đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MTG PHYSICS (ENGLISH)

ATOMS

Alpha Particle Scattering

1. The first model of atom in 1998 was
proposed by
A. Ernst Ruterford
B. Albort einstein
C. j.j thomson
D. neiels bohr

Answer: C

D Watch Video Solution

2. In geiger-marsden scattering experiment,
the trajectory traced by α-particle depends on
A. number of collision
B. number of scattered α-particles
C. impact parameter
D. none of these

Answer: C

D Watch Video Solution

3. In a geiger - marsden experiment. Find the distance of closest approach to the nucleus of
a 7.7 me $\mathrm{v} \alpha$ - particle before it comes
momentarily to rest and reverses its direction.
(z for gold nucleus = 79) .
A. 10 fm
B. 20 fm
C. 30 fm
D. 40 fm

Answer: C
(Watch Video Solution
4. In the geiger -marsden scattering experiment the number of scattered detected are maximum and minimum at the scattering angles respectively at
A. 0° and 180°
B. 180° and 0°
C. 90° and 180°
D. 45° and 90°

Answer: A
5. In the geiger -marsden scattering experiment, in case of head- on collision the impact parameter should be
A. maximum
B. minimum
C. infinite
D. zero

Answer: B
6. The graph of the total number of α-particles scattered at different angles in a given interval of time for α - particles scattering in the geiger- marsden experiment is given by

[^0]

Answer: A

- Watch Video Solution

7. Rutherford experiment suggested that the

size of the nucleus is about

A. $10^{-14 m}$ to $10^{-12} m$

$$
\begin{aligned}
& \text { B. } 10^{-15 m} \text { to } 10^{-13} m \\
& \text { C. } 10^{-15 m} \text { to } 10^{-14} m \\
& \text { D. } 10^{-15 m} \text { to } 10^{-12} m
\end{aligned}
$$

Answer: C

D Watch Video Solution

8. In an atom the ratio of radius of orbit of electron to the radius of nucleus is
A. 10^{3}
B. 10^{4}
C. 10^{5}
D. 10^{6}

Answer: C

D Watch Video Solution

9. The relation between the orbit radius and
the electron velocity for a dynamically stable orbit in a hydrogen atom is (where, all notations have their usual meanings)

$$
\begin{aligned}
& \text { A. } v=\sqrt{\frac{4 \pi \varepsilon_{0}}{m e^{2} r}} \\
& \text { B. } r=\sqrt{\frac{e^{2}}{4 \pi \varepsilon_{0} v}} \\
& \text { C. } v=\sqrt{\frac{e^{2}}{4 \pi \varepsilon_{0} m r}} \\
& \text { D. } r=\sqrt{\frac{v e^{2}}{4 \pi \varepsilon_{0} m}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

10. The relationship between kinetic energy (K) and potential energy (U) of electron moving in
a orbit around the nucleus is

$$
\begin{aligned}
& \text { A. } U=-K \\
& \text { B. } U=-2 K \\
& \text { C. } U=-3 K \\
& \text { D. } U=-\frac{1}{2} K
\end{aligned}
$$

Answer: B
11. The volume occupied by an atom is greater
than the volume of the nucleus by factor of about
A. 10^{1}
B. 10^{5}
C. 10^{10}
D. 10^{15}

Answer: D

D Watch Video Solution
12. Consider aiming a beam of free electrons
to wards free atoms . When they scatter, an
electron and a protons cannot combine be produced a H -atom,
A. energy conservation
B. simultaneously releasing energy in the
from of radiation
C. momentum conservation
D. angular momentum conservation

Answer: A

D Watch Video Solution

13. In an experiment on α - particle scattering,
α-particles are directed towards a gold foil
and detectors are placed in postition P, Q and
R. What is the distribution of α-paritcles as
recored at P, Q and R ?
R

$$
\begin{array}{lll}
P & Q & R \\
\text { A. } & Q & \\
\text { all } & \text { none } & \text { none }
\end{array}
$$

B. P
R
none none all
C.
P
Q
R
a few some most
D.

most some a few

Answer: C

D View Text Solution

14. The first spectral series was discovered by
A. balmer
B. lyman

C. paschen

D. Pfund

Answer: A

D Watch Video Solution

15. Which of the following spectral series falls
within the visible range of electromagnetic
radiation ?
A. Lyman series
B. Balmer series
C. Paschen series
D. Pfund series

Answer: B

- Watch Video Solution

16. What is the shortest wavelength present in
the Paschen series of spectral lines?
A. 720 nm

B. 790 nm

C. 800 nm

D. 820 nm

Answer: D

D Watch Video Solution

17. The shortest wavelength in the balmer series is $\left(R=1.097 \times 10^{7} m^{-1}\right)$
A. 200 nm

B. 256.8 nm

C. 300 nm
D. 364.6 nm

Answer: D

D Watch Video Solution

18. the wavelength limit present in the pfund series is $\left(R=1.097 \times 10^{7} m^{-1}\right)$
A. 1572 nm

B. 1898 nm

C. 2278 nm
D. 2535 nm

Answer: C

D Watch Video Solution

19. when an electron jumps from the fourth orbit to the second orbit, one gets the
A. second line of paschen series
B. second line of balmer serie
C. first line pfund series
D. second line of lyman series

Answer: B

- Watch Video Solution

20. The balmer series for the H -atom can be
ob-served
A. if we measure the frequencies of light emitted when an excited atom falls to
the ground state
B. if we measure the frequencies of light
emitted due to transitions between
excited states and the first excited state
C. in any transition in a H -atom
D. none of these

Answer: B

D Watch Video Solution
21. when an atomic gas or vapour is excited at
low pressure, by passing an electric current through it then
A. emission spectrum is observed
B. absorption spectrum is observed
C. band spectrum is observed
D. both a and c

Answer: A

D Watch Video Solution
22. In balmer series of emission spectrum of hydrogen, first four lines with different wavelength $H_{\alpha}, H_{\beta}, H_{\gamma}$ and H_{δ} are obtained.

Which line has maximum frequency out of these?
A. 1. H_{α}
B. 2. H_{β}
C. 3. H_{γ}
D. 4. H_{δ}

Answer: D

- Watch Video Solution

23. hydrogen atom emits light when it changes from $n=5$ energy level to $n=2$ energy level. Which colour of light would the atom emit ?
A. red
B. yellow
C. green

D. voilet.

Answer: D

D Watch Video Solution

24. the wavelength of the first line of lyman
series is $1215 \AA$, the wavelength of first line of balmer series will be
A. $4545 \AA$
B. $5295 \AA$

C. $6561 \AA$

D. $6750 \AA$

Answer: C

- Watch Video Solution

25. the wavelength of radiation emitted is λ_{0}
when an electron jumps. From the third to
second orbit of hydrogen atom. For the electron jumping from the fourth to the
second orbit of the hydrogen atom, the wavelength of radiation emitted will be
A. $(16 / 25) \lambda_{0}$
B. $(20 / 27) \lambda_{0}$
C. $(27 / 20) \lambda_{0}$
D. $(25 / 16) \lambda_{0}$

Answer: B
26. the wavelength of the first line of lyman
series for hydrogen atom is equal to that of
the second line of balmer series for a hydrogen like ion. The atomic number Z of hydrogen like ion is
A. 3
B. 4
C. 1
D. 2

Answer: D
27. According to bohr's theory, the wave number of last line of balmer series is $\left(R=1.1 \times 10^{7} m^{-1}\right)$
A. $5.5 \times 10^{5} m^{-1}$
B. $4.4 \times 10^{7} \mathrm{~m}^{-1}$
C. $2.75 \times 10^{6} \mathrm{~m}^{-1}$
D. $2.75 \times 10^{8} \mathrm{~m}^{-1}$
28. The first line of the lyman series in a
hydrogen spectrum has a wavelength of 1210
Å. The corresponding line of a hydrogen like atom of $Z=11$ is equal to
A. $4000 \AA$
B. $100 \AA$
C. $40 \AA$
D. $10 \AA$

Answer: D

D Watch Video Solution

29. What is the ratio of the shortest wavelength of the balmer to the shoretst of the lyman series ?
A. $4: 1$
B. $4: 3$
C. $4: 9$
D. $5: 9$

D Watch Video Solution

30. If the wavelength of the first line of the Balmer series of hydrogen is $6561 \AA$, the wavelngth of the second line of the series should be
A. $13122 \AA$
B. $3280 \AA$
C. $4860 \AA$

D. $2187 \AA$

Answer: C

- Watch Video Solution

Emission series		Make transitions from higher levels to following levels	
A	Lyman series	P	$n=1$
B	Paschen series	Q	$n=2$
C	Balmer series	R	$n=3$
D	Brackett series	S	$n=4$
		T	$n=5$

31.

A. A-P,B-R,C-Q,D-S

B. A-P,B-Q,C-R,D-T

C. A-Q,B-R,C-S,D-T
D. A-T,B-S,C-R,D-Q

Answer: A

D Watch Video Solution

32. If v_{1} is the frequency of the series limit of
lyman seies, v_{2} is the freqency of the first line of lyman series and v_{3} is the fequecny of the series limit of the balmer series, then
A. $v_{1}-v_{2}=v_{3}$
B. $v_{1}=v_{2}-v_{3}$
C. $\frac{1}{v_{2}}=\frac{1}{v_{1}}+\frac{1}{v_{3}}$
D. $\frac{1}{v_{1}}=\frac{1}{v_{2}}+\frac{1}{v_{3}}$

Answer: A

D Watch Video Solution

33. which of the following postulates of the Bohr model led to the quantization of energy of the hydrogen atom?
A. the electron goes around the nucleus in circular orbits.
B. the angular momentum of the electron
can only be an intergral multiple of
$h / 2 \pi$.
C. the magnitude of the linear momentum
of the electron is qunatized.
D. Quantization of energy is itself a postulate of the bohr model.
34. The Bohr model of atoms
A. assumes that the angular momentum of
electrons is quantized.
B. uses Einstein's photoelectirc equation.
C. predicts continous emission spectra for atoms.
D. predicts the same emission spectra for
all types of atoms.

Answer: A

D Watch Video Solution

35. The angular speed of the electron in the $n^{t h}$ Bohr orbit of the hydrogen atom is proportional to
A. directly proportional to n
B. inversely proportional to \sqrt{n}
C. inversely proportional to n^{2}
D. inversely proportional to n^{3}

Answer: D

D Watch Video Solution

36. The electric current I created by the electron in the ground state of H atom bohr model in terms of bohr radius $\left(a_{0}\right)$ and velocity of electron in first orbit v_{0} is

$$
\begin{aligned}
& \text { A. } \frac{e v_{0}}{2 \pi a_{0}} \\
& \text { B. } \frac{2 \pi a}{e v_{0}} \\
& \text { C. } \frac{2 \pi a}{v_{0}}
\end{aligned}
$$

D. $\frac{v_{0}}{2 \pi a}$

Answer: A

D Watch Video Solution

37. Total energy of electron in nth stationary orbit of hydrogen atom is
A. $\frac{e^{2}}{4 \pi \varepsilon_{0} r}$
B. $\frac{-e^{2}}{4 \pi \varepsilon_{0} r}$
C. $\frac{-e^{2}}{8 \pi \varepsilon_{0} r}$
D. $\frac{e^{2}}{8 \pi \varepsilon_{0} r}$

Answer: C

D Watch Video Solution

38. According to Bohr's theory the moment of momentum of an electron revolving in second orbit of hydrogen atom will be

$$
\text { A. } \frac{h}{\pi}
$$

$$
\text { B. } 2 \pi h
$$

C. $\frac{2 h}{\pi}$
D. $\frac{\pi}{h}$

Answer: A

D Watch Video Solution

39. According to second postulate of bohr model, the agnular momentum $\left(L_{n}\right)$ of $n^{\text {th }}$ possible orbit of hydrogen atom is given by
A. $\frac{h}{2 \pi n}$
B. $\frac{n h}{2 \pi}$
C. $\frac{2 \pi n}{h}$
D. $\frac{2 \pi}{n h}$

Answer: B

D Watch Video Solution

40. Which of the following statements is true of hydrogen atom?
A. Angualr moment $\propto \frac{1}{n}$
B. Linear moment $\propto \frac{1}{n}$
C. Radius $\propto \frac{1}{n}$
D. Energy $\propto \frac{1}{n}$

Answer: B

D Watch Video Solution

41. Total energy of electron in nth stationary
orbit of hydrogen atom is

$$
\text { A. } \frac{-13.6}{n} e V
$$

$$
\begin{aligned}
& \text { B. } \frac{-13.6}{n^{2}} e V \\
& \text { C. } \frac{-136}{n} e V \\
& \text { D. } \frac{-136}{n^{2}} e V
\end{aligned}
$$

Answer: B

D Watch Video Solution

42. The radius of $n^{t} h$ orbit r_{n} in the terms of Bohr radius $\left(a_{0}\right)$ for a hydrogen atom is given by the relation
A. $n a_{0}$
B. $\sqrt{n a_{0}}$
C. $n^{2} a_{0}$
D. $n^{3} a_{0}$

Answer: C

- Watch Video Solution

43. In Bohr model of the hydrogen atom, the
lowest orbit corresponds to
A. infinite energy
B. maximum energy
C. minimum energy
D. zero energy

Answer: C

D Watch Video Solution

44. Define ionisation energy. What is the value for a hydrogen atom?
A. 3.4 eV
B. 10.4 eV
C. 12.09 eV
D. 13.6 eV

Answer: D

D Watch Video Solution

45. energy is absorbed in the hydrogen atom giving absorption spectra when transition takes place from
A. $n=1 \rightarrow n$ 'where ' n ' >1
B. $n=2 \rightarrow 1$
C. $n^{\prime} \rightarrow n$
D. $n \rightarrow n^{\prime}=\propto$

Answer: A

D Watch Video Solution
46. If n is the orbit number of the electron in a hydrogen atom, the correct statement among the following is
A. electron energy increases as n increases.
B. hydrogen emits infrared rays for the
electron tranition from $n=\propto$ to $n=1$.
C. electron energy is zero for $n=1$.
D. electron energy varies as n^{2}.

Answer: A

D Watch Video Solution

47. Which of the following is not correct about bohr model of the hydrogen atom ?
A. 1. An electron in an atom could revolve in certain stable orbits without the emission of radiant energy.

B. 2. Electron revolves around the nulceus

only in those orbits for which angular
momentum $L_{n}=\frac{n h}{2 \pi}$.

C. 3. when electron make a transition from

one of its stable orbit to lower orbit then a photon emitted with energy

$$
h v=E_{f}-E_{i}
$$

D. 4. Bohr model is applicable to all atoms.

Answer: D

- Watch Video Solution

48. In which of the following systems will the radius of the first orbit $(n=1)$ be minimum ?
A. doubly ionized lithium
B. singly ionized helium
C. deuterium atom
D. hydrogen atom

Answer: A

D Watch Video Solution
49. when an electron falls from a higher energy to a lower energy level the difference in the energies appears in the form of
A. electromagnetic radiation only
B. thermal radiation only
C. both electromagnetic and thermal
radiations
D. none of these

Answer: A
50. Let $E=\frac{-1 m e^{4}}{8 \varepsilon_{0}^{2} n^{2} h^{2}}$ be the energy of the $n^{t h}$
level of H -atom state and radiation of frequency $\left(E_{2}-E_{1}\right) / h$ falls on it ,
A. it will not be absorbed at all
B. some of atoms will move to the first excited state
C. all atoms will be excited to the $n=2$
state

D. all atoms will make a transition to the

$$
n=3 \text { state }
$$

Answer: B

D Watch Video Solution

51. An ionized H -molecule consists of an electron and two protons. The protons are separated by a small distance of the order of angstrom. In the ground state,
A. the electron would not move in circular orbits
B. the energy would be $(2)^{4}$ times that of a H-atom
C. the molecule will soon decay in to a

proton and a H -atom

D. none of these

Answer: A

52. From quantisation of angular momentum
one gets for hydrogen atom, the radius of the
$n^{t} h$ orbit as $r_{n}=\left(\frac{n^{2}}{m_{e}}\right)\left(\frac{h}{2 \pi}\right)^{2}\left(\frac{4 \pi \varepsilon_{0}}{e^{2}}\right)$
For a hydrogen like atom of atomic number Z,
A. the radius of the first orbit will be the
same
B. r_{n} will be greater for larger Z values
C. r_{n} will be smaller for larger Z values
D. none of these

Answer: C

D Watch Video Solution

53. Bohr's basic idea of discrete energy levels
in atoms and the process of emission of photons from the higher levels to lower levels was experimentally confirmed by experiments performed by
A. Michelson- morley
C. joule

D. franck and hertz

Answer: D

- Watch Video Solution

54. Suppose an electron is attracted toward
the origin by a force $\frac{k}{r}$ where k is a constant and r is the distance of the electron from the origin .By applying Bohr model to this system the radius of the $n^{\text {th }}$ orbital of the electron is
found to be r_{n} and the kinetic energy of the electron to be T_{n}, Then which of the following
is true?

$$
\text { A. } T_{n} \propto \frac{1}{n^{2}}
$$

B. T_{n} is independent of $\mathrm{n}, r_{n} \propto n$
C. $T_{n} \propto \frac{1}{n}$ and r_{n}
D. $T_{n} \propto \frac{1}{n}$ and $r_{n} \propto n^{2}$

Answer: B

- Watch Video Solution

55. In Bohr model of the hydrogen atom, let
R, v and E represent the radius of the orbit, speed of the electron and the total energy respectively. Which of the following quantities are directly proportional to the quantum number n ?
A. VR
B. RE
C. R / E
D. none of these

Answer: A

D Watch Video Solution

56. suppose an electron is attracted towards
the origin by a force k / r, where k is a constant and r is the distance of the electron
form the origin. By applying bohr model to
this system, the radius of $n^{\text {th }}$ orbit of the electron is found to be r_{n} and
A. E
B. 2E
C. 3 E
D. 4 E

Answer: D

- Watch Video Solution

57. Which of the transitions in hydrogen atom
emits a photon of lowest frequecny ($n=$ quantum number)?
A. $n=2$ to $n=1$

$$
\text { B. } n=4 \text { to } n=2
$$

C. $n=4$ to $n=1$
D. $n=4$ to $n=3$

Answer: D

D Watch Video Solution

58. The transition form the state $n=3$ to $n=1$ in a hydrogen-like atom results in
A. $2 \rightarrow 1$
B. $3 \rightarrow 2$
C. $4 \rightarrow 2$
D. $4 \rightarrow 3$

Answer: D
(Watch Video Solution
59. If 13.6 eV energy is required to separate a
hydrogen atom into a proton and an electron,
then the orbital radius of electron in a hydrogen atom is
A. $5.3 \times 10^{-11} m$
B. $4.3 \times 10^{-11} m$
C. $6.3 \times 10^{-11} m$
D. $7.3 \times 10^{-11} m$

Answer: A
60. In the question number 59, the value of velocity of the revolving electron is (radius r is

$$
\left.5.3 \times 10^{-11} \mathrm{~m}\right)
$$

A. $1.2 \times 10^{6} \mathrm{~ms}^{-1}$
B. $2.2 \times 10^{6} \mathrm{~ms}^{-1}$
C. $3.2 \times 10^{6} \mathrm{~ms}^{-1}$
D. $4.2 \times 10^{6} \mathrm{~ms}^{-1}$

Answer: B
61. A 10 kg satellite circles earth once every $2 h r$ in an orbit having a radius of 8000 km .

Assuming that Bohr's angular momentum postulate applies to satellites just as it does to an electron in the hydrogen atom, find the quantum number of the orbit of the satellite.
A. 5.3×10^{40}
B. 5.3×10^{45}
C. 7.8×10^{48}

D. 7.8×10^{50}

Answer: B

D Watch Video Solution

62. if an electron is revolving in its bohr orbit
having bohr radius of $0.529 \AA$, then the radius of third orbit is
A. $4234 \AA$
B. $4496 \AA$

C. $4.761 \AA$

D. 5125 nm

Answer: C

D Watch Video Solution

63. the energy required to excite an electron in
hydrogen atom to its first excited state is
A. 8.5 eV
B. $10.2 e \mathrm{~V}$

C. 12.7 eV

D. 13.6 eV

Answer: B

D Watch Video Solution

64. in the question number 63, the frequency of emitted photon due to the given transition
is
$\left(h=6.64 \times 10^{-34} J s, 1 e V=1.6 \times 10^{-19} J\right)$
A. $2.46 \times 10^{10} \mathrm{~Hz}$
B. $2.46 \times 10^{12} \mathrm{~Hz}$
C. $2.46 \times 10^{15} \mathrm{~Hz}$
D. $2.46 \times 10^{18} \mathrm{~Hz}$

Answer: C

D View Text Solution

65. Which state of the triply ionized Beryllium
$\left(B e^{3+}\right)$ has the same orbit radius as that of
the ground state of hydrogen atom?
A. $n=1$
B. $n=2$
C. $n=3$
D. $n=4$

Answer: B

D Watch Video Solution
66. A difference of 2.3 eV separates two energy
levels in an atom. What is the frequency of
radiation emitted when the atom transits form the upper level to the lower level.

A. $5.5 \times 10^{13} \mathrm{~Hz}$
B. $5.5 \times 10^{14} \mathrm{~Hz}$
C. $5.5 \times 10^{18} \mathrm{~Hz}$
D. $5.5 \times 10^{19} \mathrm{~Hz}$

Answer: B

D Watch Video Solution

67. The ground state energy of hydrogen atom
is -13.6 eV . What is the K.E. of electron in this
state?
A. $2.18 \times 10^{-14} J$
B. $2.18 \times 10^{-16} J$
C. $2.18 \times 10^{-18} J$
D. $2.18 \times 10^{-19} J$

Answer: C

D Watch Video Solution
68. In the ground state energy of hydrogen
atom is -13.6 , find the potential energy of electron (in joule) in the given state.

$$
\begin{aligned}
& \text { A. }-4.36 \times 10^{-14} \mathrm{~J} \\
& \text { B. }-4.36 \times 10^{-16} \mathrm{~J} \\
& \text { C. }-4.36 \times 10^{-17} \mathrm{~J} \\
& \text { D. }-4.36 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

Answer: D

D Watch Video Solution
69. If the radius of inner most electronic orbit of a hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$, then the radii of $n=2$ orbit is

A. $1.12 \AA$

B. $2.12 \AA$
C. $3.22 \AA$
D. $4.54 \AA$

Answer: B

D Watch Video Solution
70. A hydrogen atom initially in the ground
level absorbs a photon and is excited to $n=4$
level then the wavelength of photon is
A. $790 \AA$
B. $870 \AA$
C. $970 \AA$
D. $1070 \AA$

Answer: C

- Watch Video Solution

71. If $\lambda=9.7 \times 10^{-8} \mathrm{~m}$, what is frequency of photon?
A. $3.1 \times 10^{15} \mathrm{~Hz}$
B. $3.1 \times 10^{18} \mathrm{~Hz}$
C. $9.1 \times 10^{15} \mathrm{~Hz}$
D. $9.1 \times 10^{18} \mathrm{~Hz}$

Answer: A
(Watch Video Solution
72. The radius of electron orbit and the speed of electron in the ground state of hydrogen atom is $5.30 \times 10^{-11} \mathrm{~m}$ and $22 \times 10^{6} \mathrm{~ms}^{-1}$ respectively, then the orbital period of this electron in second excited state will be

$$
\begin{aligned}
& \text { A. } 1.21 \times 10^{-14} s \\
& \text { B. } 1.21 \times 10^{-12} s \\
& \text { C. } 1.21 \times 10^{-10} s \\
& \text { D. } 1.21 \times 10^{-15} s
\end{aligned}
$$

73. In accordance with the Bohr's model, find the quantum number that characterizes the earth's revolution around the sun in an orbit of radius $1.5 \times 10^{11} \mathrm{~m}$ with orbital speed $3 \times 10^{4} \mathrm{~m} / \mathrm{s}$. (Mass of earth $=6.0 \times 10^{24} \mathrm{~kg}$)
A. 5.98×10^{86}
B. 2.57×10^{38}
C. 8.57×10^{64}
D. 2.57×10^{74}

Answer: D

D Watch Video Solution

74. if speed of electron is ground state energy
level is $2.2 \times 10^{6} m s^{-1}$, then its speed in
fourth excited state will be
A. $6.8 \times 10^{6} \mathrm{~ms}^{-1}$
B. $8.8 \times 10^{5} \mathrm{~ms}^{-1}$
C. $5.5 \times 10^{5} \mathrm{~ms}^{-1}$
D. $5.5 \times 10^{6} \mathrm{~ms}^{-1}$

Answer: C

D Watch Video Solution

75. if muonic hydrogen atom is an atom in which a negatively charged muon (μ) of mass about $207 m_{e}$ revolves around a proton, then first bohr radius of this atom is

$$
\left(r_{e}=0.53 \times 10^{-10} m\right)
$$

$$
\text { A. } 2.56 \times 10^{-10} m
$$

$$
\text { B. } 2.56 \times 10^{-11} \mathrm{~m}
$$

C. $2.56 \times 10^{-12} m$
 D. $2.56 \times 10^{-13} \mathrm{~m}$

Answer: D

- Watch Video Solution

76. In the question number 75 , if ground state energy of electron is -13.6 eV then what is
the ground state energy of muonic hydrogen atom?
A. 1.8 keV
B. $-2.8 k e V$
C. $-3.8 k e V$
D. 4.8 keV

Answer: B

D Watch Video Solution

77. An electron is revolving in the $n^{\text {th }}$ orbit of radius $4.2 \AA$, then the value of n is

$$
(r 1=0.529 \AA)
$$

A. 4
B. 5
C. 6
D. 3

Answer: D

D Watch Video Solution

78. Positronium is just like a H -atom with the proton replaced by the positively charged antiparticle of the electron (called the positron
which is as massive as the electron). What would be the ground state energy of positronium?
A. 3.4 eV
B. $-5.2 e V$
C. $-6.8 e V$
D. $-10.2 e \mathrm{~V}$

Answer: C

D Watch Video Solution
79. The minimum energy that must be given to
a H atom in ground state so that it can emit an H , line in balmer series is
A. 12.4 eV
B. 10.2 eV
C. 13.06 eV
D. 13.6 eV

Answer: C
80. In the question number 79 , what would be
the angular momentum of H_{γ} photon if the angular momentum of the system is conserved
A. \hbar
B. $2 \hbar$
C. $3 \hbar$
D. $4 \hbar$

Answer: C
81. Energy E of a hydrogen atom with principle quantum number n is given by $E=\frac{-13.6}{n^{2}} \mathrm{eV}$. The energy of a photon ejected when the electron jumps from $n=3$ state to $n=2$ state of hydrogen is approximately
A. 1.5 eV
B. 0.85 eV
C. 3.4 eV

D. 1.9 eV

Answer: D

D Watch Video Solution

82. Out of the following which one is not a possible energy for a photon to be emitted by hydrogen atom according to Bohr's atomic model?
A. 0.65 eV
B. 1.9 eV
C. 11.1eV
D. 13.6 eV

Answer: C

D Watch Video Solution

83. The ratio of the speed of the electrons in
the ground state of hydrogen to the speed of
light in vacuum is
A. $\frac{1}{2}$
B. $\frac{2}{237}$
C. $\frac{1}{137}$
D. $\frac{1}{237}$

Answer: C

D Watch Video Solution
84. In an excited state of hydrogen like atom an electron has total energy of $-3.4 e V$. If the
kinetic energy of the electron is E and its deBroglie wavelength is λ, then

$$
\begin{aligned}
& \text { A. } E=6.8 e V, \lambda=6.6 \times 10^{-10} \mathrm{~m} \\
& \text { B. } E=3.4 e V, \lambda=6.6 \times 10^{-10} \mathrm{~m} \\
& \text { C. } E=3.4 e V, \lambda=6.6 \times 10^{-11} \mathrm{~m} \\
& \text { D. } E=6.8 \mathrm{e} V, \lambda=6.6 \times 10^{-11} \mathrm{~m}
\end{aligned}
$$

Answer: B

D Watch Video Solution

85. The binding energy of the electron in the ground state of $H e$ atom is equal to $E_{0}=24.6 \mathrm{eV}$. Find the energy required to remove both the electrons from the atom.
A. 49.2 eV
B. 54.4 eV
C. 79 eV
D. 108.8 eV

Answer: C
86. The diagram shows the energy levels for an
electron in a certain atom. Which transition
shown represents the emission of photon with
the most enegy?

A. I
B. II
C. III
D. IV

Answer: C

D Watch Video Solution

87. In a hydrogen atom, the radius of $n^{\text {th }}$ bohr orbit is r_{n}. The graph between $\log \left(r_{n} / r_{1}\right)$ and logn will be
A.

B.
(h) $\underbrace{}_{n \rightarrow \rightarrow}$
C.
(c) $\prod_{\substack{1 \\ i}}^{\substack{n}}$
D.
(d)

Answer: A
(Watch Video Solution
88. An electron in the ground state of hydrogen atom is revolving in anticlockwise direction in circular orbit of radius R. The orbital magnetic dipole moment of the electron will be
A. $\frac{e h}{4 \pi m}$
B. $\frac{e h}{2 \pi m}$
C. $\frac{e h^{2}}{4 \pi m}$
D. $\frac{e^{2} h}{4 \pi m}$

Answer: A

- Watch Video Solution

89. The electron in hydrogen atom makes a transition $n_{1} \rightarrow n_{2}$ where n_{1} and n_{2} are the principal quantum number of two states. Assuming the Bohr model to be valid, the time period of the electron in the initial state is eight times that in the final state. The possible value of n_{1} and n_{2} are:

$$
\text { A. } n_{1}=4, n_{2}=2
$$

$$
\text { B. } n_{1}=8, n_{2}=2
$$

$$
\text { C. } n_{1}=8, n_{2}=1
$$

$$
\text { D. } n_{1}=6, n_{2}=2
$$

Answer: A

D Watch Video Solution

90. the ionization energy of $\mathrm{Li}^{\wedge}(++)^{\wedge}$ is equal to
A. 9 hcR
B. 6 hcR

C. 2 hcR

D. $h c R$

Answer: A

D Watch Video Solution

91. A hydrogen atom and a $L i^{2+}$ ion are both
in the second excited state. If l_{H} and $l_{L i}$ are
their respective electronic angular momenta, and E_{H} and $E_{L i}$ their respective energies, then
(a) $l_{H}>l_{L i}$ and $\left|E_{H}\right|>\left|E_{L i}\right|$
(b) $l_{H}=l_{L i}$ and $\left|E_{H}\right|<\left|E_{L i}\right|$
(C) $l_{H}=l_{L i}$ and $\left|E_{H}\right|>\left|E_{L i}\right|$
(d) $l_{H}<l_{L i}$ and $\left|E_{H}\right|<\left|E_{L i}\right|$
A. $l_{H}>l_{L i}$ and $\left|E_{H}\right|>\left|E_{L i}\right|$
B. $l_{H}=l_{L i}$ and $\left|E_{H}\right|>\left|E_{L i}\right|$
C. $l_{H}=l_{L i}$ and $\left|E_{H}\right|<\left|E_{L i}\right|$
D. $l_{H}<l_{L i}$ and $\left|E_{H}\right|<\left|E_{L i}\right|$

Answer: C

92. The de-Broglie wavelength of an electron in

the first Bohr orbit is
A. equal to one- fourth the circumference
of the first orbit
B. equal to half the circumference of first
orbit
C. equal to twice the circumference of first
orbit.

D. equal to the circumference of the first

 orbit.
Answer: D

D Watch Video Solution

93. the wavelength of spectral line in the
lyman series of a H-atom is $1028 \AA$. If instead of
hydrogen, we consider deuterium then shift in
the wavelength of this line be $\left(m_{p}=1860 m_{e}\right)$
A. $1027.7 \AA$
B. $1036 \AA$
C. $1028 \AA$
D. $1021 \AA$

Answer: A

D Watch Video Solution
94. The rydberg formula, for the spectrum of
the hydorgen aotm where all terms have their usual menaning is
A. $h v_{\text {if }}=\frac{m e^{4}}{8 \varepsilon_{0}^{2} h^{2}}\left(\frac{1}{n_{f}}-\frac{1}{n_{i}}\right)$
B. $h v_{\text {if }}=\frac{m e^{4}}{8 \varepsilon_{0}^{2} h^{2}}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)$
C. $h v_{\text {if }}=\frac{8 \varepsilon_{0}^{2} h^{2}}{m e^{4}}\left(\frac{1}{n_{f}}-\frac{1}{n_{i}}\right)$
D. $h v_{\text {if }}=\frac{8 \varepsilon_{0}^{2} h^{2}}{m e^{4}}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)$

Answer: B

D Watch Video Solution

95. Hydrogen atom from excited state comes
to the ground state by emitting a photon of
wavelength λ. If R is the Rydberg constant,
then the principal quatum number n of the excited state is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{\lambda R}{\lambda R-1}} \\
& \text { B. } \sqrt{\frac{\lambda}{\lambda R-1}} \\
& \text { C. } \sqrt{\frac{\lambda R^{2}}{\lambda R-1}} \\
& \text { D. } \sqrt{\frac{\lambda R}{\lambda-1}}
\end{aligned}
$$

Answer: A
96. Ionization potential of hydrogen atom is
13.6 V . Hydrogen atoms in the ground state are excited by monochromatic radiation of photon energy 12.1 eV . The spectral lines emitted by hydrogen atoms according to Bohr's theory will be
A. one
B. two
C. three
D. four

Answer: C

- Watch Video Solution

97. the excitation energy of lyman last lines is

A. the same as ionisation energy
B. the same as the last absorption line in
lyman series
C. both (a) and (b)
D. different from (a) and (b)

Answer: C

- Watch Video Solution

98. the number of de broglie wavelength contained in the second bohr orbit of hydrogen atom is
A. 1
B. 2
C. 3
D. 4

Answer: B

D Watch Video Solution

99. if three are N atoms in a source of laser
light and each atom is emitting light with intensity I, then the total intensity produced by it is
A. NI
B. $N^{2} I$
C. $N^{3} I$

D. $N^{4} I$

Answer: B

- Watch Video Solution

100. What does the word LASER stand for ?
A. Light amplification by stimulated
emission of radiation
B. light amplitude by stimulated emission
of radiation
C. light amplification by strong emission of
radiation
D. light amplification by stimulated
emission of radiowave

Answer: A

D Watch Video Solution

Higher Order Thinking Skills

1. Deutrium was discovered in 1932 by Harold

Urey by measuring the small change in
wavelength for a particular transition in.${ }^{1} H$
and.${ }^{2} H$. This is because, the wavelength of transition depend to a certain extent on the nuclear mass. If nuclear motion is taken into account, then the electrons and nucleus revolve around their common centre of mass.

Such a system is equivalent to a single particle with a reduced mass μ, revolving around the nucleus at a distance equal to the electron -
$\mu=m_{e} M /\left(m_{e}+M\right), \quad$ where M is the nuclear mass and m_{e} is the electronic mass.

Estimate the percentage difference in wavelength for the 1 st line of the Lyman series
in.${ }^{1} H$ and.${ }^{2} H$. (mass of.${ }^{1} H$ nucleus is
$1.6725 \times 10^{-27} \mathrm{~kg}$, mass of.$^{2} H$ nucleus is
$3.3374 \times 10^{-27} \quad \mathrm{~kg}$, Mass of electron
$\left.=9.109 \times 10^{-31} \mathrm{~kg}.\right)$
A. $2.7 \times 10^{-1} \%$.
B. $2.7 \times 10^{-2} \%$.
C. $3.5 \times 10^{-2} \%$.

$$
\text { D. } 3.5 \times 10^{-1} \% \text {. }
$$

Answer: B

- Watch Video Solution

2. The inverse sequare law in electrostatic is
$|F|=\frac{e^{2}}{\left(4 \pi \varepsilon_{0}\right) r^{2}}$ for the force between an
electron and a proton. The $\left(\frac{1}{r}\right)$ dependence
of $|F|$ can be understood in quantum theo ry
as being due to the fact that the particle of
light (photon) is massless. If photons had a
mass m_{p}, force would be modified to
$|F|=\frac{e^{2}}{\left(4 \pi \varepsilon_{0}\right) \pi^{2}}\left[\frac{1}{r^{2}}+\frac{\lambda}{r}\right] \quad . \exp (-\lambda r)$
where $\lambda=\frac{m_{p} c}{h}$ and $h=\frac{h}{2 \pi}$. Estimate the
change in the gound state energy of a H -atom
if m_{p} were 10^{-6} times the mass of the electron.
A. $18.6 \lambda r_{B}$
B. -27.2
C. $27.2 \lambda r_{B}$
D. $-\lambda r_{b}$

D View Text Solution

3. The Bohr model for the H -atom relies on the

Coulomb's law of electrostatics . Coulomb's
law has not directly been varified for very short distances of the order of angstroms.

Supposing Coulomb's law between two oppsite charge $+q_{1},-q_{2}$ is modified to $|\vec{F}|=\frac{q_{1} q_{2}}{\left(4 \pi \varepsilon_{0}\right) r^{2}} \frac{1}{r^{2}}, r \geq R_{0}$
$=\frac{q_{1} q_{2}}{\left(4 \pi \varepsilon_{0}\right) r^{2}} \frac{1}{R_{0}^{2}}\left(\frac{R_{0}}{r}\right)^{\varepsilon}, r \leq R_{0}$

Calculate in such a case, the ground state enenergy of H -atom , if $\varepsilon=0.1, R_{0}=1 \AA$
A. -11.4
B. -17.3
C. 5.9
D. -23.2

Answer: A

D View Text Solution
4. In the Auger process as atom makes a transition to a lower state without emitting a photon. The excess energy is transferred to an outer electron which may be ejected by the atom (this is called an Auger electron).

Assuming the nucleus to be massive, calculate
the kinetic energy of an $n=4$ Auger electron emitted by chromium by absorbing the energy
from a $n=2$ to $n=1$ transition.
A. 4.6
B. 7.5
C. 5.38
D. 3.36

Answer: C

- Watch Video Solution

5. If a proton had a radius R and the charge
was uniformly distributed, the ground state energy (in eV) of a H -atom for $R=0.1 \AA$ is
A. -13.6
B. -27.2
C. -3.4
D. -30.8

Answer: A

- Watch Video Solution

6. The ground state energy of an atom is
-13.6 eV . The photon emitted during the transition of electron from $n=3$ to $n=1$
state, is incidenet on a photosensitive material
of unknown work function. The photoelectrons
are emitted from the materials with a maximum kinetic energy of 9 eV . the threshold wavelength of the material used is
A. $0.9 \times 10^{-7} m$
B. $4 \times 10^{-7} m$
C. $0.47 \times 10^{-7} \mathrm{~m}$
D. $9 \times 10^{-7} m$

Answer: A

7. For scattering by an inverse-square field
(such as that produced by a charged nucleus
in Rutherford's model) the relation between
impact parameter b and the scattering angle θ
is given by, the scattering angle for $b=0$ is
A. 180°
B. 90°
C. 45°
D. 120°

Answer: A

D Watch Video Solution

8. The impact parameter at which the scattering angle is $90^{\circ}, z=79$ and initial energy 10 MeV is
A. $1.137^{\star} 10^{\wedge}-14$
B. $1.137^{\star} 10^{\wedge}-16$
C. $2.24 * 10^{\wedge}-17$
D. zero

Answer: C

- Watch Video Solution

Ncert Examplar Problems

1. Taking the Bohr radius $a_{0}=53 \mathrm{pm}$, the radius of $L i^{++}$ion in its ground state, on the basis of Bohr's model, will be about.
A. 53 pm
B. 27pm

C. 18pm

D. 13 pm

Answer: C

D Watch Video Solution

2. The binding to energy of a H -atom, considering and electron moving around a fixed nuclei (proton), is
$B=-\frac{m e^{4}}{8 n^{2} \varepsilon_{0}^{2} h^{2}}(\mathrm{~m}=$ electron mass $)$
In one decides to work in a frame of reference
where the electon is at rest, teh proton would
be moving around it. by similar arguments, the binding energy would be
$B=-\frac{M e^{4}}{8 n^{2} \varepsilon_{0}^{2} h^{2}}$ ($M=$ proton mass)
The last expression is not, correct, because
A. n would not be integral
B. bohr- quantisation applies only to
electron
C. the frame in which the electron is at rest is not inertial

D. the motion of the proton would not be

 in circular orbits, even approximately
Answer: C

D Watch Video Solution

3. The simple Bohr model cannot be directly ap-plied to calculate the energy level of an atom with many electrons. This is because.
A. of the electrons not being subject to a central force
B. of the electrons colliding with each other
C. of screening effects
D. the force between the nucleus and an
electron will no longer be given by coulomb's law.

Answer: A

D Watch Video Solution
4. For the ground state, the electron in the $\mathrm{H}-$ atom has an angular momentum $=h$, according to the simple Bohr model. Angular momentum is a vector ans hence there will be infinitely many orbits with the vector pointing in all possible direction. In actuality, this is not true.
A. a) because bohr model gives incorrect values of angular momentum .
B. b) because only one of these would have a minimum energy .
C. c) angular momentum must be in the direction of spin of electron .
D. d) because electrons go around only in
horizontal orbits

Answer: A

D Watch Video Solution
5. O_{2} molecules consists of two oxygen atoms.

In the molecules, nuclear force between the nuclei of the two atoms
A. is not important because nuclear forces are short-ranged.
B. is as important as electrostatic force for binding the two atoms
C. cancels the repulsive electrostatic force
between the nuclei

D. is not important because oxygen

 nucleus has equal number of neutrons and protons.
Answer: A

D Watch Video Solution

6. Two H atoms in the ground state collide inelastically. The maximum amount by which their combined kinetic energy is reduced is
A. 10.2 eV
B. 20.4 eV
C. 13.6 eV
D. 27.2 eV

Answer: A

- Watch Video Solution

7. A set of atom in an excited state decays
A. in general to any of the states with lower energy
B. into a lower state only when excited by
an external electric field
C. all togather simultaneously into a lower
state
D. to emit photons only when they collide

Answer: A

- Watch Video Solution

Assertion Reason Corner

1. (A) atoms of each element are stable and emit characteristic spectrum.
(R) the spectrum provides useful information about the atomic structure.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: B

D Watch Video Solution

2. (A) atom as a whole is electrically neutral.
(R)atom contains equal amount of positive and negative charges.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: A

3. (A) according to classical electromagnetic theory an accelerated particle continuously emits radiation.
(R) according to classical theory, the proposed path of an electron in Rutherford atom model will be parabolic.
A. if both assertion and reason are true
and reason is the correct explanation of assertion.
B. if both assertion and reason are true but reason is not the correct explanation of assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: C

D Watch Video Solution

4. (A) in alpha particle scattering number of alpha paritcle undergoing head on collision is small.
(R) small fraction of the number of incident particles rebound back.
A. if both assertion and reason are true and reason is the correct explanation of assertion.

B. if both assertion and reason are true but

reason is not the correct explanation of
assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: B

- Watch Video Solution

5. (A) most of the mass of the atom is concentrated in its nucleus.
(R) all alpha particles striking a gold sheet are scattered in different directions.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: C

6. (A) the trajetory traced by an incident particle depends on the impact parameter of collision.
(R) the impact parameter is the perpendicular distance of the initial velocity vector of the incident particle from the centre of the target nucleus.
A. if both assertion and reason are true
and reason is the correct explanation of assertion.
B. if both assertion and reason are true but reason is not the correct explanation of assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: B

- Watch Video Solution

7. (A) in the experiment of alpha particle scattering, extremely thin gold foils are preferred over other metals.
(R)gold is a ductile material.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of assertion.

C. if assertion is true but reason is false.

D. if both assertion and reason are false.

Answer: B

- Watch Video Solution

8. (A) the total energy of an electron revolving in any stationary orbit is negative.
(R) energy can have positive or negative values.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: B
9. Statement -1 : Large angle scattering of alpha particles led to the discovery of atomic nucleus.

Statement -2 : Entire positive charge of atom is concentrated in the central core.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: A

D Watch Video Solution

10. Assertion: For the scattering of α-particles
at a large angles, only the nucleus of the atom
is responsible.

Reason: Nucleus is very heavy in comparison to electrons.
A. if both assertion and reason are true and reason is the correct explanation of assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: A

D Watch Video Solution

11. Assertion: Hydrogen atom consists of anly one electron but its emission spectrum has may lines.

Reason: Only Lyman series is found in the
absorption spectrum of hydrogen atom whereas in the emission spectrum, all the series are found.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.

B. if both assertion and reason are true but

reason is not the correct explanation of
assertion.
C. if assertion is true but reason is false.

D. if both assertion and reason are false.

Answer: B

D Watch Video Solution

12. (A) bohr model can not be extended to two or more electron atoms.
(R) each electron in the atom interacts not only with the positively charged nueleus but also with all other electrons.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: A

13. Assertion: Bohr had to postulate that the electrons in stationary orbits around the nucleus do not radiate.

Reason: According to classical physical all moving electrons radiate.
A. if both assertion and reason are true and reason is the correct explanation of assertion.
B. if both assertion and reason are true but reason is not the correct explanation of assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: C

D Watch Video Solution

14. (A) bohr's third postulaate states that the stationary orbits are those for which the angular momentum is some integral multiple of $\frac{h}{2 \pi}$.
(R) linear momentum of the electron in the atom is quantised.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but reason is not the correct explanation of assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: D

- Watch Video Solution

15. Assertion: Electrons in the atom are held due to coulomb forces.

Reason: The atom is stable only because the centripetal force due to Coulomb's law is balanced by the centrifugal force.
A. if both assertion and reason are true and reason is the correct explanation of assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: C

D Watch Video Solution

Alpha Particle Scattering And Rutherford Model

1. The first model of atom in 1998 was
A. Ernst Ruterford
B. Albort einstein
C. j.j thomson
D. neiels bohr

Answer: C

D Watch Video Solution

2. In geiger-marsden scattering experiment,
the trajectory traced by α-particle depends on
A. number of collision
B. number of scattered α-particles
C. impact parameter
D. none of these

Answer: C

D Watch Video Solution

3. In a geiger - marsden experiment. Find the distance of closest approach to the nucleus of
a 7.7 me $\mathrm{v} \alpha$ - particle before it comes
momentarily to rest and reverses its direction.
(z for gold nucleus = 79) .
A. 10 fm
B. 20 fm
C. 30 fm
D. 40 fm

Answer: C
(Watch Video Solution
4. In the geiger -marsden scattering experiment the number of scattered detected are maximum and minimum at the scattering angles respectively at
A. 0° and 180°
B. 180° and 0°
C. 90° and 180°
D. 45° and 90°

Answer: A
5. In the geiger -marsden scattering experiment, in case of head- on collision the impact parameter should be
A. maximum
B. minimum
C. infinite
D. zero

Answer: B
6. The graph of the total number of α-particles scattered at different angles in a given interval of time for α - particles scattering in the geiger- marsden experiment is given by

[^1]

Answer: A

- Watch Video Solution

7. Rutherford experiment suggested that the

size of the nucleus is about

A. $10^{-14 m}$ to $10^{-12} m$

$$
\begin{aligned}
& \text { B. } 10^{-15 m} \text { to } 10^{-13} m \\
& \text { C. } 10^{-15 m} \text { to } 10^{-14} m \\
& \text { D. } 10^{-15 m} \text { to } 10^{-12} m
\end{aligned}
$$

Answer: C

D Watch Video Solution

8. In an atom the ratio of radius of orbit of electron to the radius of nucleus is
A. 10^{3}
B. 10^{4}
C. 10^{5}
D. 10^{6}

Answer: C

D Watch Video Solution

9. The relation between the orbit radius and
the electron velocity for a dynamically stable orbit in a hydrogen atom is (where, all notations have their usual meanings)

$$
\begin{aligned}
& \text { A. } v=\sqrt{\frac{4 \pi \varepsilon_{0}}{m e^{2} r}} \\
& \text { B. } r=\sqrt{\frac{e^{2}}{4 \pi \varepsilon_{0} v}} \\
& \text { C. } v=\sqrt{\frac{e^{2}}{4 \pi \varepsilon_{0} m r}} \\
& \text { D. } r=\sqrt{\frac{v e^{2}}{4 \pi \varepsilon_{0} m}}
\end{aligned}
$$

Answer: C

D Watch Video Solution

10. The relationship between kinetic energy (K) and potential energy (U) of electron moving in
a orbit around the nucleus is

$$
\begin{aligned}
& \text { A. } U=-K \\
& \text { B. } U=-2 K \\
& \text { C. } U=-3 K \\
& \text { D. } U=-\frac{1}{2} K
\end{aligned}
$$

Answer: B
11. The volume occupied by an atom is greater
than the volume of the nucleus by factor of about
A. 10^{1}
B. 10^{5}
C. 10^{10}
D. 10^{15}

Answer: D

D Watch Video Solution
12. Consider aiming a beam of free electrons
to wards free atoms . When they scatter, an
electron and a protons cannot combine be produced a H -atom,
A. energy conservation
B. simultaneously releasing energy in the
from of radiation
C. momentum conservation
D. angular momentum conservation

Answer: A

D Watch Video Solution

13. In an experiment on α - particle scattering,
α-particles are directed towards a gold foil
and detectors are placed in postition P, Q and
R. What is the distribution of α-paritcles as
recored at P, Q and R ?
R

$$
\begin{array}{lll}
P & Q & R \\
\text { A. } & Q & \text { all } \\
\text { none } & \text { none }
\end{array}
$$

P

Q
R
B.
none none all
C. a few some most
D.
P
Q
R
most some a few

Answer: C

D View Text Solution

Atomic Spectra

1. The first spectral series was discovered by
A. balmer
B. lyman
C. paschen
D. Pfund

Answer: A

D Watch Video Solution
2. Which of the following spectral series falls
within the visible range of electromagnetic radiation ?
A. Lyman series
B. Balmer series
C. Paschen series
D. Pfund series

Answer: B

D Watch Video Solution

3. What is the shortest wavelength present in
the Paschen series of spectral lines?
A. 720 nm
B. 790 nm
C. 800 nm
D. 820 nm

Answer: D

D Watch Video Solution

4. The shortest wavelength in the balmer series is $\left(R=1.097 \times 10^{7} m^{-1}\right)$
A. 200 nm
B. 256.8 nm
C. 300 nm
D. 364.6 nm

Answer: D

D Watch Video Solution
5. the wavelength limit present in the pfund series is $\left(R=1.097 \times 10^{7} m^{-1}\right)$
A. 1572 nm
B. 1898 nm
C. 2278 nm
D. 2535 nm

Answer: C

D Watch Video Solution
6. when an electron jumps from the fourth orbit to the second orbit, one gets the
A. second line of paschen series
B. second line of balmer serie
C. first line pfund series
D. second line of lyman series

Answer: B

D Watch Video Solution
7. The balmer series for the H -atom can be observed
A. if we measure the frequencies of light emitted when an excited atom falls to
the ground state
B. if we measure the frequencies of light
emitted due to transitions between
excited states and the first excited state
C. in any transition in a H -atom
D. none of these

Answer: B

D Watch Video Solution
8. when an atomic gas or vapour is excited at
low pressure, by passing an electric current through it then
A. emission spectrum is observed
B. absorption spectrum is observed
C. band spectrum is observed
D. both a and c

Answer: A

D Watch Video Solution
9. In balmer series of emission spectrum of hydrogen, first four lines with different wavelength $H_{\alpha}, H_{\beta}, H_{\gamma}$ and H_{δ} are obtained.

Which line has maximum frequency out of these?
A. 1. H_{α}
B. 2. H_{β}
C. 3. H_{γ}
D. 4. H_{δ}

Answer: D

- Watch Video Solution

10. hydrogen atom emits light when it changes
from $n=5$ energy level to $n=2$ energy level.

Which colour of light would the atom emit ?
A. red
B. yellow
C. green
D. voilet.

Answer: D

D Watch Video Solution

11. the wavelength of the first line of lyman series is $1215 \AA$, the wavelength of first line of balmer series will be
A. $4545 \AA$
B. $5295 \AA$
C. $6561 \AA$
D. $6750 \AA$

Answer: C

D Watch Video Solution

12. the wavelength of radiation emitted is λ_{0} when an electron jumps. From the third to second orbit of hydrogen atom. For the electron jumping from the fourth to the second orbit of the hydrogen atom, the wavelength of radiation emitted will be A. $(16 / 25) \lambda_{0}$
B. $(20 / 27) \lambda_{0}$
C. $(27 / 20) \lambda_{0}$
D. $(25 / 16) \lambda_{0}$

Answer: B

- Watch Video Solution

13. the wavelength of the first line of lyman series for hydrogen atom is equal to that of the second line of balmer series for a
hydrogen like ion. The atomic number Z of hydrogen like ion is
A. 3
B. 4
C. 1
D. 2

Answer: D
(Watch Video Solution
14. According to bohr's theory, the wave number of last line of balmer series is $\left(R=1.1 \times 10^{7} \mathrm{~m}^{-1}\right)$
A. $5.5 \times 10^{5} \mathrm{~m}^{-1}$
B. $4.4 \times 10^{7} \mathrm{~m}^{-1}$
C. $2.75 \times 10^{6} \mathrm{~m}^{-1}$
D. $2.75 \times 10^{8} \mathrm{~m}^{-1}$

Answer: C

- Watch Video Solution

15. The first line of the lyman series in a
hydrogen spectrum has a wavelength of 1210
\AA. The corresponding line of a hydrogen like atom of $Z=11$ is equal to
A. $4000 \AA$
B. $100 \AA$
C. $40 \AA$
D. $10 \AA$

Answer: D
16. What is the ratio of the shortest
wavelength of the balmer to the shoretst of
the lyman series ?
A. $4: 1$
B. $4: 3$
C. $4: 9$
D. $5: 9$

Answer: A
17. If the wavelength of the first line of the Balmer series of hydrogen is $6561 \AA$, the wavelngth of the second line of the series should be
A. $13122 \AA$
B. $3280 \AA$
C. $4860 \AA$
D. $2187 \AA$

Answer: C

- Watch Video Solution

Emission series		Make transitions from higher levels to following levels	
A	Lyman series	P	$n=1$
B	Paschen series	Q	$n=2$
C	Balmer series	R	$n=3$
D	Brackett series	S	$n=4$
		T	$n=5$

18.

A. A-P,B-R,C-Q,D-S
B. A-P,B-Q,C-R,D-T
C. $A-Q, B-R, C-S, D-T$

D. A-T,B-S,C-R,D-Q

Answer: A

D Watch Video Solution

19. If v_{1} is the frequency of the series limit of
lyman seies, v_{2} is the freqency of the first line of lyman series and v_{3} is the fequecny of the series limit of the balmer series, then

$$
\text { A. } v_{1}-v_{2}=v_{3}
$$

$$
\begin{aligned}
& \text { B. } v_{1}=v_{2}-v_{3} \\
& \text { C. } \frac{1}{v_{2}}=\frac{1}{v_{1}}+\frac{1}{v_{3}} \\
& \text { D. } \frac{1}{v_{1}}=\frac{1}{v_{2}}+\frac{1}{v_{3}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

Bohr Model Of Hydrogen Atom

1. which of the following postulates of the

Bohr model led to the quantization of energy
of the hydrogen atom?
A. the electron goes around the nucleus in
circular orbits.
B. the angular momentum of the electron
can only be an intergral multiple of
$h / 2 \pi$.
C. the magnitude of the linear momentum
of the electron is qunatized.
D. Quantization of energy is itself a
postulate of the bohr model.

D Watch Video Solution

2. The Bohr model of atoms
A. assumes that the angular momentum of
electrons is quantized.
B. uses Einstein's photoelectirc equation.
C. predicts continous emission spectra for atoms.

D. predicts the same emission spectra for

 all types of atoms.
Answer: A

D Watch Video Solution

3. The angular speed of the electron in the $n^{t h}$ Bohr orbit of the hydrogen atom is proportional to
A. directly proportional to n
B. inversely proportional to \sqrt{n}
C. inversely proportional to n^{2}
D. inversely proportional to n^{3}

Answer: D

D Watch Video Solution

4. The electric current I created by the electron
in the ground state of H atom bohr model in
terms of bohr radius $\left(a_{0}\right)$ and velocity of
electron in first orbit v_{0} is
A. $\frac{e v_{0}}{2 \pi a_{0}}$
B. $\frac{2 \pi a}{e v_{0}}$
C. $\frac{2 \pi a}{v_{0}}$
D. $\frac{v_{0}}{2 \pi a}$

Answer: A

D Watch Video Solution
5. Total energy of electron in nth stationary
orbit of hydrogen atom is
A. $\frac{e^{2}}{4 \pi \varepsilon_{0} r}$
B. $\frac{-e^{2}}{4 \pi \varepsilon_{0} r}$
C. $\frac{-e^{2}}{8 \pi \varepsilon_{0} r}$
D. $\frac{e^{2}}{8 \pi \varepsilon_{0} r}$

Answer: C

D Watch Video Solution

6. According to Bohr's theory the moment of momentum of an electron revolving in second orbit of hydrogen atom will be
A. $\frac{h}{\pi}$
B. $2 \pi h$
C. $\frac{2 h}{\pi}$
D. $\frac{\pi}{h}$

Answer: A

D Watch Video Solution

7. According to second postulate of bohr model, the agnular momentum $\left(L_{n}\right)$ of $n^{\text {th }}$ possible orbit of hydrogen atom is given by
A. $\frac{h}{2 \pi n}$
B. $\frac{n h}{2 \pi}$
C. $\frac{2 \pi n}{h}$
D. $\frac{2 \pi}{n h}$

Answer: B

D Watch Video Solution

8. Which of the following statements is true of hydrogen atom?
A. Angualr moment $\propto \frac{1}{n}$
B. Linear moment $\propto \frac{1}{n}$
C. Radius $\propto \frac{1}{n}$
D. Energy $\propto \frac{1}{n}$

Answer: B

D Watch Video Solution
9. Total energy of electron in nth stationary orbit of hydrogen atom is

> A. $\frac{-13.6}{n} e V$
> B. $\frac{-13.6}{n^{2}} \mathrm{eV}$
> C. $\frac{-136}{n} \mathrm{eV}$
> D. $\frac{-136}{n^{2}} \mathrm{eV}$

Answer: B

D Watch Video Solution

10. The radius of $n^{t} h$ orbit r_{n} in the terms of

Bohr radius $\left(a_{0}\right)$ for a hydrogen atom is given
by the relation
A. $n a_{0}$
B. $\sqrt{n a_{0}}$
C. $n^{2} a_{0}$
D. $n^{3} a_{0}$

Answer: C

- Watch Video Solution

11. In Bohr model of the hydrogen atom, the lowest orbit corresponds to
A. infinite energy
B. maximum energy
C. minimum energy
D. zero energy

Answer: C

D Watch Video Solution
12. Define ionisation energy. What is the value for a hydrogen atom?
A. 3.4 eV
B. 10.4 eV
C. 12.09 eV
D. 13.6 eV

Answer: D

D Watch Video Solution

13. energy is absorbed in the hydrogen atom giving absorption spectra when transition takes place from
A. $n=1 \rightarrow n$ 'where ' n ' >1
B. $n=2 \rightarrow 1$
C. $n^{\prime} \rightarrow n$
D. $n \rightarrow n^{\prime}=\propto$

Answer: A

D Watch Video Solution
14. If n is the orbit number of the electron in a hydrogen atom, the correct statement among the following is
A. electron energy increases as n increases.
B. hydrogen emits infrared rays for the
electron tranition from $n=\propto$ to $n=1$.
C. electron energy is zero for $n=1$.
D. electron energy varies as n^{2}.

Answer: A

D Watch Video Solution

15. Which of the following is not correct about bohr model of the hydrogen atom?
A. 1. An electron in an atom could revolve in certain stable orbits without the emission of radiant energy.

B. 2. Electron revolves around the nulceus

only in those orbits for which angular
momentum $L_{n}=\frac{n h}{2 \pi}$.

C. 3. when electron make a transition from

one of its stable orbit to lower orbit then a photon emitted with energy

$$
h v=E_{f}-E_{i}
$$

D. 4. Bohr model is applicable to all atoms.

Answer: D

D Watch Video Solution

16. In which of the following systems will the radius of the first orbit $(n=1)$ be minimum ?
A. doubly ionized lithium
B. singly ionized helium
C. deuterium atom
D. hydrogen atom

Answer: A

D Watch Video Solution
17. when an electron falls from a higher energy to a lower energy level the difference in the energies appears in the form of
A. electromagnetic radiation only
B. thermal radiation only
C. both electromagnetic and thermal
radiations
D. none of these

Answer: A
18. Let $E=\frac{-1 m e^{4}}{8 \varepsilon_{0}^{2} n^{2} h^{2}}$ be the energy of the $n^{t h}$
level of H -atom state and radiation of frequency $\left(E_{2}-E_{1}\right) / h$ falls on it ,
A. it will not be absorbed at all
B. some of atoms will move to the first excited state
C. all atoms will be excited to the $n=2$
state

D. all atoms will make a transition to the

$$
n=3 \text { state }
$$

Answer: B

D Watch Video Solution

19. An ionized H-molecule consists of an electron and two protons. The protons are separated by a small distance of the order of angstrom. In the ground state,
A. the electron would not move in circular orbits
B. the energy would be $(2)^{4}$ times that of a H-atom
C. the molecule will soon decay in to a

proton and a H -atom

D. none of these

Answer: A

20. From quantisation of angular momentum
one gets for hydrogen atom, the radius of the
$n^{t} h$ orbit as $r_{n}=\left(\frac{n^{2}}{m_{e}}\right)\left(\frac{h}{2 \pi}\right)^{2}\left(\frac{4 \pi \varepsilon_{0}}{e^{2}}\right)$
For a hydrogen like atom of atomic number Z,
A. the radius of the first orbit will be the
same
B. r_{n} will be greater for larger Z values
C. r_{n} will be smaller for larger Z values
D. none of these

Answer: C

D Watch Video Solution

21. Bohr's basic idea of discrete energy levels
in atoms and the process of emission of photons from the higher levels to lower levels was experimentally confirmed by experiments performed by
A. Michelson- morley
C. joule

D. franck and hertz

Answer: D

D Watch Video Solution

22. Suppose an electron is attracted toward
the origin by a force $\frac{k}{r}$ where k is a constant and r is the distance of the electron from the origin .By applying Bohr model to this system the radius of the $n^{\text {th }}$ orbital of the electron is
found to be r_{n} and the kinetic energy of the electron to be T_{n}, Then which of the following
is true?

$$
\text { A. } T_{n} \propto \frac{1}{n^{2}}
$$

B. T_{n} is independent of $\mathrm{n}, r_{n} \propto n$
C. $T_{n} \propto \frac{1}{n}$ and r_{n}
D. $T_{n} \propto \frac{1}{n}$ and $r_{n} \propto n^{2}$

Answer: B

D Watch Video Solution
23. In Bohr model of the hydrogen atom, let
R, v and E represent the radius of the orbit, speed of the electron and the total energy respectively. Which of the following quantities are directly proportional to the quantum number n ?
A. VR
B. RE
C. R / E
D. none of these

Answer: A

D Watch Video Solution

24. suppose an electron is attracted towards
the origin by a force k / r, where k is a constant and r is the distance of the electron
form the origin. By applying bohr model to
this system, the radius of $n^{\text {th }}$ orbit of the electron is found to be r_{n} and
A. E
B. 2E
C. 3 E
D. 4 E

Answer: D

D Watch Video Solution

25. Which of the transitions in hydrogen atom

emits a photon of lowest frequecny ($n=$ quantum number)?
A. $n=2$ to $n=1$

$$
\text { B. } n=4 \text { to } n=2
$$

C. $n=4$ to $n=1$
D. $n=4$ to $n=3$

Answer: D

D Watch Video Solution

26. The transition form the state $n=3$ to
$n=1$ in a hydrogen-like atom results in
A. $2 \rightarrow 1$
B. $3 \rightarrow 2$
C. $4 \rightarrow 2$
D. $4 \rightarrow 3$

Answer: D
(Watch Video Solution
27. If 13.6 eV energy is required to separate a
hydrogen atom into a proton and an electron,
then the orbital radius of electron in a hydrogen atom is
A. $5.3 \times 10^{-11} m$
B. $4.3 \times 10^{-11} m$
C. $6.3 \times 10^{-11} m$
D. $7.3 \times 10^{-11} m$

Answer: A
28. In the question number 59 , the value of velocity of the revolving electron is (radius r is

$$
\left.5.3 \times 10^{-11} m\right)
$$

A. $1.2 \times 10^{6} \mathrm{~ms}^{-1}$
B. $2.2 \times 10^{6} \mathrm{~ms}^{-1}$
C. $3.2 \times 10^{6} \mathrm{~ms}^{-1}$
D. $4.2 \times 10^{6} \mathrm{~ms}^{-1}$

Answer: B
29. A 10 kg satellite circles earth once every
$2 h r$ in an orbit having a radius of 8000 km .
Assuming that Bohr's angular momentum
postulate applies to satellites just as it does
to an electron in the hydrogen atom, find the quantum number of the orbit of the satellite.
A. 5.3×10^{40}
B. 5.3×10^{45}
C. 7.8×10^{48}

D. 7.8×10^{50}

Answer: B

D Watch Video Solution

30. if an electron is revolving in its bohr orbit having bohr radius of $0.529 \AA$, then the radius of third orbit is
A. $4234 \AA$
B. $4496 \AA$

C. $4.761 \AA$

D. 5125 nm

Answer: C

- Watch Video Solution

31. the energy required to excite an electron in hydrogen atom to its first excited state is
A. 8.5 eV
B. $10.2 e \mathrm{~V}$

C. 12.7 eV

D. 13.6 eV

Answer: B

- Watch Video Solution

32. in the question number 63, the frequency of emitted photon due to the given transition is

$$
\left(h=6.64 \times 10^{-34} J s, 1 e V=1.6 \times 10^{-19} J\right)
$$

A. $2.46 \times 10^{10} \mathrm{~Hz}$
B. $2.46 \times 10^{12} \mathrm{~Hz}$
C. $2.46 \times 10^{15} \mathrm{~Hz}$
D. $2.46 \times 10^{18} \mathrm{~Hz}$

Answer: C

D View Text Solution

33. Which state of the triply ionized Beryllium
$\left(B e^{3+}\right)$ has the same orbit radius as that of
the ground state of hydrogen atom?
A. $n=1$
B. $n=2$
C. $n=3$
D. $n=4$

Answer: B

D Watch Video Solution
34. A difference of 2.3 eV separates two energy
levels in an atom. What is the frequency of
radiation emitted when the atom transits form the upper level to the lower level.

A. $5.5 \times 10^{13} \mathrm{~Hz}$
B. $5.5 \times 10^{14} \mathrm{~Hz}$
C. $5.5 \times 10^{18} \mathrm{~Hz}$
D. $5.5 \times 10^{19} \mathrm{~Hz}$

Answer: B

D Watch Video Solution

35. The ground state energy of hydrogen atom
is -13.6 eV . What is the K.E. of electron in this
state?
A. $2.18 \times 10^{-14} J$
B. $2.18 \times 10^{-16} J$
C. $2.18 \times 10^{-18} J$
D. $2.18 \times 10^{-19} J$

Answer: C

D Watch Video Solution
36. In the ground state energy of hydrogen
atom is -13.6 , find the potential energy of electron (in joule) in the given state.

$$
\begin{aligned}
& \text { A. }-4.36 \times 10^{-14} \mathrm{~J} \\
& \text { B. }-4.36 \times 10^{-16} \mathrm{~J} \\
& \text { C. }-4.36 \times 10^{-17} \mathrm{~J} \\
& \text { D. }-4.36 \times 10^{-18} \mathrm{~J}
\end{aligned}
$$

Answer: D

- Watch Video Solution

37. If the radius of inner most electronic orbit of a hydrogen atom is $5.3 \times 10^{-11} \mathrm{~m}$, then the radii of $n=2$ orbit is

A. $1.12 \AA$

B. $2.12 \AA$
C. $3.22 \AA$
D. $4.54 \AA$

Answer: B

- Watch Video Solution

38. A hydrogen atom initially in the ground
level absorbs a photon and is excited to $n=4$
level then the wavelength of photon is
A. $790 \AA$
B. $870 \AA$
C. $970 \AA$
D. $1070 \AA \AA$

Answer: C

D Watch Video Solution
39. If $\lambda=9.7 \times 10^{-8} m$, what is frequency of photon?
A. $3.1 \times 10^{15} \mathrm{~Hz}$
B. $3.1 \times 10^{18} \mathrm{~Hz}$
C. $9.1 \times 10^{15} \mathrm{~Hz}$
D. $9.1 \times 10^{18} \mathrm{~Hz}$

Answer: A
(Watch Video Solution
40. The radius of electron orbit and the speed of electron in the ground state of hydrogen atom is $5.30 \times 10^{-11} \mathrm{~m}$ and $22 \times 10^{6} \mathrm{~ms}^{-1}$ respectively, then the orbital period of this electron in second excited state will be

$$
\begin{aligned}
& \text { A. } 1.21 \times 10^{-14} s \\
& \text { B. } 1.21 \times 10^{-12} s \\
& \text { C. } 1.21 \times 10^{-10} s \\
& \text { D. } 1.21 \times 10^{-15} s
\end{aligned}
$$

41. In accordance with the Bohr's model, find the quantum number that characterizes the earth's revolution around the sun in an orbit of radius $1.5 \times 10^{11} \mathrm{~m}$ with orbital speed $3 \times 10^{4} \mathrm{~m} / \mathrm{s}$. (Mass of earth $=6.0 \times 10^{24} \mathrm{~kg}$)
A. 5.98×10^{86}
B. 2.57×10^{38}
C. 8.57×10^{64}
D. 2.57×10^{74}

Answer: D

D Watch Video Solution

42. if speed of electron is ground state energy
level is $2.2 \times 10^{6} \mathrm{~ms}^{-1}$, then its speed in fourth excited state will be
A. $6.8 \times 10^{6} \mathrm{~ms}^{-1}$
B. $8.8 \times 10^{5} \mathrm{~ms}^{-1}$
C. $5.5 \times 10^{5} \mathrm{~ms}^{-1}$
D. $5.5 \times 10^{6} \mathrm{~ms}^{-1}$

Answer: C

D Watch Video Solution

43. if muonic hydrogen atom is an atom in
which a negatively charged muon (μ) of mass
about $207 m_{e}$ revolves around a proton, then
first bohr radius of this atom is

$$
\left(r_{e}=0.53 \times 10^{-10} m\right)
$$

$$
\text { A. } 2.56 \times 10^{-10} m
$$

$$
\text { B. } 2.56 \times 10^{-11} \mathrm{~m}
$$

$$
\text { C. } 2.56 \times 10^{-12} m
$$

$$
\text { D. } 2.56 \times 10^{-13} \mathrm{~m}
$$

Answer: D

- Watch Video Solution

44. In the question number 75 , if ground state
energy of electron is -13.6 eV then what is
the ground state energy of muonic hydrogen atom?
A. 1.8 keV
B. $-2.8 k e V$
C. $-3.8 k e V$
D. 4.8 keV

Answer: B

D Watch Video Solution

45. An electron is revolving in the $n^{\text {th }}$ orbit of radius $4.2 \AA$, then the value of n is

$$
(r 1=0.529 \AA)
$$

A. 4
B. 5
C. 6
D. 3

Answer: D

D Watch Video Solution

46. Positronium is just like a H -atom with the proton replaced by the positively charged antiparticle of the electron (called the positron
which is as massive as the electron). What would be the ground state energy of positronium?
A. 3.4 eV
B. $-5.2 e V$
C. $-6.8 e V$
D. $-10.2 e \mathrm{~V}$

Answer: C

D Watch Video Solution
47. The minimum energy that must be given to
a H atom in ground state so that it can emit an H , line in balmer series is
A. $12.4 e \mathrm{~V}$
B. $10.2 e \mathrm{~V}$
C. 13.06 eV
D. 13.6 eV

Answer: C
48. In the question number 79 , what would be the angular momentum of H_{γ} photon if the angular momentum of the system is conserved
A. \hbar
B. $2 \hbar$
C. $3 \hbar$
D. $4 \hbar$

Answer: C
49. Energy E of a hydrogen atom with principle quantum number n is given by $E=\frac{-13.6}{n^{2}} \mathrm{eV}$. The energy of a photon ejected when the electron jumps from $n=3$ state to $n=2$ state of hydrogen is approximately
A. 1.5 eV
B. 0.85 eV
C. 3.4 eV

D. 1.9 eV

Answer: D

D Watch Video Solution

50. Out of the following which one is not a possible energy for a photon to be emitted by hydrogen atom according to Bohr's atomic model?
A. 0.65 eV
B. 1.9 eV
C. 11.1eV
D. 13.6 eV

Answer: C

D Watch Video Solution

51. The ratio of the speed of the electrons in
the ground state of hydrogen to the speed of
light in vacuum is
A. $\frac{1}{2}$
B. $\frac{2}{237}$
C. $\frac{1}{137}$
D. $\frac{1}{237}$

Answer: C

- Watch Video Solution

52. In an excited state of hydrogen like atom an electron has total energy of $-3.4 e V$. If the
kinetic energy of the electron is E and its deBroglie wavelength is λ, then

$$
\begin{aligned}
& \text { A. } E=6.8 e V, \lambda=6.6 \times 10^{-10} \mathrm{~m} \\
& \text { B. } E=3.4 e V, \lambda=6.6 \times 10^{-10} \mathrm{~m} \\
& \text { C. } E=3.4 e V, \lambda=6.6 \times 10^{-11} \mathrm{~m} \\
& \text { D. } E=6.8 \mathrm{e} V, \lambda=6.6 \times 10^{-11} \mathrm{~m}
\end{aligned}
$$

Answer: B

D Watch Video Solution

53. The binding energy of the electron in the ground state of He atom is equal to $E_{0}=24.6 \mathrm{eV}$. Find the energy required to remove both the electrons from the atom.
A. 49.2 eV
B. 54.4 eV
C. 79 eV
D. 108.8 eV

Answer: C

54. The diagram shows the energy levels for an
electron in a certain atom. Which transition
shown represents the emission of photon with
the most enegy?

A. I
B. II
C. III
D. IV

Answer: C

D Watch Video Solution

55. In a hydrogen atom, the radius of $n^{t h}$ bohr orbit is r_{n}. The graph between $\log \left(r_{n} / r_{1}\right)$
and logn will be
A.

B.
(h) $\underbrace{}_{n \rightarrow \rightarrow}$
C.
(c) $\prod_{\substack{1 \\ i}}^{\substack{n}}$
D.
(d)

Answer: A
(Watch Video Solution
56. An electron in the ground state of hydrogen atom is revolving in anticlockwise direction in circular orbit of radius R. The orbital magnetic dipole moment of the electron will be
A. $\frac{e h}{4 \pi m}$
B. $\frac{e h}{2 \pi m}$
C. $\frac{e h^{2}}{4 \pi m}$
D. $\frac{e^{2} h}{4 \pi m}$

Answer: A

- Watch Video Solution

57. The electron in hydrogen atom makes a transition $n_{1} \rightarrow n_{2}$ where n_{1} and n_{2} are the principal quantum number of two states. Assuming the Bohr model to be valid, the time period of the electron in the initial state is eight times that in the final state. The possible value of n_{1} and n_{2} are:

$$
\text { A. } n_{1}=4, n_{2}=2
$$

$$
\text { B. } n_{1}=8, n_{2}=2
$$

$$
\text { C. } n_{1}=8, n_{2}=1
$$

$$
\text { D. } n_{1}=6, n_{2}=2
$$

Answer: A

D Watch Video Solution

58. the ionization energy of $\mathrm{Li}^{\wedge}(++)^{\wedge}$ is equal to

A. 9 hcR
B. 6 hcR
C. 2 hcR

D. hcR

Answer: A

D Watch Video Solution

59. A hydrogen atom and a Li^{2+} ion are both in the second excited state. If l_{H} and $l_{L i}$ are their respective electronic angular momenta, and E_{H} and $E_{L i}$ their respective energies, then
(a) $l_{H}>l_{L i}$ and $\left|E_{H}\right|>\left|E_{L i}\right|$
(b) $l_{H}=l_{L i}$ and $\left|E_{H}\right|<\left|E_{L i}\right|$
(C) $l_{H}=l_{L i}$ and $\left|E_{H}\right|>\left|E_{L i}\right|$
(d) $l_{H}<l_{L i}$ and $\left|E_{H}\right|<\left|E_{L i}\right|$
A. $l_{H}>l_{L i}$ and $\left|E_{H}\right|>\left|E_{L i}\right|$
B. $l_{H}=l_{L i}$ and $\left|E_{H}\right|>\left|E_{L i}\right|$
C. $l_{H}=l_{L i}$ and $\left|E_{H}\right|<\left|E_{L i}\right|$
D. $l_{H}<l_{L i}$ and $\left|E_{H}\right|<\left|E_{L i}\right|$

Answer: C

D Watch Video Solution

The Line Spectra Of Hydrogen Atom

1. The de-Broglie wavelength of an electron in the first Bohr orbit is
A. equal to one- fourth the circumference of the first orbit
B. equal to half the circumference of first orbit
C. equal to twice the circumference of first orbit.

D. equal to the circumference of the first

 orbit.
Answer: D

- Watch Video Solution

2. the wavelength of spectral line in the lyman
series of a H -atom is $1028 \AA \AA$. If instead of
hydrogen, we consider deuterium then shift in
the wavelength of this line be $\left(m_{p}=1860 m_{e}\right)$
A. $1027.7 \AA$
B. $1036 \AA$
C. $1028 \AA$
D. $1021 \AA$

Answer: A

D Watch Video Solution

3. The rydberg formula, for the spectrum of
the hydorgen aotm where all terms have their usual menaning is
A. $h v_{\text {if }}=\frac{m e^{4}}{8 \varepsilon_{0}^{2} h^{2}}\left(\frac{1}{n_{f}}-\frac{1}{n_{i}}\right)$
B. $h v_{\text {if }}=\frac{m e^{4}}{8 \varepsilon_{0}^{2} h^{2}}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)$
C. $h v_{\text {if }}=\frac{8 \varepsilon_{0}^{2} h^{2}}{m e^{4}}\left(\frac{1}{n_{f}}-\frac{1}{n_{i}}\right)$
D. $h v_{\text {if }}=\frac{8 \varepsilon_{0}^{2} h^{2}}{m e^{4}}\left(\frac{1}{n_{f}^{2}}-\frac{1}{n_{i}^{2}}\right)$

Answer: B

D Watch Video Solution

4. Hydrogen atom from excited state comes to
the ground state by emitting a photon of
wavelength λ. If R is the Rydberg constant,
then the principal quatum number n of the excited state is

$$
\begin{aligned}
& \text { A. } \sqrt{\frac{\lambda R}{\lambda R-1}} \\
& \text { B. } \sqrt{\frac{\lambda}{\lambda R-1}} \\
& \text { C. } \sqrt{\frac{\lambda R^{2}}{\lambda R-1}} \\
& \text { D. } \sqrt{\frac{\lambda R}{\lambda-1}}
\end{aligned}
$$

Answer: A

D Watch Video Solution

5. Ionization potential of hydrogen atom is
13.6 V . Hydrogen atoms in the ground state are excited by monochromatic radiation of photon energy 12.1 eV . The spectral lines emitted by hydrogen atoms according to Bohr's theory will be
A. one
B. two
C. three
D. four

D Watch Video Solution

6. the excitation energy of lyman last lines is
A. the same as ionisation energy
B. the same as the last absorption line in
lyman series
C. both (a) and (b)
D. different from (a) and (b)

Answer: C

D Watch Video Solution

De Broglie Explanation Of Bohr Model

1. the number of de broglie wavelength
contained in the second bohr orbit of
hydrogen atom is
A. 1
B. 2
C. 3
D. 4

Answer: B

- Watch Video Solution

2. if three are N atoms in a source of laser
light and each atom is emitting light with intensity I, then the total intensity produced by it is
A. NI
B. $N^{2} I$
C. $N^{3} I$
D. $N^{4} I$

Answer: B

D Watch Video Solution

3. What does the word LASER stand for ?
A. Light amplification by stimulated emission of radiation
B. light amplitude by stimulated emission of radiation
C. light amplification by strong emission of radiation
D. light amplification by stimulated
emission of radiowave

Answer: A

Ncert Exemplar

1. Taking the Bohr radius $a_{0}=53 \mathrm{pm}$, the radius of $L i^{++}$ion in its ground state, on the basis of Bohr's model, will be about.
A. 53 pm
B. 27pm
C. 18pm
D. 13pm

Answer: C

D Watch Video Solution

2. The binding to energy of a H -atom, considering and electron moving around a
fixed nuclei (proton) , is
$B=-\frac{m e^{4}}{8 n^{2} \varepsilon_{0}^{2} h^{2}}(\mathrm{~m}=$ electron mass $)$
In one decides to work in a frame of reference
where the electon is at rest, teh proton would
be moving around it. by similar arguments, the
binding energy would be
$B=-\frac{M e^{4}}{8 n^{2} \varepsilon_{0}^{2} h^{2}}(M=$ proton mass $)$
The last expression is not, correct, because
A. n would not be integral
B. bohr- quantisation applies only to
electron
C. the frame in which the electron is at rest
is not inertial
D. the motion of the proton would not be in circular orbits, even approximately

- Watch Video Solution

3. The simple Bohr model cannot be directly ap-plied to calculate the energy level of an atom with many electrons. This is because.
A. of the electrons not being subject to a central force
B. of the electrons colliding with each other
C. of screening effects

D. the force between the nucleus and an

electron will no longer be given by coulomb's law.

Answer: A

- Watch Video Solution

4. For the ground state, the electron in the H^{-} atom has an angular momentum $=h$, according to the simple Bohr model. Angular momentum is a vector ans hence there will be
infinitely many orbits with the vector pointing in all possible direction . In actuality, this is not true.
A. a) because bohr model gives incorrect
values of angular momentum .
B. b) because only one of these would have a minimum energy .
C. c) angular momentum must be in the direction of spin of electron .

D. d) because electrons go around only in

horizontal orbits

Answer: A

- Watch Video Solution

5. O_{2} molecules consists of two oxygen atoms.

In the molecules, nuclear force between the nuclei of the two atoms
A. is not important because nuclear forces
are short-ranged.
B. is as important as electrostatic force for
binding the two atoms
C. cancels the repulsive electrostatic force
between the nuclei
D. is not important because oxygen nucleus has equal number of neutrons
and protons.
6. Two H atoms in the ground state collide inelastically. The maximum amount by which their combined kinetic energy is reduced is
A. 10.2 eV
B. 20.4 eV
C. 13.6 eV
D. 27.2 eV

- Watch Video Solution

7. A set of atom in an excited state decays
A. in general to any of the states with
lower energy
B. into a lower state only when excited by
an external electric field
C. all togather simultaneously into a lower
state
D. to emit photons only when they collide

Answer: A

- Watch Video Solution

Assertion And Reason

1. (A) atoms of each element are stable and emit characteristic spectrum.
(R) the spectrum provides useful information about the atomic structure.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: B

2. (A) atom as a whole is electrically neutral.
(R)atom contains equal amount of positive and negative charges.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: A

D Watch Video Solution

3. (A) according to classical electromagnetic theory an accelerated particle continuously emits radiation.
(R) according to classical theory, the proposed
path of an electron in Rutherford atom model will be parabolic.
A. if both assertion and reason are true and reason is the correct explanation of assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: C

- Watch Video Solution

4. (A) in alpha particle scattering number of alpha paritcle undergoing head on collision is small.
(R) small fraction of the number of incident particles rebound back.
A. if both assertion and reason are true and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but reason is not the correct explanation of assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: B

D Watch Video Solution

5. (A) most of the mass of the atom is concentrated in its nucleus.
(R) all alpha particles striking a gold sheet are scattered in different directions.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: C

D Watch Video Solution

6. (A) the trajetory traced by an incident particle depends on the impact parameter of collision.
(R) the impact parameter is the perpendicular distance of the initial velocity vector of the
incident particle from the centre of the target nucleus.
A. if both assertion and reason are true and reason is the correct explanation of assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: B

D Watch Video Solution

7. (A) in the experiment of alpha particle scattering, extremely thin gold foils are preferred over other metals.
(R)gold is a ductile material.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: B

- Watch Video Solution

8. (A) the total energy of an electron revolving in any stationary orbit is negative.
(R) energy can have positive or negative values.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: B

D Watch Video Solution

9. Statement -1 : Large angle scattering of alpha particles led to the discovery of atomic nucleus.

Statement -2 : Entire positive charge of atom is concentrated in the central core.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: A

10. Assertion: For the scattering of α-particles
at a large angles, only the nucleus of the atom
is responsible.

Reason: Nucleus is very heavy in comparison to electrons.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: A

D Watch Video Solution

11. Assertion: Hydrogen atom consists of anly one electron but its emission spectrum has may lines.

Reason: Only Lyman series is found in the absorption spectrum of hydrogen atom whereas in the emission spectrum, all the series are found.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: B

- Watch Video Solution

12. (A) bohr model can not be extended to two or more electron atoms.
(R) each electron in the atom interacts not only with the positively charged nueleus but also with all other electrons.
A. if both assertion and reason are true and reason is the correct explanation of assertion.

B. if both assertion and reason are true but

reason is not the correct explanation of
assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: A

D Watch Video Solution

13. Assertion: Bohr had to postulate that the electrons in stationary orbits around the nucleus do not radiate.

Reason: According to classical physical all moving electrons radiate.
A. if both assertion and reason are true and reason is the correct explanation of assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: C

D Watch Video Solution

14. (A) bohr's third postulaate states that the stationary orbits are those for which the angular momentum is some integral multiple of $\frac{h}{2 \pi}$.
(R) linear momentum of the electron in the atom is quantised.
A. if both assertion and reason are true
and reason is the correct explanation of
assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: D

15. Assertion: Electrons in the atom are held due to coulomb forces.

Reason: The atom is stable only because the centripetal force due to Coulomb's law is balanced by the centrifugal force.
A. if both assertion and reason are true and reason is the correct explanation of assertion.
B. if both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. if assertion is true but reason is false.
D. if both assertion and reason are false.

Answer: C

D Watch Video Solution

[^0]: (a)

 A.
 (b)

 B.

[^1]: (a)

 A.
 (b)

 B.

