

MATHS JEE (MAIN AND ADVANCED) MATHEMATICS

MEAN VALUE THEOREMS

Example

1. Verify Rolle's theorem for the function sinx-sin2x

on $[0,\pi]$

2. Let f(x) = (x - 1)(x - 2)(x - 3). Prove that there is more than one 'c' in (1,3) such that f '(c) = 0

3. Show that there is no real number K, which the equation $x^2=x^2-3x+x\in[0,1]$ = 0 has two distinct roots in [0,1]

4. It is given that Rolle's theorem holds for the function $f(x)=x^3+bx^2+ax$ on [1,3] with C = $2+\frac{1}{\sqrt{3}}$. Find the values a and b

5. Verify Rolle's theorem for the functions $f(x) = x(x+3)e^{-x/2}$ on [-3,0]

6. Verify whether Rolle's theorem is applicable to f(x) = tanx on $\left\lceil \frac{\pi}{4}, \frac{5\pi}{4} \right\rceil$?

Watch Video Solution

7. Verify Rolle's theorem for the function $f(x) = (x-a)m(x-b)^n$ on [a, b] where m and n are positive integers.

8. Find "c" of the Rolle's theorem for $f(x)=rac{\log \left(x^2+ab
ight)}{a+bx}$ in [a, b] where a, b $\,>\,$ 0.

9. If 2a+3b+6c=0, show that there exists at least one root of the equation $ax^2+bx+c=0$ in the interval (0,1).

10. The value of 'a' for which $x^3-3x+a=0$ has two distinct roots in [0,1] is given by

Watch Video Solution

11. Find "heta " of the Rolle's theorem for the function $f(x) = x^2 - 5x + 7$ in [2,3],

at least one root

atmost one root

12. Find c of the LMVT for f(x) = x(x-1)(x-2) in $\left[0, \frac{1}{2}\right]$

Watch Video Solution

13. Show that the square roots of two successive natural numbers greater than N^2 differ by less than $\frac{1}{2N}$

1. $f(x) = x^2 - 1$ in [-1,1]

2. $f(x) = x^2 - 5x + 6$ in [-3, 8]

3. $f(x) = x^2 + 4 \in [-3, 3]$

4. $f(x) = (x^2-1)(x-2) \in [-1,2]$

5. $f(x) - \log (x^2 + 2) - \log 3 \in [-1, 1]$

6. The constant c of Rolle's theorem for the function $f(x)=2x^3+x^2-4x-2$ in $\left[-\sqrt{2},\sqrt{2}
ight]$ is

7. Find c of the R olle's theorem for the functions

$$f(x)=rac{\logig(x^2+3ig)}{4x}$$
 in [1,3]

Watch Video Solution

8. The value of 'c' in Lagrange's mean value theorem

for
$$f(x) = (x - a)m (x - b)^m [a, b]^n$$
 is [a,b] is

A.
$$\frac{mb+na}{m+n}$$

B.
$$\frac{ma+nb}{m+n}$$

C.
$$\frac{a+b}{m+n}$$

D.
$$\frac{a+b}{2}$$

Answer: A

Watch Video Solution

9. If
$$f(x)=x^3+bx^2+ax$$
 satisfies the conditions of Rolle's theorem in [1, 3] with $c=2+\frac{1}{\sqrt{3}}$ then (a, b) is equal to

A. (11, 6)

B. (11, -6)

 $\mathsf{C.}\,(\,-6,11)$

D.(6,11)

Answer: B

Watch Video Solution

10. If a + b + c = 0, then the equation

 $3ax^2+2bx+c=0$ has, in the interval (0, 1)

A. at least one root

B. atmost one root

C. no root

D. exactly one root

Answer: A

- 11. If 27a+9b+3c+d=0, then the equation $4ax^3+3bx^2+2cx+d=0$ has atleast one real root lying between
 - A. 0 and 1
 - B. 1 and 3
 - C. 0 and 3
 - D. 0 and 2

Answer: C

Watch Video Solution

12. Rolle's theorem cannot be applicable for

A.
$$f(x)=\cos x-1\in [0,2\pi]$$

B.
$$f(x)=x(x-2)^2\in[0,2]$$

C.
$$f(x) = 3 + (x-1)^{2/3} \in [0,3]$$

D.
$$f(x) = \sin^2 x \in [0,\pi]$$

Answer: C

13. The value of 'c' in Lagrange's thorem for

$$f(x) = lx^2 + mx + n[l
eq 0]$$
 on [a,b] is

A.
$$a/2$$

$$\operatorname{C.}\frac{a-b}{2}$$

D.
$$\frac{a+b}{2}$$

Answer: D

14. If
$$f'(x) = \frac{1}{1 + x^2}$$
 for all x and $f(0) = 0$, then:

A.
$$f(2) \leq 0.4$$

$$\mathsf{B.}\,f(2)>2$$

$$\mathsf{C.}\,0.4 < f(2) < 2$$

D.
$$f(2) = 2$$

Answer: C

15. Let f be a function which is continuous and differentiable for all real x. If f(2) = -4 and $f'(x) \ge 6$

for all $x \in [2,4]$, then

A. f(4) < 8

B. $f(4) \ge 8$

C. f(4) > 12

D. f(4) > 8

Answer: B

Watch Video Solution

16. In [0,1], Lagrange's mean value theorem is not applicable to

(a) $f(x)=\left\{egin{array}{ll} rac{1}{2}-x & x<rac{1}{2} \ \left(rac{1}{2}-x
ight)^2 & x\geqrac{1}{2} \end{array}
ight.$

(b) $f(x) = \left\{egin{array}{ll} rac{\sin}{x} & x
eq 0 \ 1 & x = 0 \end{array}
ight.$

f(x) = x|x|

(d) f(x)=|x|

A. a

B.b

C. c

17. Let f(x) and g(x) be differentiable functions for $0 \le x \le 1$ such that f(0) = 2, g(0) = 0, f(1) = 6. Let there exist a real number c in (0,1) such that f'(c) = 2 g'(c), then g(1) = 2

A. 1

B. 2

 $C_{\cdot}-2$

D. -1

Answer: B

18. The value of 'a' for which $x^3-3x+a=0$ has two distinct roots in [0,1] is given by

A. not value of k

B. at least one value of k

C. infinitely many values of k

D. exactly one value of k

Answer: A

19. Let R o R be a continuous function define by

$$f(x) = \frac{1}{e^x + 2e}$$

statement 1 : $f(c) = \frac{1}{3}$ for some $c \in R$ statement 2 $0 < f(x) \le \frac{1}{2\sqrt{2}}$ for all $\mathbf{x} \in R$

A. statement -1 is true statement 2 is true statement 2 is not the correct explanation for statement -1

B. statement -1 is true statement -2 is false

C. statement -1 is false statement 2 is true

D. statement -1 is true statement -2 is true

statement -2 is the correct explantion for

statement -1

Answer: D

View Text Solution

20. The real number k for which the equation,

 $2x^3+3x+k=0$ has two distinct real roots in

[0,1]

A. lies between 1 and 2

B. lies between 2 and 3

C. lies between -1 and 3

D. does not exist

Answer: D

Watch Video Solution

21. If f and 'g' are differentiable functions in [0, 1] satisfying f(0) = 2 = g(1), g(0) = 0 and f(1) = 6, then for some $c \in [0,1]$:

A.
$$2f(c) = g(c)$$

B.
$$2f(c) = 3g(c)$$

C.
$$f(c)=g(c)$$

D.
$$f(c) = 2g(C)$$

Answer: D

Watch Video Solution

22. If the Rolle's theorem holds for the function $f(x)=2x^3+ax^2+bx$ in the interval [-1,1] for the point $c=\frac12$, then the value of 2a + b is

A. 1

B. -1

C. 2

D.-2

Answer: B

Watch Video Solution

23. Let f(1) = -2 and $f'(x) \ge 4.2$ for $1 \le x \le 6$.

The possible value of /(6) lies in the interval:

A. [15, 19]

B. $(-\infty, 12)$

C. [12, 15)

D. $[19, \infty]$

Answer: D

Watch Video Solution

24. A value of c for which the conclusion of Mean Value Theorem holds for the function $f(x) = \log_e x$ on the interval [1, 3] is

- A. $\log_e 3$
- B. $2\log_3 e$
- $\mathsf{C.}\,1/2\log_e 3$
- $D. \log_3 e$

Answer: B

Watch Video Solution

25. If 2a + 3b + 6c = 0, then atleast one root of the equation $ax^2 + bx + c = 0$ lies in the interval

A. 0,1

B. 1,2

C. 2,3

D. 1,3

Answer: A

 $a_n x^n + a_{n-1} x^{n-1} + \ldots + a_1 x = 0 (a_1 - 0, n \ge 2)$

has a positive root
$$x = \alpha$$
 then the equation

$$na_nx^{n-1} + (n-1)a_{n-1}x^{n-2} + \dots + a_1 = 0$$

has a positive root, which is

A. equal to lpha

B. $\geq \alpha$

 $\mathsf{C.} < \alpha$

D. $> \alpha$

Answer: C

Watch Video Solution

27. Let f be differentiable for all x. If f(1) = -2 and f'(x)

$$\geq \,$$
 2 for all $x \in [1,6]$, then

A.
$$f(6) < 8$$

B.
$$f(6) \ge 8$$

$$\mathsf{C}.\,f(6)\geq 5$$

D.
$$f(6) \leq 5$$

Answer: B

28. Consider the functions,
$$f(x) = |x-2| + |x-5|$$
, $x \in \mathbb{R}$ Statement-1 : $f'(4) = 0$ Statement-2 : f is continuous in [2, 5], differentiable in (2, 5) and F(2) =F(5)

A. S-1 is false S-2 is true

B. S-1 is true S-2 is true S-2 is a correct explanation for S-1

C. s-1 is true S-2 is true S-2 is a correct explantion for S-1

D. S-1 is true S-2 is false

Answer: B

