}\right)^{15}$$
 is

A.
$$p: qx^2$$

B.
$$px^5: q$$

C.
$$px^2: q$$

D.
$$p : qx^5$$

Answer: B

- **2.** The numerically greatest term in the expansion $(2x 3y)^{12}$ when x = 1 and y = 5/2 is the
 - A. 11th term
 - B. 10th term
 - C. 9th term

Answer: A

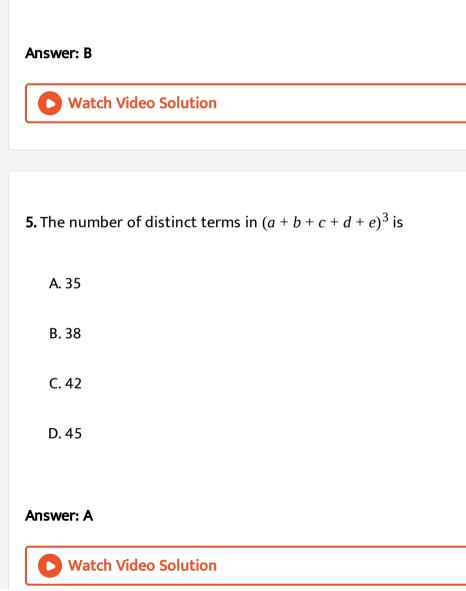
Watch Video Solution

- **3.** No. of term in $(1 + 5\sqrt{2}x)^9 + (1 5\sqrt{2}x)^9$ if x > 0 is
 - A. 3
 - B. 5
 - C. 4
 - D. 6

Answer: B

Watch Video Solution

4. No. of term in $(1 + 3x + 3x^2 + x^3)^6$ is



A. 17

B. 19

C. 21

D. 16

6. If a and b are respective coefficients of x^m and x^n in the expansion of

$$(1+x)^{m+n}$$
 then

A.
$$a + b = m + n$$

$$B.a = 2b$$

$$D.b = 2a$$

Answer: C

Watch Video Solution

7. If the coefficient of $(3r)^{th}$ and $(r+2)^{th}$ terms in the expansion of

$$(1+x)^{2n}$$
 are equal then n =

Answer: A

Watch Video Solution

- **8.** If the coefficients ${}^{n}C_{4}$, ${}^{n}C_{5}$, ${}^{n}C_{6}$ of $(1+x)^{n}$ are in A.P. then n is equal to
 - A. 12
 - B. 11
 - C. 7
 - D. 8

Answer: C

9.
$$C_0 + 2$$
. $C_1 + 4$. $C_2 + \dots + C_n \cdot 2^n = 243$, then n =

B. 10

C. 15

D. 20

Answer: A

10.
$$\frac{1}{2}$$
. ${}^{n}C_{0} + {}^{n}C_{1} + 2$. ${}^{n}C_{2} + 2^{2}$. ${}^{n}C_{3} + \dots + 2^{n-1}$. ${}^{n}C_{n} = 0$

A.
$$\frac{3^{-n}}{2}$$

B.
$$\frac{4^{2n}}{2}$$

c.
$$\frac{4^{n}}{2}$$

D.
$$\frac{3^{4}}{2}$$

Answer: D

Watch Video Solution

- **11.** ${}^{(2n+1)}C_0 + {}^{(2n+1)}C_1 + {}^{(2n+1)}C_2 + \dots + {}^{(2n+1)}C_n =$
 - **A.** 2ⁿ
 - B. 2^{-n}
 - $C. 2^{2n}$
 - D. 3^{2n}

Answer: C

- **12.** $^{(2n+1)}C_0 ^{(2n+1)}C_1 + ^{(2n+1)}C_2 \dots + ^{(2n+1)}C_{2n} =$
 - A. 0

B. 1

C. - 1

D. 2

Answer: B

Watch Video Solution

13.
$$\frac{\left(1 + {}^{n}C_{1} + {}^{n}C_{2} + {}^{n}C_{3} + \dots + nC_{n}\right)^{2}}{1 + {}^{2n}C_{1} + {}^{2n}C_{2} + {}^{2n}C_{3} + \dots + {}^{2n}C_{2n}} =$$

A. 1

B. -1

C. 2

D. 3

Answer: A

14.
$$^{21}C_0 + ^{21}C_1 + ^{21}C_2 + \dots + ^{21}C_{10} =$$

A. 2^{10}

 $B.2^{20}$

C. 2²¹

 $D.2^{19}$

Answer: B

15.
$$C_0^2 + C_1^2 + C_2^2 + \dots + C_{25}^2 =$$

A.
$$^{49}C_{50}$$

B.
$$^{49}C_{25}$$

c.
$${}^{50}C_{25}$$

D.
$$^{39}C_{40}$$

Watch Video Solution

16. Prove that

$$\left({^{2n}C_0} \right)^2 - \left({^{2n}C_1} \right)^2 + \left({^{2n}C_2} \right) - \left({^{2n}C_3} \right)^2 + \dots + \left({^{2n}C_{2n}} \right)^2 = (-1)^{n2n}C_n.$$

A.
$$(-1)^n$$
. ${}^{2n}C_n$

B.
$$(-1)^{2n}$$
. $^{2n}C_n$

C.
$$(-1)^n$$
. ${}^{3n}C_n$

D.
$$(-1)^n$$
. nC_n

Answer: A

A.
$${}^{2n}C_{n-2}$$

B. ${}^{2n}C_n$

C.
$${}^{2n}C_{n-1}$$

D. ${}^{2n}C_{2n-2}$

Answer: A

Watch Video Solution

18. If the coefficients of x^2 and x^4 in the expansion of $\left(x^{\frac{1}{3}} + \frac{2}{x^{\frac{1}{3}}}\right)^{18}$, (x < 0)

B. 182

c.
$$\frac{5}{4}$$

D. $\frac{4}{5}$

Answer: B

Watch Video Solution

- **19.** Sum of the coefficients of $\left(1 + \frac{x}{3} + \frac{2y}{3}\right)^{12}$
 - $A. 2^{6}$
 - $B.2^{8}$
 - $C. 2^{12}$
 - $D. 10^2$

Answer: C

Watch Video Solution

20. Sum of coefficients of x^{2r} , r = 1, 2, 3... in $(1 + x)^n$ is

A.
$$(2n^{n-1} - 1)$$

B.
$$(2^{n-1} + 1)$$

C.
$$(2^{n-2}+1)$$

D.
$$(2n^{n-2} - 1)$$

Answer: A

Watch Video Solution

21. Sum of coefficients of terms of even powers of x in $(1 - x + x^2 - x^3)^7$ is

- $A. 2^{17}$
- $B.2^{17}$
- $C. 2^{13}$
- $D. 2^{13}$

Answer: C

22. Sum of coefficients of terms of odd powers of x in $(1 - x + x^2 - x^3)^9$ is

- **A.** 2¹⁷
- B. 2^{17}
- $C. 2^{13}$
- D. 2^{12}

Answer: A

Watch Video Solution

23. The range of x of which the expansion $(9 + 25x^2)^{-6/5}$ is valid is

- A. (3/5, 3/5)
- B. [3/5, 3/5]
- C. $(-\infty, 3/5)$
- D. $(-\infty, -3/5) \cup (3/5, \infty)$

Watch Video Solution

24. If the expansion $(4a - 8x)^{1/2}$ were to possible then

A.
$$2 < \left| \frac{a}{x} \right|$$

B. 2 >
$$\left| \frac{a}{x} \right|$$

C.
$$2 < \left| \frac{x}{a} \right|$$

D. 2 >
$$\left| \frac{x}{a} \right|$$

Answer: A

Watch Video Solution

25. For $|x| < \frac{1}{2}$, the value of the fourth term of $(1 - 2x)^{-3/4}$ is

C. 8

D. 36

Answer: C

26. The coefficient of x^7 in $\left(1 + 2x + 3x^2 + 4x^3 + \dots \times \right)$

Answer: C

A. $-\frac{77}{16}x^3$

B. $\frac{16}{77}x^3$

c. $\frac{77}{16}x^3$

D. $-\frac{16}{77}x^3$

Watch Video Solution

27.
$$1 + \frac{1}{10^2} + \frac{1.3}{1.2} \cdot \frac{1}{10^4} + \frac{1.3.5}{1.2.3} \cdot \frac{1}{10^6} + \dots \infty =$$

A.
$$\frac{\sqrt{7}}{2}$$
B.
$$\frac{5\sqrt{2}}{7}$$
C.
$$\left(\frac{5}{7}\right)^{1/2}$$
D.
$$\frac{5\sqrt{2}}{3}$$

Watch Video Solution

EXERCISE - II

1. If r^{th} term is middle term in $\left(x^2 - \frac{1}{2x}\right)^{20}$ then $(r+3)^{th}$ term is

A.
$$\frac{{}^{20}C_7x}{2^{13}}$$

$$B. - \left(\frac{^{20}C_5x}{4^{13}}\right)$$

C.
$$-\left(\frac{^{20}C_7x}{2^{13}}\right)$$

D. -
$$\left(\frac{^{20}C_{14}x}{4^{13}}\right)$$

Answer: C

Watch Video Solution

2. If 'a' is the coefficient of the middle term in the expansion of $(1+x)^{2n}$ and b,c are the coefficients of two middle terms in the expansion of $(1+x)^{2n-1}$ then

A.
$$a + b = c$$

D.
$$b + c = 2a$$

Answer: B

Watch Video Solution

3. The coefficient of the middle term in $(1 + \alpha x)^4$ and $(1 - \alpha x)^6$ is same

then
$$\alpha =$$

$$C. -3/10$$

Answer: C

4. The numerical value of middle terms in $\left(1 - \frac{1}{x}\right)^n (1 - x)^n$ is

A.
$${}^{2n}C_n$$

B.
$${}^{n}C_{n}$$

$$C. - \binom{2n}{n}$$

D.
$$-\binom{n}{C_n}$$

Answer: A

Watch Video Solution

5. If the middle term of $(1 + x)^{2n}$ is $\frac{1 \cdot 3 \cdot 5 \cdot \dots (2n - 1)k}{n!}$ then k =

A.
$$(3x)^{n+1}$$

B.
$$(2x)^{n+1}$$

$$C. (2x)^n$$

D.
$$(3x)^{n}$$

Answer: C

Watch Video Solution

6. The coefficient of the middle term in the expansion of $(1 + x)^{40}$ is

A.
$$\frac{1.3.5 - - - 39}{20!}$$
.2²⁰

B.
$$\frac{1.3.5 - - 39}{20!}$$

c.
$$\frac{40!}{20!}$$

D. 40!2²⁰

Answer: A

- 7. If the third term in the expansion of $(x + x \log_{10} x)^5$ is 10^6 then x is
 - A. 1

B. 100

$$\mathsf{C.} \; \frac{1}{\sqrt{10}}$$

D. 10

Answer: D

Watch Video Solution

8. In the expansion of $(1 + x)^n$ if the 2nd and 3rd terms are respectively a,b

then x =

A.
$$\frac{a^2 - 2b}{a}$$

$$B. \frac{a^2}{a^2 - 2b}$$

$$C. \frac{a}{a^2 - 2b}$$

D.
$$\frac{a^2 - 2a}{a}$$

Answer: D

9.
$$\frac{18^3 + 7^3 + 3.18.7.25}{3^6 + 6.243.2 + 15.81.4 + 20.27.8 + 15.9.16 + 6.3.32 + 64} =$$

- B. 3
- C. 2
- D. 1

Answer: D

Watch Video Solution

10. The expansion $\left[x + \left(x^3 - 1\right)^{1/2}\right]^5 + \left[x - \left(x^3 - 1\right)^{1/2}\right]^5$ is a polynomial of degree

- A. 7
- B. 4

C. 5

D. 6

Answer: A

Watch Video Solution

11. If the ratio of the 7th term from the beginning to the 7th term from

the end in the expansion of $\left(\sqrt{2} + \frac{1}{\sqrt{3}}\right)^x$ is $\frac{1}{6}$, then x is

A. 3

B. 6

C. 12

D. 9

Answer: D

12. If the sum of odd terms and the sum of even terms in $(x + a)^n$ are p and q respectively then $p^2 - q^2 =$

A.
$$\left(x^2 + a^2\right)^n$$

B.
$$(x^2 - a^2)^n$$

C.
$$(a^2 - x^2)^n$$

D.
$$x^2 - a^2$$

Answer: B

- **13.** In the expansion of $\left(\sqrt[5]{3} + \sqrt[7]{2}\right)^{24}$, then rational term is
 - A. *T*₁₄
 - B. T_{16}
 - C. T_{15}

D.
$$T_7$$

Answer: C

Watch Video Solution

- **14.** The sum of the rational terms in expansion of $(\sqrt{2} + 3^{1/5})^{10}$ is
 - A. 41
 - B. 42
 - C. 32
 - D. 38

Answer: A

16. The number of irrational terms in the expansion of $\left(\sqrt[5]{3} + \sqrt[3]{7}\right)^{36}$ is

$$\left(\sqrt[4]{5} + \sqrt[5]{4}\right)^{100}$$
 is

- A. 50
- B. 5
- C. 6
- D. 51

Answer: C

- - A. 30
 - B. 34
 - C. 31

Answer: B

Watch Video Solution

- 17. The number integral terms in the expansion of $\left(\sqrt{3} + \sqrt[8]{5}\right)^{256}$ is
 - A. 35
 - B. 32
 - C. 33
 - D. 34

Answer: C

18. The sum of the coefficient of x^{32} and x^{-17} in $\left(x^4 - \frac{1}{x^3}\right)^{15}$ is

Answer: D

19. If the coefficient of
$$x^7$$
 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ equals the coefficient of x^{-7} in $\left(ax - \frac{1}{bx^2}\right)^{11}$, then a and b satisfy the relation

A.
$$ab = 1$$

B.
$$a/b = 1$$

$$C. a + b = 1$$

D.
$$a - b = 1$$

Answer: A

Watch Video Solution

20. The term independent of x in $(2x^{1/2} - 3x^{-1/3})^{20}$

A.
$${}^{20}C_7 2^8 3^{12}$$

B.
$${}^{20}C_82^73^{13}$$

c.
$${}^{20}C_8C^83^{12}$$

D.
$${}^{20}C_7 2^7 3^{13}$$

Answer: C

21. If the absolute term (independent of x) in the expansion of
$$\left(\sqrt{x} - k/x^2\right)^{10}$$
 is 405 then $k =$

A.
$$\pm 3^{1/4}$$

B.
$$\pm 4^{1/3}$$

Answer: D

Watch Video Solution

22. If the 5th term is the term independent of x in the expansion of

$$\left(x^{2/3} + \frac{1}{x}\right)^n \text{ then n =}$$

C. 7

D. 12

Answer: A

Watch Video Solution

23. If a term independent of x is to exist in the expansion of $\left(x + \frac{1}{x^2}\right)^n$

then n must be

A. a multiple of 2

B. a multiple of 3

C. a multiple of 5

D. a multiple of 7

Answer: B

24. The term independent of x in the expansion of $(1+x)^n \left(1+\frac{1}{x}\right)^n$ is

A.
$$C_0^2 + C_1^2 + C_2^2 + \dots + C_n^2$$

B.
$${}^{2n}C_n$$

C.
$$\frac{1.3.5....(2n-1)}{n!}2^n$$

D. All of the above

Answer: B

Watch Video Solution

25. The sum of the coefficient in the expansion of $(1 + x + x^2)^n$ is

A. 2

B. 2^{n}

 $C.3^n$

D. 4ⁿ

Answer: C

Watch Video Solution

is 64 then the term independent of x is

- **26.** The sum of the binomial coefficients in the expansion of $\left(\frac{2x}{3} + \frac{3}{2x^2}\right)^n$
 - **A.** 20/3
 - B. 3/20
 - **C**. 10/3
 - D. 3/10

Answer: A

27. The two successive terms in the expansion $(1 + x)^{24}$ whose coeff's are in the ratio 4:1 are

A. 18th, 19th

B. 19th, 20th

C. 20th, 21th

D. 21th, 22nd

Answer: C

Watch Video Solution

28. If two consecutive terms in the expansion of $(x + a)^n$ are equal to where n is a positive integer then $\frac{(n+1)a}{x+a}$ is

A. Negative integer

B. rational number

C. a real number

D. a positive integer

Answer: D

Watch Video Solution

29. The coefficient of x^{53} in $\sum_{r=0}^{100} C_r (x-3)^{100-r} . 2^r$ is

100

- A. $^{100}C_{47}$
- B. $^{100}C_{53}$
- C. $^{-100}C_{53}$
- D. $^{100}C_{100}$

Answer: C

30. Let $n \in \mathbb{N}$. If $(1+x)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$ and

 $a_{n-3}, a_{n-2}, a_{n-1}$ are in A.P then

Statement - I : a_1 , a_2 , a_3 are in A.P.

Statement -II: n = 7

The true statements are:

A. only I

B. only II

C. both I, II

D. neither I nor II

Answer: C

Watch Video Solution

31. If the coefficient of rth term and (r + 1)th term in the expansion of $(1 + x)^{20}$ are in the ration 1:2, then r =

- A. 6
- B. 7
- C. 8
- D. 9

Answer: B

Watch Video Solution

32. If the coefficients of r^{th} , $(r+1)^{th}$ and $(r+2)^{th}$ terms in the binomial expansion of $(1+y)^m$ are in A.P. then m and r satisfy the equation

A.
$$m^2 - m(4r - 1) + 4r^2 + 2 = 0$$

B.
$$m^2$$
 - $m(4r + 1) + 4r^2 - 2 = 0$

C.
$$m^2$$
 - $m(4r + 1) + (4r^2 + 2) = 0$

D.
$$m^2 - m(4r - 1) + 4r^2 - 2 = 0$$

Answer: B

33. If the coefficients of three consecutive terms in the expansion of

 $(1 + x)^n$ are 45, 120 and 210 then the value of n is

A. 8

B. 12

C. 10

D. 14

Answer: C

Watch Video Solution

34. The coefficient of x^n in expansion of $(1 + x)(1 - x)^n$ is

A. (n - 1)

B. $(-1)^n(1-n)$

C.
$$(-1)^{n-1}(n-1)^2$$

D.
$$(-1)^{n-1}n$$

Answer: B

Watch Video Solution

35. The coefficient of x^{11} in the expansion of $(1 - 2x + 3x^2)(1 + x)^{11}$ is

- A. 164
- B. 144
- C. 116
- D. 261

Answer: B

36. The coefficient of
$$x^5$$
 in the expansion of $(x^2 - x - 2)^5$ is

- A. -83
- B.-82
- C. -81
- D. 0

Answer: C

Watch Video Solution

37. The coefficient of x^4 in $\left(1 + x + x^2 + x^3\right)^{11}$ is

- - A. 144
 - B. 144
 - C. -128
 - D. -142

Answer: A

Watch Video Solution

38. Coefficient of x^5 in $(1+x)^{21} + (1+x)^{22} + \dots + (1+x)^{30}$ is

A.
$$^{51}C_5$$

B.
$${}^{9}C_{5}$$

c.
$${}^{31}C_6$$
 - ${}^{21}C_6$

D.
$${}^{30}C_5 + {}^{20}C_5$$

Answer: C

Watch Video Solution

39. Coefficient of $a^8b^6c^4$ in $(a + b + c)^{18}$ is

A.
$$\frac{18!}{4!10!5!}$$

B. $\frac{18!}{3!8!8!}$ C. $\frac{18!}{2!7!9!}$

D. $\frac{18!}{8!6!4!}$

Answer: D

Watch Video Solution

- **40.** The coefficient of x^9 in (x 1)(x 4)(x 9)..... (x 100) is
 - A. -235
 - B. 235
 - C. 385
 - D. -385

Answer: D

41. The term in $(x + y)^{50}$ which is greatest in absolute value if $|x| = \sqrt{3}|y|$ is

- **A.** T_{17}
- B. T_{19}
- C. T_{20}
- D. *T*₂₁

Answer: B

- **42.** The greatest integer which divides the number 101^{100} 1 is
 - A. 10^2
 - в. 10³
 - $C. 10^4$
 - D. 10^{5}

Answer: C

Watch Video Solution

- **43.** $9^7 + 7^9$ is divisible by
 - A. 6
 - B. 24
 - C. 64
 - D. 72

Answer: C

- **44.** Larger of $99^{50} + 100^{50}$ and 101^{50}
 - A. 101^{50}

 $B.99^{50} + 100^{50}$

C. Both are equal

D. can not be decided

Answer: A

Watch Video Solution

- **45.** The remainder left out when 8^{2n} $6(2)^{2n+1}$ is divided by 9 is
 - A. 2
 - B. 7
 - C. 8
 - D. 0

Answer: A

- **46.** Integral part of 7 + 4sqrt3)^{nis}(n in N)
 - A. an even number
 - B. an odd number
 - C. an even or an odd number depending upon the value of n
 - D. nothing can be said

Answer: B

- **47.** Integral part of $(7 + 5\sqrt{2})^{2n+1}$ is $(n \in N)$
 - A. an even number
 - B. an odd number
 - C. an even or an odd number depending upon the value of n
 - D. nothing can be said

Answer: A

Watch Video Solution

48. If $(6\sqrt{6} + 14)^{2n+1} = R$ and F = [R], where [R] denotes the greatest integer less than or equal to R thwn RF =

A. 20^{n}

B. 20^{2n}

C. 20^{2n+1}

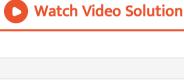
D. 1

Answer: C

Watch Video Solution

49. The integral part of $(\sqrt{2} + 1)^6$ is

B. $^{n+2}C_r$ C. $^{n+2}C_{r+1}$ $\mathsf{D.}^{\,n+1}C_r$



A. 198

B. 196

C. 197

D. 199

Answer: C

50. ${}^{n}C_{r+1} + 2{}^{n}C_{r} + {}^{n}C_{r-1} =$

A. ${}^{(n+1)}C_{r+1}$

Answer: C

51. If C_k is the coefficient of x^k in the expansion of $(1+x)^{2005}$ and if a,d are

real numbers then
$$\sum_{k=0}^{\infty} (a + kd)$$
. $C_k =$

2005

A.
$$(2a + 2005d)2^{2004}$$

B.
$$(2a + 2005d)2^{2005}$$

C.
$$(2a + 2004d)2^{2005}$$

D.
$$(2a + 2004d)2^{2005}$$

Answer: A

Watch Video Solution

52. The sum of the series ${}^{20}C_0$ - ${}^{20}C_1$ + ${}^{20}C_2$ - ${}^{20}C_3$ + ${}^{20}C_{10}$ is

A.
$${}^{20}C_{10}$$

B.
$$-(^{20}C_{10})$$

c.
$$\frac{1}{2}$$
. $(^{20}C_{10})$

Answer: C

Watch Video Solution

53. If
$$S_n = \sum_{r=0}^n \frac{1}{{}^nC_r}$$
 and $T_n = \sum_{r=0}^n \frac{r}{{}^nC_r}$ then $\frac{t_n}{s_n} = \frac{1}{s_n}$

A.
$$\frac{1}{4}n$$

B.
$$\frac{1}{3}n$$

$$\mathsf{C.}\,\frac{1}{3}n$$

D. n

Answer: C

54.
$$C_0 - [C_1 - 2. C_2 + 3. C_3 - \dots + (-1)^{n-1}. n. C_n] =$$

A. 0

B. 1

C. - 1

D. 2

Answer: B

Watch Video Solution

55.
$$C_0$$
 + 4. C_1 + 7. C_2 +(n + 1) terms =

A.
$$(3n + 2) \cdot 2^{n-1}$$

B. $(2n + 2) \cdot 2^{n-1}$

C.
$$(2n + 2) \cdot 3^{n-1}$$

D.
$$(2n - 2) \cdot 3^{n+1}$$

Answer: A

Watch Video Solution

56. 2.
$$C_2$$
 + 6. C_3 + 12. C_4 + + $n(n-1)$. C_n =

A.
$$n(n-1)$$
. 2^{n-1}

B.
$$2n(n-1).2^{n-2}$$

C.
$$n(n-1).2^{n-2}$$

D.
$$2n(n+1).2^{n-1}$$

Answer: C

Watch Video Solution

57. Sum of last 8 coefficients in $(1 + x)^{16}$ is

A.
$$\left[2^{15} - \frac{1}{2}. \, {}^{16}C_8\right]$$

B.
$$\left[2^{15} + \frac{1}{2} \cdot {}^{6}C_{2}\right]$$
C. $\left[2^{15} - \frac{1}{2} \cdot {}^{6}C_{2}\right]$

D.
$$\left[2^{15} - \frac{1}{4}. \, {}^6C_2\right]$$

Answer: A

Watch Video Solution

58.
$$C_0 + \frac{C_1}{2}(4) + \frac{C_2}{3}(16) + \dots + \frac{C_n}{n+1}(2^{2n})$$
A. $\frac{5^{n+1}+1}{n-1}$

B.
$$\frac{5^{n+1}-1}{4(n+1)}$$

$$C. \frac{5^{n+1}+1}{4(n+1)}$$

D. $\frac{5^{n+1}+1}{4(n-1)}$

Answer: B

59.
$$(1+x)^{15} = a_0 + a_1 x + \dots + a_{15} x^{15} \Rightarrow \sum_{r=1}^{15} r \frac{a_r}{a_{r-1}} =$$

A. 110

B. 115

C. 120

D. 135

Answer: C

Watch Video Solution

60. The value of $\sum_{r=1}^{15} r^2 \left(\frac{^{15}C_r}{^{15}C_{r-1}} \right)$ of is equal to

A. 1240

B. 560

C. 1085

D. 680

Answer: D

Watch Video Solution

61. If a_k is the coefficient of x^k in the expansion of $(1 + x + x^2)^n$ for $k = x^2$

0,1,2,...........2n then
$$a_1 + 2a_2 + 3a_3 + \dots + 2n$$
. $a_{2n} =$

A. $-a_0$

B. 3^{n}

C. $n.3^{n}$

D. $-n.3^{n}$

Answer: C

62. Find the sum of the following

$$\frac{^{15}C_1}{^{15}C_0} + 2\frac{^{15}C_2}{^{15}C_1} + 3\frac{^{15}C_3}{^{15}C_2} + \dots + 15\frac{^{15}C_{15}}{^{15}C_{14}}$$

Answer: C

Watch Video Solution

$$\left(1 + \frac{a_1}{a_0}\right) \left(1 + \frac{a_2}{a_1}\right) \dots \left(1 + \frac{a_n}{a_{n-1}}\right) =$$

$$\dots \left(1 + \frac{a_n}{a_{n-1}}\right) =$$

then

63. If $a_0, a_1, a_2, \dots, a_n$ are binomial coefficients

A.
$$\frac{(n-1)^n}{n!}$$

B.
$$\frac{(n+1)^n}{n!}$$

C.
$$\frac{(n+1)^{2n}}{n!}$$
D. $\frac{(n-1)^n}{2n!}$

Answer: B

Watch Video Solution

64.
$$\frac{\left(C_0 + C_1\right)\left(C_1 + C_2\right)\left(C_2 + C_3\right).....\left(C_{n-1} + C_n\right)}{C_0C_1C_2...C_n}$$

A.
$$\frac{(n+1)^n}{n!}$$

B.
$$\frac{n+1}{n!}$$

$$\mathsf{C.}\,\frac{\left(n+1\right)^{n-1}}{n!}$$

D.
$$\frac{(n-1)^n}{n!}$$

Answer: A

$$a_0 + a_1 x + a_2 x^2 + \dots + a_m x^m$$
 then $a_0 + a_1 + \dots + a_m = a_1 + \dots$

65. If $(1+x)(1+x+x^2)(1+x+x^2+x^3)....(1+x+x^2+....+x^{n-1}) =$

A. n!

B. 2n!

C. 3n!

D. 4n!

Answer: A

$$a_0 + a_2 + a_4 + \dots + a_{2n} =$$

A.
$$\frac{3^n + 1}{2}$$

B.
$$\frac{3^n - 1}{2}$$

c. $\frac{3^{2n}-1}{2}$

If $\left(1 - x + x^2\right)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_{2n} x^{2n}$

then

D.
$$\frac{3^n - 1}{4}$$

Answer: A

Watch Video Solution

67. If $\frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots =$

$$A. \frac{2^{n-1}}{n!} \, \forall n \in \mathbb{N}$$

$$B. \frac{2^{n-1}}{2n!} \, \forall n \in \mathbb{N}$$

$$C. \frac{2^{n-1}}{n!} \, \forall n \in \mathbb{N}$$

$$D. \frac{3^{2n-1}}{n!} n \in N$$

Answer: A

D. $n.4^{n+1} - 1$

A. $n.4^{n-1} + 1$

B. $2n. 4^{n-1} + 1$

C. $n.4^{n-1} - 1$

Answer: A

Watch Video Solution

 $(1 + x + x^2)^8 = a_0 + a_1 x + \dots + a_{16} x^{16}$

then

 $a_0 - a_2 + a_4 - a_6 + \dots + a_{16} =$

69.

A. 1

B. 2

C. 3

D. 4

Answer: A

70. If
$$a_r$$
 is the coefficient x^r in the expansion of $\left(1+x+x^2\right)^n$ then $a_1 - 2a_2 + 3a_3 - \dots - 2na_{2n} =$

71. If $\left(1 + 2x + 3x^2\right)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{20}x^{20}$ then $\frac{a_2}{a_1} = \frac{a_2}{a_1}$

B. n

C. -n

D. 2n

Answer: C

B. 21

C. 10

D. 5.5

Answer: A

Watch Video Solution

72. $^{15}C_2 + 2$. $^{15}C_3 + 3$. $^{15}C_4 + \dots + 14$. $^{15}C_{15} =$

A. 13.2¹⁴ - 1

B. $13.2^{14} + 1$

 $C. 12^{14} + 1$

D. 12¹⁴ - 1

Answer: B

73.
$${}^{20}C_{10}$$
. ${}^{15}C_0 + {}^{20}C_9$. ${}^{15}C_1 + {}^{20}C_8$. ${}^{15}C_2 + \dots + {}^{20}C_0$. ${}^{15}C_{10} =$

A.
$$^{20}C_{10}$$

B. $^{25}C_{10}$

 $C.^{35}C_{10}$

D. $^{40}C_{10}$

Answer: C

Watch Video Solution

74.

 ${}^{10}C_{1}.\,{}^{9}C_{5}+{}^{10}C_{2}.\,{}^{9}C_{4}+{}^{10}C_{3}.\,{}^{9}C_{3}+{}^{10}C_{4}.\,{}^{9}C_{2}+{}^{10}C_{5}.\,{}^{9}C_{1}+{}^{10}C_{6}={}^{19}C_{6}+x$

A. -84

then x =

B. 84

C. 81

Answer: A

Watch Video Solution

10	${}^{n}C$	
75. $\sum_{i} r_{i}$	<u>-r</u>	_
_	${}^{n}C_{-1}$	_
r=1	c_{r-1}	

Answer: A

76.
$$\sum_{r=0}^{n-1} \frac{C_r}{C_r + C_{r+1}} =$$

A.
$$\frac{n}{2}$$

B.
$$\frac{n}{3}$$

C.
$$\frac{n}{4}$$
D. $\frac{2n}{3}$

Answer: A

Watch Video Solution

77. The sum of the coefficients in the binomial expansion of $\left(\frac{1}{x} + 2x\right)^n$ is equal to 6561. The constant term in the expansion is

A.
$${}^{8}C_{4}$$

B.
$$16(^{8}C_{4})$$
C. $^{6}C_{4,2}^{4}$

C.
$${}^{6}C_{4.2}^{4}$$

D.
$$8(^{8}C_{4})$$

Answer: B

Watch Video Solution

- 78. If $\frac{1}{(1-2x)(1+3x)}$ is to the expanded as a power series of x, then
 - A. |x| < 1/2
 - B. |x| < 1/6
 - C. -1/3 < x < 1/2

D. |x| < 1/3

Answer: D

A.
$$x < 1$$

B. x > -1

C. -1 < x < 1

D. $-\infty < \chi < \infty$

Answer: C

Watch Video Solution

80. If S_n denotes the sum of first n natural number then $S_1 + S_2 x + S_3 x^2 + \dots + S_n x^{n-1} + \dots \infty$ terms =

A.
$$(1 - x)^{-1}$$

B.
$$(1 - x)^{-2}$$

 $C.(1-x)^{-3}$

D.
$$(1 - x)^{-4}$$

81.
$${}^4C_1 + {}^5C_2 \cdot \left(\frac{1}{2}\right) + {}^6C_3 \cdot \left(\frac{1}{2}\right)^2 + \dots$$
 to ∞ terms :

Answer: A

Watch Video Solution

$$(1 + x + x^2 + x^3 + \dots)^2$$
 is

82. If |x| < 1 , then the coefficient of x^n in expansion

B. n-1

C. n+2

D. n+1

Answer: D

Watch Video Solution

83. If the expansion in powers of x of the function $\frac{1}{(1-ax)(1-bx)}$ is $a_0 + a_1 x + a_2 x^2 + a_3 x^3 + \dots + a_n$ then coefficient of x^n is

A.
$$\frac{a^n - b^n}{b - a}$$

B. $\frac{a^{n+1} - b^{n+1}}{b - a}$

 $\mathsf{C.}\,\frac{b^{n+1}-a^{n+1}}{b-a}$

D. $\frac{b^n - a^n}{b - a}$

Answer: C

84. The coefficient of
$$x^{24}$$
 in the expansion of $(1 + x^2)^{12}(1 + x^{12})(1 + x^{24})$ is

85. If 0 < x < 1, the first negative term in the expansion of $(1 + x)^{27/5}$ is

B.
$$12C_6 + 2$$

C.
$$12C_6 + 4$$

D.
$$12C_6 + 6$$

Answer: B

Watch Video Solution

B. 5th term

A. 7th term

C. 8th term

D. 6th term

Answer: C

Watch Video Solution

- **86.** Find the coefficient of x^{10} in the expansion of $\frac{1+2x}{(1-2x)^2}$.
 - A. $r.2^{r}$
 - B. $(2r 1)2^r$
 - C. $r.2^{2r+1}$
 - D. $(2r + 1)2^r$

Answer: D

Watch Video Solution

87. The first negative term in the expansion of $(1 + x)^{3/4}$ is

Answer: C

Watch Video Solution

88. If T_{r+1} is the first negative term in the expansion of $(1+x)^{7/2}$ then r =

A. T_2

B. T_4

 $C. T_3$

A. 5

B. 6

C. 7

D. 4

Answer: A

89. If
$$x^3$$
, x^4 , x^5 can be neglected then $\sqrt{x^2 + 16} - \sqrt{x^2 + 9} =$

A. 1 -
$$\frac{x^2}{4}$$

B. 1 -
$$\frac{x^2}{8}$$

C. 1 -
$$\frac{x^2}{12}$$

D. 1 -
$$\frac{x^2}{24}$$

Answer: D

90. If 'c' is small in comparison with I then
$$\left(\frac{l}{l+c}\right)^{1/2} + \left(\frac{l}{l-c}\right)^{1/2} =$$

A. 2 +
$$\frac{3c}{4l}$$

B. 2 +
$$\frac{3c^2}{4l^2}$$

$$\mathsf{C.}\ l + \frac{3c^2}{4l^2}$$

D.
$$l + \frac{3c}{4l}$$

Answer: B

Watch Video Solution

- **91.** If x is numerically so small so that x^2 and higher powers of x can be
- neglected, then $\left(1 + \frac{2x}{3}\right)^{\frac{3}{2}}$, $(32 + 5x)^{-\frac{1}{5}}$ is approximately equal to:

A.
$$\frac{32 + 31x}{64}$$

B.
$$\frac{32 + 32x}{64}$$

c.
$$\frac{31 + 32x}{64}$$

D.
$$\frac{1 - 2x}{64}$$

Answer: A

92. If x is small so that x^2 and higher powers can be neglected, then the

approximately value for $\frac{(1-2x)^{-1}(1-3x)^{-2}}{(1-4x)^{-3}}$ is

A. 1-2x

B. 1-3x

C. 1-4x

D. 1-5x

Answer: C

93.
$$1 + \frac{2}{4} + \frac{2.5}{4.8} + \frac{2.5.8}{4.8.12} + \frac{2.5.8.11}{4.8.12.16} + \dots =$$

A.
$$4^{-2/3}$$

B.
$$\sqrt[5]{16}$$

C.
$$\sqrt[3]{4}$$

Answer: C

Watch Video Solution

94.
$$\frac{3}{4.8} + \frac{3.5}{4.8.12} + \frac{3.5.7}{4.8.12.16} + \dots =$$

A.
$$\sqrt{\frac{3}{2}} - \frac{3}{4}$$

B.
$$\sqrt{\frac{2}{3}} - \frac{3}{4}$$
C. $\sqrt{\frac{3}{2}} - \frac{1}{4}$

D.
$$\sqrt{\frac{2}{3}} - \frac{1}{4}$$

Answer: A

95. Observe the following statements :

Statement -I : In the expansion of $(1 + x)^{50}$, the sum of the coefficients of odd powers of x is 2^{50} .

Statement -II : The coefficient of x^4 in the expansion of $\left(\frac{x}{2} - \frac{3}{x^2}\right)^{10}$ is equal to $\frac{504}{259}$.

Then the true statements are:

A. only I

B. only II

C. both I and II

D. neither I nor II

Answer: D

Watch Video Solution

96. The following coefficients which are in increasing order are :

A.
$$^{25}C_{11}$$
, $^{25}C_{12}$, $^{25}C_{13}$, $^{25}C_{14}$

C.
$${}^{25}C_9$$
, ${}^{25}C_{10}$, ${}^{25}C_{11}$, ${}^{25}C_{12}$

B. ${}^{25}C_{12}$, ${}^{25}C_{13}$, ${}^{25}C_{14}$, ${}^{25}C_{15}$

D.
$$^{25}C_{13}$$
, $^{25}C_{14}$, $^{25}C_{15}$, $^{24}C_{16}$

Answer: D

Watch Video Solution

97. Observe the following statements:

Statement - I:
$$\frac{1}{2}$$
. ${}^{10}C_0$ - ${}^{10}C_1$ + 2. ${}^{10}C_2$ - 2². ${}^{10}C_3$ + + 2⁹. ${}^{10}C_{10}$ = - $\frac{1}{2}$

Statement - II : ${}^{20}C_1$ - $2{}^{20}C_2$) + 3. ${}^{20}C_3$) - - 20. ${}^{20}C_{20}$) = 0

B. only II

C. both I and II

D. neither I nor II

Watch Video Solution

98. The number of terms in the expansions of

$$(1+3x+3x^2+x^3)^6$$
, $(x+y-z)^{16}$, $(x^2-2+\frac{1}{x^2})^{25}$ are n_1 , n_2 , n_3 then

A. $n_1 < n_2 < n_3$

B. $n_1 < n_3 < n_2$

 $C. n_2 < n_1 < n_3$

D. $n_2 < n_3 < n_1$

Answer: B

99.
$$(1+x)^n = \sum_{r=0}^n C_r x^r$$
 then match the following

Watch Video Solution

100.
$$(1+x)^n = \sum_{r=0}^n C_r x^r$$
 then match the following

Watch Video Solution

101. Assertion (A): In the expansion of $(1 + x)^n$, three consecutive terms are 5, 10,10 then n = 5

in A.P. then $(n - 2r)^2 = n + 2$

A. A and R are true, R is correct explanation of A

B. A and R are true, R is not the correct explanation of A

Reason (R): If the coefficient of r^{th} , $(r+1)^{th}$, $(r+2)^{th}$ terms of $(1+x)^n$ are

C. A is true, R is false

D. A is false R is true

Answer: D

Watch Video Solution

powers of x is 2^{49}

102. Assertion (A): In the $(1+x)^{50}$, the sum of the coefficients of odd

Reason (R): The sum of coefficients of odd powers of x in $(1 + x)^n$ is 2^{n-1}

A. A and R are true, R is correct explanation of A

B. A and R are true, R is not the correct explanation of A

C. A is true , R is false

D. A is false R is true

Answer: A

Watch Video Solution

103. If $ab \neq 0$ and the sum of the coefficient of x^7 and x^4 in the expansion

of
$$\left(\frac{x^2}{a} - \frac{b}{x}\right)^{11}$$
 zero, then

A. a = b

B. a + b = 0

C. ab = -1

D. ab = 1

Answer: D

104. Coefficient of $x^3y^4z^2$ in $(2x - 3y + 4z)^9$ is

A.
$$\frac{9!}{4!4!} 2^3 3^4 4^2$$

B.
$$\frac{-9!}{3!2!4!}2^33^44^2$$

$$C. \frac{9!}{4!4!} 2^3 3^4 4^2$$

D.
$$\frac{9!}{3!4!2!}2^33^44^2$$

Answer: D

Watch Video Solution

105. Coefficient of x^{18} in $(x^2 + 1)(x^2 + 4)(x^2 + 9)....(x^2 + 100)$ is

A. -385

B. 385

C. 285

D. -285

Answer: B

Watch Video Solution

106. If the middle term in the expansion of $(1 + x)^{2n}$ is the greatest term, then x lies in the interval

A.
$$n - 1 < x < n$$

$$B. \frac{n}{n+1} < \chi < \frac{n+1}{n}$$

C.
$$n < x < n + 1$$

$$D. \frac{n+1}{n} < \chi < \frac{n}{n+1}$$

Answer: B

Watch Video Solution

107. If 2^{2006} - 2006 divided by 7, the remainder is

- A. 0

B. 1

- C. 2
- D. 4

Answer: A

Watch Video Solution

108. The greatest coefficient in
$$\left(\frac{x^{3/2}y}{2} + \frac{2}{xy^{3/2}}\right)^{12}$$
 is

- A. $12(2^{11})$
- B. $12(2^{10})$
- C. $12(2^{22})$ D. $33(2^9)$

Answer: D

109. The term independent of x ($x > 0, x \ne 1$) in the expansion of

$$\left[\frac{(x+1)}{\left(x^{2/3}-x^{1/3}+1\right)}-\frac{(x-1)}{\left(x-\sqrt{x}\right)}\right]^{10} is$$

Answer: B

1. The middle term in the expansion of $\left(x + \frac{1}{x}\right)^{2n}$ is

A.
$$^{2n}C_n$$

B.
$${}^{2n}C_nx$$

$$C. \frac{^{2n}C_n}{x}$$

D. ${}^{2n}C_{n-1}x$

Answer: A

Watch Video Solution

2. If the first three terms in the binomial expansion of $(1 + bx)^n$ in ascending powers of x are 1,6x and $16x^2$ respectively then b + n =

A. A)
$$\frac{28}{3}$$

B. B)
$$\frac{15}{2}$$

c. c)
$$\frac{29}{3}$$

D. D)
$$\frac{17}{3}$$

Answer: C

Watch Video Solution

- **3.** If the first three terms in the expansion of $(1 ax)^n$ where n is a positive integer are 1,-4x and $7x^2$ respectively then a =
 - **A.** 1/5
 - B.1/4
 - C.1/3
 - D.1/2

Answer: D

4. In the expansion of $\left(\frac{x^2}{2} - \frac{2}{x^2}\right)^8$, the third term from the last is

A.
$$\frac{448}{x^6}$$

B.
$$\frac{428}{x^8}$$

c.
$$\frac{324}{x^2}$$

D. $\frac{448}{x^8}$

Answer: D

- **5.** The third term in the expansion of $\left(\frac{1}{x} + x^{\log_{10} x}\right)^5$ is 10^6 then x =
 - A. 10⁻¹
 - B. 10
 - $C. 10^2$

 $D. 10^3$

Answer: B

Watch Video Solution

6. The numerically greatest term in the expansion $(5x - 6y)^{14}$ when x = 2/5,

y = 1/2 is

- A. ${}^{14}C_6 2^8 3^6$
- B. ${}^{14}C_7 2^6 3^8$
- C. ${}^{14}C_6 2^6 3^8$
- D. $^{14}C_72^83^6$

Answer: C

View Text Solution

7. The no. of terms in
$$\left(x + \sqrt{x^2 - 1}\right)^6 + \left(x - \sqrt{x^2 - 1}\right)^6$$

A. 8

B. 6

C. 7

D. 4

Answer: D

- **8.** No. of distinct terms in $(x + y z)^{16}$ is
 - A. 154
 - B. 126
 - C. 133
 - D. 153

Answer: D

Watch Video Solution

- **9.** No. of distinct terms in $(a + b + c + d)^n$, $n \in N$ is
 - A. $(n+3)C_2$
 - B. $(n+3)C_3$
 - C. $(n+2)C_3$
 - D. $(n+4)C_3$

Answer: B

Watch Video Solution

10. If the coefficient of $(2r + 4)^{th}$ term and $(r - 2)^{th}$ term in the expansion of $(1 + x)^{18}$ are equal then find r.

- A. 9
- B. 4
- C. 6
- D. 3

Answer: C

View Text Solution

- **11.** The number of integral terms in the expansion of $\left(\sqrt{2} + \sqrt[4]{3}\right)^{100}$ is
 - A. 75
 - B. 25
 - C. 26
 - D. 101

Answer: C

watch video Solution

12. The term independent of x in the expansion of
$$\left(x^2 - \frac{1}{x}\right)^6$$
 is

- **A.** 12
- B. 15
- C. 24
- D. -15

Answer: B

- **13.** If 5th term of the expansion $\left(\sqrt[3]{x} \frac{1}{x}\right)^n$ is independent of x then n =
 - A. 16
 - B. 12

C. 8

D. 4

Answer: A

Watch Video Solution

14. Term independent of x in $(1 + 4x)^p \left(1 + \frac{1}{4x}\right)^q$ is :

A.
$$^{(p+q)}C_{4p}$$

B.
$$^{(p+q)}C_p$$

C.
$$(p+q)C_{2p}$$

D.
$$(p+q)C_{3p}$$

Answer: B

15. Term independent of x in
$$\left(x - \frac{1}{x}\right)^4 \left(x + \frac{1}{x}\right)^3$$
 is

- A. 1
- B. 2
- C. 0
- D. 4

Answer: C

- 16. The sum of the binomial coefficients of the 3rd, 4th terms from the beginning and from the end of $(a + x)^n$ is 440 then n =
- A. 10

 - B. 11
 - C. 12

Answer: B

Watch Video Solution

17. If the sum of odd terms and the sum of even terms in the expansion of $(x + a)^n$ are p and q respectively then $p^2 + q^2 =$

A.
$$\frac{(x+a)^{2n} - (x-a)^{2n}}{2}$$

B.
$$(x + a)^{2n} - (x - a)^{2n}$$

C.
$$\frac{(x+a)^{2n}+(x-a)^{2n}}{2}$$

D.
$$(x + a)^{2n} + (x - a)^{2n}$$

Answer: C

18. If the sum of odd terms and the sum of even terms in $(x + a)^n$ are p and g respectively then 4pg =

A.
$$(x + a)^{2n} - (x - a)^{2n}$$

B.
$$(x^2 - a^2)^{2n} + (x + a)^{2n}$$

C.
$$(x^2 - a^2)^n - (x - a)^{2n}$$

D.
$$(x^2 + a^2)^n + (x - a)^{2n}$$

Answer: A

- **19.** If A and B are coefficients of x^n in the expansion of $(1+x)^{2n}$ and $(1+x)^{2n-1}$ respectively, then find the value of $\frac{A}{R}$.
 - **A.** 1
 - B. 2
 - C. 3

Answer: B

Watch Video Solution

- **20.** The coefficient of x^{-17} in $\left(x^4 \frac{1}{x^3}\right)^{15}$ is
 - **A.** 1365
 - B. 1365
 - C. 465
 - D. -465

Answer: A

21. The coefficient of x in
$$\left(x^2 + \frac{a}{x}\right)^5$$
 is 270 then a =

Answer: A

Watch Video Solution

22. If the 21st and 22nd terms in the expansion $(1 + x)^{44}$ are equal then x =

- A. 7
- B. 8
- C.7/8
 - D.8/7

Answer: C

Watch Video Solution

- **23.** If the coefficients of 2nd, 3rd, 4th terms of $(1 + x)^n$ are in A.P. then n =
 - A. 4
 - B. 5
 - C. 7
 - D. 6

Answer: C

Watch Video Solution

24. If the coefficients of 2nd , 3rd and 4th terms of the expansion of $(1+x)^{2n}$ are in A.P. then the value of $2n^2 - 9n + 7$ is

B. 5 C. 2 D. 6 **Answer: A** Watch Video Solution **25.** If the coefficients of 3rd, 4th , 5th terms in $(1 + x)^{2n}$ are A.P. then $4n^2 - 26n + 40 =$ A. 3 B. 8

A. 0

Answer: D

- C. 9

D. 6

26. If the coefficients of r,(r +1),(r+2) terms in
$$(1 + x)^{14}$$
 are in A.P. then r =

- A. 3,2
- B. 5,9
- C. 2,4

D. 5,3

Answer: B

- 27. If three successive coefficients in $(1 + x)^n$ are 6,15,20 then n =
 - A. 5
 - B. 7
 - C. 6

Answer: C

Watch Video Solution

28. If a_1, a_2, a_3, a_4 are the coefficients of 2nd, 3rd, 4th and 5th terms of

$$(1+x)^n$$
 respectively then $\frac{a_1}{a_1+a_2}$, $\frac{a_2}{a_2+a_3}$, $\frac{a_3}{a_3+a_4}$ are in

A. A.P.

B. G.P

C. H.P

D. A.G.P

Answer: A

29. If a,b,c,d are conseentive binomial coefficients of
$$(1+x)^n$$
 then $\frac{a+b}{a}$, $\frac{b+c}{b}$, $\frac{c+d}{c}$ are is

D. A.G.P

C. H.P

Answer: C

Watch Video Solution

30. Coefficient of x^5 in $(1 + x + x^2 + x^3)^{10}$ is

A. 1910

B. 1902

C. 1819

D.	1932
υ.	1222

Answer: B

Watch Video Solution

- **31.** The coefficient of x^4 in the expansion of $(1 + x 2x^2)^7$ is
 - **A.** -81
 - **B.** -91
 - C. 81
 - D. 91

Answer: B

Watch Video Solution

32. Binomial coefficients which are in decreasing order are

33. Coefficient of
$$x^3$$
 in $1 + x^3$

A. ${}^{15}C_5$, ${}^{15}C_6$, ${}^{15}C_7$

B. ${}^{15}C_{10}$, ${}^{15}C_{9}$, ${}^{15}C_{8}$

C. ${}^{15}C_6$, ${}^{15}C_7$, ${}^{15}C_8$

D. $615C_7$, $^{15}C_6$, $^{15}C_5$

Watch Video Solution

Answer: D

33. Coefficient of x^3 in $1 + (1 + x) + (1 + x)^2 + \dots + (1 + x)^n$ is

A. ${}^{n}C_{4}$

B. $(n+1)C_4$

C. $(n+2)C_4$

D. $(n+1)C_2$

Answer: B

34. Sum of the coefficients of
$$(1 + 2x - 4x^2)^{2003}$$

A. 1

B. 2

C. 3

D. -1

Answer: D

Watch Video Solution

35. Sum of coefficients of terms of even powers of x in $(1 + x + x^2 + x^3)^5$ is

A. 512

B. 516

C. 612

D	234
υ.	234

Answer: A

Watch Video Solution

- **36.** Sum of coefficients of terms of odd powers of in $(1 + x x^2 x^3)^8$ is
 - A. 0
 - B. 1
 - C. 2
 - **D.** -1

Answer: A

$$a_2 + a_4 + a_6 + \dots + a_{16} =$$
A. 120

then

then

37. If $\left(1+x-2x^2\right)^8 = 1 - a_1x + a_2x^2 + \dots + a_{16}x^{16}$,

D. 231

38. If
$$\left(1 + x - 2x^2\right)^8 = 1 + a_1 x + a_2 x^2 + \dots + a_{16} x^{16}$$
,

If
$$\left(1 + x - 2x^2 + a_5 + a_5 + \dots + a_{15} = 0\right)$$

$$a_1 + a_3 + a_5 + \dots + a_{15} =$$

 $D.4^{6}$

Answer: B

Watch Video Solution

39.
$$(1+x)^{25} = \sum_{r=0}^{25} C_r x^r$$
 then $C_1 - C_3 + C_5 - C_7 + \dots - C_{25} =$

A. 2^{10}

 $B.-2^{10}$

 $C. 2^{12}$

 $D. -2^{12}$

Answer: C

Watch Video Solution

40. The sum of the coefficients in the expansion of $(1 + x - 3x^2)^{171}$ is

- A. 0
- B. 1
- **C**. 1
- D. 2

Answer: C

- **41.** If the sum of all the binomial coefficients in $(x + y)^n$ is 512, then the greatest binomial coefficient is
 - A. $^{10}C_5$
 - B. ${}^{9}C_{4}$ or ${}^{9}C_{5}$ C. ${}^{11}C_5$ or ${}^{11}C_6$
 - D. ${}^{12}C_6$
- **Answer: B**

42. The coefficient of
$$x^{-n}$$
 in $(1+x)^n \left(1+\frac{1}{x}\right)^n$ is

A. 0

B. 1

C. 2ⁿ

D. $^{2n}C_n$

Answer: B

Watch Video Solution

43. If n is a positive integer then 2^{4n} - 15n - 1 is divisible by

A. 64

B. 196

C. 225

D. 256

Answer: C

Watch Video Solution

- **44.** Smaller of $\left(19^{10} + 20^{10}\right)$ and 21^{10} is
 - A. $19^{10} + 20^{10}$
 - B. 21^{10}
 - C. Both are equal
 - D. can not be decided

Answer: A

- **45.** $9^{11} + 11^9$ is divisible by
 - **A.** 7
 - B. 8
 - C. 9
 - D. 10

Answer: D

- **46.** Integral part of $(8 + 3\sqrt{7})^n$ is
 - A. an even number
 - B. an odd number
 - C. an even or an odd number depending upon the value of n
 - D. nothing can be said

Answer: B

Watch Video Solution

- **47.** If $n = (\sqrt{2} + 1)^6$. Then the integer just greater than n is
 - A. 199
 - B. 198
 - C. 197
 - D. 196

Answer: B

View Text Solution

- **48.** 1. $C_0 + 3$. $C_1 + 3^2$. $C_2 + \dots + 3^n$. $C_n =$
 - $A.4^n$

B. 3^{n}

C. 5ⁿ

D. 2^{n}

Answer: A

Watch Video Solution

49.
$$C_0 + \frac{C_1}{2} + \frac{C_2}{2^2} + \frac{C_3}{2^3} + \dots + \frac{C_n}{2^n} =$$

A. $(1/2)^n$

B. $(3/2)^n$

C. $(3/2)^{2n}$

D. $(3/2)^{-n}$

Answer: B

50.
$${}^{11}C_0 + {}^{11}C_1 + {}^{11}C_2 + \dots + {}^{11}C_5 =$$

A. 2^{7}

 $B.2^{8}$

C. 2⁹ $D.2^{10}$

Answer: D

View Text Solution

51. $C_0^2 + C_1^2 + C_2^2 - \dots - C_{15}^2 =$

- A. 1
- B. 2
- C. 3
- D. 0

Answer: D

Watch Video Solution

- **52.** $\frac{1}{2}$. ${}^{10}C_0 {}^{10}C_1 + 2$. ${}^{10}C_2 2^2$. ${}^{10}C_3 + \dots + 2^9$. ${}^{10}C_{10} =$
 - **A.** 1/2
 - B.1/4
 - C.3/2
 - D.1/3

Answer: A

- **53.** $^{2n+1}C_0^2$ $^{2n+1}C_1^2$ + $^{2n+1}C_2^2$ $^{2n+1}C_{2n+1}^2$ =
 - A. 0

B.
$$(2n+1)C_n$$

$$\mathsf{C.-}\Big(^{2n+1}C_n\Big)$$

$$D. - \frac{1}{2} \binom{2n}{n}$$

Answer: A

Watch Video Solution

54. Prove that following

i) 2.
$$C_0 + 5$$
. $C_1 + 8$. $C_2 + \dots + (3n+2)C_n = (3n+4).2^{n-1}$

A.
$$(4 - 3n) \cdot 2^{2n-1}$$

B.
$$(4 - 3n) \cdot 2^{n+1}$$

C.
$$(4 + 3n) \cdot 2^{n-1}$$

D.
$$(2 - 3n).2^{n+1}$$

Answer: C

55.
$${}^{20}C_0 + {}^{20}C_1 + {}^{20}C_2 + \dots + {}^{20}C_{10} =$$

A.
$$\left[2^{19} - \frac{1}{2} \cdot {}^{18}C_{10}\right]$$

B.
$$\left[2^{19} + \frac{1}{2}. \, ^{20}C_{10}\right]$$

$$\mathsf{C.}\,2^{19} - \frac{1}{4}.\,{}^{18}C_{10} \bigg]$$

D.
$$\left[2^{19} - \frac{1}{4}. \, {}^{6}C_{3}\right]$$

Answer: B

56.
$$C_1$$
 + 2. C_2 + 3. C_3 + + n . C_n =

B.
$$n.2^{n}$$

C.
$$n.2^{n-1}$$

Answer: C

Watch Video Solution

57. If a_r is the coefficient of x^r in the expansion of $(1+x)^n$ then

$$\frac{a_1}{a_0} + 2 \cdot \frac{a_2}{a_1} + 3 \cdot \frac{a_3}{a_2} + \dots + n \cdot \frac{a_n}{a_{n-1}} =$$

A.
$$\frac{n(n+1)}{2}$$

B.
$$\frac{n(n + 3)}{2}$$

C.
$$\frac{n(n-1)}{2}$$

 $D. n^2$

Answer: A

$$C_0 + 2. C_1 + 3. C_2 + \dots + (n+1). C_n =$$

 $(1+x)^n = C_0 + C_1 x + C_2 x^2 + \dots + C_n x^n,$

then

A.
$$2^n + n.2^{n-1}$$

If

B. $2^{n-1} + n.2^n$

C. $2^n + (n+1)2^{n-1}$

D. 2^{n+1}

Answer: A

58.

Watch Video Solution

59. 1. ${}^{20}C_1$ - 2. ${}^{20}C_2$ + 3. ${}^{20}C_3$ - - 20. ${}^{20}C_{20}$ =

A. 1

B. 2

C. - 1

D. 0

Answer: D

Watch Video Solution

60.

$$\left(1 + x + x^2 + \dots + x^p\right)^n = a_0 + a_1 x + a_2 x^2 + \dots + a_{np} x^{np} \Rightarrow a_1 + 2a_2 + 3a_3 + \dots + a_{np} x^{np} \Rightarrow a_1 + 2a_2 + \dots +$$

A.
$$\frac{np(p+1)^n}{2}$$

B.
$$\frac{np(p+1)^n}{4}$$

C.
$$\frac{np(p-1)^n}{4}$$

D.
$$\frac{np(p-1)^{2n}}{4}$$

Answer: A

Answer: D

A. $(3n + 4)2^{n-1} - 2$

B. $(2n - 4)2^{n-1} - 2$

C. $(3n - 4)2^{n-1} - 2$

D. $(3n - 4)2^{n-1} + 2$

62.
$$\sum_{r=1}^{n} (-1)^{r-1n} C_r(a-r) =$$

B. -*a*

C. 2a

D. 3a

Answer: A

watch video Solution

63. 2.
$$C_0 + \frac{2^2}{2}$$
. $C_1 + \frac{2^3}{3}$. $C_2 + \dots + \frac{2^{11}}{11}$. $C_{10} =$

A.
$$\frac{3^{11} - 1}{11}$$

B.
$$\frac{3^9 - 1}{9}$$
C. $\frac{3^{11} + 1}{11}$

D.
$$\frac{3^{12} - 1}{12}$$

Answer: A

Watch Video Solution

64. ${}^{11}C_0^2 - {}^{11}C_1^2 + {}^{11}C_2^2 - {}^{11}C_3^2 + \dots - {}^{11}C_{11}^2 =$

B.
$$^{22}C_{11}$$

C.
$$(-1)^{11}$$
. $^{22}C_{11}$

Answer: A

Watch Video Solution

65.
$$\frac{C_0}{1} + \frac{C_2}{3} + \frac{C_4}{5} + \dots + \frac{C_{16}}{17} =$$

$$A. \frac{2^{15}}{14}$$

B.
$$\frac{2^{16}}{17}$$
C. $\frac{2^{15}}{16}$

Answer: B

Answer: A

A. $\frac{2^{15} - 1}{16}$

B. $\frac{2^{15} - 1}{16}$

c. $\frac{2^{14} - 1}{16}$

View Text Solution

67. The coefficient of x^3 in $(1 - 4x)^{1/2}$ is

A. -4

B. 2

68. The range of x for which the expansion of $\left(1 - \frac{3}{x}\right)^{-3/4}$ is valid is

A.
$$|x| < 1$$

B.
$$|x| < 3/4$$

$$C. |x| < -3/4$$

D.
$$|x| > 3$$

Answer: D

View Text Solution

69. The range of x of which the expansion of $(2 - 3x^2)^{-\frac{11}{2}}$ is valid is

$$A.\left(-\sqrt{\frac{2}{3}},\frac{2}{3}\right)$$

B.
$$\left(-\frac{2}{3}, \sqrt{\frac{2}{3}}\right)$$

$$C.\left(-\sqrt{\frac{2}{3}},\sqrt{\frac{2}{3}}\right)$$

D.
$$\left(-\infty, \sqrt{\frac{2}{3}}\right) \cup \left(\sqrt{\frac{2}{3}}, \infty\right)$$

Answer: C

View Text Solution

70. The fifth term of $\left(1 - \frac{2x}{3}\right)^{3/4}$ is

A.
$$\frac{-5x^4}{1152}$$

B.
$$\frac{5x^4}{1152}$$

C.
$$-\frac{5x^4}{1052}$$

D.
$$\frac{5x^4}{1052}$$

Answer: A

View Text Solution

71. For |x| < 1, the $(r + 1)^{th}$ term in the expansion of $\sqrt{1 - x}$ is

A.
$$\frac{1.3.5....(2r-3)}{r!} \left(\frac{x}{2}\right)^r$$

B. -
$$\frac{1.3.5....(2r-3)}{r!} \left(\frac{x}{2}\right)^r$$

C.
$$-\frac{1.3.5....(2r-3)}{r!}(x)^r$$

D.
$$\frac{1.3.5....(2r-3)}{r!}(x)^r$$

Answer: B

View Text Solution

72. The general term of $(2a - 3b)^{-1/2}$ is

A.
$$\frac{1.3.5.....(2r-5)}{r!} \frac{1}{\sqrt{2a}} \left(\frac{3b}{4a}\right)^r$$

B.
$$\frac{1.3.5.....(2r-3)}{r!} \frac{1}{\sqrt{2a}} \left(\frac{3b}{4a}\right)^r$$

C.
$$\frac{1.3.5....(2r-1)}{r!} \frac{1}{\sqrt{2a}} \left(\frac{3b}{4a}\right)^r$$

D.
$$\frac{1.3.5....(2r-3)}{r!} \frac{1}{\sqrt{a}} \left(\frac{3b}{4a}\right)^r$$

Answer: C

Watch Video Solution

- **73.** In the expansion of $(1 + x + x^2 + x^3 + \dots \infty)^3$, coefficient of x^3 is
 - A. 4
 - B. 6
 - C. 8
 - D. 10

Answer: D

Watch Video Solution

74. In the expansion of $(1 - 2x + 3x^2 - 4x^3 + \dots + x^2)^4$ coefficient of x^2 is

A. 25 B. 125

Answer: A

Watch Video Solution

A. 72

B. 36

C. -36

D. -72

Answer: B

75. The coefficient of x^{24} in $\left(1 + 3x + 6x^2 + 10x^3 + \dots \infty\right)^{2/3}$ is

C. 50

D. 300

76. The coefficient of x^{10} in $\frac{1 - 2x + 3x^2}{1 - x}$ is

A. 1

B. 2

C. 3

D. -2

Answer: B

Watch Video Solution

77. The coefficient of x^9 in the expansion of $\frac{1-5x}{1+x}$ is

A. -6

B. 9

C. -9

Answer: A

Watch Video Solution

- **78.** The coefficient of x^4 in the expansion of $\frac{(1-3x)^2}{(1-2x)}$ is
 - A. 1
 - B. 2
 - C. 3
 - D. 4

Answer: D

View Text Solution

79. For |x| < 1, the coefficient of x^r in the expansion of $\frac{(1+x)^2}{(1-x)^3}$ is

A.
$$2r^2 + 2r + 1$$

B. $2r^2 + 2r - 1$

C. $2r^2 - 2r + 1$

D. $r^2 + 2r - 3$

Answer: A

80.

View Text Solution

 $|a| < 1, y = 1 + 4a + 10a^2 + 20a^3 + \dots$ to ∞ terms, |a| < 1, then x:y

A. (1 - a): 1

B. 1:(1-a)

C.(1 + a):1

D. 1: (1 + a)

Answer: A

If $x = 1 + 3a + 6a^2 + 10a^3 + \dots$ to ∞

terms

81. Prove that : If |x| is so small that x^2 and higher powers of x may be neglected, then find an approximate value of

A. 1 +
$$\frac{11x}{12}$$

B. 2 +
$$\frac{35x}{6}$$

C. 1 -
$$\frac{5x}{12}$$

D. 1 +
$$\frac{5x}{12}$$

Answer: B

Watch Video Solution

82. If |x| is so small that all terms containing x^2 and higher powers of x^2 can be neglected , then the approximate value of $\frac{(3-5x)^{1/2}}{(5-3x)^2}$, where $\frac{1}{x^2}$

$$x = \frac{1}{\sqrt{363}}$$
, is

B.
$$\frac{1 + 30\sqrt{3}}{75}$$
C.
$$\frac{1 - 30\sqrt{3}}{75}$$

D.
$$\frac{1 + 30\sqrt{3}}{750}$$

Answer: D

Watch Video Solution

- **83.** If $x = \frac{1 \cdot 3}{3 \cdot 6} + \frac{1 \cdot 3 \cdot 5}{3 \cdot 6 \cdot 9} + \frac{1 \cdot 3 \cdot 5 \cdot 7}{3 \cdot 6 \cdot 9 \cdot 12} + \dots$ to infinite terms, then

 $9x^2 + 24x =$

- A. 11
- B. 21
 - D. 41

C. 31

Answer: A

Watch Video Solution

84.
$$1 - \frac{1}{5} + \frac{1.4}{5.10} - \frac{1.5.7}{5.10.15} + \dots =$$

A.
$$\frac{1}{3}\sqrt[3]{5}$$

B.
$$\frac{1}{2}\sqrt[3]{5}$$

c.
$$\frac{1}{2}\sqrt[3]{4}$$

D.
$$\sqrt[3]{5}$$

Answer: B

85.
$$1 + \frac{1}{2} \cdot \frac{3}{5} + \frac{1.3}{2.4} \cdot \frac{9}{25} + \frac{1.3.5}{2.4.6} \cdot \frac{27}{125} + \dots =$$

$$\sqrt{\frac{5}{2}}$$

D.
$$\sqrt{\frac{5}{3}}$$

Answer: A

Watch Video Solution

B. $\sqrt{\frac{3}{5}}$ C. $\sqrt{\frac{2}{5}}$

86.
$$1 + \frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.8.12} + \dots =$$

A.
$$\sqrt{2}$$

$$\mathsf{B.}\;\frac{1}{\sqrt{2}}$$

C.
$$\sqrt{3}$$
D. $\frac{1}{\sqrt{3}}$

Answer: A

87. If
$$x = \frac{1}{5} + \frac{1.3}{5.10} + \frac{1.3.5}{5.10.15} + \dots \infty$$
 then find $3x^2 + 6x$.

B. 1

C. 2

D. -1

Answer: C

88.
$$2 + \frac{5}{2!3} + \frac{5.7}{3!3^2} + \frac{5.7.9}{4!3^2} + \dots \infty =$$
A. $\sqrt{3}$

B.
$$\sqrt[3]{3}$$

c.
$$3\sqrt{3}$$

D.
$$2\sqrt{3}$$

Answer: C

Watch Video Solution

89. Prove that: Find the sum of the infinite series

$$1 + \frac{2}{3} \cdot \frac{1}{2} + \frac{2.5}{3.6} \left(\frac{1}{2}\right)^2 + \frac{2.5.8}{3.6.9} \left(\frac{1}{2}\right)^3 + \dots \infty$$

A. $\sqrt[3]{3}$

B. $\sqrt[4]{4}$

C. $\sqrt[4]{8}$

D. $\sqrt[3]{4}$

Answer: D

Watch Video Solution

A. $2\sqrt{3} - 4$

B. $3\sqrt{3} - 2$

C. $3\sqrt{3} - 4$

D. $2\sqrt{3} + 4$

Answer: C

91.
$$1 + \frac{1}{3} + \frac{1.3}{1.2} \cdot \frac{1}{3^2} + \frac{1.3.5}{1.2.3} \cdot \frac{1}{3^3} + \dots \infty =$$

$$A. \sqrt{2}$$

B.
$$\sqrt{3}$$

C.
$$\sqrt{5}$$
D. $\frac{1}{2\sqrt{3}}$

Answer: B

92. Observe the following statements :

Statement - I: The total number of terms in the expansion of

 $(x + y)^{100} + (x - y)^{100}$ after simplification is 51

Statement - II : If ${}^{43}C_{r-6}$ = ${}^{43}C_{r+1}$ then r = 12

Statement - III : The coefficient of x^n in $(1 - x)^{-2}$ is (n+1).

Then the true statements are:

A. only I, II

B. only II, III

C. only III, I

D. all the three

Answer: C

93. Let I,m,n are the coefficients of x^5 in

$$(1+2x+3x^2+....)^{-3/2}, (1+x+x^2+x^3+....)^2, (1+x)^5$$

Respectively then:

$$A. l < m < n$$

B.
$$m < n < l$$

D.
$$l < n < m$$

Answer: D

94. Match the following

List - I

List - II

I. $(p+q)^{50} + (p-q)^{50}$

1.
$$(p+q)^{-1}+(p-q)^{-1}$$

II.
$$(p+q)^{50} - (p-q)^{50}$$

III.
$$(p+q)^{47} + (p-q)^{47}$$

IV.
$$(p+q)^{45} - (p-q)^{45}$$

d) 26

The correct match is

н ш іу

II III IV

- 1) a b c d 2) d c b a
- 3) a c d b
- 4) dabc

Watch Video Solution

95. Match the following question

COLUMN -I

COLUMN -II

A) R-CONH,

p) most reactive towards acyl substitution

B) R - COOR'

q) reduces HgCl,

C) HCOOH

r) high boiling point

D) RCOCI

s) fruit flavour

EXERCISE - 1.1 (Level - 1)

1. Expand the following using binomial theorem.

$$(4x + 5y)^7$$

Watch Video Solution

2. Expand the following using binomial theorem.

$$\left(\frac{2}{3}x + \frac{7}{4}y\right)^5$$

Watch Video Solution

3. Expand the following using binomial theorem.

$$\left(\frac{2p}{5} - \frac{3q}{7}\right)^6$$

4. Write down and simplify
$$6^{th}$$
 term in $\left(\frac{2x}{3} + \frac{3y}{2}\right)^9$

5. Write down and simplify

$$7^{\text{th}} \text{ term in}(3x - 4y)^{10}$$

6. Write down and simplify

10th term in
$$\left(\frac{3p}{4} - 5q\right)^{14}$$

7. Find the number of terms in the expansion of

$$\left(\frac{3a}{4} + \frac{b}{2}\right)^9$$

- **8.** Find the number of terms in the expansion of
- $(3p+4q)^{14}$

9. Find the number of terms in the expansion of

$$(x+y+z)^{20}$$

- **10.** Find the number of terms in the expansion of $(x 2y + 3z)^{10}$
 - Watch Video Solution

11. Find the number of terms in the expansion of

$$(2x + 3y + z)^7$$

Watch Video Solution

12. Find the middle term(s) in the expansion of $n \in N$

$$\left(\frac{1}{2}x - 3y\right)^{20}$$

View Text Solution

13. Find the middle term(s) in the expansion of $n \in N$

$$\left(x\sqrt{x} - \frac{2}{x}\right)^{15}$$

14. Find the middle term(s) in the expansion of
$$n \in N$$

$$\left(p^2 - 2q\right)^{2n-1}$$

15. Find the middle term(s) in the expansion of $n \in N$

$$\left(a^3 + \frac{2}{b}\right)^{4n}$$

16. Show that the sum of the coefficients of x^{-6} and x^{-1} in $\left(5x^2 - \frac{7}{x^3}\right)^{12}$ is positive.

17. Show that the sum of the coefficients of x^{25} and x^{-10} of $\left(x^4 - \frac{1}{x^3}\right)^{15}$ is

zero.

Watch Video Solution

18. Find the numerically greatest term of

$$(3+7x)^{15}, x=\frac{4}{5}$$

View Text Solution

19. Find the numerically greatest term of

$$(2x - 3y)^{12}, x = 1, y = \frac{5}{3}$$

View Text Solution

20. Find the numerically greatest term of

$$(5x - 6y)^{14}, x = \frac{2}{5}, y = \frac{1}{2}$$

21. If the coefficients of x^9 , x^{10} , x^{11} in expansion of $(1 + x)^n$ are in A.P., the prove that $n^2 - 41n + 398 = 0$.

22. If the 2^{nd} , 3^{rd} and 4^{th} terms in the expansion of $(a + x)^n$ are respectively 240, 720, 1080, find a, x, n.

23. If $(1 + x + 2x^2 + 4x^3)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{30}x^{30}$.

Find the value of

$$a_0 + a_1 + a_2 + \dots + a_{30}$$

Watch Video Solution

24. If
$$(1 + x + 2x^2 + 4x^3)^{10} = a_0 + a_1 x + a_2 x^2 + \dots + a_{30} x^{30}$$
.

Find the value of

$$a_0 - a_1 + a_2 - a_3 \dots + a_{30}$$

Watch Video Solution

25. If
$$(1 + x + 2x^2 + 4x^3)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{30}x^{30}$$
.

Find the value of

$$a_0 + a_2 + a_4 + \dots + a_{30}$$

Watch Video Solution

26. If $(1 + x + 2x^2 + 4x^3)^{10} = a_0 + a_1x + a_2x^2 + \dots + a_{30}x^{30}$.

Find the value of

$$a_1 + a_3 + a_5 + \dots + a_{29}$$

Watch Video Solution

27. If $(1 + x + x^2)^n = b_0 + b_1 x + b_2 x^2 + \dots + b_{2n} x^{2n}$ then prove that $b_0 + b_1 + b_2 + \dots + b_{2n} = 3^n$

Watch Video Solution

28. If
$$(1 + x + x^2)^n = b_0 + b_1 x + b_2 x^2 + \dots + b_{2n} x^{2n}$$
 then prove that $b_0 - b_1 + b_2 - \dots + b_{2n} = 1$

Watch Video Solution

29. If
$$(1 + x + x^2)^n = b_0 + b_1 x + b_2 x^2 + \dots + b_{2n} x^{2n}$$
 then prove that $b_0 + b_2 + b_4 + b_6 + \dots + b_{2n} = \frac{3^n + 1}{2}$

30. If
$$(1 + x + x^2)^n = b_0 + b_1 x + b_2 x^2 + \dots + b_{2n} x^{2n}$$
 then prove that $b_1 + b_3 + b_5 + \dots + b_{2n-1} = \frac{3^n - 1}{2}$

31. If
$$(1 + x + x^2)^n = b_0 + b_1 x + b_2 x^2 + \dots + b_{2n} x^{2n}$$
 then prove that $b_0 + b_3 + b_6 + b_9 + \dots = 3^{n-1}$

32. If $(1 + x + x^2)^n = b_0 + b_1 x + b_2 x^2 + \dots + b_{2n} x^{2n}$ then prove that

If n = 25, $b_0 - b_2 + b_4 - b_6 + \dots - b_{2n} = 0$

33. If
$$(1 + x + x^2)^n = b_0 + b_1 x + b_2 x^2 + \dots + b_{2n} x^{2n}$$
 then prove that If $n = 37$, $b_1 - b_3 + b_5 - b_7 + \dots + b_{2n-1} = 1$

34. Prove that
$$\forall n \in N$$

$$3^{3n}$$
 - 26*n* - 1 is divisible by 676.

35. Prove that $\forall n \in \mathbb{N}$

 6^n - 5n leaves remainder 1 when divided by 25.

9^{n+1} - 8n - 9 is divisible by 64

36. Prove that $\forall n \in N$

37. Prove that $\forall n \in \mathbb{N}$

 $5^{4n} + 52n - 1$ is divisible by 676.

38. If the coefficient of
$$x^7$$
 in $\left(ax^2 + \frac{1}{bx}\right)^{11}$ equals the coefficient of x^{-7} in $\left(ax - \frac{1}{bx^2}\right)^{11}$, then a and b satisfy the relation

39. Show that the number of terms with integral values in the expansion of $(3^{1/3} + 7^{1/2})^{400}$ is 67.

40. Find the coefficient of x^7 in the expansion of $(1 - x - x^2 + x^3)^6$.

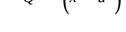
41. Find the coefficient of
$$x^3$$
 in the expansion of $(2 - x + 5x^2)^6$.

42. If the coefficients of r^{th} , $(r+1)^{\text{th}}$ and $(r+2)^{\text{nd}}$ terms in the expansion of $(1+x)^n$ are in A.P. then show that n^2 - $(4r+1)n+4r^2$ - 2=0.

43. If a_1, a_2, a_3, a_4 are the coefficients of the 2^{nd} , 3^{rd} , 4^{th} and 5^{th} terms respectively in the binomial expansion of $(1+x)^n$ where n is a positive integer prove that $\frac{a_1}{a_1+a_2}$, $\frac{a_2}{a_2+a_3}$, $\frac{a_3}{a_3+a_4}$ are in arithmetic progression.

44. If P and Q are the sum of odd terms and the sum of even terms respectively in the expansion of $(x + a)^n$ then prove that

$$P^2 - Q^2 = \left(x^2 - a^2\right)^n$$



45. If P and Q are the sum of odd terms and the sum of even terms respectively in the expansion of $(x + a)^n$ then prove that

$$4PQ = (x + a)^{2n} - (x - a)^{2n}$$

46. Simplify the following

$$(\sqrt{3} + \sqrt{2})^4 - (\sqrt{3} - \sqrt{2})^4$$

$$\left(\sqrt{2}+1\right)^5+\left(\sqrt{2}-1\right)^5$$

48. Simplify the following

$$\left(\sqrt{3}+1\right)^5 - \left(\sqrt{3}-1\right)^5$$

49. Simplify the following

$$(\sqrt{x+1} + \sqrt{x-1})^6 + (\sqrt{x+1} - \sqrt{x-1})^6$$

50. Using binomial theorem, prove that 50^n - 49n - 1 is divisible by 49^2 for all positive integers n.

Watch Video Solution

51. Using binomial theorem, prove that $5^{4n} + 52n - 1$ is divisible by 676 for all positive integers n.

52. Find the remainder when 2^{2013} in divided by 17.

EXERCISE - 1.2 (Level - 1)

1. Prove the following:

$$C_0 + 2 \cdot C_{1-} + 3 \cdot C_2 + ...(n+1) \cdot C_n = (n+2).2^{n-1}$$

- **2.** Prove the following:
- $2 \cdot C_0 + 3 \cdot C_1 + 4 \cdot C_2 + \dots + (n+2) \cdot C_n = (n+4) \cdot 2^{n-1}$
- Watch Video Solution

- **3.** Prove that following
 - i) 2. $C_0 + 5$. $C_1 + 8$. $C_2 + \dots + (3n+2)C_n = (3n+4).2^{n-1}$
 - Watch Video Solution

- **4.** Prove the following:
- $3 \cdot C_1 + 7 \cdot C_2 + 11 \cdot C_3 + \dots (4n 1) \cdot C_n = 1 + (2n 1)2^n$
 - Watch Video Solution

- **5.** Prove the following:
 - $\sum_{r=0}^{\infty} (-1)^r (3r+5). C_r = 0$

6. Prove that following

$$C_0 + \frac{3}{2} \cdot C_1 + \frac{9}{3} \cdot C_2 + \frac{27}{4} \cdot C_3 + \dots + \frac{3^n}{n+1} \cdot C_n = \frac{4^{n+1} - 1}{3(n+1)}$$

7. Prove the following:

1.2.
$$C_1 + 2.3C_2 + 3.4$$
. $C_3 + \dots n(n+1)$. $C_n = n \cdot (n+3) \cdot 2^{n-2}$

8. Prove that: Prove that

$$\frac{C_1}{C_0} + 2 \cdot \frac{C_2}{C_1} + 3 \cdot \frac{C_3}{C_2} + \dots + n \cdot \frac{C_n}{C_{n-1}} = \frac{n(n+1)}{2}$$

9. Prove the following:

$$C_0 + \frac{C_2}{3} + \frac{C_4}{5} + \dots = \frac{2^n}{n+1}$$

Watch Video Solution

10. Prove that following

$$\frac{C_1}{2} + \frac{C_3}{4} + \frac{C_5}{6} + \frac{C_7}{8} + \dots = \frac{2^{n} - 1}{n + 1}$$

Watch Video Solution

11. Prove the following:

$$C_0 - \frac{C_1}{2} + \frac{C_2}{3} - \dots + (-1)^n \frac{C_n}{n+1} = \frac{1}{n+1}$$

12. Prove that

$${\binom{2n}{C_0}}^2 - {\binom{2n}{C_1}}^2 + {\binom{2n}{C_2}} - {\binom{2n}{C_3}}^2 + \dots + {\binom{2n}{C_{2n}}}^2 = (-1)^{n2n}C_n.$$

13. Prove that

$$(C_0 + C_1)(C_1 + C_2)(C_2 + C_3)....(C_{n-1} + C_n) = \frac{(n+1)^n}{n!}.C_0.C_1.C_2.....C_n.$$

14. Prove that

$$(C_0 + C_1 + C_2 + \dots + C_n)^2 = 1 + {}^{2n}C_1 + {}^{2n}C_2 + \dots + {}^{2n}C_{2n}$$

15. Use the identity $(1 + x)^m (1 + x)^n = (1 + x)^{m+n}$ to prove Vandermonde's theorem,

16. Find the sum of the series
$$C_1 + 2^2 \cdot C_2 x + 3^2 \cdot C_3 x^2 + 4^2 \cdot C_4 x^3 + \dots + n^2 \cdot C_n \cdot x^{n-1}$$
 and deduce $(n > 2)$ the value of $C_1 - 2^2 \cdot C_2 + 3^2 - C_3 - \dots + (-1)^{n-1} \cdot n^2 \cdot C_n$

Show

 $\frac{2^2 \cdot C_0}{1 \cdot 2} + \frac{2^3 \cdot C_1}{2 \cdot 3} + \frac{2^4 \cdot C_2}{3 \cdot 4} + \dots + \frac{2^{n+2} \cdot C_n}{(n+1)(n+2)} = \frac{3^{n+2} - 2n - 5}{(n+1)(n+2)}$

18. Show that ${}^{n}C_{0} + {}^{(n+1)}C_{1} + {}^{(n+2)}C_{2} + \dots + {}^{(n+k)}C_{k} = {}^{(n+k+1)}C_{k}$

that

 ${}^{m}C_{r} + {}^{m}C_{r-1} \cdot {}^{n}C_{1} + {}^{m}C_{r-2} \cdot {}^{n}C_{2} + \dots + {}^{n}C_{r} = (m+n)C_{r}$

Hence deduce that
$$\frac{C_0}{1.2} - \frac{C_1}{2.3} + \frac{C_2}{3.4} - \dots = \frac{1}{n+2}$$

17.

19. Show that ${}^{30}C_0 + {}^{30}C_1 + {}^{30}C_2 + ... + {}^{30}C_{14} = 2^{29} - \frac{1}{2} ({}^{30}C_{15})$

Watch Video Solution

EXERCISE - 1.3 (Level - 1)

1. Find the range of x for which the following expansions are valid.

$$\left(2-\frac{3x}{4}\right)^{-15/4}$$

2. Find the range of x for which the following expansions are valid.

$$\left(3 + \frac{5x^2}{3}\right)^{-3/4}$$

3. Find the range of x for which the binomial expansions of the following are valid .

$$\left(4-\frac{x}{3}\right)^{-1/3}$$

4. Write the first three terms of the expansion of

$$\left(1+\frac{x^2}{2}\right)^{-1}$$

5. Write the first three terms of the expansion of

$$(2+x)^{-1/2}$$

6. Write down the first three terms is the following expansions

$$(8 - 5x)^{2/3}$$

7. Find 4^{th} term of $(8 - x)^{1/3}$

8. Find 6^{th} term of $(3 - 4x^2)^{-1}$

9. Prove that: Find the

$$8^{\text{th}}$$
 term of $\left(1 - \frac{5x}{2}\right)^{-3/5}$

10. Find the Coefficient of x^4 in $(8 - x)^{1/3}$

Watch Video Solution

11. Find the coefficient of x^6 in $(1 - 3x)^{-2/5}$

Watch Video Solution

12. Find the Coefficient of x^{10} in $\frac{1+2x}{(1-2x)^2}$

Watch Video Solution

13. Find the Coefficient of x^n in $\left(\frac{1+x}{1-x}\right)^2$

14. Find the general term in the expansion of

$$(4-7x^2)^{-2/5}$$

15. Prove that : Write the general term in the expansion of

$$(2-3x)^{-1/3}$$

16. Find the coefficient of x^4 in $\frac{(2+3x)^3}{(1-3x)^4}$

17. Find the coefficient of x^n in $\frac{(1+2x)^3}{(1-x)^2}$

18. Find the coefficient of x^{10} in the expansion of $\frac{1+2x}{(1-2x)^2}$.

19. Find the coefficient of x^4 in the expansion of $(1 - 4x)^{-3/5}$.

20. Find the coefficient of x^5 in $\frac{(1-3x)^2}{(3-x)^{3/2}}$.

21. Find the coefficient of x^8 in $\frac{(1+x)^2}{\left(1-\frac{2}{3}x\right)^3}$.

23. Find the coefficient of
$$x^3$$
 in the expansion of
$$\frac{\left(1+3x^2\right)^{\frac{3}{2}}}{(3+4x)^{\frac{1}{3}}}$$

24. If |x| is so small that x^2 and higher powers of x may be neglected then find the approx-imate values of the following

$$\frac{\sqrt{4+x} + \sqrt[3]{8+x}}{(1+2x) + (1-2x)^{-1/3}}$$

- **25.** By neglecting x^4 and higher powers of x, find an approximate value of
 - $\sqrt[3]{x^2 + 64} \sqrt[3]{x^2 + 27}.$

26. Expand:
$$3\sqrt{3}$$
 in ascending powers of $\frac{1}{3}$

27. Prove that : Expand $5\sqrt{5}$ in increasing powers of $\frac{4}{5}$.

28. If b is small compared to 'a' show that $\frac{c}{(a-b)^2} - \frac{c}{(a+b)^2} = \frac{4bc}{a^3}$

29. If 'c' is small in comparison with I then $\left(\frac{l}{l+c}\right)^{1/2} + \left(\frac{l}{l-c}\right)^{1/2} =$

approximately.

30. Find the values of the following correct to five decimals.

$$\frac{1}{\sqrt[3]{128}}$$

Watch Video Solution

31. Find the values of the following correct to five decimals.

$$\sqrt{3.96}$$

Watch Video Solution

32. Find the values of the following correct to five decimals.

$$\sqrt{1.01}$$
 - $\sqrt{0.99}$

View Text Solution

33. Find the sum of the infinite series

$$1 + \frac{1}{3} + \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \dots$$

34. Find the sum of the infinite series $1 - \frac{4}{5} + \frac{4.7}{5.10} - \frac{4.7.10}{5.10.15} + \dots$

35. Find the sum of the infinite series

$$\frac{3}{4} + \frac{3.5}{4.8} + \frac{3.5.7}{4.8.12} + \dots$$

$$\frac{3}{4.8} - \frac{3.5}{4.8.12} + \frac{3.5.7}{4.8.12.16} - \dots$$

37. If
$$x = \frac{3}{16}(3) + \frac{3.7}{16.32}(3)^2 + \frac{3.7.11}{16.32.48}(3)^3 + \dots$$
 then show that $x^2 + 2x = 7$

39. If $x = \frac{1.3}{3.6} + \frac{1.3.5}{3.6.9} + \frac{1.3.5.7}{3.6.9.12} + \dots$ then prove that $9x^2 + 24x = 11$.

Watch Video Solution

38. If
$$t = \frac{4}{5} + \frac{4.6}{5.10} + \frac{4.6.8}{5.10.15} + \dots \infty$$
 then prove that $9t = 16$.

then find the value of $x^2 + 4x$.

40. If $x = \frac{5}{(2!) \cdot 3} + \frac{5.7}{(3!) \cdot 3^2} + \frac{5.7.9}{(4!) \cdot 3^3} + \dots$

$$\frac{7}{5}\left(1+\frac{1}{10^2}+\frac{1.3}{1.2}\cdot\frac{1}{10^4}+\frac{1.3.5}{1.2.3}\cdot\frac{1}{10^6}+....\right)$$

42. Show that

$$1 + \frac{x}{2} + \frac{x(x-1)}{2.4} + \frac{x(x-1)(x-2)}{2.4.6} + \dots$$
$$= 1 + \frac{x}{3} + \frac{x(x+1)}{3.6} + \frac{x(x+1)(x+2)}{3.6.9} + \dots$$

1. Find the coefficient of term independent of \boldsymbol{x} in the expansion of

$$\left(\frac{x+1}{x^{2/3}-x^{1/3}+1}-\frac{x-1}{x-x^{1/2}}\right)^{10}$$

2. Find coeff. of x^{25} in the expansion of $\sum_{k=0}^{\infty} (-1)^{k50} C_k (2x-3)^{50-k} (2-x)^k$.

50

3. Find the coefficient of x^6 in the expansion of $(1 + x^2 - x^3)^8$

4. Find the coefficient of x^{10} in the expansion of $(1 + x^2 - x^3)^8$

- **5.** Find the coefficent of x^6 in $\left(1 + 3x + 9x^2\right)^{10}$
 - View Text Solution

- **6.** If the 6th term in the expansion of $\left(\frac{1}{x^{8/3}} + x^2 \log_{10} x\right)^8$ is 5600, then the value of $x = x^2 \log_{10} x$
 - Watch Video Solution

7. Find the range of values of the term independent of x in

$$\left(x\sin^{-1}p + \frac{\cos^{-1}p}{x}\right)^{10}$$
 where $p \in [-1, 1]$.

View Text Solution

8. The remainder when 5^{99} is divided by 13 is

- **9.** Find the remainder when 3^{37} is divided with 80?
 - **Watch Video Solution**

10. Find the remainder when 2^{60} is divided with 7.

$$(x + 2y + 3z + w)^{20}$$

12. Find the number of distinct terms in the following expansions.

11. Find the number of distinct terms in the expansion

 $\left(x^2 + 1 + \frac{1}{x^2}\right)^{40}$

13. Find the number of distinct terms in the following expansions.

$$(p+q)^{70} + (p-q)^{70} + (p+qi)^{70} + (p-qi)^{70}$$
 where $i = \sqrt{-1}$

14. Find the number of distinct terms in the expansion

$$(x + y + z)^{10} + (x + y - z)^{10}$$

15. Prove that, $C_0 \cdot {}^{2n}C_n - C_1 \cdot (2n-2)C_n + C_2 \cdot (2n-4)C_n - \dots = 2^n$

16. If $(1+x)^n = \sum_{r=0}^n {^nC_r} x^r$ and if $\sum_{r=0}^n \frac{1}{{^nC_r}} = \lambda$, then show that

$$\sum_{0 \le i \le n} \sum_{0 \le j \le n} \left(\frac{i}{{}^{n}C_{i}} + \frac{j}{{}^{n}C_{j}} \right) = n(n+1)\lambda$$

17. Prove that
$$C_0 - \frac{1}{3} \cdot C_1 + \frac{1}{5} \cdot C_2 - \dots + (-1)^n \cdot \frac{1}{2n+1} C_n = \frac{2^{2n}(n!)^2}{(2n+1)!}$$

18. If a, b, c, d be 3^{rd} , 4^{th} , 5^{th} and 6^{th} terms of the expansion of $(p+q)^n$, where n is a positive integer prove that $\frac{b^2 - ac}{c^2 - b} = \frac{5a}{3c}$.

Show

that

$$\sum_{r=0}^{n} (-1)^{r} \cdot {^{n}C_{r}} \left\{ \frac{1}{2^{r}} + \frac{3^{r}}{2^{2r}} + \frac{7^{r}}{2^{3r}} + \dots \text{ upto m terms} \right\} = \frac{2^{mn} - 1}{2^{mn} (2^{n} - 1)}$$

Watch Video Solution

20. If $\sum_{r=0}^{\infty} a_r (x-2)^r = \sum_{r=0}^{\infty} b_r (x-3)^r$ and $a_k = 1$ for all $k \ge n$ then show that

 $b_n = {(2n+1)\choose (n+1)}.$

Watch Video Solution

21. Show that the coefficient of x^ny^n in the expansion of

- **22.** If $\frac{1}{1!(n-1)!} + \frac{1}{3!(n-3)!} + \frac{1}{5!(n-5)!} + \dots =$

 $\{(1+x)(1+y)(x+y)\}^n \text{ is } C_0^3+C_1^3+C_2^3+...C_n^3.$

23. If
$$\sum_{r=0}^{n} \left(\frac{r+2}{r+1} \right) \cdot {}^{n}C_{r} = \frac{255}{6}$$
. Find n.

24. Show that $1\sum_{r=0}^{\infty} {100 \choose r} \cdot {200 \choose 150+r} = {300 \choose 50}$

25. Prove that
$$\sum_{k=1}^{n-k} C_r = {}^{n}C_{r+1}$$
.

26. Show that
$$C_0 + \left(C_0 + C_1\right) + \left(C_0 + C_1 + C_2\right) + \dots + \left(C_0 + C_1 + \dots + C_n\right) = (n+2) \cdot 2^{n-1}$$

27. If
$$x > 0$$
, write the first negative term in the expansion of $(1 + 2x)^{23/2}$

28. If x is small and the expansion of $\frac{a}{(1-x)^2} + \frac{b}{(2+3x)^2}$ is $1+x+...\infty$

29. If x is small and if the expansion of $a + \frac{b}{1 + 2x} + \frac{c}{1 + 2x^2}$ is

find (a, b) and coefficient of term containing x^n .

 $1 + x + 2x^2 + \dots \infty$ find (a,b,c)

31. If x is nearly equal to 1 show that

(a)
$$\frac{px^p - qx^q}{p - q} = x^{p+q} \text{ (nearly)}$$

(b)
$$\frac{px^q - qx^p}{x^q - x^p} = \frac{1}{1 - x}$$
 (nearly) (Hint : Take $x = 1 + \delta x$ and proceed)

32. If
$$|x| < 1$$
 then $1 + n\left(\frac{2x}{1+x}\right) + \frac{n(n+1)}{2!}\left(\frac{2x}{1-x}\right)^2 + \dots \infty =$

33. Prove the following

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{k=1}^{n} \sum_{l=1}^{n} (1) = n^{4}$$

Watch Video Solution

35. Prove the following

$$\sum_{1 \le i} \sum_{j \le n(i+j)} = \frac{n(n^2 - 1)}{2}$$

Watch Video Solution

36. Prove the following

$$\sum_{r=0}^{n} \sum_{s=0}^{n} \left(C_r \cdot C_s \right) = 4^n$$

