India's Number 1 Education App

MATHS

JEE (MAIN AND ADVANCED) MATHEMATICS

THEORY OF EQUATIONS

Solved Examples

1. Write down the relations between the roots and the coefficients of the bi-quadratic equation

$$x^4 - 2x^3 + 4x^2 + 6x - 21 = 0$$

2. If -1,2 and lpha are the roots of

$$2x^3+x^2-7x-6=0$$
, then find $lpha$

3. Find the sum of the squares and the sum of the cubes of the roots of the equations $x^3-px^2+qx-r=0$ in terms of p,q,r

4. Let α , β , γ be the roots of

$$x^3+ax^2+bx+c=0$$
 then find $\sum lpha^2eta+\sum lphaeta^2$

Watch Video Solution

5. If $lpha,eta,\gamma$ are the roots of $x^3-3ax+b=0$ prove that $\sum (\alpha - \beta)(\alpha - \gamma) = 9a$.

Watch Video Solution

6. solve $x^3 - 3x^2 - 16x + 48 = 0$

7. Find the roots of $x^4-16x^3+86x^2-176x+105=0$

8. solve $x^3-7x^2+36=0$ given one root being twice the other .

9. Solve $4x^3-24x^2+23x+18=0$,givne that the roots of this equation are in arithmetic progression

10. solve $x^3 - 7x^2 + 14x - 8 = 0$ given that the roots are in geometric progression.

11. If the roots of $27x^4-195x^3+494x^2-520x+192=0$ are in G.P. then the roots are

12. Solve the equation $6x^3-11x^2+6x-1=0$ the roots being in H.P

Watch Video Solution

13. Find the condition in order that the equation $ax^4+4bx^3+6cx^2+4dx+e=0$ may have a pair of equal roots .

Watch Video Solution

14. Prove that the sum of any two of the roots of the equation $x^4 + px^3 + qx^2 + rx + s = 0$ is equal to

the sum of the remaining two roots of the equation ${\sf iff}\ p^3 - 4pq + 8r = 0$

15. Show that $x^5 - 5x^3 + 5x^2 - 1 = 0$ has three equal roots and find this root.

16. Find the polynomial equation whose roots are the reciprocals of the roots of $x^5+11x^4+x^3+4x^2+13x+6=0$

watch video Solution

17. Find the equation whose roots multiplied by 2 of those of $x^5-2x^4+3x^3-2x^2+4x+3=0$

Watch Video Solution

18. Find the equation whose roots are squares of the roots of $x^4+x^3+2x^2+x+1=0$

19. Solve the equation

 $3x^5-4x^4-42x^3+56x^2+27x-36=0$ given that $\sqrt{2}+\sqrt{5}$ is one of its roots .

Watch Video Solution

20. Remove second term (second higher power of x) from the equation

$$x^3 + 6x^2 + 4x + 4 = 0$$

21. Remove the fractional coefficients from the following equations such that the coefficient of the leading term remains unity.

$$x^4 + \frac{3}{10}x^2 + \frac{13}{25}x + \frac{77}{1000} = 0$$

Watch Video Solution

22. Remove the fractional coefficients from the following equations such that the coefficient of the leading term remains unity.

$$x^4 + \frac{3}{10}x^2 + \frac{13}{25}x + \frac{77}{1000} = 0$$

23. Find the cubic equation whose roots are the squares of the roots of the equation $x^3 + p_1 x^2 + p_2 x + p_3 = 0$

Watch Video Solution

24. If $lpha, eta, \gamma$ are the roots of $x^3 + px^2 + qx + r = 0$, then form the cubic equation whose roots are $\alpha(\beta+\gamma), \beta(\gamma+\alpha), \gamma(\alpha+\beta)$

25. If $lpha,\,eta,\,\gamma$ are the roots of $x^3-7x+6=0$ then find the equation whose roots are $(\alpha-eta)^2,\,(\beta-\gamma)^2,\,(\gamma-lpha)^2$

Watch Video Solution

26. Find the equation whose roots are the translates of the roots of $x^4-5x^3+7x^2-17=0$ by -2

27. Find the polynomial equation whose roots are the translates of the roots of the equation .

 $x^4 - x^3 - 10x^2 + 4x + 24 = 0$ by 2 .

28. Find the transformed equation of $x^3-6x^2+5x+8=0$ in which x^2 term is absent.

29. Remove the second term from the equation $x^4 + 4x^3 + 2x^2 - 4x - 2 = 0$

30. Remove the third term from the equation $x^4 + 2x^3 - 12x^2 + 2x - 1 = 0$

31. Show that $2x^3+5x^2+5x+2=0$ is a reciprocal equation of class one .

32. Solve $6x^5 - x^4 - 43x^3 + 43x^2 + x - 6 = 0$

Examples

1. Find the quotient and remainder when $x^4 + 8x^3 + x - 5$ is divided by x+2.

Watch Video Solution

2. Divide $2x^5 - 3x^4 + 5x^3 - 7x^2 + 3x - 4$ byx - 2.

Watch Video Solution

3. Find quotient and the remainder when $2x^5-3x^4+5x^3-3x^2+7x-9$ is divided by

Watch Video Solution

4. Find the quotient and remainder when $x^4 - 11x^3 + 44x^2 - 76x + 48$ is divided by $x^2 - 7x + 12$

5. $f(x) = 2x^3 - 6x + p$ then find the interval in which p lies so that the equation f(x) = 0 has 3 real and distinct roots.

watch video Solution

Exercise 2 1 Very Short Answer Questions

1. Form the polynomial equation of degree 3 whose roots are 2,3 and 6.

Watch Video Solution

2. find the (monic) polynomial equation of lowest degree whose roots are

1, 3, 5, 7

3. Find the polynomial with rational coefficients and whose roots are

4. Find the polynomial with rational coefficients and whose roots are

$$1\pm 2i, 4, 2$$

5. Find the polynomial with rational coefficients and whose roots are

$$1\pm\sqrt{3},2,5$$

View Text Solution

6. Find the polynomial with rational coefficients and whose roots are

$$0, 1, -3/2, 5/2$$

7. Find the polynomial with rational coefficients and whose roots are

$$a + b, a - b, -a + b, -a - b$$

Watch Video Solution

8. Find the values of $a,b,c,d,\,\,$ if 1,2,3,4 are the roots of $x^4+ax^3+bx^2+cx+d=0$

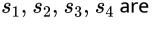
9. Find the relation between the roots and the coefficients of the cubic equation .

 $3x^3 - 10x^2 + 7x + 10 = 0$

Watch Video Solution

10. Find the relation between the roots and the coefficients of the cubic equation.

$$3x^3 - 10x^2 + 7x + 10 = 0$$


Watch Video Solution

11. Find the roots $x^4 - 16x^3 + 86x^2 - 176x + 105 = 0$

of

12. If $8x^4 - 2x^3 - 27x^2 + 6x + 9 = 0$ then

13. If 1,-2 and 3 are roots of

$$x^3-2x^2+ax+6=0$$
 , then find a .

14. If 1, -2, 3 are the roots of $x^3 - 6x^2 + 9x - 4 = 0$ then find 'lpha'

15. If lpha, eta and 1 are the roots of $x^3-2x^2-5x+6=0$, then find lpha and eta

Watch Video Solution

16. If the product of the roots of

 $4x^3+16x^2-9xa=0$ is 9 , then find a .

17. If α,β,γ are the roots of $x^3-px^2+qx-r=0$ and $r\neq 0$ then find $\frac{1}{\alpha^2}+\frac{1}{\beta^2}+\frac{1}{\gamma^2}$ in terms of p,q ,r

Watch Video Solution

18. If α, β, γ are the roots of

 $4x^3-6x^2+7x+3=0$ then find the value of

$$\alpha\beta + \beta\gamma + \gamma\alpha$$
.

1. If α, β and γ are the roots of

$$x^3 - 2x^2 + 3x - 4 = 0$$
, then find

(i)
$$\sum lpha^2eta^2(ii)\sum lphaeta(lpha+eta)$$

Watch Video Solution

2. If α , β and γ are the roots of

$$x^3 - 2x^2 + 3x - 4 = 0$$
, then find

(i)
$$\sum \alpha^2 \beta^2(ii) \sum \alpha \beta(\alpha + \beta)$$

3. If $lpha, eta, \gamma$ are the roots of $x^3 + px^2 + qx + r = 0$

Watch Video Solution

4. If α, β, γ are the roots of $x^3 + px^2 + qx + r = 0$

$$\sum \alpha^2$$

then find

5. If $lpha,eta,\gamma$ are the roots of $x^3+px^2+qx+r=0$

6.
$$\sum \frac{1}{lpha^2 eta^2}$$

7. If
$$lpha, eta, \gamma$$
 are the roots of $x^3 + px^2 + qx + r = 0$ then find

$$\sum \alpha^{3}$$

8. If
$$\alpha, \beta, \gamma$$
 are roots of the equation

then

$$(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) =$$

 $x^3 + px^2 + qx + r = 0$

9. If
$$lpha, eta, \gamma$$
 are the roots of $x^3 + px^2 + qx + r = 0$ then find

$$(eta+\gamma-3lpha)(\gamma+lpha+eta-3\gamma)$$

10. If $lpha,eta,\gamma$ are the roots of $x^3+px^2+qx+r=0$

then find

$$\sum lpha^2eta + \sum lphaeta^2$$

11.

$$\frac{\beta^2 + \gamma^2}{\beta \gamma} + \frac{\gamma^2 + \alpha^2}{\gamma \alpha} + \frac{\alpha^2 + \beta^2}{\alpha \beta} \text{ or } \sum \frac{\beta^2 + \gamma^2}{\beta \gamma}$$

12. If $lpha,eta,\gamma$ are the roots of the equation $x^3+px^2+qx+r=0$ prove that

$$(lpha+eta)(eta+\gamma)(\gamma+lpha)=r-pq$$

13. If α,β,γ are the roots of $x^4-4x^2-x+2=0$ find the values of $\sum \alpha^2\beta$ and $\sum \frac{1}{\alpha^2}$

14. If $alpah,\, \beta,\, \gamma$ are the roots of the equation $x^3+qx+r=0$ find the value of $(\beta-\gamma)^2+(\gamma-\alpha)^2+(\alpha-\beta)^2$

$$(\alpha, \beta) + (\beta, \alpha) + (\alpha, \beta)$$

15. If alpah, β , γ are the roots of the equation

$$x^3+qx+r=0$$
 find the value of

$$(\beta + \gamma)^{-1} + (\gamma + \alpha)^{-1} + (\alpha + \beta)^{-1}$$

Watch Video Solution

16. Show that

$$rac{a^2}{x-lpha}+rac{b^2}{x-eta}+rac{c^2}{x-\gamma}-x+\delta=0$$
 has only real roots if $a,b,c,lpha,eta,\gamma,\delta$ are all real .

real roots if $a, b, c, \alpha, \beta, \gamma, \delta$ are all real.

1. Find the quotient and the remainder when $x^4-6x^3+3x^2+26-24$ is divided by x-4

View Text Solution

2. Given that 2 is a root of $x^3-6x^2+3x+10=0$, find the other roots .

3. find the condition that $x^3-px^2+qx-r=0$ may have two roots equal in magnitude but of opposite sign

4. Find the condition that $x^3-px^2+qx-r=0$ may have the sum of its roots zero .

5. solve
$$x^3 - 3x^2 - 16x + 48 = 0$$

6. solve the following equations

 $4x^3+16x^2-9x-36=0$ given that the sum of

two roots is zero.

Watch Video Solution

Exercise 2 2 Short Answer Questions

1. Solve $9x^3-15x^2+7x-1=0$, given that two of its roots are equal .

Watch Video Solution

2. If the two roots of $4x^3+20x^2-23x+6=0$ are equal then find all the roots .

....

3. Given that one root of $2x^3+3x^2-8x+3=0$ is double of another root , find the roots of the equation.

4. Solve $x^3-7x^2+36=0$ given one root being twice the other .

5. solve $x^3 - 9x^2 + 14x + 24 = 0$ given that two of the roots are in the ratio 3:2

Watch Video Solution

6. show that the condition that the roots of $x^3 + 3px^2 + 3qx + r = 0$ may be in

A. P is $2p^3 - 3pq + r = 0$

7. show that the condition that the roots of $x^3+px^2+qx+r=0$ may be in

G.P is $p^3r=q^3$

Watch Video Solution

8. show that the condition that the roots of $x^3+3px^2+3qx+r=0$ may be in

h.P is
$$2q^3=r(3pq-r)$$

Watch Video Solution

9. Solve the following equation ,given that the root of each are in A.P.

(i)
$$8x^3 - 36c^2 - 18x + 81 = 0$$

watch video Solution

10. solve the equations

 $32x^3 - 48x^2 + 22x - 3 = 0$, the roots being in A.P.

Watch Video Solution

11. solve the equations

$$x^3 - 3x^2 - 6x + 8 = 0$$

the roots being in A.P

12. Solve $18x^3 + 81x^2 + 121x + 60 = 0$ given that one roots is equal to half the sum of the remainging roots .

Watch Video Solution

13. If the roots of $x^4-2x^3-21x^2+22x+40=0$ are in A.P. then the roots are

14. Find the condition that $x^3-px^2+qx-r=0$ may have the roots in G.P .

15. Solve the equation

$$3x^3 - 26x^2 + 52x - 24 = 0$$

the roots being in G.P

16. Solve the equation

$$15x^3 - 23x^2 + 9x - 1 = 0$$

17. Solve the equation

$$6x^3 - 11x^2 + 6x - 1 = 0$$

Watch Video Solution

18. find the multiple roots of

$$8x^3 + 20x^2 + 6x - 9 = 0$$

Watch Video Solution

19. find the multiple roots of

$$12x^3 + 40x^2 + 39x + 9 = 0$$

Exercise 2 2 Long Answer Questions

1. Solve the equation $x^4-2x^3+4x^2+6x-21=0$ the sum of two of roots being zero.

2. Solve $8x^4-2x^3-27x^2+6x+9=0$ given that two roots have the same absolute value , but are opposite in sign.

3. Solve $x^4 + x^3 - 16x^2 - 4x + 48 = 0$ given that the product of two of the roots is 6.

Watch Video Solution

4. Solve $x^4-5x^3+5x^2+5x-6=0$ given that the product of two of its roots is 3

5. Solve the equation $x^4+4x^3-2x^2-12x+9=0$ given that it has pairs of equal roots

6. Find the multiple roots of

$$x^4 - 6x^3 + 13x^2 - 24x + 36 = 0$$

Watch Video Solution

7. solve the following equation , given that they have multiple roots .

$$3x^4 + 16x^3 + 24x^2 - 16 = 0$$

8. Solve the equation given that it has multiple root

$$x^4 + 2x^3 - 3x^2 - 4x + 4 = 0$$

Watch Video Solution

9. Find the repeated roots of

$$x^5 - 3x^4 - 5x^3 + 27x^2 - 32x + 12 = 0$$

Watch Video Solution

Exercise 2 3 Very Short Answer Questions

- 1. Form the polynomial equation whose root are
- $2,1\pm 3i$

Watch Video Solution

- 2. Form the polynomial equation whose root are
- $1, 3 \sqrt{-2}$

Watch Video Solution

- 3. From the polynomial equation whose roots are
- 1+1,1-1,-1+1,-1-1

4. From the polynomial equation whose roots are 3,2,1+1,1-1

Watch Video Solution

5. From the polynomial equation whose roots are 1+1,1-1,1+1,1-1

Watch Video Solution

6. Form the polynomial equation whose root are

$$4\pm\sqrt{3},2\pm i$$

7. Form the polynomial with rational coefficients whose roots are

$$1 + 5i, 5 - i$$

8. Form the polynomial with rational coefficients whose roots are

$$4\sqrt{3},5+2i$$

9. Form the polynomial with rational coefficients whose roots are

$$i-\sqrt{5}$$

10. Form the polynomial equation with rational coefficients whose roots are $-\sqrt{3}+i\sqrt{2}$

11. Find the transformed equation whose roots are the negatives of the roots of the equation

 $x^4 + 5x^3 + 11x + 3 = 0$

Watch Video Solution

12. Find the polynomial equation whose roots are the negatives of the roots of the equation

$$x^4 - 6x + 7x^2 - 2x + 1 = 0$$

13. Find the equation whose roots are the reciprocals of the roots of $x^4 + 3x^3 - 6x^2 + 2x - 4 = 0$

view text Solution

14. Find the equation whose roots are the reciprocals of the roots of

$$x^4 - 3x^3 + 7x^2 + 5x - 2 = 0$$

15. Find the equation whose roots are

3 times the roots of $x^3 + 2x^2 - 4x + 1 = 0$

16. Find the equation whose roots are

3 times the roots of $6x^4 - 7x^3 + 8x^2 - 7x + 2 = 0$

View Text Solution

17. Find the equation whose roots are

2 times the roots of

$$x^5 - 2x^4 + 3x^3 - 2x^2 + 4x + 3 = 0$$

18. Find the equation whose roots are the squares of the roots of

 $x^3 + 3x^2 - 7x + 6 = 0$

Watch Video Solution

19. Find the equation whose roots are the squares of the roots of

$$x^4 + x^3 + 2x^2 + x + 1 = 0$$

20. Find the equation whose roots are the cubes of the roots of $x^3 + 3x^2 + 2 = 0$

Exercise 2 3 Short Answer Questions

1. Solve the equation $x^3-6x^2+7x+2=0$ one root being $2+\sqrt{5}$

Watch Video Solution

2. Solve the equation

 $3x^3-4x^2+x+88=0$ given that $2-\sqrt{-7}$ is a root .

3. Solve the equation

$$x^3+6x+20=0$$
 one root being $l+3i$

View Text Solution

4. Solve the equation

$$3x^3-23x^2+72x-70=0$$
 one root being

$$33 + \sqrt{-5}$$

► View Text Solution

5. Solve the equation

$$x^4-5x^3+4x^2+8x-8=0$$
 given that $1-\sqrt{5}$ is a

root

View Text Solution

6. Solve the equation

$$6x^4-13x^3-35x^2-x+3=0$$
 given that $2+\sqrt{3}$

is a root

View Text Solution

7. Solve the equation

 $x^4-9x^3+27x^2-29x+6=0$ given that $2-\sqrt{3}$

is a root.

Watab Widaa Calutian

watch video Solution

8. Solve the equation

 $x^4+2x^3-5x^2+6x+2=0$ given that 1+i is a root

9. Solve the equation

 $x^4-6x^3+18x^2-30x+25=0$ given that 2+I is a root

10. Solve the equation

$$x^4+4x^3+5x^2+2x-2=0$$
 given that $-1+\sqrt{-1}$ is a root

11. Solve the equation

$$x^4+x^3-25x^2+41x+66=0$$
 given that $3+I\sqrt{2}$

is a root

12. Solve the equation

 $x^4-4x^2+8x+35=0$ given that $2+I\sqrt{3}$ is a root

Watch Video Solution

13. Solve the equation $x^5-x^4+8x^2-9x+15=0$ two of its roots being $-\sqrt{3},\,1-2\sqrt{-1}$

Watch Video Solution

14. Find the equation whose roots of m times the roots of the equation of

 $x^3+rac{1}{4}x^2-rac{1}{16}x+rac{1}{72}=0$ and deduce the case when m=12

1. If α, β, γ are the roots of $x^3 - 6x^2 + 11x - 6 = 0$

Exercise 2 3 Long Answer Questions

then find the equation whose roots are
$$lpha^2+eta^2,\,eta^2+\gamma^2,\,\gamma^2+lpha^2$$

2. If α,β,γ are the roots of $x^3+px^2+qx+r=0$ form the equation whose roots are $\alpha\beta,\beta\gamma,\gamma\alpha$

Watch Video Solution

3. Find the algebraic equation of degree 4 whose roots are the translates of the roots

 $4x^4 + 32x^3 + 83x^2 + 76x + 21 = 0$ by 2.

4. Find the polynomial equation whose roots are the translates of the roots of the equation .

 $x^4 - x^3 - 10x^2 + 4x + 24 = 0$ by 2 .

5. Find the equation whose are the translates of the roots of

 $x^5 - 4x^4 + 3x^2 - 4x + 6 = 0$ by -3

6. Find the equation whose are the translates of the roots of $x^5+4x^3-x^2+11=0$ by -3

watch video Solution

7. Find the equation whose are the translates of the roots of

$$3x^5 - 5x^3 + 7 = 0$$
 by 4

8. Remove second term (second higher power of x) from the equation

$$x^3 + 6x^2 + 4x + 4 = 0$$

9. Remove second term (second higher power of x)

from the equation

$$x^3 - 6x^2 + 4x - 7 = 0$$

Watch Video Solution

10. Remove second term (second higher power of x)

from the equation

$$x^3 - 6x^2 + 10x - 3 = 0$$

11. Transform eanc of the following equations into ones in which of the coefficients of the second highest power of x is zero and also find their transformed
equations

$$x^4 + 4x^3 + 2x^2 - 4x - 2 = 0$$

12. Remove second term (second higher power of x) from the equation

$$x^4 + 8x^3 + x - 5 = 0$$

13. Transform each of the following equations into ones in which the coefficients of the third highest power of x is zero . $x^3 + 2x^2 + x + 1 = 0$

Watch Video Solution

14. Solve the following equations

$$4x^3 - 13x^2 - 13x + 4 = 0$$

Watch Video Solution

Solve the 15. equation

 $6x^4 - 35x^3 + 62x^2 - 35x + 6 = 0$.

 $x^4 - 10x^3 + 26x^2 - 10x + 1 = 0$

17. Solve the following equations

$$2x^5 + x^4 - 12x^3 - 12x^2 + x2 = 0$$

18. Solve the following equations

$$x^5 - 5x^4 + 9x^3 - 9x^2 + 5x - 1 = 0$$

View Text Solution

19. Solve the equation

$$6x^6 - 25x^5 + 31x^4 - 31x^2 + 25x - 6 = 0$$

Watch Video Solution

Additional Exercise

1. If the cubic equation $3x^3 + px + 5 = 0$ has exactly one real root then show that p>0

Watch Video Solution

2. If α, β, γ are the roots of $x^3 - 3x^2 + 3x + 7 = 0$ then show that $rac{lpha-1}{eta-1}+rac{eta-1}{\gamma-1}+rac{\gamma-1}{lpha-1}=3\omega^2$ where ω is complex cube of unity.

Watch Video Solution

3. If $lpha,eta,\gamma$ are the roots of $x^3+qx+r=0$ then

$$\frac{1}{\alpha+\beta-\gamma}+\frac{1}{\beta+\gamma-\alpha}+\frac{1}{\gamma+\alpha-\beta}=$$

4. Show that the roots of the equation

$$x^3+px^2+qx+r=0$$
 are in

$$\text{A.P } 2p^3-9pq+27r=0 \\$$

5. Show that the roots of the equation

$$x^3+px^2+qx+r=0$$
 are in

G.P
$$p^3r=q^3$$

6. Show that the roots of the equation

$$x^3 + px^2 + qx + r = 0$$
 are in

$$\mathsf{H.P}\,2p^3=9r(pq-3r)$$

Watch Video Solution

7. If α, β, γ are roots of $x^3 + ax^2 + bx + ab = 0$ find the equation whose roots are α^3 , β^3 , γ^3

View Text Solution

8. If the sum of two roots of the equation $x^4+px^3+qx^2+rx+s=0$ equals the sum of the other two ,prove that $p^3 + 8r = 4pq$

Watch Video Solution

9. Find the roots of $x^4 - 16x^3 + 86x^2 - 176x + 105 = 0$

Watch Video Solution

Exercise I

1. The quotient obtained when $x^4+11x^3-44x^2+76x+48$ is divided by

$$x^2-2x+1$$
 is

A.
$$x^2-13x+5$$

B.
$$x^2 + 13x - 19$$

C.
$$x^2 - 13x + 19$$

D.
$$x^2 + 13x + 25$$

2. Find quotient and the remainder when $2x^5-3x^4+5x^3-3x^2+7x-9$ is divided by

$$x^2-x--3$$

A.
$$33x + 4$$

B.
$$41x + 3$$

$$\mathsf{C.}\,47x + 21$$

D.
$$33x - 4$$

Watch Video Solution

3. The equation whose roots are $1\pm 2I,\,0,\,1$ is

A.
$$x(\hat{\ }3+3x^2-7x+4)=0$$

B.
$$x(x^3-3x^2+7x-5)=0$$

C.
$$x(x^3-3x^2-7x+4)=0$$

D.
$$x(x^3 - 3x^2 + 7x - 4) = 0$$

Watch Video Solution

4. The biquadratic equation, two of whose roots are 1

+
$$i$$
 , 1 - $\sqrt{2}$ is

A.
$$x^4 - 4x^3 + 5x^2 - 2x - 2 = 0$$

B.
$$x^4 - 4x^3 - 5x^2 + 2x + 2 = 0$$

C.
$$x^4 + 4x^3 - 5x^2 + 2x - 2 = 0$$

D.
$$x^4 + 4x^3 - 5x^2 - 2x + 2 = 0$$

Answer: A

Watch Video Solution

5. The equation of lowest degree with rational coeficients having a root $\sqrt{3}+\sqrt{2}i$ is

A.
$$x^4 + 2x^2 - 25 = 0$$

$$\mathsf{B.}\, x^4 - 2x^2 + 25 = 0$$

$$\mathsf{C.}\,x^4 + 10x^2 + 1 = 0$$

D.
$$x^4 + 2x^2 + 25 = 0$$

Watch Video Solution

6. If $\alpha, \beta, 1$ are roots of

$$x^3-2x^2-5x+6=0 (lpha>1)$$
 then $3lpha+eta=$

- **A.** 7
- B. 5
- C. 14
- D. 10

Answer: A

.....

Watch Video Solution

$$4x^3+16x^2+kx-36=0$$
 is -6 then k=

A. 9

B. - 9

C. 8

D. - 8

Answer: B

View Text Solution

8. The condition that the product of two of the roots

$$x^3+px^2+qx+r=0$$
 is -1 is

A.
$$r^2+pr+q+1=0$$

B.
$$q^2 + pq + q + 1 = 0$$

$$\mathsf{C.}\, p^2pq+p+1=0$$

D.
$$r^2-pr-q+1=0$$

Answer: A

9. If the sum of the two roots of $x^3+px^2+qx+r=0$ is zero then pq=

$$A.-r$$

B.r

 $\mathsf{C.}\,2r$

D.-2r

Answer: B

Watch Video Solution

10. If one of $x^3+3x^2+5x+k=0$ is sum of the other two roots then k=

A.
$$\frac{11}{4}$$

B.
$$\frac{17}{6}$$

$$\mathsf{C.}\,\frac{25}{9}$$

D.
$$\frac{33}{8}$$

Answer: D

Watch Video Solution

11. If one root of $x^3-12x^2+kx-18=0$ is thrice the sum of remaining two roots then k=

A. 29

B. - 29

C. 19

D. 15

Answer: A

Watch Video Solution

12. If the roots of $32x^3 - 48x^2 + 22x - 3 = 0$ are in

A.P then the middle root is

A. 2

 $\mathsf{B.}\;\frac{1}{2}$

C. 4

D.
$$\frac{1}{4}$$

Watch Video Solution

13. If the roots of the equation $4x^3-12x^2+11x+k=0$ are in arithmetic progression then k=

A. -3

B. 1

C. 2

D. 3

Answer: A

Watch Video Solution

14. If the roots of $6x^3-11x^2+6x=0$ are in H.P then one of the roots is

A.
$$\frac{1}{2}$$

$$\mathsf{B.}-\frac{1}{2}$$

$$\mathsf{C.}\,2$$

$$\mathsf{D}.-2$$

Answer: A

15. If the roots of
$$54x^3-39x^2-26x^2-26x+16=0$$
 are in G.P then one root is

$$\mathsf{A.}-\frac{2}{3}$$

$$\mathsf{B.}\;\frac{2}{3}$$

$$\mathsf{C.}\;\frac{3}{2}$$

$$\mathrm{D.}-\frac{3}{2}$$

Answer: A

16. IF the roots of $x^3-13x^2+kx-27=0$ are in

G.P then k=

A. -30

 $\mathsf{B.}\,30$

 $\mathsf{C.}\,39$

D. - 39

Answer: C

17. If the roots of $x^3-42x^2+336x-512=0$, are in increasing geometric progression, its common ratio is

- **A.** 2
- B. 3
- C. 4
- D. 6

Answer: C

18. The condition that the roots of

$$x^3-bx^2+cx-d=0$$
 are in G.P is

A.
$$c^3 = b^3 d$$

$$\mathtt{B.}\,c^2=b^2d$$

$$\mathsf{C}.\,c=bd^3$$

D.
$$c = bd^2$$

Answer: A

Watch Video Solution

19. The roots of the equation $x^3-3x-2=0$ are

$$A. -1, -1, 2$$

$$B.-1, 1, -2$$

$$C. -1, 2-3$$

$$D. -1, -1, -2$$

Answer: A

Watch Video Solution

20. If one root of $24x^3-14x^2-63x+45=0$ is the double the other then the roots are

A.
$$-1, \frac{1}{2}, 2$$

B.
$$2, 2, -1$$

$$\mathsf{C}.\,rac{3}{4},\,rac{3}{2},\,-rac{5}{3}$$

$${\rm D.}-\frac{3}{2},\;-\frac{3}{4},\;-\frac{1}{3}$$

Answer: C

Watch Video Solution

21. For the equilibrium $x^3+3x^2-x-2=0$ if $s_1,\,s_2,\,s_3$ have their usual notaion then

A.
$$s_1 <_3 < s_2$$

B.
$$s_1 < s_2 < s_3$$

 $\mathsf{C.}\, s_2 < s_1 < s_3$

D. $s_3 < s_1 < s_2$

Answer: B

Watch Video Solution

22. The repeated root of the equation

$$4x^3-12x^2-15x-4=0$$
 is

A. $\frac{5}{2}$

 $\mathsf{B.}-\frac{1}{2}$

c. $\frac{1}{3}$

$$\mathrm{D.}-\frac{1}{3}$$

Watch Video Solution

$$x^3 + 4x^2 + 5x + 2 = 0$$
 is

23. The non - repeated root of

$$\mathsf{B.}-2$$

 $\mathrm{A.}-\frac{5}{3}$

D. 1

Watch Video Solution

24. If f(x)=0 has a repreated root lpha then another equation having lpha as root is

A.
$$f(2x) = 0$$

B.
$$f(3x) = 0$$

C.
$$f(x') = 0$$

D.
$$f(4x) = 0$$

Answer: C

....

Watch Video Solution

25. If α, β, γ are roots of the equation

$$x^3+ax^2+bx+c=0$$
 then $lpha^{-1}+eta^{-1}+\gamma^{-1}=$

A.
$$\frac{a}{c}$$

$$B.-\frac{b}{c}$$

$$\mathsf{C.}\;\frac{c}{a}$$

D.
$$\frac{b}{a}$$

Answer: B

then $lpha^2+eta^2+\gamma^2=$

26. If $lpha,eta,\gamma$ are the roots of $x^3+px^2+qx-r=0$

A.
$$p^2-2q$$

B.
$$p^3-3pq+3r$$

C. $p^4 - 3p^2q + 2q^2$

D.
$$2q$$

Answer: A

27. If
$$lpha,eta,\gamma$$
 are the roots of the equation $x^3-6x^2+11x+6=0$ then $\sum lpha^2eta=$

- A. 80
- B. 94
- C. 90
- D. 84

Watch Video Solution

28. If α, β, γ are the roots of the equation

$$x^3+px^2+qx+r=0$$
 then $\sum lpha^2(eta+\gamma)=$

A.
$$p^2 - 2q$$

$$\mathsf{B.}-p^3+3pq-3r$$

C.
$$p^4 - 4p^2q + 4pr + 2q^2$$

D.
$$3r-pq$$

Answer: D

Watch Video Solution

29. If $lpha,eta,\gamma$ are the roots of $x^3+2x^2-3x-1=0$

then $lpha^{-2}+eta^{-2}+\gamma^{-2}=$

A. 12

B. 13

C. 14

D. 15

Answer: B

Watch Video Solution

30. If $f(x) = x^4 + 3x^2 - 6x - 2$ then the coefficient of x^3 in f(x+1) is

A. 24

B.-24

C. 4

D.-4

Answer: C

Watch Video Solution

31. The equation whose roots are multiplied by 3 of those of $2x^3-3x^2+4x-5=0$ is

A.
$$2x^3 - 9x^2 + 36 - 135 = 0$$

$$\mathtt{B.}\,2x^3-9x^2-36x+135=0$$

$$\mathsf{C.}\,x^3 - 9x^2 + 36x + 135 = 0$$

$$\mathsf{D.}\,2x^3-9x^2+36x+135=0$$

Answer: A

Watch Video Solution

32. If $lpha,\,eta,\,\gamma$ are the roots of $x^3+2x^2-4x-3=0$ then the equation whose roots are $lpha/3,\,eta/3,\,\gamma/3$ is

A.
$$x^3 + 6x^2 - 36x - 81 = 0$$

$$B. 9x^3 + 6x^2 - 4x - 1 = 0$$

C.
$$9x^3 + 6x^2 + 4x + 1 = 0$$

$$D. x^3 - 6x^2 + 36x + 81 = 0$$

Answer: B

33. The equation whose roots are those of equation

$$x^4-3x^3+5x^2-2=0$$
 with contrary sign is

A.
$$x^4 + 3x^3 + 5x^2 - 2 = 0$$

$$B. x^4 + 3x^3 + x^2 + 7x - 2 = 0$$

$$\mathsf{C.}\,x^4 - 3x^3 + 8x^2 + 4 = 0$$

$$D. 10x^4 - 13x^2 + 40 = 0$$

Answer: A

34. If α, β, γ are the roots of $x^3 + x^2 + 2x + 3 = 0$

then the equation whose roots $\beta + \gamma, \gamma + \alpha, \alpha + \beta$

is

A.
$$x^3 + 2x^2 + 3x - 1 = 0$$

$$\mathsf{B.}\, x^3 + 2x^2 + 3x + 1 = 0$$

C.
$$x^3 + 2x^2 + 3x + 1 = 0$$

D.
$$x^3 - 2x^2 + 3x - 1 = 0$$

Answer: A

35. If $lpha,eta,\gamma$ are the roots of $x^3+3x^2-4x+2=0$

then the equation whose roots are $\frac{1}{\alpha\beta},\,\frac{1}{\beta\gamma},\,\frac{1}{\gamma\alpha}$ is

A.
$$4x^3 - 6x^2 + 4x + 1 = 0$$

$$B. 4x^3 + 6x^2 - 4x - 1 = 0$$

$$\mathsf{C.}\,4x^3+6x^2-4x+1=0$$

D.
$$4x^3 - 6x^2 - 4x - 1 = 0$$

Answer: D

36. to remove the 2^{nd} term of the equation $x^4-10x^3+35x^2-50x^2-50x+24=0$, diminish the roots by

A.
$$\frac{2}{5}$$

$$\mathsf{B.}-\frac{2}{5}$$

c.
$$\frac{5}{2}$$

$$\mathsf{D.}-\frac{5}{2}$$

Answer: C

37. The transformed equation of

 $x^4+8x^3+x-5=0$ by eliminating second term is

A.
$$x^4-24x^2+65x-55=0$$

$$\mathrm{B.}\,x^4 + 24x^2 + 65x + 55 = 0$$

$$\mathsf{C.}\,x^4 - 24x^2 - 65x + 55 = 0$$

D.
$$x^4 + 24x^2 + 65x - 55 = 0$$

Answer: A

38. Each of the roots of the equation $x^3-6x^2+6x-5=0$ are increased by k so that the new transformed equation does not contain x^2 term. Then k =

- A. $\frac{1}{3}$
- $\mathsf{B.}\;\frac{1}{2}$
- **C**. 1
- D.-2

Answer: D

39. If the roots of $x^4+5x^3-30x^2-40x+64=0$ are in G.P then roots of

 $x^4 - 5x^3 - 30x^2 + 40x + 64 = 0$ are in

A. A.P

B. G.P

C. H.P

D. A.G.P

Answer: B

40. If 1, -2, 3 are the roots of $ax^3+bx^2+cx+d=0$

then the roots of $ax^3+3bx^2+9cx+27d=0$ are

- A. 2, 4, 6
- B. 3, 4, 5
- C. $\frac{1}{2}$, 1, $\frac{3}{2}$
- D. -1, 0, 1

Answer: A

41. IF the roots of $ax^3+bx^2+cx+d=0$ are in G.P then the roots of $ay^3+bky^2+ck^2y+dk^3=0$ are in

- A. A.P
- B. G.P
- C. H.P
- D. A.G.P

Answer: B

42. If 1,3,4,0 are the roots of

$$ax^4+bx^3+cx^2+dx+e=0$$
 then the roots of $a(x+3)^4+b(x+3)^3+c(x+3)^2+d(x+3)+e=0$

are

A. 3, 9, 0, 12

B. 4, 6, 3, 7

c. $\frac{1}{3}$, 1, 0, $\frac{4}{3}$

D. -2, 0, 1, -3

Answer: D

43. The reciprocal equation is

A.
$$2x^3 + 4x^2 + 2x + 2 = 0$$

$$B. 2x^3 + 4x^2 + 4x + 2 = 0$$

$$\mathsf{C.}\,2x^3 + 4x^2 + 2x + 4 = 0$$

D.
$$2x^3 + 2x^2 + 4x - 4 = 0$$

Answer: B

Watch Video Solution

44. The equation $x^4 + 3x^3 - 3x - 1 = 0$ is a reciproca, equation of

- A. class one and odd order
- B. class two and even order
- C. class one and even order
- D. class two and odd order

Answer: B

View Text Solution

- **45.** The reciprocal equation is
 - A. class one and x=1 is a root
 - B. class one and x=-1 is a root

C. class two and $x=\pm 1$ are roots

D. class two and x=1 is a root but not x=-1

Answer: C

Watch Video Solution

46. If lpha is a positive root of the equation $x^4+x^3-4x^2+x+1=0$ then $lpha+rac{1}{lpha}$

A. 2

 $\mathsf{B.}-2$

C. 3

D. 4

Answer: A

Watch Video Solution

47. If 2,3 are two roots of the reciprocal equation $6x^5-29x^4+2x^3+2x^2-29x+6=0$ then the other roots are

A. 1, -2, 3

B. -1, -2, -3

 $C. -1, \frac{1}{2}, \frac{1}{3}$

D. 1, $\frac{1}{2}$, $\frac{1}{3}$

Answer: C

Watch Video Solution

Exercise li

1. The value of k so that $x^4-3x^3+5x^2-33x+k$ is divisible by x^2-5x+6 is

A. 45

B. 48

C. 51

D. 54

Answer: D

Watch Video Solution

2. If $f(x)=2x^4-13x^2+ax+b$ is divisible by

$$x^2-3x+2$$
 then $(a,b)=$

A.
$$(-9, -2)$$

B.(6,4)

C.(9,2)

D.(2,9)

Answer: C

....

Watch Video Solution

3. Let $a \neq 0$ and p(x) be a polynomial of degree greater than 2. If P(x) leaves remainder a and -a when divided respectively by x+a and x-a then the remainder when p(X) is divided by x^2-a^2 is

A. 2x

B.-2x

 $\mathsf{C}.x$

D.-x

Answer: D

4. If f(x) is is a polynomial of degree n with rational coefficients and $1+2I, 2-\sqrt{3}$ and 5 are roots of f(x) =0 then the least value of n is

A. 5

B. 4

C. 3

D. 6

Answer: A

5. If $\frac{1+I\sqrt{3}}{2}$ is a root of the equation

 $x^4-x^3+x-1=0$ then its real roots are

A. 1, 1

B. -1, -1

C. 1, 2

D. 1, -1

Answer: D

6. If the roots of the equation

$$x^4-10x^3+50x^2-130x+169=0$$
 are of the form

$$a\pm ib$$
 and $b\pm ia$ then (a,b)=

- A. (3, 2)
- B. (2, 1)
- $\mathsf{C.}\,(\,-3,2)$
- D. (-3, -2)

Answer: A

7. If 1,2,3 and 4 are the roots of the equation

$$x^4+ax^3+bx^2+cx+d=0$$
 then $a+2b+c=$

- A. 25
- B. 0
- C. 10
- D. 24

Answer: C

8. If $\sqrt{3}+1$ is a root of the equation $3x^3+ax^2+bx+12=0$ where a and b are rational numbers then (a,b)=

A.
$$12, -6$$

$$B. -12, 6$$

$$C. -12, -6$$

Answer: B

View Text Solution

9. If the roots of $x^3-9x^2+kx+l=0$ are in A.P with common difference 2 then (k,l) =

- A. (15 15)
- B. (23, -15)
- C. (15, -23)
- D. (-15, 23)

Answer: B

10. The roots of the equation

 $x^3-14x^2+56x-64=0$ are in progression

- A. A. G. P
- B. H.P
- C. A.P
- D. G.P

Answer: D

Watch Video Solution

11. The roots of $48x^3 - 44x^2 + 12x - 1 = 0$ are in

A. A.P

B. G.P

C. H.P

D. A.G.P

Answer: C

Watch Video Solution

12. The difference between two roots of the equation $x^3-13x^2+15x+189=0$ is 2 then the roots of the equation are

A. -3, 7, 9

$$B. -3, -1, -9$$

$$D. -3, -1, 9$$

Answer: A

Watch Video Solution

13. If two roots of $x^3 - 9x^2 + 14x + 24 = 0$ are in the ratio 3:2 then the roots are

A.
$$6, 4, -1$$

c.
$$\frac{1}{2}$$
, $\frac{1}{3}$. $\frac{49}{6}$

D. 6, 4, 2

Answer: A

Watch Video Solution

14. If - 1 +
$$i$$
 is a root of $x^4+4x^3+5x^2+2x+k=0$

then k =

A.
$$-1, -1$$

B.
$$-\frac{1}{2}, -\frac{3}{2}$$

C.
$$-1\pm\sqrt{2}$$

D.
$$1\pm\sqrt{2}$$

Answer: C

Watch Video Solution

15. If the roots of $x^4-8x^3+14x^2+8x-15=0$ are in A.P then the roots are

A. -1, 1, 3, 5

B. 1, 1, -3, -5

C. 1, 3, 5, 7

D. 1, 2, 3, 4

Answer: A

Watch Video Solution

16. If the roots of $x^4 + 5x^3 - 30x^2 - 40x + 64 = 0$

are in G.P then roots of

$$x^4 - 5x^3 - 30x^2 + 40x + 64 = 0$$
 are in

$$\mathsf{B.}\pm 1,\,2,\,3$$

$$\mathsf{C.}\pm2i,\,2,\,3$$

D.
$$\frac{3}{2}, \ -\frac{1}{3}, 2 \pm \sqrt{3}$$

Answer: A

17. If the sum of two of the roots of $x^4-2x^3-3x^2+10x-10=0$ is zero then the roots are

A.
$$\pm\sqrt{5}$$
, $1\pm i$

B.
$$\pm \sqrt{5}$$
, 1, -1

C.
$$\frac{1}{2}$$
, $-\frac{1}{5} \pm 1$

D.
$$a\sqrt{2},\sqrt{5},~\pm 2$$

Answer: A

18. the roots of the equation

 $x^4-6x^3+18x^2-30x+25=0$ are of the form

$$a\pm Ib$$
 and b \pm ia then $(a,b)=$

A. (3, 2)

B. (2, 1)

C.(-3,6)

D. (-3, -2)

Answer: B

19. Assertion (A) : If 1,2,3 are the roots of $ax^3+bx^2+cx+d=0$ then the roots of $ax^3+2bx^2+4cx+8d=0$ are =0 are 2, 4, 6 Reason (R): the equation whose roots are k times the roots of the equation f(x)=0 is $f\left(\frac{x}{k}\right)=0$

A. both A and R are true R is the correct explanation of A

B. both A and R are true and R is not the correct explanation of A

C. A is true and R is false

D. A is false and R is true

Answer: A

20. If the product of two of the roots of $x^4-5x^3+5x^2+5x-6=0$ is 2 then the roots are

A.
$$1, -2, 4, -8$$

B.
$$\pm 1, 2, 3$$

$$\mathsf{C.}\pm2i,\,2,\,3$$

$${\sf D.} - \frac{3}{2}, \; -\frac{1}{2}, \, 2 \pm \sqrt{3}$$

Answer: B

21. The equation $x^3-3qx+2r=0$ has a repeated root then

A.
$$q^2 = r^3$$

B.
$$q=r^2$$

$$\mathsf{C}.\,q^3=r$$

D.
$$q^3 = r^2$$

Answer: D

22. If there is a multiple root of order 3 for the equation $x^4-2x^3+2x-a=0$ then the other root is

- A. 1
- B.0
- C. 1
- D. 2

Answer: A

23. The difference of the irrational roots of the equation $x^5 - 5x^4 + 9x^3 - 9x^2 + 5x - 1 = 0$ is

- A. $\sqrt{5}$
- $\mathsf{B.}\,0$
- **C**. 1
- D. 2

Answer: D

24. If $lpha,eta,\gamma$ are the roots of $x^3+2x^2+3x+8=0$

then $(3-\alpha)(3-\beta)(3-\gamma)$ =

A. 52

B. 62

C. 65

D. 67

Answer: B

25. If α, β, γ are the roots of the equation

$$x^3 - px^2 + qx + r = 0$$

then

$$(\alpha + \beta)(\beta + \gamma)(\gamma + \alpha) =$$

A.
$$2(p^2-3q)$$

B.
$$r-pq$$

$$\mathsf{C}.\,qp+r$$

D.
$$\frac{p^2-2q}{r^2}$$

Answer: C

26. If α, β, γ are the roots of the equation

$$x^3+4x+1=0$$
, then $(lpha+eta)^{-1}+(eta+\gamma)^{-1}+(\gamma+lpha)^{-1}$ is equal to

- A. 2
- B. 3
- C. 4
- D. 5

Answer: C

27. If $lpha,eta,\gamma$ are the roots of $2x^3-2x-1=0$ the

$$\sum (\alpha \beta)^2 =$$

$$A. - 1$$

B. 1

C. 2

D. 3

Answer: B

A.
$$\frac{q^2-2pr}{r^2}$$

 $\mathsf{B.}\,q^3-3pqr+3r^2$

C.
$$rac{p^2-2q}{r^2}$$

 $\mathsf{D.}\; \frac{pq}{r-3}$

Answer: C

29. If
$$\alpha,\beta,\gamma$$
 are the roots of $x^3+qx+r=0$ then
$$\frac{1}{\alpha+\beta-\gamma}+\frac{1}{\beta+\gamma-\alpha}+\frac{1}{\gamma+\alpha-\beta}=$$

A.
$$\frac{q}{2r}$$

B.
$$\frac{q}{r}$$

$$\operatorname{C.}\frac{2q}{r}$$

$$-\frac{2q}{r}$$

Answer: A

Watch Video Solution

30. If
$$f(x) = 5x^3 + 4x^2 - 13x - 25$$
 and

A. 85

B. - 85

 $f(x-3) = 5x^3 - 41x^2 + 98x + k$ then k =

C. 105

D. - 105

Answer: B

Watch Video Solution

31. The equation whose roots exceed by 2 than the roots of $4x^4+32x^3+83x^2+76x+21=0$ is

$$\mathsf{A.}\, 4x^4 + 13x^2 + 9 = 0$$

$$B.\,4x^4-13x^2+9=0$$

$$\mathsf{C.}\, 4x^4 + 12x^2 - 9 = 0$$

D.
$$4x^4 + 12x^2 - 9 = 0$$

Answer: B

Watch Video Solution

32. Find the polynomial equation whose roots are the squares of the roots of $x^4+x^3+2x^2+x+1=0$

A.
$$x^4 - 3x^3 + 4x^2 + 3x + 1 = 0$$

$$B. x^4 + 3x^3 + 4x^2 + 3x + 1 = 0$$

C.
$$x^4 - 3x^3 - 4x^2 + 3x + 1 = 0$$

D.
$$x^4 - 3x^3 - 4x^2 - 3x + 1 = 0$$

Answer: B

Watch Video Solution

33. Form the polynomial equation whose roots are cubes of the roots of $x^3+3x^2+2=0$

$$A. x^3 + 33x^2 + 12x + 8 = 0$$

$$B. x^3 + 33x^2 - 12x - 8 = 0$$

$$\mathsf{C.}\,x^3 - 33x^2 + 12x - 8 = 0$$

$$D. x^3 + 33x^2 + 12x - 8 = 0$$

Answer: A

34. If 1,2,3 are the roots of $ax^3 + bx^2 + cx + d = 0$

then the roots of $ax\sqrt{x}+bx+c\sqrt{x}+d=0$ are

- A. 2,3,4
- B. 1,4,9
- C. 2, 4, 6
- D. 1, $\sqrt{2}$, $\sqrt{3}$

Answer: B

35. If $lpha,eta,\gamma$ are the roots of $x^3-6x-4=0$ then

the equation whose roots are

$$igg(eta\gamma+rac{1}{lpha}igg),igg(\gammalpha+rac{1}{eta}igg),igg(lphaeta+rac{1}{\gamma}igg)$$
 is

A.
$$4x^3 - 30x^2 + 125 = 0$$

$$\mathsf{B.}\,x^3 + 15x^2 - 120 = 0$$

C. $4x^3 + 30x^2 - 125 = 0$

D.
$$4x^3 - 30x^2 - 125 = 0$$

Answer: C

36. If $lpha,eta,\gamma$ are the roots of $x^3+4x+1=0$ then

the equation whose roots are

$$rac{lpha^2}{eta+\gamma}, rac{eta^2}{\gamma+lpha}, rac{\gamma^2}{lpha+eta}$$
 is

A.
$$x^3 - 4x - 1 = 0$$

B.
$$x^3 - 4x + 1 = 0$$

C.
$$x^3 + 4x - 1 = 0$$

D.
$$x^3 + 4x + 1 = 0$$

Answer: C

37. If α, β, γ are the roots of the equation

$$x^3+px^2+qx+r=0$$
 then $\,\sum lpha^2(eta+\gamma)=$

- A. 2q
- B. $q^2 + pr$
- $\mathsf{C.}\ p^2-qr$
- D. r(pq-r)

Answer: B

38. Remove the third term from the equation

$$x^4 + 2x^3 - 12x^2 + 2x - 1 = 0$$

- A. 0
- B. 1
- C. 2
- D. 3

Answer: C

39. Number of transformed equations of $x^3 + 2x^2 + x + 1 = 0$ by eliminating third term is

A. 4

B. 3

C. 2

D. 1

Answer: C

40. The transformed equation

$$x^3-rac{5}{2}x^2-rac{7}{18}x+rac{1}{108}=0$$
 by removing

fractional coefficients is

A.
$$x^3 - 3x^2 - x + 12 = 0$$

B.
$$x^3 - 3x^2 - x + 6 = 0$$

$$\mathsf{C.}\,x^3 - 3x^2 - 24x - 216 = 0$$

D.
$$x^3 - 15x^2 - 14x + 2 = 0$$

Answer: D

41. The transformed equation with integer coeffcients whose roots are multipled by some constant of those of $x^4-\frac{1}{2}x^3+\frac{3}{4}x^2-\frac{5}{4}x+\frac{1}{16}=0$ is

A.
$$y^4 - y^3 + 3y^2 - 10y + 1 = 0$$

$$B. y^4 - 24y^2 + 9y - 24 = 0$$

C.
$$y^4 - 2y^3 + 6y - 6 = 0$$

D.
$$y^4 - 5y^3 + 3y^2 - 9y + 27 = 0$$

Answer: A

42. If the equation whose roots are p times the roots of $x^4+2x^3+46x^2+8x+16=0$ is a reciprocal equation then p=

- A. 2
- B. 3
- $\mathsf{C.}\pm\frac{1}{2}$
- $\mathrm{D.}\pm\frac{1}{3}$

Answer: C

43. Let $\alpha \neq 1$ be a real root of the equation $x^3-ax^2+ax-1=0$, where a \neq -1 is a real number, then a root of this equation, among the following , is :

A.
$$\alpha^2$$

B.
$$-\frac{1}{\alpha^2}$$

$$c. \frac{1}{\alpha}$$

D.
$$\frac{1}{\alpha^2}$$

Answer: C

- **44.** Assertion (A) : If 1,2,3 are the roots of $ax^3+bx^2+cx+d=0$ then the roots of $ax^3+bx^2+4cx+8d=0$ are =0 are 2, 4, 6 Reason (R): the equation whose roots are k times the roots of the equation f(x)=0 is $f\left(\frac{x}{k}\right)=0$
 - A. both A and R are true R is the correct explanation of A
 - B. both A and R are true and R is not correct explanation of A
 - C. A is true and R is false
 - D. A is false and R is true

Answer: A

Watch Video Solution

45. Assertion (A) : if $x^4-x^3-6x^2+4x+8=0$ has a multiple root then the equation having the same root is $4x^3-3x^2-12x+4=0$

Reason (R) : If lpha is repeated root of f(x)=0 then lpha is also a root of $f^1(x)=0$

A. both A and R are true R is the correct explanation of A

B. both A and R are true and R is not correct

explanation of A

C. A is true and R is false

D. A is false and R is true

Answer: A

Watch Video Solution

46. Assertion (A) : If α, β, γ are the roots of

 $x^3-x-1=0$ then $lpha^3+eta^3+\gamma^3=1$

Reason (R): If a +b+c=0 then $a^3+b^3+c^3=3abc$

- A. both A and R are true R is the correct explanation of A
- B. both A and R are true and R is not correct explanation of A
- C. A is true and R is false
- D. A is false and R is true

Answer: D

- **47.** Assertion (A) : the number of roots of
- $x^4 + 2x^3 7x^2 8x + 12 = 0$

Reason (R): Every algebraic equation of degree n has n roots and nomore .

A. both A and R are true R is the correct explanation of A

B. both A and R are true and R is not correct explanation of A

C. A is true and R is false

D. A is false and R is true

Answer: A

48. Assertion (A) : the roots $x^4 - 5x^2 + 6 = 0$ are

$$\pm\sqrt{2}, \pm\sqrt{3}$$

Reason (R) : the equation having the roots

is

$$lpha_1,lpha_2,\ldots\ldots,lpha_n$$

 $(x-\alpha_1)(x-\alpha_2)....(x-\alpha_n)=0$

A. both A and R are true R is the correct

B. both A and R are true and R is not correct

explanation of A

explanation of A

C. A is true and R is false

D. A is false and R is true

Answer: A

49. For k>0 if $k\sqrt{-1}$ is a root of the equation

$$x^4 + 6x^3 - 16x^2 + 24x - 80 = 0$$
 then k^2 =

A. 2

B. 3

C. 4

D. 6

Answer: C

50. If the roots of the equation $x^3+3px^2+3qx-8=0 \quad \text{are in a geometric}$ progression , then $\frac{q^3}{p^3}$ =

- A. 1
- B.-2
- **C**. 4
- D. 8

Answer: D

51. If the roots of the equation

$$x^3 - 7x^2 + 14x - 8 = 0$$

are in geometric progression, then the difference between the largest and the smallest roots is

- A. $\frac{1}{2}$
- B. 2
- **C**. 3
- D. 4

Answer: C

52. If $lpha,eta,\gamma$ are the roots of $x^3+px^2+qx+r=0$ then the value of $\left(1+lpha^2\right)\left(1+eta^2\right)\left(1+\gamma^2\right)$ is

A.
$$(r+p)^2 + (q+1)^2$$

$$\mathsf{B.}\left(r-p\right)^2+\left(q-1\right)^2$$

C.
$$(1+p)^2 + (1+q)^2$$

D.
$$(r-p)^2+(r-q)^2$$

Answer: B

53. If the equation

$$x^5 - 3x^4 - 5x^3 + 27x^2 - 32x + 12 = 0$$

has repeated roots, then the prime number that divides the non repeated root of this equation is

- A. 7
- B. 5
- C. 3
- D. 2

Answer: C

54. If α , β are the roots of $x^2-3x+a=0$ and γ , δ are the roots of $x^2-12x+b=0$ and α , β , γ , δ in that order from a geometric progression increasing order with common ration r>1 then a+b=0

- A. 16
- B. 28
- C. 34
- D. 42

Answer: C

1. The quotient obtained when

 $3x^4-x^3+2x^2-2x-4$ is divided by x^2-4 is

A.
$$3X^2 - 7X + 16$$

B.
$$3x^2 + x + 14$$

C.
$$3x^2 - x - 14$$

D.
$$3x^2 - x + 14$$

Answer: D

2. The value of k so that $x^4-4x^3+5x^2-2x+k$ is divisible by x^2-2x+2 is

A. 0

 $\mathsf{B.}-2$

C. -1

D. 2

Answer: B

Watch Video Solution

3. The equation whose roots are $1,\,2\pm3i$ is

A.
$$x^3 - 4x^2 + x + 6 = 0$$

B.
$$x^3 - x^2 - 3x + 3 = 0$$

C.
$$x^3 - 4x^2 - 8x + 8 = 0$$

D.
$$x^3 - 5x^2 + 17x - 13 = 0$$

Answer: D

4. The polynomial equation of the lowest degree having roots $1,\,\sqrt{3}i$ is

A.
$$x^3 + x^2 + 3x + 3 = 0$$

B.
$$x^3 - x^2 + 3x - 3 = 0$$

$$\mathsf{C.}\,x^3 + x^2 - 3x - 3 = 0$$

D.
$$x^2-ig(1+\sqrt{3}iig)x+\sqrt{3}i=0$$

Answer: B

Watch Video Solution

5. The equation of lowest degree with rational coefficient having a root $\sqrt{3}+\sqrt{2}$ is

A.
$$x^4 - 2x^2 + 1 = 0$$

$$B. x^4 + 10x^2 + 1 = 0$$

$$\mathsf{C.}\,x^4 - 10x^2 + 1 = 0$$

D.
$$x^4 + 10x^2 - 1 = 0$$

Answer: C

Watch Video Solution

6. If one root of $x^3-6x^2+3x+10=0$ is 2 then the remaining two roots are

A.
$$2, -\frac{5}{2}$$

B.
$$5, -1$$

$$C. -5, 1$$

D. 2,
$$\frac{5}{2}$$

Answer: B

Watch Video Solution

7. If one root of $10x^3 - x^2 - 278x + 165 = 0$ is 5 then product of the remaining two roots is

A. 33

 $\mathsf{B.}-\frac{33}{5}$

C. $-\frac{33}{10}$

 $\mathsf{D.}\;\frac{33}{10}$

Answer: C

Watch Video Solution

8. If the product of two of the roots of $x^3+kx^2-3x+4=0$ is -1 then k=

A.
$$\frac{7}{2}$$

B.
$$\frac{9}{2}$$

$$\mathsf{C.}-\frac{7}{2}$$

$$\mathsf{D.}-\frac{9}{2}$$

Answer: C

Watch Video Solution

9. The condition for one root of
$$x^3+ax^2+bx+c=0$$
 is sum of the other two roots

A.
$$a^3=4(ab-c)$$

B.
$$a^3=4(ab-2c)$$

Answer: A

10. If one of the roots of $18x^3+81x^2+121x+60=0$ is equal to half the sum of the other two then one of its roots is

$$\mathsf{A.}-\frac{3}{2}$$

$$\mathsf{B.}\;\frac{3}{2}$$

c.
$$\frac{2}{3}$$

$$\mathsf{D.}-\frac{2}{3}$$

Answer: A

11. If the roots of the equation $x^3-9x^2+23x-15=0$ are in A.P then common difference of that A.P is

- **A.** 3
- B. 1
- C. 2
- D. 4

Answer: C

12. If the roots of $24x^3 - 26x^2 + 9x - 1 = 0$ are in

H.P then the roots are

A.
$$\frac{1}{2}$$
, $\frac{1}{3}$, $\frac{1}{4}$

B.
$$1, \frac{1}{3}, \frac{1}{8}$$

c.
$$\frac{1}{8}$$
, $\frac{1}{3}$, $\frac{1}{3}$

Answer: A

13. If
$$\alpha, \beta, \gamma$$
 are the roots of

$$x^3-3ax^2+3bx-c=0$$
 which are in H.P then $eta=$

A.
$$\frac{c}{b}$$

$$\mathsf{B.} - \frac{b}{a}$$

$$\mathsf{c}.\,rac{b}{c}$$

 $\mathsf{D}.\,b$

Answer: A

14. If the root of $kx^3 - 18x^2 - 36x + 8 = 0$ are in

H.P then k=

A. 81

B. 63

C. 64

D. 56

Answer: A

15. If the roots of $x^3 - 14x^2 + 56x - 64 = 0$ are in

G.P then the middle root is

A. 4

B. - 4

C. 6

D. 8

Answer: A

16. If $x^4-12x^3+52x^2-96x+64=0$ have pairs of equal roots then the roots are

- A. 1, 1, 5, 5
- B. 2, 2, 4, 4
- $\mathsf{C.}\ 3,\, 3,\, 3,\, 3$
- D. -5, -1, -5, -1

Answer: B

17. If the roots of $x^4 - 2x^3 - 21x^2 + 22x + 40 = 0$

are in A.P then the roots are

A.
$$\frac{2}{3}, -\frac{1}{2}, 1, 2$$

B. 1,
$$\pm$$
 2, $-$ 3

$$c. \pm \sqrt{3}, \frac{3}{4}, -\frac{1}{2}$$

$$D. -4, -1, 2, 5$$

Answer: D

18.

lf

the

roots

of

 $27x^4 - 195x^3 + 494x^2 - 520x + 192 = 0$ are in G.P.

then the roots are

$$A. -1, 1, 3, 5$$

B.
$$1, 1, -3, -5$$

$$\mathsf{C}.\,rac{8}{9},rac{4}{3},2,3$$

D.
$$-2, \frac{1}{2}, 3, 1$$

Answer: C

19. The roots of $x^3 - 13x^2 + 39x - 27 = 0$ are in

A. A.P

B. G.P

C. H.P

D. A.G.P

Answer: B

Watch Video Solution

20. If $x^3-3x^2+4=0$ has a multiple root then that multiple root is

- A. 0
- B. 2
- C. 1
- D. 3

Answer: B

21.

Watch Video Solution

 $x^4 - 2x^3 - 11x^2 + 12x + 36$ = 0 are

The multiple roots

of

A. 1, 2

B. -1, 2

C. 2, 3

D. -2, 3

Answer: D

Watch Video Solution

$$x^3-10x^2+6x-8=0$$
 then $lpha^2+eta^2+\gamma^2$ =

22. If α, β, γ are the roiots of

A. - 88

B. 88

C. - 7

D. 1

Answer: B

23. If
$$lpha,eta,\gamma$$
 are roots of $x^3+px^2+qx+r=0$

then
$$\sum \frac{1}{\alpha^2}$$
 =

A.
$$\frac{q^2-2pr}{r^2}$$

B.
$$q^3-3pqr+3r^2$$

C.
$$\frac{p^2-2q}{r^2}$$

D.
$$\frac{pq}{r}-3$$

Answer: A

Watch Video Solution

24. If
$$\alpha$$
, β and γ are the roots of

$$x^3-2x^2+3x-4=0$$
, then find

(i)
$$\sum lpha^2 eta^2(ii) \sum lpha eta(lpha+eta)$$

A. 6

B. - 6

C. 7

D.-7

Answer: B

Watch Video Solution

25. If $lpha,eta,\gamma$ are the roots of $x^3+qx+r=0$ then

$$\sum \left(eta + \gamma
ight)^{-1}$$
=

A.
$$\frac{q}{r}$$

$$\mathsf{B.}\,\frac{r}{q}$$

$$\mathsf{C.} - rac{q}{r}$$

$$\mathsf{D.} - \frac{r}{q}$$

Answer: A

Watch Video Solution

26. If
$$lpha,eta,\gamma$$
 are roots of $x^3-2x^2+3x-4=0$,

then
$$\sum a^2 \beta^2$$
 =

A. 7

B. - 7

C. 6

D. - 6

Answer: B

27. If α, β, γ are the roots of the equation

$$x^3+4x^2-5x+3=0$$
 then $\sum rac{1}{lpha^2eta^2}=$

A.
$$-\frac{9}{2}$$
B. $-\frac{38}{49}$

c.
$$\frac{26}{9}$$

D. 98

Answer: C

28. If
$$\alpha,\beta,\gamma$$
 are the roots of $x^3+2x^2+3x+8=0$ then $(\alpha+\beta)(\beta+\gamma)(\gamma+\alpha)$ =

- A.-4
- B. 4
- $\mathsf{C}.-2$
- D. 2

Answer: D

Watch Video Solution

29. If α,β,γ are the roots of $x^3-7x+6=0$ the equation whose roots are $\alpha+\beta,\beta+\gamma,\gamma+\alpha$ is

A.
$$x^3 + 7x + 6 = 0$$

B. $x^3 + 7x - 6 = 0$

C. $x^3 - 7x - 12 = 0$

D. $x^3 - 7x - 6 = 0$

Answer: D

Watch Video Solution

30. If $lpha, eta, \gamma$ are the roots of $x^3 - 3x + 1 = 0$ then the equation whose roots are

$$lpha-rac{1}{eta\gamma},eta-rac{1}{\gammalpha},\gamma-rac{1}{lphaeta}$$
 is

A. $x^3 - 3x + 8 = 0$

B. $x^3 - 6x + 8 = 0$

C.
$$x^3 - 9x + 8 = 0$$

D.
$$x^3 - 12x + 8 = 0$$

Answer: D

Watch Video Solution

31. The equation whose roots are squares of the roots

of
$$x^3 + 2x^2 - x + 3 = 0$$
 is

A.
$$x^3 - 6x^2 - 11x - 9 = 0$$

$$B. x^3 - 6x^2 - 11x + 9 = 0$$

C.
$$x^3 + 6x - 11x - 9 = 0$$

D.
$$x^3 + 6x^2 + 11x + 9 = 0$$

Answer: A

Watch Video Solution

32. The equation whose roots are cubes of the roots

$$x^3 + 2x^2 + 3 = 0$$
 is

A.
$$x^3 + 6x^2 - 36x + 27 = 0$$

$$B. x^3 - 5x^3 - 11x + 3 = 0$$

$$\mathsf{C.}\,x^3 - 23x^2 + 13x - 36 = 0$$

$$\mathrm{D.}\,x^3 + 17x^2 + 27x + 27 = 0$$

Answer: D

Watch Video Solution

33. If $f(x) = x^3 + x^2 + x + 1$ then the coefficient of x in f(x+5) is

- A. 86
- B. 76
- C. 64
- D. 97

Answer: A

....

34. The equation whose roots are opposite in sign and equal to magnitude of the roots of $x^4-5x^3+11x+3=0$ is

A.
$$x^4 + 5x^3 - 11x - 3 = 0$$

$$\mathrm{B.}\,x^4 + 5x^3 - 11x + 3 = 0$$

$$\mathsf{C.}\,x^4 + 5x^3 - 11x + 6 = 0$$

D.
$$x^4 + 5x^3 - 9x + 3 = 0$$

Answer: B

View Text Solution

35. To remove the 2^{nd} term of the equation

 $x^4-8x^3+x^2-x+3=0$, diminish the roots by

A. 8

B.-8

 $\mathsf{C.}-2$

D. 2

Answer: D

36. The transformed equation of

 $x^3-6x^2+5x+8=0$ by eliinatin second term is

A.
$$x^3 + 7x + 2 = 0$$

B.
$$x^3 - 7x + 2 = 0$$

C.
$$x^3 + 5x + 2 = 0$$

D.
$$x^3 - 5x + 2 = 0$$

Answer: B

37. If the roots of $ax^3+bx^2+cx+d=0$ are in G.P then the roots of $dx^3-cx^2+bx-a=0$ are in

A. A.P

B. G.P

C. H.P

D. A.G.P

Answer: B

View Text Solution

38. If 2,5,7,-4 are the roots of $ax^4+bx^3+cx^2+dx+e=0$ then the roots of $ax^4-bx^3+cx^2-dx+e=0$ are

A.
$$2, 5, 7, -4$$

B.
$$-2, -5, -7, 4$$

D. 2,
$$-5, 7, -4$$

Answer: B

39. If the roots of $ax^3+bx^2+cx+d=0$ are in G.P then the roots of $ak^3x^3+bk^2x^2+ckx+d=0$ are in

- A. A.P
- B. G.P
- C. H.P
- D. A.G.P

Answer: B

40. If the roots of $ax^3+bx^2+cx+d=0$ are in A.P

then the roots of

$$a(x+k)^3+b(x+k)^2+c(x+k)+d=0$$
 are in

A. G.P

B. A.P

C. H.P

D. A.G.P

Answer: B

41. solve
$$x^5 - 5x^4 + 9x^3 - 9x^2 + 5x - 1 = 0$$

- A. $\mathbf{1}^{st}$ type and x=1 is a solution
- B. 1^{st} type and x=-1 is a solution
- C. 2^{nd} type and x=1 is a solution
- D. 2^{nd} type and x=-1 is a solution

Answer: C

Watch Video Solution

42. The equation

 $x^6-2x^5+3x^4-3x^2+2x-1=0$ is R.E . Of the

A. 1^{st} type and x=1 is a solution

B. 1^{st} type and x=-1 is a solution

C. 2^{nd} type and $x^2=1$ is a solution

D. 1^{st} type and $x^2=-1$ is a solution

Answer: C

43. The equation

 $6x^5 + 7x^4 + 12x^3 + 12x^2 + 7x + 6 = 0$ is a

reciprocal equation of

A. class one and odd order

B. class two and odd order

C. class one and even order

D. Class two and even order

Answer: A

Watch Video Solution

44. Assertion (A) : The equation whose roots are the squeares of the roots of $x^4+x^3+2x^2+x+1=0$ is $x^4+3x^3+4x^2+3x+1=0$

Reason (R) : the equation whose roots are the squares of the roots of f (x) =0 is obtained by eliminating squares root from $f(\sqrt{x})=0$

A. both A and R are true R is the correct explanation of A

B. both A and R are true and R is not correct explanation of A

C. A is true and R is false

D. A is false and R is true

Answer: A

Watch Video Solution

45. Assertion (A) : the equation whose roots are exceed by 2 then those of $2x^3+3x^2-4x+5=0$ is

 $2x^3 - 9x^2 + 8x + 9 = 0$

Reason (R): the equation whose roots are exceed by

h than those of f(x) = 0 is f(x - h) = 0

A. both A and R are true R is the correct explanation of A

B. both A and R are true and R is not correct explanation of A

C. A is true and R is false

D. A is false and R is true

Answer: A

46. Assertion (A) : the equation whose roos are multipled of by 2 of those of $x^5-2x^4+3x^3-2x^2+4x+3=0$ is

$$x^5 - 4x^4 + 12x^3 - 16x^2 + 64x + 96 = 0$$

Reason (R) : the equation whose roots are muliplied by k of those of f(x)=0 is $f\Big(\frac{x}{k}\Big)=0$

A. both A and R are true R is the correct explanation of A

B. both A and R are true and R is not correct explanation of A

C. A is true and R is false

D. A is false and R is true

Answer: A

