©゙doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MTG PHYSICS (ENGLISH)

COMMUNITCATION SYSTEMS

Exercise

1. Who invented world wide web?
A. J.C.R. Licklider
B. Tim Berners-Lee
C. Alexander Graham Bell
D. Samuel F,B. Morse

Answer: B

2. Essential elements of a communication system are
A. transmitter and receiver
B. reciever and communication channel
C. transmitter and communication channel
D. transmitter, comunication channel and receiver

Answer: D

- Watch Video Solution

3. Which of the following is an example of point to point communication mode?
A. Radio
B. Television
C. Telephony
D. All of these

Answer: C

- Watch Video Solution

4. Which among following is not a basic terminology used in electronic communication systems?
A. Transducer
B. Transmitter
C. Telegraph
D. Attenuation

Answer: C

5. Which of the following is not transducer?
A. Loudspeaker
B. Amplifier
C. Microphone
D. All of these

Answer: B

- Watch Video Solution

6. The loss of strength of a signal while propagating through a medium is known as
A. reception
B. absorption
C. trasnmission
D. attenuation

D Watch Video Solution

7. The process of increasing the strength of a signal using an electronic circuit is called.
A. amplification
B. modulation
C. demodulation
D. transmission

Answer: A

D Watch Video Solution

8. Modem is a device which performs
A. modulation
B. demodulation
C. rectification
D. modulation and demodulation

Answer: D

- Watch Video Solution

9. Modulation is the process of superposing
A. low frequency audio signal on high frequency radio waves.
B. low frequency radio signals on low frequency audio wave.
C. high frequency radio signal on low frequency audo signal.
D. high frequency audio signal on low frequency radio waves.

Answer: A

10. The device which is a combination of a receiver and a transmitter is
A. Amplifier
B. Repeater
C. Transducer
D. Modulator

Answer: B

- Watch Video Solution

11. Large bandwidth for higher data rate is achieved by using
A. high frequency carrier wave
B. high frequency audio wave
C. low frequency carrier wave
D. low frequency audio wave

Answer: A

- Watch Video Solution

12. In a video signal for transmission of picture. What value of bandwidth is used in communication system?
A. 2.4 MHz
B. 4.2 MHz
C. 24 MHz
D. 42 MHz

Answer: B
13. Which one of the following statement is correct?
A. a. A single geostationary satellite can cover the whole part of the earth for microwave communication.
B. b. Atleast three geotationary satellities in the same orbit around earth can cover the whole part of the earth for microwave communication.
C. c. The first Indian communication satellite is Telstar.
D. d.The satellite communication is not like the line of sight microwave communication.

Answer: B

- Watch Video Solution

14. Which of the following is an example of broadcast mode of communication?
A. Radio
B. Television
C. Mobile
D. Both a and b

Answer: D

- Watch Video Solution

15. Which of the following device is full duplex?
A. Mobile phone
B. Walky-talky
C. Loud speaker
D. Radio

Answer: A

16. FM boradcast is preferred over AM broadcast because
A. it is less noisy.
B. reproduction is of much better quality.
C. it is more noisy.
D. both a and b

Answer: D

- Watch Video Solution

17. The frequency band used in the downlink of s atellite communication is
A. 9.5 to 2.5 GHz
B. 896 to 0901 MHz
C. 3.7 to 4.2 GHz
D. 840 to 935 MHz

Answer: C

- Watch Video Solution

18. The radio waves of frequency 300 MHz to 3000 MHz belong to
A. high frequency band
B. very high frequency band
C. ultra high frequency band
D. super high frequency band

Answer: B

- Watch Video Solution

19. For base station to mobile communication, the required frequency band is
A. $540-1600 \mathrm{KHz}$
B. $200-325 \mathrm{MHz}$
C. $5.9-6.42 \mathrm{GHz}$
D. $840-935 \mathrm{MHz}$

Answer: D

- Watch Video Solution

20. Match the column I with column II.

Column I (Service)		Column II (Frequency bands)	
(A)	Television	(p)	$896-935 \mathrm{MHz}$
(B)	Cellular Mobile Radio	(q)	$540-1600 \mathrm{kHz}$
(C)	Standard AM broadcast	(r)	$54-890 \mathrm{MHz}$
(D)	FM broadcast	(s)	$88-108 \mathrm{MHz}$

A. A-(q),B-(r), C-(s),D-(p)
B. $A-(q), B-(s), C-(q), D-(r)$
C. A-(r),B-(p),C-(q),D-(s)
D. $A-(r), B-(s), C-(p), D-(q)$

Answer: C

- Watch Video Solution

21. In optical communication system operating at 1200 nm , only 2% of the source frequency is available for TV t ransmission having a bandwidth of 5 MHz . the number of TV channels that can be transmitted is
A. 2 million
B. 10 million
C. 0.1 million
D. 1 million

Answer: D

- Watch Video Solution

22. A microwave telephone link operating at the central frequency of 10 GHz has been established if 2% of this is available for microwave communication channel. Then how many telephone channels can be simultaneously granted if each telephone is allotted a bandwidth of 8 KHz ?
A. 1.5×10^{3}
B. 3.5×10^{2}
C. 2.5×10^{4}
D. 4.5×10^{6}

Answer: C

23. A band width of 5 MHz is available for AM transmission. If the maximum audio signal frequency used for modulating the carrier is not to exceed 5 kHz , how many stations can be broad cast within this band simultaneously without interfering with eachother?
A. 200
B. 300
C. 400
D. 500

Answer: D

- Watch Video Solution

24. A communication between a fixed base station and several mobile units, located on ships or aircraft utilising two way radio communication in the VHF and UHF is of frequency band

A. 3 to 30 MHz

B. 30 to 300 MHz
C. 30 to 470 MHz
D. 30 to 600 MHz

Answer: C

- Watch Video Solution

25. Ground wave have wavelength
A. a) less than that of sky waves
B. b) greater than that of sky waves
C. c) less than that of space waves
D. d) equal to that of space waves

Answer: B

26. The mode of propagation used by short wave broadcast services is
A. space waveq
B. sky wave
C. ground wave
D. both and and c

Answer: B

- Watch Video Solution

27. The skip zone in radio wave trasmission is that range where
A. there is no reception of either ground wave or sky wave
B. the reception of ground wave is maximum b ut that of sky wave is minimum
C. the reception of ground wave is minimum, but that of sky wave is maximum
D. the reception of both ground and sky wave is maximum.

Answer: A

- Watch Video Solution

28. Which one of the following statements is wrong?
A. Ground wave propagation can be sustained at frequencies 500 KHz to 1500 KHz .
B. Satellite communication is useful for the frequencies above 30 MHz .
C. Sky wave propagation is useful in the range of 30 to 40 MHz .
D. Space wave propagation takes place through tropospheric space.

Answer: C

29. The waves that are bent down by the ionosphere are
A. grund waves
B. surface waves
C. space waves
D. sky waves

Answer: D

D Watch Video Solution

30. The maximum line-of -sight distance d_{M} between two antennas having heights h_{T} and H_{R} above the earth is
A. $\sqrt{R\left(h_{T}+h_{R}\right)}$
B. $\sqrt{2 R /\left(h_{T}+h_{R}\right)}$
C. $\sqrt{R h_{T}}+\sqrt{2 R h_{R}}$
D. $\sqrt{2 R h_{T}}+\sqrt{2 R h_{R}}$

Answer: D

- Watch Video Solution

31. Frequencies in the UHF range normally propagate by means of
A. ground waves
B. sky wave
C. surface waves
D. space waves

Answer: D

- Watch Video Solution

32. If the whole earth is to be connected by LOS communication using space waves (no restriction of antenna size or tower height), what is the minimum no of antennaas required ? Calculate the tower height of these antennas in terms of earth's radius?
A. 2
B. 3
C. 4
D. 6

Answer: D

- Watch Video Solution

33. A ground receiver in line-of-sight communication cannot receive direct
waves due to
A. its low frequency
B. curvature of earth
C. its high intensity
D. smaller antenna

Answer: B

- Watch Video Solution

34. Which of the following modes is used for line of sight
A. Ground wave
B. Sky wave propagation is useful in the range of 30 to 40 MHz .
C. Space wave
D. All of these

Answer: C

35. Through which mode of propagation, the radio waves can be sent from one place to another
A. Ground wave propagation can be sustained at frequencies 500 KHz to 1500 KHz .
B. Sky wave propagation is useful in the range of 30 to 40 MHz .
C. space wave propagation
D. all of them

Answer: D

- Watch Video Solution

36. Which of the following frequencies will be suitable for beyond the horizon communication using sky waves?
A. 10 KHz
B. 10 MHz
C. 1 GHz
D. 1000 GHz

Answer: B

- Watch Video Solution

37. A TV transmitting antenna is 125 m tall. How much service area this transmitting antenna cover, if the receiving antenna is at the ground level? Radius of earth $=6400 \mathrm{~km}$.
A. $3258 \mathrm{~km}^{2}$
B. $4180 \mathrm{~km}^{2}$
C. $2510 \mathrm{~km}^{2}$
D. $1525 \mathrm{~km}^{2}$

Answer: A

38. A transmitting antenna at the top of the tower has a height 18 m and the height of the receiving antenna is 32 m . The maximum distance between them for satisfactory communciation in line of sight mode is (Radius of earth $=6.4 \times 10^{6} \mathrm{~m}$)
A. 15.15 km
B. 21.25 km
C. 30.45 km
D. 35.42 km .

Answer: D

- Watch Video Solution

39. A transmitting antenna of height 20 m and the receiving antenna of height h are separated by a distance of 40 km for satisfactory communication in line of sight mode. Then the value of h is
A. 40 m
B. 45 m
C. 30 m
D. 25 m

Answer: B

- Watch Video Solution

40. A TV transmission tower antenna is at a height of 20 m . The percentage increase in area covered in case if the receiving antenna is at ground level to that at a height of 25 m is (Radius of earth $\left.=6.4 \times 10^{6} \mathrm{~m}\right)$
A. 2.48
B. 348.9%
C. 150%
D. 360.2%

Answer: B

- Watch Video Solution

41. By what percentage will the transmission range of a T.V. tower be affected when the height of the tower is increased by 21% ?
A. 0.1
B. 0.2
C. 0.3
D. 0.4

Answer: A

- Watch Video Solution

42. A TV transmission tower has a height of 240 m . Signals broadcast from this tower will be received by LOS communication at a distance of
(assume the radius of earth to be $6.4 \times 10^{6} \mathrm{~m}$)
A. 100 km
B. 110 km
C. 55 km
D. 120 km

Answer: C

- Watch Video Solution

43. A fax message is to be sent from Delhi to washington via a geostationary satellite. Calculate the minimum time delay between the dispatch and its getting received. Take height of the geostationary satellite $=36000$ km.
A. $72 \times 10^{3} \mathrm{~km}$
B. $12 \times 10^{3} \mathrm{~km}$
C. $27 \times 10^{3} \mathrm{~km}$
D. $18 \times 10^{3} \mathrm{~km}$

Answer: A

- Watch Video Solution

44. A 50 MHz sky wave sky wave takes 4.04 ms to reach a receiver via retransmission from a satellite 600 km above earth's surface. Assuming retransmission time by satellite negligible, find the distance between source and receiver. If communication between the two was to be done by Line of sight (LOS) method, what should be the size of transmitting antenna?
A. 606 km
B. 170 km
C. 340 km
D. 280 km

D Watch Video Solution

45. What should be the length of the dipole antenna for a carrier wave of frequency $3 \times 10^{8} \mathrm{~Hz}$?
A. 1 m
B. 0.5 m
C. 2 m
D. 2.5 m

Answer: B

- Watch Video Solution

46. A radio can tune to any station in 7.5 MHz to 12 MHz band. The corresponding wavelength band is
A. $25 m-40 m$
B. $10 \mathrm{~m}-30 \mathrm{~m}$
C. $20-40 \mathrm{~m}$
D. $25 m-35 m$

Answer: A

- Watch Video Solution

47. On a particular day, the maximum frequency reflected from the ionosphere is 10 MHz . On another day, it was found to increase to 11 MHz .

Calculate the ratio of the maximum electron densities of the ionosphere on the two days. Point out a plausible explanation for this.
A. 1.21
B. 0.82
C. 0.50
D. 0.25

- Watch Video Solution

48. In frequency modulation
A. the amplitude of modulated wave varies as frequency of carrier
wave
B. the frequency of modulated wave varies as amplitude of modulating wave
C. the amplitude of modulated wave varies as amplitude of carrier wave
D. the frequency of modulated wave varies as frequency of modulating wave

Answer: D

49. Audio signal cannot be transmitted because
A. the signal has more noise.
B. the signal cannot be amplified for distance communication.
C. the transmitting antenna length is very small to design.
D. the transmitting antenna length is very large and impracticable.

Answer: D

- Watch Video Solution

50. The modulation in which pulse. Duration varies in accordance with the modulating signal is called
A. PAM
B. PPM
C. PWM

D. PCM

Answer: C

- Watch Video Solution

51. Which of the following is digital modulation technique?
A. PCM
B. PAM
C. PPM
D. PTM

Answer: A

- Watch Video Solution

52. If both the length of an antenna and the wavelength of the signal to be transmitted are doubled, the power radiated by the antenna
A. is doubled
B. is halved
C. remains constant
D. is quadrupled

Answer: C

- Watch Video Solution

53. A 300 W carrier is modulated to a depth 75%. The total power in the modulated wave is
A. 200 W
B. 284 W
C. 320 W
D. 384 W

Answer: D

- Watch Video Solution

54. An audio signal of 15 kHz frequency cannot be transmitted over long distance without modulation because.
A. the size of the required antenna would be least 5 km which is not conveient.
B. the audio signal can not be trasmitted through sky waves.
C. effective power transmitted would be very low. If the size of the antenna is less than 5 km .
D. all of these

Answer: D

55. A signal wave of frequency 12 kHz is modulated with a carrier wave of frequency 2-51 MHz. The upper and lower side band frequencies are respectively.
A. 2512 KHz and 2508 KHz
B. 2522 KHz and 2488 KHz
C. 2502 KHz and 2498 KHz
D. 2522 KHz and 2498 KHz

Answer: D

- Watch Video Solution

56. A message signal of frequency 10 kHz and peak voltage 10 volt is used to modulate a carrier of frequency 1 MHz and peak voltage 20 volt. Determine (a) modulation index (b) the side bands produced.
A. $1000 \mathrm{KHz}, 990 \mathrm{KHz}$
B. $1010 \mathrm{KHz}, 990 \mathrm{KHz}$
C. $990 \mathrm{KHz}, 1000 \mathrm{KHz}$
D. $1010 \mathrm{KHz}, 1000 \mathrm{KHz}$

Answer: B

- Watch Video Solution

57. The maximum amplitude of an $A M$ wave is found to be 15 V while its minimum amplitude is found to be 3 V.What is the modulation index?
A. $\frac{3}{2}$
B. $\frac{2}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer: B

58. A modulating signal is a square wave as shown in figure.

The carrier wave is given by
$c(t)=2 \sin (8 \pi t)$ volt.
The modulation index is
A. 0.2
B. 0.3
C. 0.4
D. 0.5

Answer: D
59. A sinusoidal voltage amplitude modulates another sinusoidal voltage of amplitude 2 kV resulting in two side bands of amplitude 200 V . Find the modulation index.
A. 0.2
B. 0.3
C. 0.4
D. 0.5

Answer: A

- Watch Video Solution

60. In an amplitude modulation with modulation index 0.5 the ratio of the carrier wave to that of side band in the modulated wave is
A. $4: 1$
B. 1: 4
C. 1: 3
D. 2:1

Answer: A

- View Text Solution

61. A carrier wave of peak voltage 12 V is used to transmit a message signal. The peak voltage of the modulating signal in order to have a modulation index of 75% is
A. 6 V
B. 7 V
C. 8 V
D. 9 V

Answer: D

62. An amplitude modulated wave is as shown in figure. Calculate (i) the percentage modulation, (ii) peak carrier voltage and, (iii) peak value of information voltage.

A. $30 \mathrm{~V}, 20 \mathrm{~V}$
B. $10 \mathrm{~V}, 15 \mathrm{~V}$
C. $15 \mathrm{~V}, 30 \mathrm{~V}$
D. 20V,35V

Answer: A

63. Compute $L C$ product of a tuned amplifer circuit required to generate a carrier wave of $1 M H z$ for amplitude modulation
A. $1.5 \times 10^{-14} s$
B. $1.2 \times 10^{-12} s$
C. $3.2 \times 10^{-12} s$
D. $2.5 \times 10^{-14} s$

Answer: D

- Watch Video Solution

64. The frequency response curve (figure) for the filter circuit used for production of AM wave should be

(i)

(ii)

(iii)

(iv)
A. i followed by ii
B. ii followd by i
C. iii
D. all of these

Answer: D

- Watch Video Solution

65. In which of the following remote sensing technique is not used?
A. Medical treatment
B. Pollution
C. Wetland mapping
D. Ground water survey

Answer: A

66. Identify the incorrect statement from the following
A. AM detection is carried out using a rectifier and an envelope detector.
B. Pulse position denotes the time of rise or fall of the pulse amplitude.
C. Modulation index μ is kept ≥ 1, to avoid distoriton.
D. Facsimile (FAX) scans the contents of the document to create electronic signals.

Answer: C

- Watch Video Solution

67. The essential condition for demodulation is
A. $v_{c} \ll R C$
B. $\frac{1}{v_{c}} \ll R C$
C. $\frac{1}{v_{c}} \gg R C$
D. $v_{c} \gg R C$

Answer: B

- Watch Video Solution

68. In a diode AM detector with the output circuit consists of $\mathrm{R}=1 M \Omega$ and $C=1 p F$ would be more suitable for detecting a carrier signal of
A. 1 MHz
B. 0.1 MHz
C. 0.5 MHz
D. 10 MHz
69. Figure (EP) shows a communication system. What is the output power when input signals is of 1.01 mW ? [gain in $d B=10 \log _{10}\left(P_{0} / P_{t}\right)$].

A. 90 mW
B. 101 mW
C. 1112 mW
D. 120 mW

Answer: B

70. (i) The intensity of a light pulse travelling along a communication channel decreases exponentially with distance x according to the relation $I=I_{0} e^{-\alpha x}$, where I_{0} is the intensity at $x=0$ and α is the attenuation constant.

Show that the intensity reduces by 75 percent after a distance of $\frac{\ln 4}{\alpha}$
(ii) Attenuation of a signal can be expressed in decibel (dB) according to the relation
$\mathrm{dB}=10 \log _{10}\left(I / I_{0}\right)$. What is the attenuation in $d B / k m$ for an optical fibre in which the intensity falls by 50 percent over a distance of 50 km ?
A. 0.7
B. 0.75
C. 0.8
D. 0.85

Answer: B

- Watch Video Solution

71. Who invented world wide web?
A. J.C.R. Licklider
B. Tim Berners-Lee
C. Alexander Graham Bell
D. Samuel F,B. Morse

Answer: B

- Watch Video Solution

72. Essential elements of a communication system are
A. transmitter and receiver
B. reciever and communication channel
C. transmitter and communication channel
D. transmitter, comunication channel and receiver

Answer: D

D Watch Video Solution

73. Which of the following is an example of point to point communication mode?
A. Radio
B. Television
C. Telephony
D. All of these

Answer: C

- Watch Video Solution

74. Which among following is not a basic terminology used in electronic communication systems?
A. Transducer
B. Transmitter
C. Telegraph
D. Attenuation

Answer: C

D Watch Video Solution

75. Which of the following is not transducer?
A. Loudspeaker
B. Amplifier
C. Microphone
D. All of these

Answer: B

76. The loss of strength of a signal while propagating through a medium is known as
A. reception
B. absorption
C. trasnmission
D. attenuation

Answer: D

- Watch Video Solution

77. The process of increasing the strength of a signal using an electronic circuit is called.
A. amplification
B. modulation
C. demodulation
D. transmission

Answer: A

- Watch Video Solution

78. Modem is a device which performs
A. modulation
B. demodulation
C. rectification
D. modulation and demodulation

Answer: D

- Watch Video Solution

79. Modulation is the process of superposing
A. low frequency audio signal on high frequency radio waves.
B. low frequency radio signals on low frequency audio wave.
C. high frequency radio signal on low frequency audo signal.
D. high frequency audio signal on low frequency radio waves.

Answer: A

- Watch Video Solution

80. The device which is a combination of a receiver and a transmitter is
A. Amplifier
B. Repeater
C. Transducer
D. Modulator

Answer: B

- Watch Video Solution

81. Large bandwidth for higher data rate is achieved by using
A. high frequency carrier wave
B. high frequency audio wave
C. low frequency carrier wave
D. low frequency audio wave

Answer: A

- Watch Video Solution

82. In a video signal for transmission of picture. What value of bandwidth is used in communication system?
A. 2.4 MHz
B. 4.2 MHz
C. 24 MHz
D. 42 MHz

Answer: B

- Watch Video Solution

83. Which one of the following statement is correct?
A. A single geostationary satellite can cover the whole part of the earth for microwave communication.
B. Atleast three geotationary satellities in the same orbit around earth can cover the whole part of the earth for microwave communication.
C. The first Indian communication satellite is Telstar.
D. The satellite communication is not like the line of sight microwave communication.

Answer: B

D Watch Video Solution

84. Which of the following is an example of broadcast mode of communication?
A. Radio
B. Television
C. Mobile
D. Both a and b

Answer: D

85. Which of the following device is full duplex?
A. Mobile phone
B. Walky-talky
C. Loud speaker
D. Radio

Answer: A

Watch Video Solution

86. FM boradcast is preferred over AM broadcast because
A. it is less noisy.
B. reproduction is of much better quality.
C. it is more noisy.
D. both a and b

Answer: D

- Watch Video Solution

87. The frequency band used in the downlink of s atellite communication is
A. 9.5 to 2.5 GHz
B. 896 to 0901 MHz
C. 3.7 to 4.2 GHz
D. 840 to 935 MHz

Answer: C

D Watch Video Solution

88. The ratio waves of frequency 300 MHz to 3000 MHz belong to
A. high frequency band
B. very high frequency band
C. ultra high frequency band
D. super high frequency band

Answer: B

- Watch Video Solution

89. For base station to mobile communication, the required frequency band is
A. $540-1600 \mathrm{KHz}$
B. $200-325 \mathrm{MHz}$
C. $5.9-6.42 \mathrm{GHz}$
D. $840-935 \mathrm{MHz}$

Answer: D

90. Match the column I with column II.

Column I (Service)		Column II (Frequency bands)	
(A)	Television	(p)	$896-935 \mathrm{MHz}$
(B)	Cellular Mobile Radio	(q)	$540-1600 \mathrm{kHz}$
(C)	Standard AM broadcast	(r)	$54-890 \mathrm{MHz}$
(D)	FM broadcast	(s)	$88-108 \mathrm{MHz}$

A. A-(q),B-(r), C-(s),D-(p)
B. $A-(q), B-(s), C-(q), D-(r)$
C. $A-(r), B-(p), C-(q), D-(s)$
D. $A-(r), B-(s), C-(p), D-(q)$

Answer: C

- Watch Video Solution

91. In a communication system, operating at 1200 mm , only 2% of the source frequency is available for T.V. transmission, having a bandwidth of 5 MHz . The number of T.V. channels that can be transmitted is
A. 2 million
B. 10 million
C. 0.1 million
D. 1 million

Answer: D

- Watch Video Solution

92. A microwave telephone link operating at the central frequency of 10 GHz has been established if 2% of this is available for microwave communication channel. Then how many telephone channels can be simultaneously granted if each telephone is allotted a bandwidth of 8 KHz ?
A. 1.5×10^{3}
B. 3.5×10^{2}
C. 2.5×10^{4}
D. 4.5×10^{6}

Answer: C

- Watch Video Solution

93. A band width of 5 MHz is available for $A M$ transmission. If the maximum audio signal frequency used for modulating the carrier is not to exceed 5 kHz , how many stations can be broad cast within this band simultaneously without interfering with eachother?
A. 200
B. 300
C. 400
D. 500

Answer: D

- Watch Video Solution

94. A communication between a fixed base station and several mobile units, located on ships or aircraft utilising two way radio communication in the VHF and UHF is of frequency band
A. 3 to 30 MHz
B. 30 to 300 MHz
C. 30 to 470 MHz
D. 30 to 600 MHz

Answer: C

- Watch Video Solution

A. less than that of sky waves
B. greater than that of sky waves
C. less than that of space waves
D. equal to that of space waves

Answer: B

- Watch Video Solution

96. The mode of propagation used by short wave broadcast services is
A. space wave
B. sky wave
C. ground wave
D. both a and c

Answer: B

97. The skip zone in radio wave trasmission is that range where
A. there is no reception of either ground wave or sky wave
B. the reception of ground wave is maximum b ut that of sky wave is minimum
C. the reception of ground wave is minimum, but that of sky wave is maximum
D. the reception of both ground and sky wave is maximum.

Answer: A

- Watch Video Solution

98. Which one of the following statements is wrong?
A. Ground wave propagation can be sustained at frequencies 500 KHz to 1500 KHz .
B. Satellite communication is useful for the frequencies above 30 MHz .
C. Sky wave propagation is useful in the range of 30 to 40 MHz .
D. Space wave propagation takes place through tropospheric space.

Answer: C

- Watch Video Solution

99. The waves that are bent down by the ionosphere are
A. ground waves
B. surface waves
C. space waves
D. sky waves

Answer: D

- Watch Video Solution

100. The maximum line-of -sight distance d_{M} between two antennas having heights h_{T} and H_{R} above the earth is
A. $\sqrt{R\left(h_{T}+h_{R}\right)}$
B. $\sqrt{2 R /\left(h_{T}+h_{R}\right)}$
C. $\sqrt{R h_{T}}+\sqrt{2 R h_{R}}$
D. $\sqrt{2 R h_{T}}+\sqrt{2 R h_{R}}$

Answer: D

- Watch Video Solution

101. Frequencies in the $U H F$ range normally propagate by means of:
A. ground waves
B. sky wave
C. surface waves
D. space waves

Answer: D

- Watch Video Solution

102. If the whole earth is to be connected by line of sight communication using space waves (no restriction of antenna size or tower height). What is the minimum number of antennas required?
A. 2
B. 3
C. 4
D. 6

Answer: D

103. A ground receiver in line-of-sight communication cannot receive direct waves due to
A. its low frequency
B. curvature of earth
C. its high intensity
D. smaller antenna

Answer: B

- Watch Video Solution

104. Which of the following modes is used for line of sight
A. Ground wave
B. Sky wave propagation is useful in the range of 30 to 40 MHz .
C. Space wave
D. All of these

Answer: C

- Watch Video Solution

105. Through which mode of propagation, the radio waves can be sent from one place to another
A. Ground wave propagation can be sustained at frequencies 500 KHz to 1500 KHz .
B. Sky wave propagation is useful in the range of 30 to 40 MHz .
C. space wave propagation
D. all of them

Answer: D

106. Which of the following frequencies will be suitable for beyond the horizon communication using sky waves?
A. 10 KHz
B. 10 MHz
C. 1 GHz
D. 1000 GHz

Answer: B

- Watch Video Solution

107. A TV transmitting antenna is 81 m tall. How much service area it can cover if the receiving antenna is at the ground level? (Radius of earth= $\left.6.4 \times 10^{6} \mathrm{~m}\right)$
A. $3258 \mathrm{~km}^{2}$
B. $4180 \mathrm{~km}^{2}$
C. $2510 \mathrm{~km}^{2}$
D. $1525 \mathrm{~km}^{2}$

Answer: A

- Watch Video Solution

108. A transmitting antenna at the top of the tower has a height 18 m and the height of the receiving antenna is 32 m . The maximum distance between them for satisfactory communciation in line of sight mode is (Radius of earth $=6.4 \times 10^{6} \mathrm{~m}$)
A. 15.15 km
B. 21.25 km
C. 30.45 km
D. 35.42 km .

Answer: D

109. A transmitting antenna of height 20 m and the receiving antenna of height h are separated by a distance of 40 km for satisfactory communication in line of sight mode. Then the value of h is
A. 40 m
B. 45 m
C. 30 m
D. 25 m

Answer: B

(Watch Video Solution

110. A TV transmission tower of antenna is at a height of 20 m . How much service area can it cover if the receiving antenna is (i) at ground level (ii)
at a height of 25 m ? Calculate the percentage increase in area covered in case (ii) relative to case (i).
A. 2.48
B. 348.9%
C. 150%
D. 360.2%

Answer: B

- Watch Video Solution

111. By what percentage will the transmission range of a T.V. tower be affected when the height of the tower is increased by 21% ?
A. 0.1
B. 0.2
C. 0.3

D. 0.4

Answer: A

- Watch Video Solution

112. A TV transmission tower has a height of 240 m . Signals broadcast from this tower will be received by LOS communication at a distance of (assume the radius of earth to be $6.4 \times 10^{6} \mathrm{~m}$)
A. 100 km
B. 110 km
C. 55 km
D. 120 km

Answer: C

- Watch Video Solution

113. A fax message is to be sent from Delhi to Washington via a geostationary satellite. The minimum distance between the dispatch and its getting received is (Take height of the geostationary satellite=36000km)
A. $72 \times 10^{3} \mathrm{~km}$
B. $12 \times 10^{3} \mathrm{~km}$
C. $27 \times 10^{3} \mathrm{~km}$
D. $18 \times 10^{3} \mathrm{~km}$

Answer: A

D Watch Video Solution

114. A 50 MHz sky wave takes 4.04 ms to reach a receiver via retransmission from a satellite 600km above earht's surface. Assuming retransmission time by satellite negligible, find the distance between source and reciever.
A. 606 km
B. 170 km
C. 340 km
D. 280 km

Answer: B

- Watch Video Solution

115. What should be the length of the dipole antenna for a carrier wave of frequency $3 \times 10^{8} \mathrm{~Hz}$?
A. 1 m
B. 0.5 m
C. 2 m
D. 2.5 m

Answer: B

116. A radio can tune to any station to 7.3 MHz to 12 MHz band. The corresponding wavelength band is
A. $25 m-40 m$
B. $10 \mathrm{~m}-30 \mathrm{~m}$
C. $20-40 \mathrm{~m}$
D. $25 \mathrm{~m}-35 \mathrm{~m}$

Answer: A

- Watch Video Solution

117. On a particular day, the maximum frequency reflected from the ionosphere is 10 MHz . On another day, it was found to increase to 11 MHz .

Calculate the ratio of the maximum electron densities of the ionosphere on the two days. Point out a plausible explanation for this.
A. 1.21
B. 0.82
C. 0.50
D. 0.25

Answer: A

- Watch Video Solution

118. In frequency modulation
A. the amplitude of modulated wave varies as frequency of carrier wave
B. the frequency of modulated wave varies as amplitude of modulating wave
C. the amplitude of modulated wave varies as amplitude of carrier
D. the frequency of modulated wave varies as frequency of modulating wave

Answer: D

- Watch Video Solution

119. Audio signal cannot be transmitted because
A. the signal has more noise.
B. the signal cannot be amplified for distance communication.
C. the transmitting antenna length is very small to design.
D. the transmitting antenna length is very large and impracticable.

Answer: D

120. The modulation in which pulse. Duration varies in accordance with the modulating signal is called
A. PAM
B. PPM
C. PWM
D. PCM

Answer: C

- Watch Video Solution

121. Of the following which is preferred modulation scheme for digital communication.
A. PCM
B. PAM
C. PPM
D. PTM

Answer: A

- Watch Video Solution

122. If both the length of an antenna and the wavelength of the signal to be transmitted are doubled, the power radiated by the antenna
A. is doubled
B. is halved
C. remains constant
D. is quadrupled

Answer: C

- Watch Video Solution

123. A 300 W carrier is modulated to a depth 75%. The total power in the modulated wave is
A. 200 W
B. 284 W
C. 320 W
D. 384 W

Answer: D

- Watch Video Solution

124. An audo signal of 15 KHz frequency cannot be trasmitted over long distances without modulation because
A. the size of the required antenna would be least 5 km which is not conveient.
B. the audio signal can not be trasmitted through sky waves.
C. effective power transmitted would be very low. If the size of the antenna is less than 5 km .
D. all of these

Answer: D

- Watch Video Solution

125. A signal wave of frequency 12 kHz is modulated with a carrier wave of frequency 2-51 MHz. The upper and lower side band frequencies are respectively.
A. 2512 KHz and 2508 KHz
B. 2522 KHz and 2488 KHz
C. 2502 KHz and 2498 KHz
D. 2522 KHz and 2498 KHz

Answer: D

126. A message signal of frequency 10 KHz and peak voltage of 10 V is u sed to modulate a carrier of frequency 1 MHz and peak voltage of 20 V . The frequency of the side bands produced is
A. $1000 \mathrm{KHz}, 990 \mathrm{KHz}$
B. $1010 \mathrm{KHz}, 990 \mathrm{KHz}$
C. $990 \mathrm{KHz}, 1000 \mathrm{KHz}$
D. $1010 \mathrm{KHz}, 1000 \mathrm{KHz}$

Answer: B

- Watch Video Solution

127. The maximum amplitude of an amplitude modulated wave is found to be 15 V while its minimum amplitude is found to b e 3 V . The modulation index is
A. $\frac{3}{2}$
B. $\frac{2}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

128. A modulating signal is a square wave as shown in figure.

The carrier wave is given by
$c(t)=2 \sin (8 \pi t)$ volt.
The modulation index is
A. 0.2
B. 0.3
C. 0.4
D. 0.5

Answer: D

- Watch Video Solution

129. A sinusoidal voltage amplitude modulates another sinusoidal voltage of amplitude 2 kV to result in two sidebands, each of amplitude 200 V the modulation index is
A. 0.2
B. 0.3
C. 0.4
D. 0.5
130. In an amplitude modulation with modulation index 0.5 the ratio of the carrier wave to that of side band in the modulated wave is
A. $4: 1$
B. 1: 4
C. $1: 3$
D. 2: 1

Answer: A

(Watch Video Solution

131. A carrier wave of peak voltage 12 V is used to transmit a message signal. The peak voltage of the modulating signal in order to have a modulation index of 75% is
A. 6 V
B. 7 V
C. 8 V
D. 9 V

Answer: D

D Watch Video Solution

132. An amplitude modulated wave is as shown in figure. Calculate (i) the percentage modulation, (ii) peak carrier voltage and, (iii) peak value of information voltage.

A. $30 \mathrm{~V}, 20 \mathrm{~V}$
B. $10 \mathrm{~V}, 15 \mathrm{~V}$
C. $15 \mathrm{~V}, 30 \mathrm{~V}$
D. $20 \mathrm{~V}, 35 \mathrm{~V}$

Answer: A

- Watch Video Solution

133. The LC product of a tuned amplifier circuit require to generate a carrier wave of 1 MHz for amplitude modulation is
A. $1.5 \times 10^{-14} s$
B. $1.2 \times 10^{-12} s$
C. $3.2 \times 10^{-12} s$
D. $2.5 \times 10^{-14} s$

- Watch Video Solution

134. The frequency response curve (as shown in figure below) for the filter circuit used for production of AM wave should be

(i)

(iii)

(ii)

A. i followed by ii
B. ii followd by i
C. iii
D. all of these
135. In which of the following remote sensing technique is not used?
A. Medical treatment
B. Pollution
C. Wetland mapping
D. Ground water survey

Answer: A

- Watch Video Solution

136. Identify the incorrect statement from the following
A. AM detection is carried out using a rectifier and an envelope detector.
B. Pulse position denotes the time of rise or fall of the pulse amplitude.
C. Modulation index μ is kept ≥ 1, to avoid distoriton.
D. Facsimile (FAX) scans the contents of the document to create electronic signals.

Answer: C

D Watch Video Solution

137. The essential condition for demodulation is
A. $v_{c} \ll R C$
B. $\frac{1}{v_{c}} \ll R C$
C. $\frac{1}{v_{c}} \gg R C$
D. $v_{c} \gg R C$

Answer: B

138. In a diode AM detector with the output circuit consists of $\mathrm{R}=1 M \Omega$ and $C=1 p F$ would be more suitable for detecting a carrier signal of
A. 1 MHz
B. 0.1 MHz
C. 0.5 MHz
D. 10 MHz

Answer: D

- Watch Video Solution

139. Figure shows a communication system. What is the output power when input is 1.01 mW ? (Gain in $d B=10 \log _{10} \frac{P_{o}}{P_{i}}$)

A. 90 mW
B. 101 mW
C. 1112 mW
D. 120 mW

Answer: B

- Watch Video Solution

140. The intensity of a light pulse travelling along a communication channel decreases exponetially with distance x according to the relation $I=I_{0} e^{-a x}$ where I_{0} is the intensity at $\mathrm{x}=0$ and α is the attenuation constant. The percentage decrease in intensity after a distance of $\left(\frac{\operatorname{In} 4}{\alpha}\right)$ is
A. 0.7
B. 0.75
C. 0.8
D. 0.85

Answer: B

- Watch Video Solution

Hots

1. An audio signal is modulated by a carrier wave of 20 MHz such that the bandwidth required for modulation is 3 kHz . Could this wave be demodulated by a diode detector which has the values of R and C as (i) $R=1 k \Omega, C=0.01 \mu F(i i) R=10 k \Omega, C=0.01 \mu F(i i i) R=10 k \Omega, C=1 \mu i$
A. $R=1 k \Omega, C=0.01 \mu E$
B. $R=10 k \Omega, C=0.01 \mu F$
C. $R=10 k \Omega, C=0.1 p F$
D. None of these

Answer: A

- Watch Video Solution

2. A multimode graded index fibre exhibits total pulse broadening of 0.1 us cover a distance of 1.5 km . What is the maximum possible band width on the link assuming no inter symbol interference?
A. 10 MHz
B. 7.5 M Hz
C. 5 MHz
D. 2.5 MHz

Answer: C

3. Refer figure. Core has refractive index $\mu_{1}=1.424$. The cladding refractive index $\mu_{2}=1.39$. In such a case. Will the light beam propagate?

A. Yes
B. No
C. Data given insufficient to decide
D. the beam propagation is not affected with refractive indices of fibre core and cladding.

Answer: A
4. Three waves A, B and C of frequencies 1500 KHz .6 MHz and 50 MHz respectively are to be transmitted from one place to another. Which of the following is the most appropriate mode of communciation?
A. A is transmitted via space wave while B and C are transmitted via sky wave
B. A is transmitted via ground wave, B via sky wave and C via space wave
C. B and C tranmitted via ground wave while A is trasnmitted via sky wave
D. B is transmitted via ground wave while A and C are transmitted via space wave

Answer: B

- Watch Video Solution

5. If the sum of the heights of transmitting and receiving antennas in line of sight of communication is fixed at h, show that the range is maximum when the two antennas have a height $h / 2$ each.
A. $h / 2$
B. 2 h
C. h
D. 4 h

Answer: A

- Watch Video Solution

6. Optical communication system having an operating wavelength λ metre can use only $\mathrm{x} \%$ of its source frequency as its channel band width. The system is to be used for transmitting T.V signals requiring a band width of F hertz. How many channels can this system transmit
simultaneously? Show graphically how this number of channels varies with operating wavelength of the system.
A. $\lambda F / C x$
B. $2_{C x} / 100 \lambda F$
C. $c x / 50 \lambda F$
D. $c x / 100 \lambda F$

Answer: D

(Watch Video Solution

7. Estimate the fastest bit rate capable of being carried by light of wavelength $1.3 \mu \mathrm{~m}$. How many phone calls could be carried at this bit rate ? Band width of optical fibre $=2 \mathrm{GHz}$.
A. 2.9×10^{7}
B. 1.5×10^{6}
C. 2.3×10^{5}
D. 1.7×10^{4}

Answer: C

- Watch Video Solution

8. The carrier freqeuncy of a station is 40 MHz . A resistor of $10 \mathrm{k} \Omega$ and capacitor of CpF are available in the detector circuit. The possible value of C will be
A. 12
B. 8.2
C. 5.6
D. All of these

Answer: D

- Watch Video Solution

9. A ground receiving station is receiving a signal at 6 MHz transmitted from a ground transmitter at a height of 500 m located at a distance of 100 km . If radius of earth is $6.4 \times 10^{6} \mathrm{~m}$, maxim um number density of electron in ionosphere is $10^{12} \mathrm{~m}^{-3}$. the signal is coming via:
A. ground wave
B. spac e wave
C. Sky wave propagation is useful in the range of 30 to 40 MHz .
D. satellite transponder

Answer: C

- Watch Video Solution

10. The output current of an 80% mondulating amplitude modulated generator is 1.8 A . To what value will the current rise if the generator is additionally modulated by another audiowave of modulation index 0.6 ?
B. 1.81 A
C. 1.91A
D. 2.01 A

Answer: C

- Watch Video Solution

11. An audio signal is modulated by a carrier wave of 20 MHz such that the bandwidth required for modulation is 3 KHz . Could this wave be demodulated by a diode detector which has the values of R and C as
A. $R=1 k \Omega, C=0.01 \mu E$
B. $R=10 k \Omega, C=0.01 \mu F$
C. $R=10 k \Omega, C=0.1 p F$
D. None of these

Answer: A

12. A multimode graded index fibre exhibits total pulse broadening of 0.1 us cover a distance of 1.5 km . What is the maximum possible band width on the link assuming no inter symbol interference?
A. 10 MHz
B. 7.5 M Hz
C. 5 MHz
D. 2.5 MHz

Answer: C

- Watch Video Solution

13. Refer figure. Core has refractive index $\mu_{1}=1.424$. The cladding refractive index $\mu_{2}=1.39$. In such a case. Will the light beam propagate?

A. Yes
B. No
C. Data given insufficient to decide
D. the beam propagation is not affected with refractive indices of fibre core and cladding.

Answer: A

- Watch Video Solution

14. Three waves A, B and C of frequencies 1500 KHz .6 MHz and 50 MHz respectively are to be transmitted from one place to another. Which of the following is the most appropriate mode of communciation?
A. A is transmitted via space wave while B and C are transmitted via sky wave
B. A is transmitted via ground wave, B via sky wave and C via space wave
C. B and C tranmitted via ground wave while A is trasnmitted via sky wave
D. B is transmitted via ground wave while A and C are transmitted via space wave

Answer: B

- Watch Video Solution

15. The sum of the heights of transmitting and receiving attennas in line of sight of communication is fixed at h, find the height of two antennas when r ange is maximum.
A. $h / 2$
B. 2 h
C. h
D. 4 h

Answer: A

- Watch Video Solution

16. An optical communication system. Having an operating wavelength λ (in metres), can use only $x \%$ of its source frequency as its channel bandwidth. The system is to be used for trasnmitting TV signals requiring a bandwidth of F hertz. How many channels can this system transmit simultanously?
A. $\lambda F / C x$
B. $2_{C x} / 100 \lambda F$
C. $c x / 50 \lambda F$
D. $c x / 100 \lambda F$

Answer: D

- Watch Video Solution

17. Estimate the fastest bit rate capable of being carried by light of wavelength $1.3 \mu \mathrm{~m}$. How many phone calls could be carried at this bit rate ? Band width of optical fibre $=2 \mathrm{GHz}$.
A. 2.9×10^{7}
B. 1.5×10^{6}
C. 2.3×10^{5}
D. 1.7×10^{4}

Answer: C

18. The carrier freqeuncy of a station is 40 MHz . A resistor of $10 \mathrm{k} \Omega$ and capacitor of 12 pF are available in the detector circuit. The possible value of C will be
A. 12
B. 8.2
C. 5.6
D. All of these

Answer: D

- Watch Video Solution

19. A ground receiving station is receiving a signal at 6 MHz transmitted from a ground transmitter at a height of 500 m located at a distance of 100 km . If radius of earth is $6.4 \times 10^{6} \mathrm{~m}$, maxim um number density of electron in ionosphere is $10^{12} \mathrm{~m}^{-3}$. the signal is coming via:
A. ground wave
B. spac e wave
C. Sky wave propagation is useful in the range of 30 to 40 MHz .
D. satellite transponder

Answer: C

- Watch Video Solution

20. The output current of an 80% mondulating amplitude modulated generator is 1.8 A . To what value will the current rise if the generator is additionally modulated by another audiowave of modulation index 0.6 ?
A. 1.71 A
B. 1.81 A
C. 1.91A
D. 2.01 A

Answer: C

- Watch Video Solution

Ncert

1. Three waves A, B and C of frequencies $1600 \mathrm{kHz}, 5 \mathrm{MHz}$ and 60 MHz , respectively are to be transmitted from one place to another. Which of the following is the appropriate mode of communication?
A. A is transmitted via space wave while B and C are transmitted via sky wave
B. A is transmitted via ground wave, B via sky wave and C via space wave
C. B and C tranmitted via ground wave while A is trasnmitted via sky
D. B is transmitted via ground wave while A and C are transmitted via space wave.

Answer: B

- Watch Video Solution

2. A $100 m$ long antenna is mounted on a $500 m$ tall building. The complex can become a transmission tower of waves with λ
A. $-400 m$
B. $-25 m$
C. $-150 m$
D. $-2400 m$

Answer: A

3. A 1 kW signal is transmitted using a communication channel which provides attrenuation at the rate of $-2 \mathrm{~d} B$ per km . if the communication channel has a total length of 5 km , the power of the signal received is gain in $d B=10 \log \left(\frac{P_{0}}{P_{i}}\right)$
A. 900 W
B. 100W
C. 990W
D. 1010 W

Answer: B

- Watch Video Solution

4. A speech signal of 3 kHz is used to modulate a carrier signal of frequency $1 M H z$, using amplitude modulation. The frequencies of the side bands will be
B. 3001 KHz and 2997 KHz
C. 1003 KHz and 1000 KHz
D. 1 MHz and 0.997 MHz

Answer: A

- Watch Video Solution

5. A message signal of freuency ω_{m} is superposed on a carrier wave of frequency ω_{c} to get an amplititude modulated wave (AM). The frequency of the AM wave will be
A. ω_{m}
B. ω_{c}
C. $\frac{\omega_{c}+\omega_{m}}{2}$
D. $\frac{\omega_{c}-\omega_{m}}{2}$

Answer: B

6. 1-V characteristics of four devices are shown in figure.
(i)

(ii)

(iii)

(iv)

Identify devices that can be used for modulation
A. (i) and (iii)
B. Only (iii)
C. (ii) and some regions of (iv)
D. All the devices can be used

Answer: C

7. A male voice after modulation-transmission sounds like that of a female to the receiver. The problem is due to
A. poor selection of modulation index (selected $0<m<1$)
B. poor bandwidth selection of amplitudes
C. poor selection of carrier frequency
D. loss of energy in transmission

Answer: B

- Watch Video Solution

8. A basic communication system consists of (A) transmitter
information source (C) user of information (D)channel (E) receiver `

Choose the correct sequence in which these are arranged in a basic communicarion system.
A. ABCDE
B. BADEC
C. BDACE
D. BEADC

Answer: B

- Watch Video Solution

9. Identify the mathematical expression for amplitude modulated wave:
A. $A_{c} \sin \left(\omega_{c}+k_{1} v_{m}(t) t+\phi\right.$
B. $A_{c} \sin \left(\omega_{c} t+\phi+k_{2} v_{m}(t)\right)$
C. $\left(A_{c}+k_{2} v_{m}(t)\right) \sin \left(\omega_{c} t+\phi\right)$
D. $A_{c} v_{m}(t) \sin \left(\omega_{c} t+\phi\right)$

Answer: C

Corner

1. Assertion: Telephony is an example of point-to-point communication mode.

Reason: In point to-point communication modes, communication takes place over a link between a single transmitter and a receiver.

- Watch Video Solution

2. Assertion: The loss of strength of a signal while propagating through a medium is known as attenuation.

Reason: Transmitter helps to avoid attenuation.

- Watch Video Solution

3. Assertion: Amplification is necessary to compensate for the attenualtion of the signal in communication system.

Reason: Amplification is the process of increasing the amplitdue and consequently the strength of a signal using an electronic circuit.

- Watch Video Solution

4. Assertion: The process of retrieval of information from the carrier wave at the reciever is termed as modulation.

Reason: Repeater helps to modulate the signals.

- Watch Video Solution

5. Assertion: Digital signals are continous variations of voltage of curren
t.

Reason: Digital signals are essentially single valued functions of time.
A. A and R both are true and R is correct explaination of A
B. A is correct but R is wrong
C. A is wrong but R is true
D. Both are wrong

Answer: D

D Watch Video Solution

6. Assertion: Microwave communication is preferred over optical communication.

Reason: Information carrying capacity is directly proportional to bandwidth.
A. Both A and R are correct and R is correct explaination of A
B. A is true but R is wrong
C. A is wrong but R is true
D. Both A and R are wrong

- Watch Video Solution

7. Assertion: The ionosphere layer acts as a reflector for all range of frequencies.

Reason: lonosphere does not allow electromagnetic wav e to penetrate and escape.
A. Both A and R are correct and R is correct explaination of A
B. A is correct but R is wrong
C. A is wrong but R is correct
D. Both A and R are wrong

Answer: D

8. Assertion: It is possible to transmit signals from one place on the earth to practically other place on earth.

Reason: A geostationary satellite orbiting the earth is u sed for transmission.
A. Both A and R are true and R is correct explaination of A
B. A is true but R is wrong
C. A is wrong but R is true
D. Both are wrong

Answer: A

- Watch Video Solution

9. Statement-1: Short wave band are used for transmission fo radiowaves to a large distance.

Statement-2: Short waves are reflected from ionosphere.
A. Both statement 1 and 2 are correct and 2 is correct explaination of 1
B. 1 is correct but 2 is wrong
C. 1 is wrong but 2 is correct
D. Both are wrong

Answer: A

- Watch Video Solution

10. Assertion : The information contained in our original low frequency baseband signal is to be translated into high or radio frequencies before transmission.

Reason: For transmitting a signal, the antenna should have a size comparable to the wav elength of the signal.
A. A and R both are true and R is correct explaination of A
B. A is true but R is wrong
C. A is wrong but R is true
D. Both A and R are wrong

Answer: A

- Watch Video Solution

11. Assertion: Long distance communication between two points on the earth is achieved using sky waves.

Reason: sky wave propagation takes place above. The frequency of 30 MHz.
A. Both A and R are true and R is correct explaination of A
B. A is true but R is wrong
C. A is wrong but R is true
D. Both are wrong

Answer: C

12. Assertion: The television signals are propagated through sky waves.

Reason: Television signals have freqeuncy in the range of 1000 MHz to 2000MHz range.
A. a) A and R both are true and R is correct explaination of A
B. b) A is true but R is false
C. c) A is false but R is true
D. d) Both are false

Answer: D

- Watch Video Solution

13. Assertion: Space waves are used for line -of -sight communication.

Reason: Space wave travels in a straight line from transmitting antenna to the receiving antenna.
A. A and R both are true and R is correct explaination of A
B. A is true but R is false
C. A is false but R is true
D. Both are false

Answer: A

- Watch Video Solution

14. Assertion: When the height of a TV transmission tower is increased by three times. The range covered is doubled.

Reason: The range covered is proportional to the height of the TV transmission tower.
A. a) A and R both are true and R is correct explaination of A
B. b) A is true but R is false
C. c) A is false but R is true
D. d) Both A and R are false

Answer: C

- Watch Video Solution

15. Assertion: $A M$ detection is the process of recovering the modulating signal from amplitude modulated waveform wich is carried out using a rectifier and an evelope detector.

Reason: Amplitude modulated waves can be produced by application of the message signal and the carrier wave to a non-linear device followed by band pass filter.
A. a) A and R both are true and R is correct explaination of A
B. b) A is true but R is false
C. c) A is false but R is true
D. d) Both A and R are false

Answer: B

Introduction

1. Who invented world wide web?
A. J.C.R. Licklider
B. Tim Berners-Lee
C. Alexander Graham Bell
D. Samuel F,B. Morse

Answer: B

- Watch Video Solution

2. Who invented world wide web?
A. J.C.R. Licklider
B. Tim Berners-Lee
C. Alexander Graham Bell
D. Samuel F,B. Morse

Answer: B

- Watch Video Solution

Elements Of A Communication System

1. Essential elements of a communication system are
A. transmitter and receiver
B. reciever and communication channel
C. transmitter and communication channel
D. transmitter, comunication channel and receiver

Answer: D

2. Which of the following is an example of point to point communication mode?
A. Radio
B. Television
C. Telephony
D. All of these

Answer: C

Watch Video Solution

3. Essential elements of a communication system are
A. transmitter and receiver
B. reciever and communication channel
C. transmitter and communication channel
D. transmitter, comunication channel and receiver

Answer: D

- Watch Video Solution

4. Which of the following is an example of point to point communication mode?
A. Radio
B. Television
C. Telephony
D. All of these

Answer: C

1. Which among following is not a basic terminology used in electronic communication systems?
A. Transducer
B. Transmitter
C. Telegraph
D. Attenuation

Answer: C

- Watch Video Solution

2. Which of the following is not transducer?
A. Loudspeaker
B. Amplifier
C. Microphone
D. All of these

Answer: B

D Watch Video Solution

3. The loss of strength of a signal while propagating through a medium is known as
A. reception
B. absorption
C. trasnmission
D. attenuation

Answer: D

- Watch Video Solution

4. The process of increasing the strength of a signal using an electronic circuit is called.
A. amplification
B. modulation
C. demodulation
D. transmission

Answer: A

D Watch Video Solution

5. Modem is a device which performs
A. modulation
B. demodulation
C. rectification
D. modulation and demodulation

Answer: D

6. Modulation is the process of superposing
A. low frequency audio signal on high frequency radio waves.
B. low frequency radio signals on low frequency audio wave.
C. high frequency radio signal on low frequency audo signal.
D. high frequency audio signal on low frequency radio waves.

Answer: A

- Watch Video Solution

7. The device which is a combination of a receiver and a transmitter is
A. Amplifier
B. Repeater
C. Transducer
D. Modulator

Answer: B

- Watch Video Solution

8. Which among following is not a basic terminology used in electronic communication systems?
A. Transducer
B. Transmitter
C. Telegraph
D. Attenuation

Answer: C

9. Which of the following is not transducer?
A. Loudspeaker
B. Amplifier
C. Microphone
D. All of these

Answer: B

(Watch Video Solution

10. The loss of strength of a signal while propagating through a medium is known as
A. reception
B. absorption
C. trasnmission
D. attenuation

D Watch Video Solution

11. The process of increasing the strength of a signal using an electronic circuit is called.
A. amplification
B. modulation
C. demodulation
D. transmission

Answer: A

D Watch Video Solution

12. Modem is a device which performs
A. modulation
B. demodulation
C. rectification
D. modulation and demodulation

Answer: D

- Watch Video Solution

13. Modulation is the process of superposing
A. low frequency audio signal on high frequency radio waves.
B. low frequency radio signals on low frequency audio wave.
C. high frequency radio signal on low frequency audo signal.
D. high frequency audio signal on low frequency radio waves.

Answer: A

14. The device which is a combination of a receiver and a transmitter is
A. Amplifier
B. Repeater
C. Transducer
D. Modulator

Answer: B

- Watch Video Solution

Bandwidth Of Signals

1. Large bandwidth for higher data rate is achieved by using
A. high frequency carrier wave
B. high frequency audio wave
C. low frequency carrier wave
D. low frequency audio wave

Answer: A

- Watch Video Solution

2. In a video signal for transmission of picture. What value of bandwidth is used in communication system?
A. 2.4 MHz
B. 4.2 MHz
C. 24 MHz
D. 42 MHz

Answer: B

3. Large bandwidth for higher data rate is achieved by using
A. high frequency carrier wave
B. high frequency audio wave
C. low frequency carrier wave
D. low frequency audio wave

Answer: A

- Watch Video Solution

4. In a video signal for transmission of picture. What value of bandwidth is used in communication system?
A. 2.4 MHz
B. 4.2 MHz
C. 24 MHz
D. 42 MHz

Answer: B

(Watch Video Solution

Bandwidth Of Transmission Medium

1. Which one of the following statement is correct?
A. a. A single geostationary satellite can cover the whole part of the earth for microwave communication.
B. b. Atleast three geotationary satellities in the same orbit around earth can cover the whole part of the earth for microwave communication.
C. c. The first Indian communication satellite is Telstar.
D. d.The satellite communication is not like the line of sight microwave communication.

Answer: B

- Watch Video Solution

2. Which of the following is an example of broadcast mode of communication?
A. Radio
B. Television
C. Mobile
D. Both a and b

Answer: D

D Watch Video Solution

3. Which of the following device is full duplex?
A. Mobile phone
B. Walky-talky
C. Loud speaker
D. Radio

Answer: A

D Watch Video Solution

4. FM boradcast is preferred over AM broadcast because
A. it is less noisy.
B. reproduction is of much better quality.
C. it is more noisy.
D. both a and b

Answer: D

5. The frequency band used in the downlink of s atellite communication is
A. 9.5 to 2.5 GHz
B. 896 to 0901 MHz
C. 3.7 to 4.2 GHz
D. 840 to 935 MHz

Answer: C

- Watch Video Solution

6. The radio waves of frequency 300 MHz to 3000 MHz belong to
A. high frequency band
B. very high frequency band
C. ultra high frequency band
D. super high frequency band

Answer: B

- Watch Video Solution

7. For base station to mobile communication, the required frequency band is
A. $540-1600 \mathrm{KHz}$
B. $200-325 \mathrm{MHz}$
C. $5.9-6.42 \mathrm{GHz}$
D. $840-935 \mathrm{MHz}$

Answer: D
8. Match the column I with column II.

Column I (Service)		Column II (Frequency bands)	
(A)	Television	(p)	$896-935 \mathrm{MHz}$
(B)	Cellular Mobile Radio	(q)	$540-1600 \mathrm{kHz}$
(C)	Standard AM broadcast	(r)	$54-890 \mathrm{MHz}$
(D)	FM broadcast	(s)	$88-108 \mathrm{MHz}$

A. $A-(q), B-(r), C-(s), D-(p)$
B. $A-(q), B-(s), C-(q), D-(r)$
C. $A-(r), B-(p), C-(q), D-(s)$
D. $A-(r), B-(s), C-(p), D-(q)$

Answer: C

- Watch Video Solution

9. In optical communication system operating at 1200 nm , only 2% of the source frequency is available for TV t ransmission having a bandwidth of

5 MHz . the number of TV channels that can be transmitted is
A. 2 million
B. 10 million
C. 0.1 million
D. 1 million

Answer: D

D Watch Video Solution

10. A microwave telephone link operating at the central frequency of 10 GHz has been established if 2% of this is available for microwave communication channel. Then how many telephone channels can be simultaneously granted if each telephone is allotted a bandwidth of 8 KHz ?
A. 1.5×10^{3}
B. 3.5×10^{2}
C. 2.5×10^{4}
D. 4.5×10^{6}

Answer: C

- Watch Video Solution

11. A band width of 5 MHz is available for AM transmission. If the maximum audio signal frequency used for modulating the carrier is not to exceed 5 kHz , how many stations can be broad cast within this band simultaneously without interfering with eachother?
A. 200
B. 300
C. 400
D. 500
12. A communication between a fixed base station and several mobile units, located on ships or aircraft utilising two way radio communication in the VHF and UHF is of frequency band
A. 3 to 30 MHz
B. 30 to 300 MHz
C. 30 to 470 MHz
D. 30 to 600 MHz

Answer: C

- Watch Video Solution

13. Which one of the following statement is correct?
A. A single geostationary satellite can cover the whole part of the earth for microwave communication.
B. Atleast three geotationary satellities in the same orbit around earth can cover the whole part of the earth for microwave communication.
C. The first Indian communication satellite is Telstar.
D. The satellite communication is not like the line of sight microwave communication.

Answer: B

- Watch Video Solution

14. Which of the following is an example of broadcast mode of communication?
A. Radio
B. Television
C. Mobile
D. Both a and b

Answer: D

D Watch Video Solution

15. Which of the following device is full duplex?
A. Mobile phone
B. Walky-talky
C. Loud speaker
D. Radio

Answer: A

16. FM boradcast is preferred over $A M$ broadcast because
A. it is less noisy.
B. reproduction is of much better quality.
C. it is more noisy.
D. both a and b

Answer: D

- Watch Video Solution

17. The frequency band used in the downlink of s atellite communication is
A. 9.5 to 2.5 GHz
B. 896 to 0901 MHz
C. 3.7 to 4.2 GHz
D. 840 to 935 MHz

Answer: C

D Watch Video Solution

18. The ratio waves of frequency 300 MHz to 3000 MHz belong to
A. high frequency band
B. very high frequency band
C. ultra high frequency band
D. super high frequency band

Answer: B

- Watch Video Solution

19. For base station to mobile communication, the required frequency band is
A. $540-1600 \mathrm{KHz}$
B. $200-325 \mathrm{MHz}$
C. $5.9-6.42 \mathrm{GHz}$
D. $840-935 \mathrm{MHz}$

Answer: D

D Watch Video Solution

20. Match the column I with column II.

Column I (Service)	Column II (Frequency bands)		
(A)	Television	(p)	$896-935 \mathrm{MHz}$
(B)	Cellular Mobile Radio	(q)	$540-1600 \mathrm{kHz}$
(C)	Standard AM broadcast	(r)	$54-890 \mathrm{MHz}$
(D)	FM broadcast	(s)	$88-108 \mathrm{MHz}$

A. A-(q),B-(r), C-(s),D-(p)
B. $A-(q), B-(s), C-(q), D-(r)$
C. $A-(r), B-(p), C-(q), D-(s)$
D. $A-(r), B-(s), C-(p), D-(q)$

Answer: C

- Watch Video Solution

21. In a communication system, operating at 1200 mm , only 2% of the source frequency is available for T.V. transmission, having a bandwidth of 5 MHz . The number of T.V. channels that can be transmitted is
A. 2 million
B. 10 million
C. 0.1 million
D. 1 million

Answer: D

22. A microwave telephone link operating at the central frequency of 10 GHz has been established if 2% of this is available for microwave communication channel. Then how many telephone channels can be simultaneously granted if each telephone is allotted a bandwidth of 8 KHz ?
A. 1.5×10^{3}
B. 3.5×10^{2}
C. 2.5×10^{4}
D. 4.5×10^{6}

Answer: C

- Watch Video Solution

23. A band width of 5 MHz is available for $A M$ transmission. If the maximum audio signal frequency used for modulating the carrier is not
to exceed 5 kHz , how many stations can be broad cast within this band simultaneously without interfering with eachother?
A. 200
B. 300
C. 400
D. 500

Answer: D

- Watch Video Solution

24. A communication between a fixed base station and several mobile units, located on ships or aircraft utilising two way radio communication in the VHF and UHF is of frequency band
A. 3 to 30 MHz
B. 30 to 300 MHz
C. 30 to 470 MHz
D. 30 to 600 MHz

Answer: C

- Watch Video Solution

Propagation Of Electromagnetic Waves

1. Ground wave have wavelength
A. a) less than that of sky waves
B. b) greater than that of sky waves
C. c) less than that of space waves
D. d) equal to that of space waves

Answer: B

2. The mode of propagation used by short wave broadcast services is
A. space waveq
B. sky wave
C. ground wave
D. both and and C

Answer: B

- Watch Video Solution

3. The skip zone in radio wave trasmission is that range where
A. there is no reception of either ground wave or sky wave
B. the reception of ground wave is maximum b ut that of sky wave is minimum
C. the reception of ground wave is minimum, but that of sky wave is
D. the reception of both ground and sky wave is maximum.

Answer: A

- Watch Video Solution

4. Which one of the following statements is wrong?
A. Ground wave propagation can be sustained at frequencies 500 KHz
to 1500 KHz .
B. Satellite communication is useful for the frequencies above 30 MHz .
C. Sky wave propagation is useful in the range of 30 to 40 MHz .
D. Space wave propagation takes place through tropospheric space.

Answer: C

5. The waves that are bent down by the ionosphere are
A. grund waves
B. surface waves
C. space waves
D. sky waves

Answer: D

- Watch Video Solution

6. The maximum line-of -sight distance d_{M} between two antennas having heights h_{T} and H_{R} above the earth is
A. $\sqrt{R\left(h_{T}+h_{R}\right)}$
B. $\sqrt{2 R /\left(h_{T}+h_{R}\right)}$
C. $\sqrt{R h_{T}}+\sqrt{2 R h_{R}}$
D. $\sqrt{2 R h_{T}}+\sqrt{2 R h_{R}}$

Answer: D

- Watch Video Solution

7. Frequencies in the UHF range normally propagate by means of
A. ground waves
B. sky wave
C. surface waves
D. space waves

Answer: D

- Watch Video Solution

8. If the whole earth is to be connected by LOS communication using space waves (no restriction of antenna size or tower height), what is the
minimum no of antennaas required ? Calculate the tower height of these antennas in terms of earth's radius?
A. 2
B. 3
C. 4
D. 6

Answer: D

- Watch Video Solution

9. A ground receiver in line-of-sight communication cannot receive direct waves due to
A. its low frequency
B. curvature of earth
C. its high intensity
D. smaller antenna

Answer: B

- Watch Video Solution

10. Which of the following modes is used for line of sight
A. Ground wave
B. Sky wave propagation is useful in the range of 30 to 40 MHz .
C. Space wave
D. All of these

Answer: C

- Watch Video Solution

11. Through which mode of propagation, the radio waves can be sent from one place to another
A. Ground wave propagation can be sustained at frequencies 500 KHz to 1500 KHz .
B. Sky wave propagation is useful in the range of 30 to 40 MHz .
C. space wave propagation
D. all of them

Answer: D

- Watch Video Solution

12. Which of the following frequencies will be suitable for beyond the horizon communication using sky waves?
A. 10 KHz
B. 10 MHz
C. 1 GHz
D. 1000 GHz

Answer: B

- Watch Video Solution

13. A TV transmitting antenna is 125 m tall. How much service area this transmitting antenna cover, if the receiving antenna is at the ground level? Radius of earth $=6400 \mathrm{~km}$.
A. $3258 \mathrm{~km}^{2}$
B. $4180 \mathrm{~km}^{2}$
C. $2510 \mathrm{~km}^{2}$
D. $1525 \mathrm{~km}^{2}$

Answer: A

14. A transmitting antenna at the top of the tower has a height 18 m and the height of the receiving antenna is 32 m . The maximum distance between them for satisfactory communciation in line of sight mode is (Radius of earth $=6.4 \times 10^{6} \mathrm{~m}$)
A. 15.15 km
B. 21.25 km
C. 30.45 km
D. 35.42 km .

Answer: D

- Watch Video Solution

15. A transmitting antenna of height 20 m and the receiving antenna of height h are separated by a distance of 40 km for satisfactory communication in line of sight mode. Then the value of h is
A. 40 m
B. 45 m
C. 30 m
D. 25 m

Answer: B

- Watch Video Solution

16. A TV transmission tower antenna is at a height of 20 m . The percentage increase in area covered in case if the receiving antenna is at ground level to that at a height of 25 m is (Radius of earth $\left.=6.4 \times 10^{6} \mathrm{~m}\right)$
A. 2.48
B. 348.9%
C. 150%
D. 360.2%

Answer: B

- Watch Video Solution

17. By what percentage will the transmission range of a T.V. tower be affected when the height of the tower is increased by 21% ?
A. 0.1
B. 0.2
C. 0.3
D. 0.4

Answer: A

- Watch Video Solution

18. A TV transmission tower has a height of 240 m . Signals broadcast from this tower will be received by LOS communication at a distance of
(assume the radius of earth to be $6.4 \times 10^{6} \mathrm{~m}$)
A. 100 km
B. 110 km
C. 55 km
D. 120 km

Answer: C

- Watch Video Solution

19. A fax message is to be sent from Delhi to washington via a geostationary satellite. Calculate the minimum time delay between the dispatch and its getting received. Take height of the geostationary satellite $=36000$ km.
A. $72 \times 10^{3} \mathrm{~km}$
B. $12 \times 10^{3} \mathrm{~km}$
C. $27 \times 10^{3} \mathrm{~km}$
D. $18 \times 10^{3} \mathrm{~km}$

Answer: A

- Watch Video Solution

20. A 50 MHz sky wave sky wave takes 4.04 ms to reach a receiver via retransmission from a satellite 600 km above earth's surface. Assuming retransmission time by satellite negligible, find the distance between source and receiver. If communication between the two was to be done by Line of sight (LOS) method, what should be the size of transmitting antenna?
A. 606 km
B. 170 km
C. 340 km
D. 280 km

D Watch Video Solution

21. What should be the length of the dipole antenna for a carrier wave of frequency $3 \times 10^{8} \mathrm{~Hz}$?
A. 1 m
B. 0.5 m
C. 2 m
D. 2.5 m

Answer: B

- Watch Video Solution

22. A radio can tune to any station in 7.5 MHz to 12 MHz band. The corresponding wavelength band is
A. $25 m-40 m$
B. $10 \mathrm{~m}-30 \mathrm{~m}$
C. $20-40 \mathrm{~m}$
D. $25 m-35 m$

Answer: A

- Watch Video Solution

23. On a particular day, the maximum frequency reflected from the ionosphere is 10 MHz . On another day, it was found to increase to 11 MHz .

Calculate the ratio of the maximum electron densities of the ionosphere on the two days. Point out a plausible explanation for this.
A. 1.21
B. 0.82
C. 0.50
D. 0.25

- Watch Video Solution

24. Ground wave have wavelength
A. less than that of sky waves
B. greater than that of sky waves
C. less than that of space waves
D. equal to that of space waves

Answer: B

- Watch Video Solution

25. The mode of propagation used by short wave broadcast services is
B. sky wave
C. ground wave
D. both a and c

Answer: B

- Watch Video Solution

26. The skip zone in radio wave trasmission is that range where
A. there is no reception of either ground wave or sky wave
B. the reception of ground wave is maximum b ut that of sky wave is
minimum
C. the reception of ground wave is minimum, but that of sky wave is maximum
D. the reception of both ground and sky wave is maximum.

Watch Video Solution

27. Which one of the following statements is wrong?
A. Ground wave propagation can be sustained at frequencies 500 KHz to 1500 KHz .
B. Satellite communication is useful for the frequencies above 30 MHz .
C. Sky wave propagation is useful in the range of 30 to 40 MHz .
D. Space wave propagation takes place through tropospheric space.

Answer: C

- Watch Video Solution

28. The waves that are bent down by the ionosphere are
A. ground waves
B. surface waves
C. space waves
D. sky waves

Answer: D

- Watch Video Solution

29. The maximum line-of -sight distance d_{M} between two antennas having heights h_{T} and H_{R} above the earth is
A. $\sqrt{R\left(h_{T}+h_{R}\right)}$
B. $\sqrt{2 R /\left(h_{T}+h_{R}\right)}$
C. $\sqrt{R h_{T}}+\sqrt{2 R h_{R}}$
D. $\sqrt{2 R h_{T}}+\sqrt{2 R h_{R}}$

Answer: D

- Watch Video Solution

30. Frequencies in the $U H F$ range normally propagate by means of:
A. ground waves
B. sky wave
C. surface waves
D. space waves

Answer: D

- Watch Video Solution

31. If the whole earth is to be connected by line of sight communication using space waves (no restriction of antenna size or tower height). What is the minimum number of antennas required?
A. 2
B. 3
C. 4
D. 6

Answer: D

- Watch Video Solution

32. A ground receiver in line-of-sight communication cannot receive direct waves due to
A. its low frequency
B. curvature of earth
C. its high intensity
D. smaller antenna

Answer: B

33. Which of the following modes is used for line of sight
A. Ground wave
B. Sky wave propagation is useful in the range of 30 to 40 MHz .
C. Space wave
D. All of these

Answer: C

- Watch Video Solution

34. Through which mode of propagation, the radio waves can be sent from one place to another
A. Ground wave propagation can be sustained at frequencies 500 KHz
to 1500 KHz .
B. Sky wave propagation is useful in the range of 30 to 40 MHz .
C. space wave propagation
D. all of them

Answer: D

- Watch Video Solution

35. Which of the following frequencies will be suitable for beyond the horizon communication using sky waves?
A. 10 KHz
B. 10 MHz
C. 1 GHz
D. 1000 GHz

Answer: B

36. A TV transmitting antenna is 81 m tall. How much service area it can cover if the receiving antenna is at the ground level? (Radius of earth= $\left.6.4 \times 10^{6} m\right)$
A. $3258 \mathrm{~km}^{2}$
B. $4180 \mathrm{~km}^{2}$
C. $2510 \mathrm{~km}^{2}$
D. $1525 \mathrm{~km}^{2}$

Answer: A

- Watch Video Solution

37. A transmitting antenna at the top of the tower has a height 18 m and the height of the receiving antenna is 32 m . The maximum distance between them for satisfactory communciation in line of sight mode is (Radius of earth $=6.4 \times 10^{6} \mathrm{~m}$)
A. 15.15 km
B. 21.25 km
C. 30.45 km
D. 35.42 km .

Answer: D

- Watch Video Solution

38. A transmitting antenna of height 20 m and the receiving antenna of height h are separated by a distance of 40 km for satisfactory communication in line of sight mode. Then the value of h is
A. 40 m
B. 45 m
C. 30 m
D. 25 m

Answer: B

- Watch Video Solution

39. A TV transmission tower of antenna is at a height of 20 m . How much service area can it cover if the receiving antenna is (i) at ground level (ii) at a height of 25 m ? Calculate the percentage increase in area covered in case (ii) relative to case (i).
A. 2.48
B. 348.9%
C. 150%
D. 360.2%

Answer: B

40. By what percentage will the transmission range of a T.V. tower be affected when the height of the tower is increased by 21% ?
A. 0.1
B. 0.2
C. 0.3
D. 0.4

Answer: A

- Watch Video Solution

41. A TV transmission tower has a height of 240 m . Signals broadcast from this tower will be received by LOS communication at a distance of (assume the radius of earth to be $6.4 \times 10^{6} \mathrm{~m}$)
A. 100 km
B. 110 km
C. 55 km
D. 120 km

Answer: C

- Watch Video Solution

42. A fax message is to be sent from Delhi to Washington via a geostationary satellite. The minimum distance between the dispatch and its getting received is (Take height of the geostationary satellite=36000km)
A. $72 \times 10^{3} \mathrm{~km}$
B. $12 \times 10^{3} \mathrm{~km}$
C. $27 \times 10^{3} \mathrm{~km}$
D. $18 \times 10^{3} \mathrm{~km}$

Answer: A

43. A 50 MHz sky wave takes 4.04 ms to reach a receiver via retransmission from a satellite 600 km above earht's surface. Assuming re-transmission time by satellite negligible, find the distance between source and reciever.
A. 606 km
B. 170 km
C. 340 km
D. 280 km

Answer: B

(D) Watch Video Solution

44. What should be the length of the dipole antenna for a carrier wave of frequency $3 \times 10^{8} \mathrm{~Hz}$?
A. 1 m
B. 0.5 m
C. 2 m
D. 2.5 m

Answer: B

- Watch Video Solution

45. A radio can tune to any station to 7.3 MHz to 12 MHz band. The corresponding wavelength band is
A. $25 m-40 m$
B. $10 \mathrm{~m}-30 \mathrm{~m}$
C. $20-40 \mathrm{~m}$
D. $25 m-35 m$

Answer: A

46. On a particular day, the maximum frequency reflected from the ionosphere is 10 MHz . On another day, it was found to increase to 11 MHz .

Calculate the ratio of the maximum electron densities of the ionosphere on the two days. Point out a plausible explanation for this.
A. 1.21
B. 0.82
C. 0.50
D. 0.25

Answer: A

- Watch Video Solution

Modulation And Its Necessity

1. In frequency modulation
A. the amplitude of modulated wave varies as frequency of carrier wave
B.the frequency of modulated wave varies as amplitude of modulating wave
C. the amplitude of modulated wave varies as amplitude of carrier wave
D. the frequency of modulated wave varies as frequency of modulating wave

Answer: D

- Watch Video Solution

2. Audio signal cannot be transmitted because
A. the signal has more noise.
B. the signal cannot be amplified for distance communication.
C. the transmitting antenna length is very small to design.
D. the transmitting antenna length is very large and impracticable.

Answer: D

- Watch Video Solution

3. The modulation in which pulse. Duration varies in accordance with the modulating signal is called
A. PAM
B. PPM
C. PWM
D. PCM

Answer: C

4. Which of the following is digital modulation technique?
A. PCM
B. PAM
C. PPM
D. PTM

Answer: A

Watch Video Solution

5. If both the length of an antenna and the wavelength of the signal to be transmitted are doubled, the power radiated by the antenna
A. is doubled
B. is halved
C. remains constant
D. is quadrupled

Answer: C

- Watch Video Solution

6. A 300 W carrier is modulated to a depth 75%. The total power in the modulated wave is
A. 200 W
B. 284 W
C. 320 W
D. 384 W

Answer: D

- Watch Video Solution

7. An audio signal of 15 kHz frequency cannot be transmitted over long distance without modulation because.
A. the size of the required antenna would be least 5 km which is not conveient.
B. the audio signal can not be trasmitted through sky waves.
C. effective power transmitted would be very low. If the size of the antenna is less than 5 km .
D. all of these

Answer: D

- Watch Video Solution

8. In frequency modulation
A. the amplitude of modulated wave varies as frequency of carrier wave
B. the frequency of modulated wave varies as amplitude of modulating wave
C. the amplitude of modulated wave varies as amplitude of carrier wave
D. the frequency of modulated wave varies as frequency of modulating wave

Answer: D

- Watch Video Solution

9. Audio signal cannot be transmitted because
A. the signal has more noise.
B. the signal cannot be amplified for distance communication.
C. the transmitting antenna length is very small to design.
D. the transmitting antenna length is very large and impracticable.

Answer: D

10. The modulation in which pulse. Duration varies in accordance with the modulating signal is called
A. PAM
B. PPM
C. PWM
D. PCM

Answer: C

- Watch Video Solution

11. Of the following which is preferred modulation scheme for digital communication.
A. PCM
B. PAM
C. PPM
D. PTM

Answer: A

- Watch Video Solution

12. If both the length of an antenna and the wavelength of the signal to be transmitted are doubled, the power radiated by the antenna
A. is doubled
B. is halved
C. remains constant
D. is quadrupled

Answer: C

13. A 300 W carrier is modulated to a depth 75%. The total power in the modulated wave is
A. 200 W
B. 284 W
C. 320 W
D. 384 W

Answer: D

- Watch Video Solution

14. An audo signal of 15 KHz frequency cannot be trasmitted over long distances without modulation because
A. the size of the required antenna would be least 5 km which is not conveient.
B. the audio signal can not be trasmitted through sky waves.
C. effective power transmitted would be very low. If the size of the antenna is less than 5 km .
D. all of these

Answer: D

- Watch Video Solution

Amplitude Modulation

1. A signal wave of frequency 12 kHz is modulated with a carrier wave of frequency 2-51 MHz. The upper and lower side band frequencies are respectively.
A. 2512 KHz and 2508 KHz
B. 2522 KHz and 2488 KHz
C. 2502 KHz and 2498 KHz
D. 2522 KHz and 2498 KHz

Answer: D

- Watch Video Solution

2. A message signal of frequency 10 kHz and peak voltage 10 volt is used to modulate a carrier of frequency 1 MHz and peak voltage 20 volt. Determine (a) modulation index (b) the side bands produced.
A. $1000 \mathrm{KHz}, 990 \mathrm{KHz}$
B. $1010 \mathrm{KHz}, 990 \mathrm{KHz}$
C. $990 \mathrm{KHz}, 1000 \mathrm{KHz}$
D. $1010 \mathrm{KHz}, 1000 \mathrm{KHz}$

Answer: B

- Watch Video Solution

3. The maximum amplitude of an $A M$ wave is found to be 15 V while its minimum amplitude is found to be 3 V.What is the modulation index?
A. $\frac{3}{2}$
B. $\frac{2}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

4. A modulating signal is a square wave as shown in figure.

The carrier wave is given by
$c(t)=2 \sin (8 \pi t)$ volt.
The modulation index is
A. 0.2
B. 0.3
C. 0.4
D. 0.5

Answer: D

- Watch Video Solution

5. A sinusoidal voltage amplitude modulates another sinusoidal voltage of amplitude 2 kV resulting in two side bands of amplitude 200 V . Find the modulation index.
A. 0.2
B. 0.3
C. 0.4
D. 0.5

Answer: A

- Watch Video Solution

6. In an amplitude modulation with modulation index 0.5 the ratio of the carrier wave to that of side band in the modulated wave is
A. $4: 1$
B. 1: 4
C. $1: 3$
D. $2: 1$

Answer: A

D View Text Solution

7. A carrier wave of peak voltage 12 V is used to transmit a message signal. The peak voltage of the modulating signal in order to have a modulation index of 75% is
A. 6 V
B. 7 V
C. 8 V
D. 9 V

Answer: D

- View Text Solution

8. An amplitude modulated wave is as shown in figure. Calculate (i) the percentage modulation, (ii) peak carrier voltage and, (iii) peak value of
information voltage.

A. $30 \mathrm{~V}, 20 \mathrm{~V}$
B. $10 \mathrm{~V}, 15 \mathrm{~V}$
C. $15 \mathrm{~V}, 30 \mathrm{~V}$
D. $20 \mathrm{~V}, 35 \mathrm{~V}$

Answer: A

- View Text Solution

9. Compute $L C$ product of a tuned amplifer circuit required to generate a carrier wave of 1 MHz for amplitude modulation
A. $1.5 \times 10^{-14} s$
B. $1.2 \times 10^{-12} s$
C. $3.2 \times 10^{-12} s$
D. $2.5 \times 10^{-14} s$

Answer: D

- Watch Video Solution

10. The frequency response curve (figure) for the filter circuit used for production of AM wave should be

(i)

(ii)

(iii)

(iv)
A. i followed by ii
B. ii followd by i
C. iii
D. all of these

Answer: D

- Watch Video Solution

11. A signal wave of frequency 12 kHz is modulated with a carrier wave of frequency 2-51 MHz. The upper and lower side band frequencies are respectively.
A. 2512 KHz and 2508 KHz
B. 2522 KHz and 2488 KHz
C. 2502 KHz and 2498 KHz
D. 2522 KHz and 2498 KHz

Answer: D

D Watch Video Solution

12. A message signal of frequency 10 KHz and peak voltage of 10 V is u sed to modulate a carrier of frequency 1 MHz and peak voltage of 20 V . The frequency of the side bands produced is
A. $1000 \mathrm{KHz}, 990 \mathrm{KHz}$
B. $1010 \mathrm{KHz}, 990 \mathrm{KHz}$
C. $990 \mathrm{KHz}, 1000 \mathrm{KHz}$
D. $1010 \mathrm{KHz}, 1000 \mathrm{KHz}$

Answer: B

- Watch Video Solution

13. The maximum amplitude of an amplitude modulated wave is found to be 15 V while its minimum amplitude is found to be 3 V . The modulation index is
A. $\frac{3}{2}$
B. $\frac{2}{3}$
C. $\frac{1}{2}$
D. $\frac{1}{3}$

Answer: B

- Watch Video Solution

14. A modulating signal is a square wave as shown in figure.

The carrier wave is given by
$c(t)=2 \sin (8 \pi t)$ volt.
The modulation index is
A. 0.2
B. 0.3
C. 0.4
D. 0.5

Answer: D

- Watch Video Solution

15. A sinusoidal voltage amplitude modulates another sinusoidal voltage of amplitude 2 kV to result in two sidebands, each of amplitude 200 V the modulation index is
A. 0.2
B. 0.3
C. 0.4
D. 0.5

Answer: A

- Watch Video Solution

16. In an amplitude modulation with modulation index 0.5 the ratio of the carrier wave to that of side band in the modulated wave is
A. $4: 1$
B. 1: 4
C. $1: 3$
D. 2: 1

Answer: A

(Watch Video Solution

17. A carrier wave of peak voltage 12 V is used to transmit a message signal. The peak voltage of the modulating signal in order to have a modulation index of 75% is
A. 6 V
B. 7 V
C. 8 V
D. 9 V

Answer: D

- Watch Video Solution

18. An amplitude modulated wave is as shown in figure. Calculate (i) the percentage modulation, (ii) peak carrier voltage and, (iii) peak value of information voltage.

A. $30 \mathrm{~V}, 20 \mathrm{~V}$
B. $10 \mathrm{~V}, 15 \mathrm{~V}$
C. $15 \mathrm{~V}, 30 \mathrm{~V}$
D. $20 \mathrm{~V}, 35 \mathrm{~V}$

Answer: A

- Watch Video Solution

19. The LC product of a tuned amplifier circuit require to generate a carrier wave of 1 MHz for amplitude modulation is
A. $1.5 \times 10^{-14} s$
B. $1.2 \times 10^{-12} s$
C. $3.2 \times 10^{-12} s$
D. $2.5 \times 10^{-14} s$

Answer: D

20. The frequency response curve (as shown in figure below) for the filter circuit used for production of AM wave should be

(i)

(iii)

(ii)

(iv)
A. i followed by ii
B. ii followd by i
C. iii
D. all of these
21. In which of the following remote sensing technique is not used?
A. Medical treatment
B. Pollution
C. Wetland mapping
D. Ground water survey

Answer: A

- Watch Video Solution

2. Identify the incorrect statement from the following
A. AM detection is carried out using a rectifier and an envelope detector.
B. Pulse position denotes the time of rise or fall of the pulse amplitude.
C. Modulation index μ is kept ≥ 1, to avoid distoriton.
D. Facsimile (FAX) scans the contents of the document to create electronic signals.

Answer: C

- Watch Video Solution

3. The essential condition for demodulation is
A. $v_{c} \ll R C$
B. $\frac{1}{v_{c}} \ll R C$
C. $\frac{1}{v_{c}} \gg R C$
D. $v_{c} \gg R C$

Answer: B

Watch Video Solution

4. In a diode AM detector with the output circuit consists of $\mathrm{R}=1 M \Omega$ and $C=1 p F$ would be more suitable for detecting a carrier signal of
A. 1 MHz
B. 0.1 MHz
C. 0.5 MHz
D. 10 MHz

Answer: D

- Watch Video Solution

5. Figure (EP) shows a communication system. What is the output power when input signals is of 1.01 mW ? [gain in $d B=10 \log _{10}\left(P_{0} / P_{t}\right)$].

A. 90 mW
B. 101 mW
C. 1112 mW
D. 120 mW

Answer: B

- Watch Video Solution

6. (i) The intensity of a light pulse travelling along a communication channel decreases exponentially with distance x according to the relation $I=I_{0} e^{-\alpha x}$, where I_{0} is the intensity at $x=0$ and α is the attenuation constant.

Show that the intensity reduces by 75 percent after a distance of $\frac{\ln 4}{\alpha}$
(ii) Attenuation of a signal can be expressed in decibel (dB) according to the relation $\mathrm{dB}=10 \log _{10}\left(I / I_{0}\right)$. What is the attenuation in $d B / k m$ for an optical fibre in which the intensity falls by 50 percent over a distance of 50 km ?
A. 0.7
B. 0.75
C. 0.8
D. 0.85

Answer: B

- Watch Video Solution

7. In which of the following remote sensing technique is not used?
A. Medical treatment
B. Pollution
C. Wetland mapping
D. Ground water survey

Answer: A

- Watch Video Solution

8. Identify the incorrect statement from the following
A. AM detection is carried out using a rectifier and an envelope detector.
B. Pulse position denotes the time of rise or fall of the pulse amplitude.
C. Modulation index μ is kept ≥ 1, to avoid distoriton.
D. Facsimile (FAX) scans the contents of the document to create electronic signals.

Answer: C

9. The essential condition for demodulation is
A. $v_{c} \ll R C$
B. $\frac{1}{v_{c}} \ll R C$
C. $\frac{1}{v_{c}} \gg R C$
D. $v_{c} \gg R C$

Answer: B

- Watch Video Solution

10. In a diode $A M$ detector with the output circuit consists of $\mathrm{R}=1 M \Omega$ and
$C=1 p F$ would be more suitable for detecting a carrier signal of
A. 1 MHz
B. 0.1 MHz
C. 0.5 MHz
D. 10 MHz

Answer: D

D Watch Video Solution

11. Figure shows a communication system. What is the output power when input is 1.01 mW ? (Gain in $d B=10 \log _{10} \frac{P_{o}}{P_{i}}$)

A. 90 mW
B. 101 mW
C. 1112 mW
D. 120 mW

Answer: B

(D) Watch Video Solution

12. The intensity of a light pulse travelling along a communication channel decreases exponetially with distance x according to the relation $I=I_{0} e^{-a x}$ where I_{0} is the intensity at $\mathrm{x}=0$ and α is the attenuation constant. The percentage decrease in intensity after a distance of $\left(\frac{\operatorname{In} 4}{\alpha}\right)$ is
A. 0.7
B. 0.75
C. 0.8
D. 0.85

Answer: B

- Watch Video Solution

1. An audio signal is modulated by a carrier wave of 20 MHz such that the bandwidth required for modulation is 3 kHz . Could this wave be demodulated by a diode detector which has the values of R and C as (i) $R=1 k \Omega, C=0.01 \mu F(i i) R=10 k \Omega, C=0.01 \mu F(i i i) R=10 k \Omega, C=1 \mu$,
A. $R=1 k \Omega, C=0.01 \mu E$
B. $R=10 k \Omega, C=0.01 \mu F$
C. $R=10 k \Omega, C=0.1 p F$
D. None of these

Answer: A

- Watch Video Solution

2. A multimode graded index fibre exhibits total pulse broadening of 0.1 us cover a distance of 1.5 km . What is the maximum possible band width on the link assuming no inter symbol interference?
A. 10 MHz
B. 7.5 M Hz
C. 5 MHz
D. 2.5 MHz

Answer: C

- Watch Video Solution

3. Refer figure. Core has refractive index $\mu_{1}=1.424$. The cladding refractive index $\mu_{2}=1.39$. In such a case. Will the light beam propagate?

A. Yes
B. No
C. Data given insufficient to decide
D. the beam propagation is not affected with refractive indices of fibre core and cladding.

Answer: A

D Watch Video Solution

4. Three waves A, B and C of frequencies 1500 KHz .6 MHz and 50 MHz respectively are to be transmitted from one place to another. Which of the following is the most appropriate mode of communciation?
A. A is transmitted via space wave while B and C are transmitted via sky wave
B. A is transmitted via ground wave, B via sky wave and C via space wave
C. B and C tranmitted via ground wave while A is trasnmitted via sky
D. B is transmitted via ground wave while A and C are transmitted via space wave

Answer: B

D Watch Video Solution

5. If the sum of the heights of transmitting and receiving antennas in line of sight of communication is fixed at h, show that the range is maximum when the two antennas have a height $h / 2$ each.
A. $h / 2$
B. 2 h
C. h
D. 4 h

Answer: A

6. Optical communication system having an operating wavelength λ metre can use only $\mathrm{x} \%$ of its source frequency as its channel band width. The system is to be used for transmitting T.V signals requiring a band width of F hertz. How many channels can this system transmit simultaneously? Show graphically how this number of channels varies with operating wavelength of the system.
A. $\lambda F / C x$
B. $2_{C x} / 100 \lambda F$
C. $c x / 50 \lambda F$
D. $c x / 100 \lambda F$

Answer: D

- Watch Video Solution

7. Estimate the fastest bit rate capable of being carried by light of wavelength $1.3 \mu \mathrm{~m}$. How many phone calls could be carried at this bit rate ? Band width of optical fibre $=2 \mathrm{GHz}$.
A. 2.9×10^{7}
B. 1.5×10^{6}
C. 2.3×10^{5}
D. 1.7×10^{4}

Answer: C

- Watch Video Solution

8. The carrier freqeuncy of a station is 40 MHz . A resistor of $10 \mathrm{k} \Omega$ and capacitor of CpF are available in the detector circuit. The possible value of C will be
A. 12
B. 8.2
C. 5.6
D. All of these

Answer: D

- Watch Video Solution

9. A ground receiving station is receiving a signal at 6 MHz transmitted from a ground transmitter at a height of 500 m located at a distance of 100 km . If radius of earth is $6.4 \times 10^{6} \mathrm{~m}$, maxim um number density of electron in ionosphere is $10^{12} m^{-3}$. the signal is coming via:
A. ground wave
B. spac e wave
C. Sky wave propagation is useful in the range of 30 to 40 MHz .
D. satellite transponder

Answer: C

- Watch Video Solution

10. The output current of an 80% mondulating amplitude modulated generator is 1.8 A . To what value will the current rise if the generator is additionally modulated by another audiowave of modulation index 0.6 ?
A. 1.71 A
B. 1.81 A
C. 1.91 A
D. 2.01 A

Answer: C

Watch Video Solution

Ncert Exemplar

1. Three waves A, B and C of frequencies $1600 \mathrm{kHz}, 5 \mathrm{MHz}$ and 60 MHz , respectively are to be transmitted from one place to another.Which of the following is the appropriate mode of communication?
A. A is transmitted via space wave while B and C are transmitted via sky wave
B. A is transmitted via ground wave, B via sky wave and C via space wave
C. B and C tranmitted via ground wave while A is trasnmitted via sky wave
D. B is transmitted via ground wave while A and C are transmitted via space wave.

Answer: B

- Watch Video Solution

2. A 100 m long antenna is mounted on a 500 m tall building. The complex can become a transmission tower of waves with λ
A. -400 m
B. $-25 m$
C. -150 m
D. -2400 m

Answer: A

- Watch Video Solution

3. A 1 kW signal is transmitted using a communication channel which provides attrenuation at the rate of $-2 \mathrm{~d} B$ per km . if the communication channel has a total length of 5 km , the power of the signal received is gain in $d B=10 \log \left(\frac{P_{0}}{P_{i}}\right)$
B. 100W
C. 990W
D. 1010W

Answer: B

- Watch Video Solution

4. A speech signal of 3 kHz is used to modulate a carrier signal of frequency 1 MHz , using amplitude modulation. The frequencies of the side bands will be
A. 1.003 MHz and 0.997 MHz
B. 3001 KHz and 2997 KHz
C. 1003 KHz and 1000 KHz
D. 1 MHz and 0.997 MHz

Answer: A

5. A message signal of freuency ω_{m} is superposed on a carrier wave of frequency ω_{c} to get an amplititude modulated wave (AM). The frequency of the AM wave will be
A. ω_{m}
B. ω_{c}
C. $\frac{\omega_{c}+\omega_{m}}{2}$
D. $\frac{\omega_{c}-\omega_{m}}{2}$

Answer: B

- Watch Video Solution

6. 1-V characteristics of four devices are shown in figure.
(i)

(ii)

(iii)

(iv)

Identify devices that can be used for modulation
A. (i) and (iii)
B. Only (iii)
C. (ii) and some regions of (iv)
D. All the devices can be used

Answer: C

7. A male voice after modulation-transmission sounds like that of a female to the receiver. The problem is due to
A. poor selection of modulation index (selected $0<m<1$)
B. poor bandwidth selection of amplitudes
C. poor selection of carrier frequency
D. loss of energy in transmission

Answer: B

- Watch Video Solution

8. A basic communication system consists of (A) transmitter
information source (C) user of information (D)channel (E) receiver `

Choose the correct sequence in which these are arranged in a basic communicarion system.
A. $A B C D E$
B. BADEC
C. BDACE
D. BEADC

Answer: B

(Watch Video Solution

9. Identify the mathematical expression for amplitude modulated wave:
A. $A_{c} \sin \left(\omega_{c}+k_{1} v_{m}(t) t+\phi\right.$
B. $A_{c} \sin \left(\omega_{c} t+\phi+k_{2} v_{m}(t)\right)$
C. $\left(A_{c}+k_{2} v_{m}(t)\right) \sin \left(\omega_{c} t+\phi\right)$
D. $A_{c} v_{m}(t) \sin \left(\omega_{c} t+\phi\right)$

Answer: C

10. Three waves A, B and C of frequencies $1600 \mathrm{kHz}, 5 \mathrm{MHz}$ and 60 MHz , respectively are to be transmitted from one place to another. Which of the following is the appropriate mode of communication?
A. A is transmitted via space wave while B and C are transmitted via sky wave
B. A is transmitted via ground wave, B via sky wave and C via space wave
C. B and C tranmitted via ground wave while A is trasnmitted via sky wave
D. B is transmitted via ground wave while A and C are transmitted via space wave.

Answer: B

- Watch Video Solution

11. A $100 m$ long antenna is mounted on a $500 m$ tall building. The complex can become a transmission tower of waves with λ
A. $-400 m$
B. $-25 m$
C. $-150 m$
D. $-2400 m$

Answer: A

- Watch Video Solution

12. A $1 K W$ signal is transmitted using a communication channel which provides attenuatiom at the rate of $-2 d B \operatorname{perkm}$. If the communication channel has a total length of 5 km , the power of the signal received is [gain in $\left.d B=10 \log \left(\frac{P_{0}}{P_{i}}\right)\right]$
B. 100 W
C. 990W
D. 1010W

Answer: B

- Watch Video Solution

13. A speech signal of 3 kHz is used to modulate a carrier signal of frequency 1 MHz , using amplitude modulation. The frequencies of the side bands will be
A. 1.003 MHz and 0.997 MHz
B. 3001 KHz and 2997 KHz
C. 1003 KHz and 1000 KHz
D. 1 MHz and 0.997 MHz

Answer: A

14. A message signal of freuency ω_{m} is superposed on a carrier wave of frequency ω_{c} to get an amplititude modulated wave (AM). The frequency of the AM wave will be
A. ω_{m}
B. ω_{c}
C. $\frac{\omega_{c}+\omega_{m}}{2}$
D. $\frac{\omega_{c}-\omega_{m}}{2}$

Answer: B

- Watch Video Solution

15. I-V characteristics of four devices are shown in figure.
(i)

(ii)

(iii)

(iv)

Identify devices that can be used for modulation
A. (i) and (iii)
B. Only (iii)
C. (iii) and some regions of (iv)
D. All the devices can be used

Answer: C

16. A male voice after modulation-transmission sounds like that of a female to the receiver. The problem is due to
A. poor selection of modulation index (selected $0<m<1$)
B. poor bandwidth selection of amplitudes
C. poor selection of carrier frequency
D. loss of energy in transmission

Answer: B

- Watch Video Solution

17. A basic communication system consists of
(A) transmitter (B) information source
(C) user of information (D) channel
(E) reciever

Choose the correct sequence in which these are arranged in a basic communication system.
A. ABCDE
B. BADEC
C. BDACE
D. BEADC

Answer: B

- Watch Video Solution

18. Identify the mathematical expression for amplitude modulated wave
A. $A_{c} \sin \left(\omega_{c}+k_{1} v_{m}(t) t+\phi\right.$
B. $A_{c} \sin \left(\omega_{c} t+\phi+k_{2} v_{m}(t)\right)$
C. $\left(A_{c}+k_{2} v_{m}(t)\right) \sin \left(\omega_{c} t+\phi\right)$
D. $A_{c} v_{m}(t) \sin \left(\omega_{c} t+\phi\right)$

Answer: C

Assertion And Reason

1. Assertion: Telephony is an example of point-to-point communication mode.

Reason: In point to-point communication modes, communication takes place over a link between a single transmitter and a receiver.

- Watch Video Solution

2. Assertion: The loss of strength of a signal while propagating through a medium is known as attenuation.

Reason: Transmitter helps to avoid attenuation.

- Watch Video Solution

3. Assertion: Amplification is necessary to compensate for the attenualtion of the signal in communication system.

Reason: Amplification is the process of increasing the amplitdue and consequently the strength of a signal using an electronic circuit.

- Watch Video Solution

4. Assertion: The process of retrieval of information from the carrier wave at the reciever is termed as modulation.

Reason: Repeater helps to modulate the signals.

- Watch Video Solution

5. Assertion: Digital signals are continous variations of voltage of curren
t.

Reason: Digital signals are essentially single valued functions of time.
A. A and R both are true and R is correct explaination of A
B. A is correct but R is wrong
C. A is wrong but R is true
D. Both are wrong

Answer: D

D Watch Video Solution

6. Assertion: Microwave communication is preferred over optical communication.

Reason: Information carrying capacity is directly proportional to bandwidth.
A. Both A and R are correct and R is correct explaination of A
B. A is true but R is wrong
C. A is wrong but R is true
D. Both A and R are wrong

- Watch Video Solution

7. Assertion: The ionosphere layer acts as a reflector for all range of frequencies.

Reason: lonosphere does not allow electromagnetic wav e to penetrate and escape.
A. Both A and R are correct and R is correct explaination of A
B. A is correct but R is wrong
C. A is wrong but R is correct
D. Both A and R are wrong

Answer: D

8. Assertion: It is possible to transmit signals from one place on the earth to practically other place on earth.

Reason: A geostationary satellite orbiting the earth is u sed for transmission.
A. Both A and R are true and R is correct explaination of A
B. A is true but R is wrong
C. A is wrong but R is true
D. Both are wrong

Answer: A

- Watch Video Solution

9. Statement-1: Short wave band are used for transmission fo radiowaves to a large distance.

Statement-2: Short waves are reflected from ionosphere.
A. Both statement 1 and 2 are correct and 2 is correct explaination of 1
B. 1 is correct but 2 is wrong
C. 1 is wrong but 2 is correct
D. Both are wrong

Answer: A

- Watch Video Solution

10. Assertion : The information contained in our original low frequency baseband signal is to be translated into high or radio frequencies before transmission.

Reason: For transmitting a signal, the antenna should have a size comparable to the wav elength of the signal.
A. A and R both are true and R is correct explaination of A
B. A is true but R is wrong
C. A is wrong but R is true
D. Both A and R are wrong

Answer: A

- Watch Video Solution

11. Assertion: Long distance communication between two points on the earth is achieved using sky waves.

Reason: sky wave propagation takes place above. The frequency of 30 MHz.
A. Both A and R are true and R is correct explaination of A
B. A is true but R is wrong
C. A is wrong but R is true
D. Both are wrong

Answer: C

12. Assertion: The television signals are propagated through sky waves.

Reason: Television signals have freqeuncy in the range of 1000 MHz to 2000MHz range.
A. a) A and R both are true and R is correct explaination of A
B. b) A is true but R is false
C. c) A is false but R is true
D. d) Both are false

Answer: D

- Watch Video Solution

13. Assertion: Space waves are used for line -of -sight communication.

Reason: Space wave travels in a straight line from transmitting antenna to the receiving antenna.
A. A and R both are true and R is correct explaination of A
B. A is true but R is false
C. A is false but R is true
D. Both are false

Answer: A

- Watch Video Solution

14. Assertion: When the height of a TV transmission tower is increased by three times. The range covered is doubled.

Reason: The range covered is proportional to the height of the TV transmission tower.
A. a) A and R both are true and R is correct explaination of A
B. b) A is true but R is false
C. c) A is false but R is true
D. d) Both A and R are false

Answer: C

- Watch Video Solution

15. Assertion: $A M$ detection is the process of recovering the modulating signal from amplitude modulated waveform wich is carried out using a rectifier and an evelope detector.

Reason: Amplitude modulated waves can be produced by application of the message signal and the carrier wave to a non-linear device followed by band pass filter.
A. a) A and R both are true and R is correct explaination of A
B. b) A is true but R is false
C. c) A is false but R is true
D. d) Both A and R are false

Answer: B

16. Assertion: Telephony is an example of point-to-point communication mode.

Reason: In point to-point communication modes, communication takes place over a link between a single transmitter and a receiver.

- Watch Video Solution

17. Assertion: The loss of strength of a signal while propagating through a medium is known as attenuation.

Reason: Transmitter helps to avoid attenuation.

- Watch Video Solution

18. Assertion: Amplification is necessary to compensate for the attenualtion of the signal in communication system.

Reason: Amplification is the process of increasing the amplitdue and consequently the strength of a signal using an electronic circuit.
19. Assertion: The process of retrieval of information from the carrier wave at the reciever is termed as modulation.

Reason: Repeater helps to modulate the signals.

- Watch Video Solution

20. Assertion: Digital signals are continous variations of voltage of curren
t.

Reason: Digital signals are essentially single valued functions of time.

- Watch Video Solution

21. Assertion: Microwave communication is preferred over optical communication.

Reason: Information carrying capacity is directly proportional to bandwidth.

Watch Video Solution

22. Assertion: The ionosphere layer acts as a reflector for all range of frequencies.

Reason: lonosphere does not allow electromagnetic wav e to penetrate and escape.

- Watch Video Solution

23. Assertion: It is possible to transmit signals from one place on the earth to practically other place on earth.

Reason: A geostationary satellite orbiting the earth is u sed for transmission.

- Watch Video Solution

24. Assertion: Short wave hands are used for transmission of radio wave to a large distance.

Reason: Short waves are reflected from ionosphere.

- Watch Video Solution

25. Assertion : The information contained in our original low frequency baseband signal is to be translated into high or radio frequencies before transmission.

Reason: For transmitting a signal, the antenna should have a size comparable to the wave length of the signal.

(Watch Video Solution

26. Assertion: Long distance communication between two points on the earth is achieved using sky waves.

Reason: sky wave propagation takes place above. The frequency of 30 MHz.

- Watch Video Solution

27. Assertion: The television signals are propagated through sky waves. Reason: Television signals have freqeuncy in the range of 1000 MHz to 2000MHz range.

- Watch Video Solution

28. Assertion: Space waves are used for line -of -sight communication.

Reason: Space wave travels in a straight line from transmitting antenna to the receiving antenna.

- Watch Video Solution

29. Assertion: When the height of a TV transmission tower is increased by three times. The range covered is doubled.

Reason: The range covered is proportional to the height of the TV transmission tower.
A. A and R are true and R is the correct explanation
B. Both A and R aer true but reason is not the correct explanation
C. a is true R is false
D. Both A and R are true

Answer: C

- Watch Video Solution

30. Assertion: AM detection is the process of recovering the modulating signal from amplitude modulated waveform wich is carried out using a rectifier and an evelope detector.

Reason: Amplitude modulated waves can be produced by application of the message signal and the carrier wave to a non-linear device followed by band pass filter.

