©゙"doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MTG PHYSICS (ENGLISH)

ELECTROSTATIC POTENTIAL AND

CAPACITANCE

Mcqs

1. Which of the following statement is true?
A. Electrostatic force is a conservative
force.
B. Potential at a point is the work done per unit charge in bringing a charge from any point to infinity.
C. Electrostatic force is non-conservative.
D. Potential is the product of charge and
work.

Answer: A

2.1 volt is equivalent to

A. $\frac{\text { netwon }}{\text { second }}$
B. $\frac{\text { newton }}{\text { coulomb }}$
C. $\frac{\text { joule }}{\text { coulomb }}$
D. $\frac{\text { joule }}{\text { second }}$

Answer: C
3. The work done in bringing a unit positive charge from infinite distance to a point at distance x from a positive charge Q is W . Then the potential ϕ at that point is

$$
\text { A. } \frac{W Q}{x}
$$

B. W
c. $\frac{W}{x}$
D. WQ

Answer: B
4. The potential at a point due to charge of $5 \times 10^{-7} C$ located 10 cm away is
A. $3.5 \times 10^{5} V$
B. $3.5 \times 10^{4} V$
C. $4.5 \times 10^{4} V$
D. $4.5 \times 10^{5} V$

Answer: C
5. In the question number 4, work done in bringing a charge of $4 \times 10^{-9} \mathrm{C}$ form infinity to that point is
A. $2.4 \times 10^{-4} J$
B. $1.8 \times 10^{-4} J$
C. $3.2 \times 10^{-5} J$
D. $4.1 \times 10^{-5} J$

Answer: B

D View Text Solution
6. Electric field intensity at a point B due to a point charge Q kept at point A is $24 N C^{-1}$, and electric potential at B due to the same charge is $12 J C^{-1}$. Calculate the distance $A B$ and magnitude of charge.
A. $10^{-6} C$
B. $10^{-7} C$
C. $10^{-10} C$
D. $10^{-9} \mathrm{C}$

Answer: D
7. The electric potential at a point in free space due to a charge Q coulomb is $Q \times 10^{11}$ volts.

The electric field at that point is
A. $12 \pi \varepsilon_{0} Q \times 10^{22} V m^{-1}$
B. $4 \pi \varepsilon_{0} Q \times 10^{22} V m^{-1}$
C. $12 \pi \varepsilon_{0} Q \times 10^{20} V m^{-1}$
D. $4 \pi \varepsilon_{0} Q \times 10^{20} V m^{-1}$
8. Two points A and B located in diametrically opposite directions of a point charge of $+2 \mu C$ at distances 2.0 m and 1.0 m respectively from it. Determine the potential difference $V_{A}-V_{B}$
A. $3 \times 10^{3} V$
B. $6 \times 10^{4} V$
C. $-9 \times 10^{3} \mathrm{~V}$
D. $-3 \times 10^{3} \mathrm{~V}$

Answer: C

D Watch Video Solution

9. Electric field intensity (E) due to an electric
dipole varies with distance (r) from the point of the center of dipole as:
A. $\frac{1}{r}$ and $\frac{1}{r^{2}}$
B. $\frac{1}{r^{2}}$ and $\frac{1}{r}$
C. $\frac{1}{r^{3}}$ and $\frac{1}{r^{3}}$
D. $\frac{1}{r^{3}}$ and $\frac{1}{r^{2}}$

Answer: D

D Watch Video Solution

10. An electric dipole is placed at the centre of a sphere. Mark the correct options:
A. Electric field is zero at every point of the sphere
B. Electic field is zero anywhere on the
sphere
C. The flux of electric field is not zero through the sphere
D. All of these

Answer: B

- Watch Video Solution

11. Which of the following is not true?
A. For a point charge, electrostatic potential varies as $1 / r$.
B. For a dipole, the potential depends on
the magnitude of potition vector and dipole moment vector.
C. The electric dipole potential varties as
$1 / r$ at large distance.
D. For a point charge, the electrostatic field
varies as $1 / r^{2}$.

Answer: C

D Watch Video Solution

12. The distance between H^{+}and Cl^{-}ions in HCl molecules is $1.38 \AA$. The potential due to this dipole at a sistance of $10 \AA$ on the axis of dipole is
A. 2.1 V
B. 1.8 V
C. 0.2 V
D. 1.2 V

Answer: C
13. Two tiny spheres carrying charges
$1.8 \mu C$ and $2.8 \mu C$ are located at 40 cm apart.
The potential at the mid-point of the line
joining the two charges is
A. $3.8 \times 10^{4} V$
B. $2.1 \times 10^{5} V$
C. $4.3 \times 10^{4} V$
D. $6.3 \times 10^{5} \mathrm{~V}$
14. In the question number 18 , the potential at a point 20 cm from the mid-point of the line joining the two charges in a plance normal to the line and passing through the mid-point is
A. $1.4 \times 10^{5} \mathrm{~V}$
B. $4.2 \times 10^{3} \mathrm{~V}$
C. $2.9 \times 10^{4} V$
D. $3.7 \times 10^{5} \mathrm{~V}$

Answer: A

D View Text Solution

15. Four equal charges Q are placed at the
four corners of a square of each side is 'a'.
Work done in removing a charge $-Q$ from its centre to infinity is
A. zero
B. $\frac{\sqrt{2} q^{2}}{\pi \varepsilon_{0} a}$
C. $\frac{\sqrt{2} q}{\pi \varepsilon_{0} a}$
D. $\frac{q^{2}}{\pi \varepsilon_{0} a}$

Answer: B

D Watch Video Solution

16. A cube of side x has a charge q at each of
its vertices. Determine the potential due to
this charge array at the center of the cube.

$$
\begin{aligned}
& \text { A. } \frac{4 q}{3 \pi \varepsilon_{0} x} \\
& \text { B. } \frac{4 q}{\sqrt{3} \pi \varepsilon_{0} x}
\end{aligned}
$$

C. $\frac{3 q}{4 \pi \varepsilon_{0} x}$
D. $\frac{2 q}{\sqrt{3} \pi \varepsilon_{0} x}$

Answer: B

D Watch Video Solution

17. A hexagon of side 8 cm has a charge $4 \mu C$ at each of its vertices. The potential at the centre of the hexagon is
A. $2.7 \times 10^{6} V$
B. $7.2 \times 10^{11} V$
C. $2.5 \times 10^{12} V$
D. $3.4 \times 10^{4} V$

Answer: A

D Watch Video Solution

18. Consider a uniform electric field in the \hat{z}
direction. The potential is a constant.
A. for any x for a given z
B. for any y for a given z
C. on the $x-y$ plane for a given z
D. All of these

Answer: D

D Watch Video Solution

19. Equipotential surfaces
A. are closer in regions of large electric
fields compared to regions of lower

electric fields

B. will be more crowded near sharp edges of a conductor
C. will always be equally spaced

D. both (a) and (b) are correct

Answer: D

- Watch Video Solution

20. In a region of constant potential
A. the electric field is uniform.
B. the electric field is zero.
C. there can be no charge inside the region.
D. both (b) and (c) are correct.

Answer: D

D Watch Video Solution

21. What do you understand by potential gradient?

Establish a relation between electric field and potential gradient.
A. Electric field is in the direction in which
the potential decreases steepest
B. Magnitude of electric field is given by
the charge in the magnitude of potential
per unit displacement jnormal to the
equipotential surface at the point.
C. In the region of strong electrric field, equipotential surfaces are far apart.

D. Both the statements (a) and (b) are correct.

Answer: D

D Watch Video Solution

22. The angle between the equipotential surface and the electric field (or line of force) at any point on the equipotential surface is
A. 90° always
B. 0° always
C. 0° to 90°
D. 0° to 180°

Answer: A

D Watch Video Solution
23. The work done to move a unit charge along an equipotential from P to Q
A. must be defined as $-\int_{P}^{Q} \vec{E} \cdot \overrightarrow{d l}$
B. is zero
C. can have a non-zero value
D. both (a) and (b)are correct

Answer: D

D Watch Video Solution

24. The top of the atomosphere is about 400
kV with respect to the surface of earth,
corresponding to an electric field that decreases with altitude. Near the surface of earth the field is about $100 \mathrm{~V} m^{-1}$, but still don't get an electric shock, as we set out of out houses in to open because (assume the house is free from electric field)
A. our body is a perfect insulator
B. our body and ground form an equipotential surface
C. the original equipotential surfaces of open air remain same

D. none of these

Answer: B

D Watch Video Solution

25. The work done in carrying a charge q once round a circle of radius r with a charge Q at the centre is
A. $\frac{q Q}{4 \pi \varepsilon_{0} a}$
B. $\frac{q Q}{4 \pi \varepsilon_{0} a^{2}}$
C. $\frac{q}{4 \pi \varepsilon_{0} a}$
D. zero

Answer: D

D Watch Video Solution

26. When a positive q charge is taken from
lower potential to a higher potential point, then its potential energy will
A. remin the same
B. increase
C. decrease
D. become zero

Answer: C

D Watch Video Solution

27. A system consists of two charges
$4 \mu C$ and $-3 \mu C$ with no external field
placed at $(-5 c m, 0,0)$ and $(+5 c m, 0,0)$
respectively. The amount of work required to
separated the two charges infinitely away from each other is
A. $-1.1 J$
B. $2 J$
C. 2.5 J
D. 3 J

Answer: A
(Watch Video Solution
28. Two charges of magnitude
$5 n C$ and $-2 n C$ are placed at points
($2 \mathrm{~cm}, 0,0$) and ($\mathrm{xcm}, 0,0$) in a region of space.
Where there is no other external field. If the
electrostatic potential energy of the system is
$-0.5 \mu J$. What is the value of x ?
A. 20 cm
B. 80 cm
C. 4 cm
D. 16 cm

Answer: A

D Watch Video Solution

29. (a) In a quark model of elementary particles, a neutron is made of one up quarks
[charge $(2 / 3) \mathrm{e}$] and two down quarks
[charges - $(1 / 3) e$]. Assume that they have a
triangle configuration with side length of the order of $10^{-15} \mathrm{~m}$. Calculate electrostatic potential energy of neutron and compare it with its mass 939 MeV .
(b) Repeat above exercise for a proton which is made of two up and one down quark.

A. 7.68
B. -5.21
C. -0.48
D. 9.34

Answer: C

- Watch Video Solution

30. A dipole of moment \vec{p} is placed in a uniform electric field \vec{E}. The force on the dipole is \vec{F} and the torque is $\vec{\tau}$
A. (i), (ii) and (iii) are correct
B. (i) and (ii) are correct and (ii) is wrong
C. only (i) is correct
D. (i) and (ii) are correct and (iii) is wrong

Answer: B

D View Text Solution

31. A molecule of a substance has a permanent electric dipole moment of magnitude $10^{-29} \mathrm{C}$ m. A mole of this substance is polarized at low temperature by appling a strong elecrostatic field of magnitude $10^{6} \mathrm{Vm}^{-1}$. The direction of the field is suddenly changed by an angle of 60°. Estimate the heat released by the substance in aligning its dipole along the new
direction of the field. For simplicity, assume 100% polarisation of sample.
A. $-6 J$
B. $-3 J$
C. 3 J
D. 6 J

Answer: B
(Watch Video Solution
32. An electric dipole of length 20 cm having
$\pm 3 \times 10^{-3}$ C charge placed at 60° with
respect to a uniform electric field experiences
a torque of magnitude 6 Nm . The potential
energy of the dipole is
A. $-2 \sqrt{3} J$
B. $5 \sqrt{3} J$
C. $-3 \sqrt{2} J$
D. $3 \sqrt{5} J$

Answer: A
33. If a conductor has a potential $V \neq 0$ and there are no charges anywhere else outside, then
A. there must be charges on the surface or inside itself.
B. there cannot be any charge in the body of the conductor.
C. there must be charges only on the surface.
D. both (a) and (b) are correct.

Answer: C

D Watch Video Solution

34. Which of the following statements is false for a perfect conductor?
A. The surface of the conductor is an
equipotential surface.
B. The electric field just outside the surface
of a conductor is perpendicular to the
surface.
C. The charge carried by a conductor is
always uniformaly distributed over the
surface of the conductor.
D. none of these

- Watch Video Solution

35. Consider two conductinbg spheres of radill
R_{1} and R_{2} with $R_{1}>R_{2}$. If the two are at the same potential, and the larger sphere has more charge than the smaller sphere, then
A. the charge density of smaller sphere is
less then that of larger sphere,
B. the charge density of smaller sphere is
more than that of larger sphere.
C. both spheres may have same charge density.
D. none of these

Answer: B

- Watch Video Solution

36. Two metal spheres, one fo radius R and the other of radius $2 R$, both have same surface charge density s. They are brought in contact
and seprated. What will be new surface charge

densitites on them ?

$$
\begin{aligned}
& \text { A. } \frac{5}{2} \sigma, \frac{5}{4} \sigma \\
& \text { B. } \frac{5}{3} \sigma, \frac{5}{6} \sigma \\
& \text { C. } \frac{3}{5} \sigma, \frac{6}{5} \sigma \\
& \text { D. } \frac{2}{3} \sigma, \frac{1}{2} \sigma
\end{aligned}
$$

Answer: B

D Watch Video Solution

37. Two spheres of radius a and b respectively
are charged and joined by a wire. The ratio of electric field of the spheres is

> A. $\frac{a}{b}$
> B. $\frac{b}{a}$
> C. $\frac{a^{2}}{b^{2}}$
> D. $\frac{b^{2}}{a^{2}}$

Answer: B
38. Which among the following is an example of polar molecule?
A. O_{2}
B. H_{2}
C. N_{2}
D. HCl

Answer: D

D Watch Video Solution
39. Choose the correct statement.
A. Polar molecules have permanent electric dipole moment.
B. CO_{2} molecule is a polar molecule.
C. $\mathrm{H}_{2} \mathrm{O}$ is non-polar molecule.
D. The dipole field at large distances falls of

$$
\text { as } \frac{1}{r^{2}}
$$

Answer: A

40. For metals the value of dielectric constant (K) is
A. zero
B. infinite
C. 1
D. 10

Answer: B

D Watch Video Solution
41. When air is replaced by a dielectric medium
of constant K, the maximum force of attraction between two charges separated by a distance
A. increases K times
B. remains unchanged
C. decreases K times
D. increases K^{-1} times

Answer: C

D Watch Video Solution
42. Metallic sphere of radius R is charged to potential V. Then charge q is proportional to
A. V
B. R
C. both V and R
D. none of these

Answer: C

D Watch Video Solution
43. The magnitude of electric field \vec{E} in the annular region of a charged cylindrical capacitor.
A. is the same throughout
B. is higher near the outer cylinder than
near the inner cylinder
C. varies as $\frac{1}{r^{2}}$ where r is the distance from
the axis
D. varies as $\frac{1}{r^{3}}$ where r is the distance from
the axis.

Answer: C

D Watch Video Solution

44. A cylindrical capacitor has two co-axial
cylinders of length 20 cm and radii 1.5 cm and
1.6 cm . The outer cylinder is earthed and inner
cylinder is given a charge $4 \mu C$. The capacitance of the system is (neglect end effect)
A. $2.8 \times 10^{-8} F$
B. $4.2 \times 10^{-14} F$
C. $1.7 \times 10^{-10} F$
D. $3.4 \times 10^{-12} F$

Answer: C

D Watch Video Solution

45. In a parallel plate capacitor, the capacity increases if
A. area of the plate is decreased
B. distance between the plates increases
C. area of the plate is increased
D. dielectric constant decreases.

Answer: C

D Watch Video Solution

46. Two large parallel conducting plates are placed close to each other ,the inner surface of the two plates have surface charge densities $+\sigma$ and $-\sigma$.The outer surfaces are
without charge.The electric field has a

magnitude of

A. (sigma)/(epsi_(0))' in the region between
the plates
B. " $\frac{\sigma}{\varepsilon_{0}}$ in the region between the plates
C. 0
D. none of these

Answer: B
47. A parallel plate air capacitor is charged to a potential difference of V volts. After disconnecting the charging battery the distance between the plates of the capacitor is increased using an isulating handle. As a result the potential difference between the plates
A. increases
B. decrease
C. does not charge
D. becomes zero

Answer: A

D Watch Video Solution

48. A parallel plate capacitor is charged and
then isolated. The effect of increasing the plate separation on charge, potential and capacitance respectively are
A. constant, decrease, decrease
B. increase, decreases, decreases
C. constant, decreases, increases

D. constant, increases, decreases.

Answer: D

D Watch Video Solution

49. If the dielectric constant and dielectirc
strength be denoted by K and x respectively,
then a meterial suitable for use as a dielectric in a capacitor must have
A. high K and high X
B. high K and low K
C. low K and high K
D. low K and low X

Answer: A

D Watch Video Solution

50. A parallel plate capacitor with air between
the plates has a capacitance of 10 pF . The capacitance, if the distance bgetween the plates is reduced by half and the space
between tehm is filled with a substance of dielectric constant 4 is
A. $80 p F$
B. $96 p F$
C. $100 p F$
D. $120 p F$

Answer: A
(Watch Video Solution
51. The capacitance of a parallel plate capacitor with air as medium is $3 \mu F$. with the introduction of a dielectric medium between the plates, the capacitance becomes $15 \mu F$.

The permittivity of the medium is

$$
\begin{aligned}
& \text { A. } 5 C^{2} N^{-1} M^{-2} \\
& \text { B. } 15 C^{2} N^{-1} m^{-2} \\
& \text { C. } 0.44 \times 10^{-10} C^{2} N^{-1} m^{-2} \\
& \text { D. } 8.854 \times 10^{-11} C^{2} N^{-1} m^{-2}
\end{aligned}
$$

Answer: C
52. A copper plate of thickness b is placed inside a parallel plate capacitor of plate distance d and area A as shown in figure. The

capacitance of capacitor is

A. $\frac{\varepsilon_{0} A}{d+\frac{b}{2}}$
B. $\frac{\varepsilon_{0} A}{2 d}$

> C. $\frac{\varepsilon_{0} A}{d-b}$
> D. $\frac{2 \varepsilon_{0} A}{d+\frac{b}{2}}$

Answer: C

D Watch Video Solution

53. A parallel plate capacitor of capacity $5 \mu F$
and plate separation 6 cm is connected to a
$1 V$ battery and is charged. A dielectric of dielectric constant 4 and thickness 4 cm is introduced into the capacitor. The additional
charge that flows into the capacitor from the battery is.
A. $2 \mu C$
B. $3 \mu C$
C. $5 \mu C$
D. $10 \mu C$

Answer: C
(Watch Video Solution
54. A slab of material of dielectric constant K
has the same area as the plates of a parallel capacitor, but has a thickness $\left(\frac{3}{4} d\right)$, where d is the separation of the plates. How is
the capacitance changed when the slab is inserted between the plates

$$
\begin{aligned}
& \text { A. } C=\frac{\varepsilon_{0} A}{d}\left(\frac{K+3}{4 K}\right) \\
& \text { B. } C=\frac{\varepsilon_{0} A}{d}\left(\frac{2 K}{K+3}\right) \\
& \text { C. } C=\frac{\varepsilon_{0} A}{d}\left(\frac{K}{K+3}\right) \\
& \text { D. } C=\frac{\varepsilon_{0} A}{d}\left(\frac{4 K}{K+3}\right)
\end{aligned}
$$

Answer: D

D Watch Video Solution

55. Three capacitors each of capacity $4 \mu F$ are to be connected in such a way that the effective capacitance is $6 \mu F$. This can be done by
A. connecting them in series
B. connecting them is parallel

C. connecting two in series and one in

parallel
D. connecting two in parallel and one is
series

Answer: C

D Watch Video Solution
56. In the question number 66, the charge on capacitors C_{1} and C_{4} are
A. $4 \times 10^{-3} C, 12 \times 10^{-3} C$
B. $6 \times 10^{-3} C, 12 \times 10^{-3} C$
C. $2 \times 10^{-3} C, 4 \times 10^{-3} C$
D. $3 \times 10^{-3} C, 2 \times 10^{-3} C$

Answer: A

D Watch Video Solution

57. Minimum number of capacitors each of $8 \mu F$ and $250 \vee$ used to make a composite capacitor of $16 \mu F$ and 1000 V are
A. 8
B. 32
C. 16
D. 24

Answer: B

D Watch Video Solution

58. A capacitor or capacitance C_{1} is charge to a potential V and then connected in parallel to an uncharged capacitor of capacitance C_{2}. The
fianl potential difference across each capacitor will be
A. $\frac{C_{1} V}{C_{1}+C_{2}}$
B. $\frac{C_{2} V}{C_{1}+C_{2}}$
C. $1+\frac{C_{2}}{C_{1}}$
D. $1-\frac{C_{2}}{C_{1}}$

Answer: A

D Watch Video Solution
59. Two capacitrors of $2 \mu F$ and $4 \mu F$ are connected in parallel. A third capacitor of $6 \mu F$
is connected in series. The combaination is connected across a 12 V battery. The voltage across $2 \mu F$ capacitor is
A. 2 V
B. 8 V
C. 6 V
D. 1 V

Answer: C

- Watch Video Solution

60. Two idential capacitors are joined in parallel, charged to a potential V and then separated and then connected in series i.e. the positive plate of one is connected to negative of the other
A. The charges on the free plated connected together are destoyed.
B. The energy stored in the system increases.
C. The potential difference between the
free plates is 2 V .

D. The potential difference remains

constant.

Answer: C
61. A parallel plate capacitor is made by stacking n equally spaced plates connected alternatively. If the capacitance between any two adjacent plates is ' C ' then the resultant capacitance is
A. nC
B. $\frac{C}{n}$
C. $(n+1) C$
D. $(n-1) C$

Answer: D
62. A parallel plate air capacitor has a capacitance C. When it is half filled with a dielectric of dielectric constant 5, the percentage increase in the capacitance will be
A. 400%
B. 66.6%
C. 33.3%
D. 200%

Answer: B

- Watch Video Solution

63. A capacitor is made of two circular plates
of radius R each, separated by a distance
$d \ll R$. The capacitor is connected to a
constant voltage. A thin conducting disc of
radius $r \ll R$ and thickness $t \ll r$ is placed at a center of the bottom plate. Find the minimum voltage required to lift the disc if the mass of the disc is m.
A. $\frac{\sqrt{m g d}}{\pi \varepsilon_{0} r^{2}}$
B. $\sqrt{\frac{m g d}{\pi \varepsilon_{0} r}}$
C. $\sqrt{\frac{m g d^{2}}{\pi \varepsilon_{0} r^{2}}}$
D. $\sqrt{\frac{m g d}{\pi \varepsilon_{0} r^{2}}}$

Answer: C

D Watch Video Solution

64. A parallel plate condenser is charged by connected it to a battery. The battery is
disconnected and a glass slab is introduced between the plates. Then
A. potential increases
B. electric intensity increases
C. energy decreases.

D. capacity decreases

Answer: B

D Watch Video Solution

65. A capacitor has some dielectric between its
plates, and the capacitor is connected to a DC
source. The battery is now disconnected and
then the dielectric is removed. State whether
the capacitance, the energy stored in it, electric field, charge stored and the voltage will increase ro remain constant.
A. capacitance will increase.
B. energy stored will decrease.
C. electric field will increase.

D. voltage will decrease.

Answer: C

D Watch Video Solution

66. A capacitor of capacitance 700 pF is
charged by 100 V battery. The electrostatic energy stored by the capacitor is
A. $2.5 \times 10^{-8} J$
B. $3.5 \times 10^{-6} J$
C. $2.5 \times 10^{-4} J$
D. $3.5 \times 10^{-4} J$

Answer: B

- Watch Video Solution

67. A 16 pF capacitor is connected to 70 V supply. The amount of electric energy stored in the capacitor is
A. $4.5 \times 10^{-12} J$
B. $5.1 \times 10^{-8} \mathrm{~J}$
C. $2.5 \times 10^{-12} J$
D. $3.92 \times 10^{-8} J$

Answer: D

D Watch Video Solution

68. A capacitor is charged through a potential difference of 200 V , when 0.1 C charge is stored in it. The amount of energy released by it, when it is discharged is
A. 5 J
B. 10 J
C. 20 J
D. 2.5 J

Answer: B

D Watch Video Solution

69. A parallel plate capacitor has a uniform electric field E in the space between the the plates. If the distance between the plates is d
and area of each plate is A, the energy stored in the capacitor is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \varepsilon_{0} E^{2} \\
& \text { B. } \frac{E^{2} A d}{\varepsilon_{0}} \\
& \text { C. } \frac{1}{2} \varepsilon_{0} E^{2} A d \\
& \text { D. } e i s i_{0} E^{2} A d
\end{aligned}
$$

Answer: C
(Watch Video Solution
70. A metallic sphere of radius 18 cm has been
given a charge of $5 \times 10^{-6} C$. The energy of the charged conductor is
A. 0.2 J
B. 0.6 J
C. 1.2 J
D. 2.4 J

Answer: B

D Watch Video Solution
71. Two spherical conductors each of capacity
C are charged to potetnial V and $-V$. These are then conneted by means of a fine wire. The loss of energy will be
A. zero
B. $\frac{1}{2} C V^{2}$
C. $C V^{2}$
D. $2 C V^{2}$

Answer: C

72. A parallel plate condenser with a dielectric of dielectric constant K between the plates
has a capacity C and is charged to a potential
V volt. The dielectric slab is slowly removed from between the plates and then reinserted.

The net work done by the system in this process is
A. zero

$$
\text { B. } \frac{1}{2}(K-1) C V^{2}
$$

> C. $\frac{C V^{2}(K-1)}{K}$
> D. $(K-1) C V^{2}$

Answer: A

D Watch Video Solution

73. Two identical capacitors, have the same capacitance C. One of them is charged to potential V_{1} and the other V_{2}. The negative ends of the capacitors are connected together.

When the poistive ends are also connected,
the decrease in energy of the combined
system is
A. $\frac{C}{4}\left(V_{1}^{2}-V_{2}^{2}\right)$
B. $\frac{C}{4}\left(V_{1}^{2}+V_{2}^{2}\right)$
C. $\frac{C}{4}\left(V_{1}-V_{2}\right)^{2}$
D. $\frac{C}{4}\left(V_{1}+V_{2}\right)^{2}$

Answer: C

- Watch Video Solution

74. Energies stored in capacitor and dissipated

 during charging a capacitor bear a ratioA. 1:1
B. 1:2
C. 2:1
D. 1:3

Answer: C

- View Text Solution

75. Two capcitors, $3 \mu F$ and $4 \mu F$, are individually charged across a 6 V battery. After being disconnected from the battery, they are connected together with the negative plate of one attached to the positive plate of the other. What is the final total energy stored ?

> A. $1.26 \times 10^{-4} J$
> B. $2.57 \times 10^{-4} J$
> C. $1.25 \times 10^{-6} J$
> D. $2.57 \times 10^{-6} J$

Answer: D

D Watch Video Solution

76. A parallel plate capacitor without any dielectric within its plates, has a capacitance C, and is connected to a battery of emf V . The battery is disconnected and the plates of the capacitor are pulled apart until the separation between the plates is doubled. What is the work done by the agent pulling the plates apart, in this process ?
A. $\frac{1}{2} C V^{2}$
B. $\frac{3}{2} C V^{2}$
C. $-\frac{3}{2} C V^{2}$
D. $C V^{2}$

Answer: A

D View Text Solution

77. A series combination of n_{1} capacitors, each of value C_{1}, is charged by a source of potential difference $4 V$. When another parallel
combination of n_{2} capacitors, each of value C_{2}
, is charged by a source of potential difference
V, it has same (total) energy stored in it, as
the first combination has. the value of C_{2}, in
terms of C_{1}, is then

$$
\begin{aligned}
& \text { A. } \frac{2 C_{1}}{n_{1} n_{2}} \\
& \text { B. } 16 \frac{n_{2}}{n_{1}} C_{1} \\
& \text { C. } 2 \frac{n_{2}}{n_{1}} C_{1} \\
& \text { D. } \frac{16 C_{1}}{n_{1} n_{2}}
\end{aligned}
$$

Answer: D
78. Consider a parallel plate capcaitor with plates 20 cm by 20 cm and separated by 2 mm .

The dielectric constant of the material between the plates is 5 . The plates are connected to a voltage source of 500 V . The energy density of the field between the plates will be close to
A. $2.65 \mathrm{~J} / \mathrm{m}^{3}$
B. $1.95 \mathrm{~J} / \mathrm{m}^{3}$
C. $1.38 J / m^{3}$
D. $0.69 \mathrm{~J} / \mathrm{m}^{3}$

Answer: C

D Watch Video Solution

79. Van de Graaff generator is used for
A. store electrical energy
B. build up high voltages of few million
volts
C. decelerate charged particle like
electrons
D. both (a) and (b) are correct

Answer: B

- Watch Video Solution

80. Which of the following statements is/are
true about the principle of Van de Graaff generator?
A. The action of sharp points.
B. The charge given to a hollow conductor is transfered to outer surface and it distributed uniformly over it.
C. It is used for accelerating uncharged particle.

D. Both (a) and (b) are true.

Answer: D

81. Who established the fact of animal electricity?
A. Van de Graaff
B. Count Alessandro Volta
C. Gustav Robert Kirchhoff
D. Hans Christing Oersted

Answer: B

D Watch Video Solution
82. In case of a Van Graaff generator, the breakdown field of air is
A. $2 \times 10^{8} V m^{-1}$
B. $3 \times 10^{6} V m^{-1}$
C. $2 \times 10^{-8} V m^{-1}$
D. $3 \times 10^{4} V m^{-1}$

Answer: B
83. In a Van de Graaff type generator, a spherical metal shell is to be $15 \times 10^{6} V$ electrode. The dielectric strength of the gas surrounding the electrode is $5 \times 10^{7} \mathrm{Vm}^{-1}$.

The minimum radius of the spherical shell required is
A. 0.1 m
B. 0.2 m
C. 0.5 m
D. 0.3 m

Answer: D

- Watch Video Solution

Hots

1. In a regular polygon of n sides, each corner
is at a distance r from the centre. Identical
charges are placed at $(n-1)$ corners. At the centre, the intensity is E and the potential is
V. The ratio V / E has magnitude
A. rn
B. $r(n-1)$
C. $(n-1) / r$
D. $r(n-1) / n$

Answer: B

D Watch Video Solution
2. The potential at a point distant x (mesured in μm) due to some charges situated on the
x -axis is given by $V(x)=\frac{20}{x^{2}-4} \quad \mathrm{~V}$. The electric field at $x=4 \mu m$ is given by
A. $\frac{5}{3} V \mu m^{-1}$ and in positive x direction
B. $\frac{10}{9} V \mu m^{-1}$ and in negative x direction
C. $\frac{10}{9} V \mu m^{-1}$ and in positive x direction
D. $\frac{5}{3} V \mu m^{-1}$ and in negative x direction.

Answer: C

D Watch Video Solution

3. An infinite cylinder of radius r_{o}, carrying linear charge density λ. The equation of the equipotential surface for the cylinder is

$$
\begin{aligned}
& \text { A. } r=r_{0} e^{\pi \varepsilon_{0}\left[V(r)+V\left(r_{0}\right)\right] \lambda} \\
& \text { B. } r=r_{0} e^{2 \pi \varepsilon_{0}\left[V(r)-V\left(r_{0}\right)\right] \lambda^{2}} \\
& \text { C. } r=r_{0} e^{-2 \pi \varepsilon_{0}\left[V(r)=V\left(r_{0}\right)\right] \lambda} \\
& \text { D. } r=r_{0} e^{-2 \pi \varepsilon_{0}\left[V(r)-V\left(r_{0}\right)\right] \lambda}
\end{aligned}
$$

Answer: C

4. Three concentric spherical shells have radii a, b and $c(a<b<c)$ and have surface charge densities σ, - sigam and σ respectively. If V_{A}, V_{B} and V_{C} denote the potentials of the three shells, then for $c=a+b$, we have
A. $V_{C}=V_{B}=V_{A}$
B. $V_{C}=V_{A} \neq V_{B}$
c. $V_{C}=V_{B} \neq V_{A}$
D. $V_{C} \neq V_{B} \neq V_{A}$

Answer: B

D Watch Video Solution

5. A parallel plate capacitor is filled by a dielectric whose relative permittivity varies with the applied voltage (U) as $\varepsilon=\alpha U$ where $\alpha=2 V^{-1}$. A similar capacitor with no dielectric is charged to $U_{0}=78 \mathrm{~V}$. It is then is connected to the uncharged capacitor with
the dielectric. Find the final voltage on the capacitors.
A. 2 V
B. 3 V
C. 5 V
D. 6 V

Answer: D

- Watch Video Solution

Exemplar Problems

1. A positively charged particle is released from
rest in a uniform electric field. The electric potential energy of the charge.
A. remains a constant because the electric
field is uniform.
B. increases because the charge moves
along the electric field.
C. decreases because the charge moves
along the electric field.
D. decreases because the charge moves opposite to the electric field.

Answer: C

D Watch Video Solution

2. The electrostatic potential on the surface of
a charged concducting sphere is 100 V . Two
statements are made in this regard
S_{1} : at any inside the sphere, electric intensity is zero.
$S_{2}:$ at any point inside the sphere, the electrostatic potential is 100 V .
A. S_{1} is true but S_{2} is false
B. Both S_{1} and S_{2} are false
C. S_{1} is true, S_{2} is also true and S_{1} is the
cause of S_{2}
D. S_{1} is true, S_{2} is also true but the statements are independent.

Answer: C

3. Equipotentials at a great distance from a collection of charges whose total sum is not
zero are approximately
A. spheres
B. planes
C. paraboloids
D. ellipsoids.

Answer: A

Assertion Reason

1. Assertion: Work done in moving a charge between any two points in a unifrom electric field is independent of the path followed by the charge, between these points.

Reason: Electrostatic forces are nonconservative.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

2. Electric field inside a conductor can be zero only, if potential inside the conductor is
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

3. Assertion: In case of charged spherical shells, E-r graph is discontinuous while V-r graph is continuous

Reason: According to Gauss's theorem only
the charge inside a closed surface ca produce electric field at some point.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution
4. Assertion: For a point charge concentric spheres centered at a location of the charge are equipotential surfaces.

Reason : An equipotential surface is a surface over which potential has zero value.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

5. Assertion: Polar mlecules have permanent dipole moment.

Reason : In polar molecule, the centres of positive and negative charges coincide evcen wehen there is no external field.
A. If both assertion and reason are ture and reason is the correct explanation of assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

6. Assertion. Dielectric polarization means formation of positive and negative charges inside the dielectric.

Reason. Free electrons are formed in this process.
A. If both assertion and reason are ture and reason is the correct explanation of assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of
assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

7. Assertion: In the absence of an external electric field, the dipole moment per unit volume of a polar dicletric is zero.

Reason : The dipoles of a polar diclectric are randomaly oriented.
A. If both assertion and reason are ture and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

8. Can there be a potential difference between two adjacent conductors that carry same amount of positive charge ?
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

9. Assertion: The potential difference between
the two conductors of a capacitor is small.

Reason : A capacitor is so configured that it cofines the electric field lines within a small region of space.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

10. Assertion: Increasing the charge on the plates of a capacitor means increasing the capacitance.

Resion : Capacitance is directly proportinal to charge.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of

assertion .

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

11. As the distance between the plates of a parallel plate capacitor decreased
A. If both assertion and reason are ture and reason is the correct explanation of assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of
assertion .
C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

12. Assertion: The distance between the
parallel plates of a capacitor is halved, then its
capacitance is doubled.

Reason: The capacitance depends on the introduced dielectric.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution
13. Assertion. Capacity of a parallel plate condenser remains unaffected on introduced
a conducting or insulating slab between the plates.

Reason. In both the cases, electric field intensity between the plates increases.
A. If both assertion and reason are ture
and reason is the correct explanation of assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of

assertion .

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

14. Assertion: Charge on all the condensers
connected is series in the same.

Reason : Capacitance of capacitor is directly proportional to charge on it.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

15. Assertion- In a series combination of capacitors, charge on each capacitor is same.

Reason- In such a combination, charge cannot move only along one route.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

Electric Potential

1. Which of the following statement is true?
A. Electrostatic force is a conservative
force.
B. Potential at a point is the work done per
unit charge in bringing a charge from
any point to infinity.
C. Electrostatic force is non-conservative.

D. Potential is the product of charge and

work.

Answer: A

D Watch Video Solution

2.1 volt is equivalent to

$$
\begin{aligned}
& \text { A. } \frac{\text { netwon }}{\text { second }} \\
& \text { B. } \frac{\text { newton }}{\text { coulomb }} \\
& \text { C. } \frac{\text { joule }}{\text { coulomb }}
\end{aligned}
$$

D. $\frac{\text { joule }}{\text { second }}$

Answer: C

D Watch Video Solution

3. The work done in bringing a unit positive charge from infinite distance to a point at distance x from a positive charge Q is W . Then the potential ϕ at that point is

$$
\text { A. } \frac{W Q}{x}
$$

B. W
c. $\frac{W}{x}$
D. WQ

Answer: B

- Watch Video Solution

Potential Due To A Point Charge

1. The potential at a point due to charge of
A. $3.5 \times 10^{5} V$
B. $3.5 \times 10^{4} V$
C. $4.5 \times 10^{4} V$
D. $4.5 \times 10^{5} V$

Answer: C

D Watch Video Solution
2. In the question number 4, work done in bringing a charge of $4 \times 10^{-9} \mathrm{C}$ form infinity to that point is
A. $2.4 \times 10^{-4} J$
B. $1.8 \times 10^{-4} \mathrm{~J}$
C. $3.2 \times 10^{-5} \mathrm{~J}$
D. $4.1 \times 10^{-5} J$

Answer: B

D View Text Solution

3. Electric field intensity at a point B due to a point charge Q kept at point A is $24 N C^{-1}$, and electric potential at B due to the same
charge is $12 J C^{-1}$. Calculate the distance $A B$ and magnitude of charge.
A. $10^{-6} C$
B. $10^{-7} C$
C. $10^{-10} C$
D. $10^{-9} C$

Answer: D

D Watch Video Solution

4. The electric potential at a point in free space due to a charge Q coulomb is $Q \times 10^{11}$ volts. The electric field at that point is
A. $12 \pi \varepsilon_{0} Q \times 10^{22} V m^{-1}$
B. $4 \pi \varepsilon_{0} Q \times 10^{22} V m^{-1}$
C. $12 \pi \varepsilon_{0} Q \times 10^{20} V m^{-1}$
D. $4 \pi \varepsilon_{0} Q \times 10^{20} V m^{-1}$

Answer: B

D Watch Video Solution
5. Two points A and B located in diametrically
opposite directions of a point charge of $+2 \mu C$
at distances 2.0 m and 1.0 m respectively from
it. Determine the potential difference $V_{A}-V_{B}$
A. $3 \times 10^{3} V$
B. $6 \times 10^{4} V$
C. $-9 \times 10^{3} \mathrm{~V}$
D. $-3 \times 10^{3} \mathrm{~V}$

Answer: C

6. As per this diagram a point charge $+q$ is placed at the origin O. Work done in taking another point charge $-Q$ from the point
$A(0, a)$ to another point $B(a, 0)$ along the staight path $A B$ is:

A. $\frac{q Q}{4 \pi \varepsilon_{0}}\left(\frac{a-b}{a b}\right)$
B. $\frac{q Q}{4 \pi \varepsilon_{0}}\left(\frac{b-a}{a b}\right)$
C. $\frac{q Q}{4 \pi \varepsilon_{0}}\left(\frac{b}{a^{2}}-\frac{1}{b}\right)$
D. $\frac{q Q}{4 \pi \varepsilon_{0}}\left(\frac{a}{b^{2}}-\frac{1}{b}\right)$

Answer: A

D Watch Video Solution

7. As per this diagram a point charge $+q$ is placed at the origin O. Work done in taking another point charge $-Q$ from the point
$A(0, a)$ to another point $B(a, 0)$ along the staight path $A B$ is:

A. zero
B. $\left(\frac{q Q}{4 \pi \varepsilon_{0}} \frac{1}{a^{2}}\right) \sqrt{2 a}$
C. $\left(\frac{-q Q}{4 \pi \varepsilon_{0}} \frac{1}{a^{2}}\right) \frac{a}{\sqrt{2}}$
D. $\left(\frac{-q Q}{4 \pi \varepsilon_{0}} \frac{1}{a^{2}}\right) \frac{a}{\sqrt{2}}$

Answer: A

- Watch Video Solution

Potential Due To An Electric Dipole

1. Electric field intensity (E) due to an electric
dipole varies with distance (r) from the point of the center of dipole as:
A. $\frac{1}{r}$ and $\frac{1}{r^{2}}$
B. $\frac{1}{r^{2}}$ and $\frac{1}{r}$
C. $\frac{1}{r^{3}}$ and $\frac{1}{r^{3}}$
D. $\frac{1}{r^{3}}$ and $\frac{1}{r^{2}}$

Answer: D

D Watch Video Solution

2. An electric dipole is placed at the centre of a sphere. Mark the correct options:
A. Electric field is zero at every point of the sphere
B. Electic field is zero anywhere on the sphere
C. The flux of electric field is not zero
through the sphere
D. All of these

Answer: B
3. Which of the following is not true ?
A. For a point charge, electrostatic potential varies as $1 / r$.

B. For a dipole, the potential depends on

the magnitude of potition vector and
dipole moment vector.
C. The electric dipole potential varties as
$1 / r$ at large distance.

D. For a point charge, the electrostatic field

varies as $1 / r^{2}$.

Answer: C

D Watch Video Solution

4. The distance between H^{+}and Cl^{-}ions in

HCl molecules is $1.38 \AA$. The potential due to this dipole at a sistance of $10 \AA$ on the axis of dipole is
A. 2.1 V
B. 1.8 V
C. 0.2 V
D. 1.2 V

Answer: C

D Watch Video Solution

5. For points a, b, c and d ar set at equall distance from the centre of a dipole as shown
in the figure. The magnitudes of electrostatic
potential V_{a}, V_{b}, V_{c} and V_{d} would satisfy the following relation

A. $V_{a}>V_{b}>V_{c}>V_{d}$
B. $V_{a}>V_{b}>=V_{d}>V_{c}$
C. $V_{a}=V_{c}>V_{b}=V_{d}$
D. $V_{b}=V_{d}>V_{a}>V_{c}$

Answer: C

D Watch Video Solution

Potential Due To A System Of Charges

1. Work done by an electrostatic field in moving a given charge from one point to another upon the chosen closed path.
A. zero
B. positive
C. negative
D. data insufficient

Answer: C

D Watch Video Solution
2. Figure shows the field lines of a point negative charge. In going from B to A, the
kinetic energy of a small negative charge will

A. increase
B. decrease
C. remain constant

D. data insufficient

Answer: B

D Watch Video Solution

3. Two tiny spheres carrying charges
$1.8 \mu C$ and $2.8 \mu C$ are located at 40 cm apart.

The potential at the mid-point of the line joining the two charges is
A. $3.8 \times 10^{4} V$
B. $2.1 \times 10^{5} V$
C. $4.3 \times 10^{4} V$
D. $6.3 \times 10^{5} \mathrm{~V}$

Answer: B

D Watch Video Solution

4. In the question number 18 , the potential at
a point 20 cm from the mid-point of the line
joining the two charges in a plance normal to
the line and passing through the mid-point is
A. $1.4 \times 10^{5} V$
B. $4.2 \times 10^{3} V$
C. $2.9 \times 10^{4} V$
D. $3.7 \times 10^{5} V$

Answer: A

D View Text Solution
5. Four equal charges Q are placed at the four corners of a square of each side is 'a'. Work
done in removing a charge $-Q$ from its centre

to infinity is

A. zero
B. $\frac{\sqrt{2} q^{2}}{\pi \varepsilon_{0} a}$
C. $\frac{\sqrt{2} q}{\pi \varepsilon_{0} a}$
D. $\frac{q^{2}}{\pi \varepsilon_{0} a}$

Answer: B
(Watch Video Solution
6. A cube of side x has a charge q at each of its
vertices. Determine the potential due to this
charge array at the center of the cube.

> A. $\frac{4 q}{3 \pi \varepsilon_{0} x}$
> B. $\frac{4 q}{\sqrt{3} \pi \varepsilon_{0} x}$
> C. $\frac{3 q}{4 \pi \varepsilon_{0} x}$
> D. $\frac{2 q}{\sqrt{3} \pi \varepsilon_{0} x}$

Answer: B

7. A hexagon of side 8 cm has a charge $4 \mu C$ at

 each of its vertices. The potential at the centre of the hexagon isA. $2.7 \times 10^{6} V$
B. $7.2 \times 10^{11} V$
C. $2.5 \times 10^{12} V$
D. $3.4 \times 10^{4} V$

Answer: A

- Watch Video Solution

1. Consider a uniform electric field in the \hat{z} direction. The potential is a constant.
A. for any x for a given z
B. for any y for a given z
C. on the $x-y$ plane for a given z
D. All of these

Answer: D

D Watch Video Solution
2. Equipotential surfaces
A. are closer in regions of large electric
fields compared to regions of lower electric fields
B. will be more crowded near sharp edges
of a conductor
C. will always be equally spaced
D. both (a) and (b) are correct

Answer: D

D Watch Video Solution

3. In a region of constant potential
A. the electric field is uniform.
B. the electric field is zero.
C. there can be no charge inside the region.
D. both (b) and (c) are correct.

Answer: D

D Watch Video Solution

4. What do you understand by potential gradient?

Establish a relation between electric field and potential gradient.
A. Electric field is in the direction in which
the potential decreases steepest
B. Magnitude of electric field is given by
the charge in the magnitude of potential
per unit displacement jnormal to the equipotential surface at the point.
C. In the region of strong electrric field, equipotential surfaces are far apart.

D. Both the statements
(a) and
(b) are

correct.

Answer: D

5. The angle between the equipotential
surface and the electric field (or line of force)
at any point on the equipotential surface is
A. 90° always
B. 0° always
C. 0° to 90°
D. 0° to 180°

Answer: A

D Watch Video Solution
6. The work done to move a unit charge along an equipotential from P to Q
A. must be defined as $-\int_{P}^{Q} \vec{E} \cdot \overrightarrow{d l}$
B. is zero
C. can have a non-zero value
D. both (a) and (b)are correct

Answer: D

7. The top of the atomosphere is about 400 kV with respect to the surface of earth, corresponding to an electric field that decreases with altitude. Near the surface of earth the field is about $100 \mathrm{~V} \mathrm{~m}^{-1}$, but still don't get an electric shock, as we set out of out houses in to open because (assume the house is free from electric field)
A. our body is a perfect insulator
B.our body and ground form an equipotential surface
C. the original equipotential surfaces of open air remain same

D. none of these

Answer: B

D Watch Video Solution

8. A hollow conducting sphere is placed in an

 electric field produced by a point charge placed at P as shown in figure.Let V_{A}, V_{B}, V_{C} be the potentials at points
A, B and C respectively. Then

A. $V_{C}>V_{B}$
B. $V_{A}>V_{B}$
C. $V_{B}>V_{C}$
D. $V_{A}=V_{C}$

Answer: D

D Watch Video Solution

9. The work done in carrying a charge q once
round a circle of radius r with a charge Q at
the centre is
A. $\frac{q Q}{4 \pi \varepsilon_{0} a}$
B. $\frac{q Q}{4 \pi \varepsilon_{0} a^{2}}$
C. $\frac{q}{4 \pi \varepsilon_{0} a}$
D. zero

Answer: D

D Watch Video Solution

Potential Energy As A System Of Charges

1. When a positive q charge is taken from lower potential to a higher potential point, then its

potential energy will

A. remin the same

B. increase
C. decrease
D. become zero

Answer: C

D Watch Video Solution
2. A system consists of two charges
$4 \mu C$ and $-3 \mu C$ with no external field placed at $(-5 c m, 0,0)$ and $(+5 c m, 0,0)$ respectively. The amount of work required to separated the two charges infinitely away from each other is
A. $-1.1 J$
B. $2 J$
C. 2.5 J
D. $3 J$

Answer: A

D Watch Video Solution

3. Two charges of magnitude
$5 n C$ and $-2 n C$ are placed at points
($2 \mathrm{~cm}, 0,0$) and ($\mathrm{x} \mathrm{cm}, 0,0$) in a region of space.

Where there is no other external field. If the
electrostatic potential energy of the system is
$-0.5 \mu J$. What is the value of x ?
A. 20 cm
B. 80 cm
C. 4 cm
D. 16 cm

Answer: A

D Watch Video Solution

4. (a) In a quark model of elementary particles,
a neutron is made of one up quarks [charge
$(2 / 3) \mathrm{e}]$ and two down quarks [charges -
$(1 / 3) e]$. Assume that they have a triangle
configuration with side length of the order of $10^{-15} \mathrm{~m}$. Calculate electrostatic potential energy of neutron and compare it with its mass 939 MeV .
(b) Repeat above exercise for a proton which is made of two up and one down quark.

A. 7.68
B. -5.21
C. -0.48
D. 9.34

Answer: C

D Watch Video Solution

Potential Energy In An External Field

1. Which among the following statements is
true about the work done in bringing a unit
positive charge from point P to Q in an electrostatic field ?

A. Minimum work is done in case of path II.
B. Maximum work is done in case of path I.
C. Work done is same in all the three paths.
D. Work done is zero in case of path II.

Answer: C

D Watch Video Solution

2. A dipole of moment \vec{p} is placed in a uniform electric field \vec{E}. The force on the dipole is \vec{F} and the torque is $\vec{\tau}$
A. (i), (ii) and (iii) are correct
B. (i) and (ii) are correct and (ii) is wrong
C. only (i) is correct
D. (i) and (ii) are correct and (iii) is wrong

Answer: B

- View Text Solution

3. A molecule of a substance has a permanent electric dipole moment of magnitude $10^{-29} \mathrm{C}$ m. A mole of this substance is polarized at low temperature by appling a strong elecrostatic field of magnitude $10^{6} \mathrm{Vm}^{-1}$. The direction of the field is suddenly changed by an angle of 60°. Estimate the heat released by the substance in aligning its dipole along the new
direction of the field. For simplicity, assume 100% polarisation of sample.
A. $-6 J$
B. $-3 J$
C. 3 J
D. 6 J

Answer: B
(Watch Video Solution
4. An electric dipole of length 20 cm having $\pm 3 \times 10^{-3}$ C charge placed at 60° with respect to a uniform electric field experiences
a torque of magnitude 6 Nm . The potential energy of the dipole is
A. $-2 \sqrt{3} J$
B. $5 \sqrt{3} J$
C. $-3 \sqrt{2} J$
D. $3 \sqrt{5} J$

Answer: A

Electrostatics Of Conductors

1. If a conductor has a potential $V \neq 0$ and
there are no charges anywhere else outside, then
A. there must be charges on the surface or inside itself.
B. there cannot be any charge in the body of the conductor.
C. there must be charges only on the surface.
D. both (a) and (b) are correct.

Answer: C

- Watch Video Solution

2. Which of the following statements is false for a perfect conductor ?
A. The surface of the conductor is an
equipotential surface.
B. The electric field just outside the surface
of a conductor is perpendicular to the
surface.
C. The charge carried by a conductor is
always uniformaly distributed over the
surface of the conductor.
D. none of these

Answer: D

- Watch Video Solution

3. Consider two conductinbg spheres of radill
R_{1} and R_{2} with $R_{1}>R_{2}$. If the two are at the same potential, and the larger sphere has more charge than the smaller sphere, then
A. the charge density of smaller sphere is
less then that of larger sphere,
B. the charge density of smaller sphere is more than that of larger sphere.
C. both spheres may have same charge density.

D. none of these

Answer: B

D Watch Video Solution

4. Two metal spheres, one fo radius R and the other of radius $2 R$, both have same surface charge density s. They are brought in contact and seprated. What will be new surface charge densitites on them ?

$$
\begin{aligned}
& \text { A. } \frac{5}{2} \sigma, \frac{5}{4} \sigma \\
& \text { B. } \frac{5}{3} \sigma, \frac{5}{6} \sigma \\
& \text { C. } \frac{3}{5} \sigma, \frac{6}{5} \sigma \\
& \text { D. } \frac{2}{3} \sigma, \frac{1}{2} \sigma
\end{aligned}
$$

5. Two spheres of radius a and b respectively are charged and joined by a wire. The ratio of electric field of the spheres is
A. $\frac{a}{b}$
B. $\frac{b}{a}$
C. $\frac{a^{2}}{b^{2}}$
D. $\frac{b^{2}}{a^{2}}$

Dielectrics And Polarisation

1. Which among the following is an example of polar molecule ?
A. O_{2}
B. H_{2}
C. N_{2}
D. HCl

Answer: D

- Watch Video Solution

2. Choose the correct statement.
A. Polar molecules have permanent electric
dipole moment.
B. CO_{2} molecule is a polar molecule.
C. $\mathrm{H}_{2} \mathrm{O}$ is non-polar molecule.

D. The dipole field at large distances falls of

$$
\text { as } \frac{1}{r^{2}} \text {. }
$$

Answer: A

D Watch Video Solution

3. For metals the value of dielectric constant (K) is
A. zero
B. infinite
C. 1
D. 10

Answer: B

D Watch Video Solution

4. When air is replaced by a dielectric medium of constant K, the maximum force of attraction between two charges separated by a distance
A. increases K times
B. remains unchanged
C. decreases K times
D. increases K^{-1} times

Answer: C

- Watch Video Solution

Capacitors And Capacitance

1. Metallic sphere of radius R is charged to potential V. Then charge q is proportional to
A. V
B. R
C. both V and R
D. none of these

Answer: C
(Watch Video Solution
2. A spherical capacitor consists of two concentric spherical shells of outer radius r 1 and inner radius $r 2$, held in position by suitable insulating supports. calculate the capacitance of this spherical capacitor.

$$
\begin{aligned}
& \text { A. } \frac{4 \pi \varepsilon_{0} r_{1} r_{2}}{r_{1}-r_{2}} \\
& \text { B. } \frac{4 \pi \varepsilon_{0}-\left(r_{2}-r_{1}\right)}{r_{1} r_{2}} \\
& \text { C. } \frac{r_{1} r_{2}}{4 \pi \varepsilon_{0}\left(r_{2}-r_{1}\right)} \\
& \text { D. } \frac{\left(r_{1}-r_{2}\right)}{4 \pi \varepsilon_{0} r_{1} r_{2}}
\end{aligned}
$$

Answer: A
3. The magnitude of electric field \vec{E} in the annular region of a charged cylindrical capacitor.
A. is the same throughout
B. is higher near the outer cylinder than
near the inner cylinder
C. varies as $\frac{1}{r^{2}}$ where r is the distance from the axis

D. varies as $\frac{1}{r^{3}}$ where r is the distance from

 the axis.
Answer: C

D Watch Video Solution

4. A cylindrical capacitor has two co-axial
cylinders of length 20 cm and radii 1.5 cm and
1.6 cm . The outer cylinder is earthed and inner cylinder is given a charge $4 \mu C$. The
capacitance of the system is (neglect end effect)
A. $2.8 \times 10^{-8} F$
B. $4.2 \times 10^{-14} F$
C. $1.7 \times 10^{-10} F$
D. $3.4 \times 10^{-12} F$

Answer: C

D Watch Video Solution

The Parallel Plate Capacitor

1. In a parallel plate capacitor, the capacity increases if
A. area of the plate is decreased
B. distance between the plates increases
C. area of the plate is increased
D. dielectric constant decreases.

Answer: C

- Watch Video Solution

2. Two large parallel conducting plates are placed close to each other ,the inner surface of the two plates have surface charge densities $+\sigma$ and $-\sigma$.The outer surfaces are without charge.The electric field has a magnitude of
A. (sigma)/(epsi_(0))' in the region between
the plates
B. " $\frac{\sigma}{\varepsilon_{0}}$ in the region between the plates
C. 0

D. none of these

Answer: B

D Watch Video Solution

3. A parallel plate air capacitor is charged to a potential difference of V volts. After disconnecting the charging battery the distance between the plates of the capacitor is increased using an isulating handle. As a
result the potential difference between the plates
A. increases
B. decrease
C. does not charge
D. becomes zero

Answer: A
(Watch Video Solution
4. A parallel plate capacitor is charged and then isolated. The effect of increasing the plate separation on charge, potential and capacitance respectively are
A. constant, decrease, decrease
B. increase, decreases, decreases
C. constant, decreases, increases
D. constant, increases, decreases.

Answer: D

5. A parallel plate capacitor is connected to a battery as shown in figure. Consider two situations:

A : Key K is kept closed and plates of capacitors are moved apart using insulting
handle.

B : Key K is opened and plates of capacitors are moved apart using insulting handle.

Choose the correct options (s).
A. In (i), Q remains same but C charges.
B. In (ii) V remains same but C charges.
C. In (i) V remains same and hence Q
changes.
D. In (ii) both Q and V changes.

Watch Video Solution

Effect Of Dielectric On Capacitance

1. If the dielectric constant and dielectirc strength be denoted by K and x respectively, then a meterial suitable for use as a dielectric in a capacitor must have
A. high K and high X
B. high K and low K
C. low K and high K

D. low K and low X

Answer: A

- Watch Video Solution

2. A parallel plate capacitor with air between
the plates has a capacitance of 10 pF . The capacitance, if the distance bgetween the plates is reduced by half and the space between tehm is filled with a substance of dielectric constant 4 is
A. $80 p F$
B. $96 p F$
C. $100 p F$
D. $120 p F$

Answer: A

D Watch Video Solution

3. The capacitance of a parallel plate capacitor with air as medium is $3 \mu F$. with the introduction of a dielectric medium between
the plates, the capacitance becomes $15 \mu F$.

The permittivity of the medium is

$$
\begin{aligned}
& \text { A. } 5 C^{2} N^{-1} M^{-2} \\
& \text { B. } 15 C^{2} N^{-1} m^{-2} \\
& \text { C. } 0.44 \times 10^{-10} C^{2} N^{-1} m^{-2} \\
& \text { D. } 8.854 \times 10^{-11} C^{2} N^{-1} m^{-2}
\end{aligned}
$$

Answer: C

D Watch Video Solution

4. A copper plate of thickness b is placed inside a parallel plate capacitor of plate distance d and area A as shown in figure. The

capacitance of capacitor is

A. $\frac{\varepsilon_{0} A}{d+\frac{b}{2}}$
B. $\frac{\varepsilon_{0} A}{2 d}$

> C. $\frac{\varepsilon_{0} A}{d-b}$
> D. $\frac{2 \varepsilon_{0} A}{d+\frac{b}{2}}$

Answer: C

D Watch Video Solution

5. A parallel plate capacitor of capacity $5 \mu F$
and plate separation 6 cm is connected to a
$1 V$ battery and is charged. A dielectric of dielectric constant 4 and thickness 4 cm is introduced into the capacitor. The additional
charge that flows into the capacitor from the battery is.
A. $2 \mu C$
B. $3 \mu C$
C. $5 \mu C$
D. $10 \mu C$

Answer: C
(Watch Video Solution
6. A slab of material of dielectric constant K
has the same area as the plates of a parallel
capacitor, but has a thickness $\left(\frac{3}{4} d\right)$,
where d is the separation of the plates. How is
the capacitance changed when the slab is inserted between the plates

$$
\begin{aligned}
& \text { A. } C=\frac{\varepsilon_{0} A}{d}\left(\frac{K+3}{4 K}\right) \\
& \text { B. } C=\frac{\varepsilon_{0} A}{d}\left(\frac{2 K}{K+3}\right) \\
& \text { C. } C=\frac{\varepsilon_{0} A}{d}\left(\frac{K}{K+3}\right) \\
& \text { D. } C=\frac{\varepsilon_{0} A}{d}\left(\frac{4 K}{K+3}\right)
\end{aligned}
$$

Answer: D

- Watch Video Solution

Combination Of Capacitors

1. Three capacitors each of capacity $4 \mu F$ are to
be connected in such a way that the effective capacitance is $6 \mu F$. This can be done by
A. connecting them in series
B. connecting them is parallel

C. connecting two in series and one in

parallel
D. connecting two in parallel and one is
series

Answer: C

D Watch Video Solution
2. The equivalent capacitance for the network shown in the figure is

$$
\begin{aligned}
& \text { A. } \frac{1200}{7} p F \\
& \text { B. } \frac{1000}{4} p F \\
& \text { C. } \frac{1800}{7} p F \\
& \text { D. } \frac{1300}{3} p F
\end{aligned}
$$

Answer: A

D Watch Video Solution
3. A network of four $20 \mu F$ capacitors is
connected to a 600 V supply as shoen in the
figure.

The equivalent capacitance of the network is

A. $30.26 \mu F$
B. $20 \mu F$

C. $26.67 \mu F$

D. $10 \mu F$

Answer: C

D Watch Video Solution

4. In the question number 66, the charge on capacitors C_{1} and C_{4} are
A. $4 \times 10^{-3} C, 12 \times 10^{-3} C$
B. $6 \times 10^{-3} C, 12 \times 10^{-3} C$
C. $2 \times 10^{-3} C, 4 \times 10^{-3} C$
D. $3 \times 10^{-3} C, 2 \times 10^{-3} C$

Answer: A

- Watch Video Solution

5. The charge on $3 \mu F$ capacitor shown in the
figure is

A. $2 \mu C$
B. $10 \mu C$
C. $6 \mu C$
D. $8 \mu C$

Answer: B

D Watch Video Solution

6. Minimum number of capacitors each of $8 \mu F$ and 250 V used to make a composite capacitor of $16 \mu F$ and 1000 V are
A. 8
B. 32
C. 16
D. 24

Answer: B

- Watch Video Solution

7. A capacitor or capacitance C_{1} is charge to a potential V and then connected in parallel to an uncharged capacitor of capacitance C_{2}. The
fianl potential difference across each capacitor will be

$$
\begin{aligned}
& \text { A. } \frac{C_{1} V}{C_{1}+C_{2}} \\
& \text { B. } \frac{C_{2} V}{C_{1}+C_{2}} \\
& \text { C. } 1+\frac{C_{2}}{C_{1}} \\
& \text { D. } 1-\frac{C_{2}}{C_{1}}
\end{aligned}
$$

Answer: A

D Watch Video Solution
8. Two capacitrors of $2 \mu F$ and $4 \mu F$ are connected in parallel. A third capacitor of $6 \mu F$ is connected in series. The combaination is connected across a 12 V battery. The voltage across $2 \mu F$ capacitor is
A. 2 V
B. 8 V
C. 6 V
D. 1 V

Answer: C

- Watch Video Solution

9. Two idential capacitors are joined in parallel,
charged to a potential V and then separated and then connected in series i.e. the positive plate of one is connected to negative of the other
A. The charges on the free plated connected together are destoyed.
B. The energy stored in the system increases.
C. The potential difference between the
free plates is 2 V .

D. The potential difference remains

constant.

Answer: C
(Watch Video Solution
10. In the circuit shown in figure, initially key
K_{1} is closed and key K_{2} is open. Then K_{1} is opened and K_{2} is closed (order is important).
[Take Q_{1}^{\prime} and Q_{2}^{\prime} as charges on C_{1} and C_{2} and
V_{1} and V_{2} as voltage respectively].

Then
A. charge on C_{1} get redistributed such that $V_{1}=V_{2}$
B. charge on C_{1} gas redistributed such
that $q_{1}{ }^{\prime}=q_{2}{ }^{\prime}$
C. charge on C_{1} gets redisributed such
that $C_{1} V_{1}=C_{2} V_{2}=C_{1} V$
D. charge on C_{1} gets redistributed such
that $q_{1}{ }^{\prime}+q_{2}{ }^{\prime}=2 q$

Answer: A

11. A parallel plate capacitor is made by stacking n equally spaced plates connected alternatively. If the capacitance between any two adjacent plates is ' C ' then the resultant capacitance is
A. nC
B. $\frac{C}{n}$
C. $(n+1) C$
D. $(n-1) C$

Answer: D

D View Text Solution

12. Two parallel conducting plates of area
$A=2.5 \mathrm{~m}^{2}$ each are placed 6 mm apart and are both earthed. A third plate, identical with
the first two, is placed at a distance of 2 mm
from one of the earthed plates and is given a charge of 1 C . The potential of the central
plate is

A. $6 \times 10^{7} V$
B. $3 \times 10^{7} V$
C. $4 \times 10^{7} V$
D. $2 \times 10^{7} V$
13. A parallel plate air capacitor has a capacitance C. When it is half filled with a dielectric of dielectric constant 5, the percentage increase in the capacitance will be
A. 400%
B. 66.6%
C. 33.3%
D. 200%

Answer: B

D Watch Video Solution

14. A capacitor is made of two circular plates
of radius R each, separated by a distance
$d \ll R$. The capacitor is connected to a
constant voltage. A thin conducting disc of
radius $r \ll R$ and thickness $t \ll r$ is
placed at a center of the bottom plate. Find
the minimum voltage required to lift the disc
if the mass of the disc is m.
A. $\frac{\sqrt{m g d}}{\pi \varepsilon_{0} r^{2}}$
B. $\sqrt{\frac{m g d}{\pi \varepsilon_{0} r}}$
C. $\sqrt{\frac{m g d^{2}}{\pi \varepsilon_{0} r^{2}}}$
D. $\sqrt{\frac{m g d}{\pi \varepsilon_{0} r^{2}}}$

Answer: C
(Watch Video Solution

Energy Stored In Capacitor

1. A parallel plate condenser is charged by connected it to a battery. The battery is disconnected and a glass slab is introduced between the plates. Then
A. potential increases
B. electric intensity increases
C. energy decreases.
D. capacity decreases

Answer: B
2. A capacitor has some dielectric between its
plates, and the capacitor is connected to a DC
source. The battery is now disconnected and
then the dielectric is removed. State whether
the capacitance, the energy stored in it, electric field, charge stored and the voltage will increase ro remain constant.
A. capacitance will increase.
B. energy stored will decrease.

C. electric field will increase.

D. voltage will decrease.

Answer: C

D Watch Video Solution

3. A capacitor of capacitance 700 pF is charged
by 100 V battery. The electrostatic energy
stored by the capacitor is
A. $2.5 \times 10^{-8} J$
B. $3.5 \times 10^{-6} J$
C. $2.5 \times 10^{-4} J$
D. $3.5 \times 10^{-4} J$

Answer: B

D Watch Video Solution

4. A 16 pF capacitor is connected to 70 V supply. The amount of electric energy stored in the capacitor is
A. $4.5 \times 10^{-12} J$
B. $5.1 \times 10^{-8} \mathrm{~J}$
C. $2.5 \times 10^{-12} J$
D. $3.92 \times 10^{-8} J$

Answer: D

D Watch Video Solution

5. A capacitor is charged through a potential difference of 200 V , when 0.1 C charge is stored
in it. The amount of energy released by it, when it is discharged is
A. 5 J
B. 10 J
C. 20 J
D. 2.5 J

Answer: B

D Watch Video Solution
6. A parallel plate capacitor has a uniform electric field E in the space between the the plates. If the distance between the plates is d and area of each plate is A, the energy stored in the capacitor is

$$
\begin{aligned}
& \text { A. } \frac{1}{2} \varepsilon_{0} E^{2} \\
& \text { B. } \frac{E^{2} A d}{\varepsilon_{0}} \\
& \text { C. } \frac{1}{2} \varepsilon_{0} E^{2} A d \\
& \text { D. } e i s i_{0} E^{2} A d
\end{aligned}
$$

7. A metallic sphere of radius 18 cm has been given a charge of $5 \times 10^{-6} C$. The energy of the charged conductor is
A. 0.2 J
B. 0.6 J
C. 1.2 J
D. 2.4 J
8. Two spherical conductors each of capacity C are charged to potetnial V and $-V$. These are then conneted by means of a fine wire. The loss of energy will be
A. zero
B. $\frac{1}{2} C V^{2}$
C. $C V^{2}$
D. $2 C V^{2}$

Answer: C

- Watch Video Solution

9. Two condensers, one of capacity C and the other of capacity $C / 2$ are connected to a V volt battery, as shown.

The work done in charging fully both the condensers is
A. $\frac{1}{4} C V^{2}$
B. $\frac{3}{4} C V^{2}$
C. $\frac{1}{2} C V^{2}$
D. $2 C V^{2}$

Answer: B
(Watch Video Solution
10. A parallel plate condenser with a dielectric of dielectric constant K between the plates
has a capacity C and is charged to a potential
V volt. The dielectric slab is slowly removed
from between the plates and then reinserted.
The net work done by the system in this process is
A. zero
B. $\frac{1}{2}(K-1) C V^{2}$
C. $\frac{C V^{2}(K-1)}{K}$

$$
\text { D. }(K-1) C V^{2}
$$

Answer: A

D Watch Video Solution

11. Two identical capacitors, have the same
capacitance C. One of them is charged to potential V_{1} and the other V_{2}. The negative ends of the capacitors are connected together.

When the poistive ends are also connected,
the decrease in energy of the combined
system is
A. $\frac{C}{4}\left(V_{1}^{2}-V_{2}^{2}\right)$
B. $\frac{C}{4}\left(V_{1}^{2}+V_{2}^{2}\right)$
C. $\frac{C}{4}\left(V_{1}-V_{2}\right)^{2}$
D. $\frac{C}{4}\left(V_{1}+V_{2}\right)^{2}$

Answer: C

- Watch Video Solution

12. Energies stored in capacitor and dissipated during charging a capacitor bear a ratio
A. 1:1
B. 1:2
C. 2:1
D. 1:3

Answer: C

- View Text Solution

13. Two capcitors, $3 \mu F$ and $4 \mu F$, are individually charged across a 6 V battery. After being disconnected from the battery, they are connected together with the negative plate of one attached to the positive plate of the other. What is the final total energy stored ?

> A. $1.26 \times 10^{-4} J$
> B. $2.57 \times 10^{-4} J$
> C. $1.25 \times 10^{-6} J$
> D. $2.57 \times 10^{-6} J$

Answer: D

D Watch Video Solution

14. A parallel plate capacitor without any dielectric within its plates, has a capacitance C, and is connected to a battery of emf V . The battery is disconnected and the plates of the capacitor are pulled apart until the separation between the plates is doubled. What is the work done by the agent pulling the plates apart, in this process ?
A. $\frac{1}{2} C V^{2}$
B. $\frac{3}{2} C V^{2}$
C. $-\frac{3}{2} C V^{2}$
D. $C V^{2}$

Answer: A

D View Text Solution

15. A series combination of n_{1} capacitors, each of value C_{1}, is charged by a source of potential
combination of n_{2} capacitors, each of value C_{2}
, is charged by a source of potential difference
V, it has same (total) energy stored in it, as
the first combination has. the value of C_{2}, in
terms of C_{1}, is then

$$
\begin{aligned}
& \text { A. } \frac{2 C_{1}}{n_{1} n_{2}} \\
& \text { B. } 16 \frac{n_{2}}{n_{1}} C_{1} \\
& \text { C. } 2 \frac{n_{2}}{n_{1}} C_{1} \\
& \text { D. } \frac{16 C_{1}}{n_{1} n_{2}}
\end{aligned}
$$

Answer: D
16. What is the energy stored in the capacitor between terminals a and b of the network shown in the figure ? (Capacitance of each capacitance $C=1 \mu F$)

$$
10 \mathrm{~V}
$$

A. $12.5 \mu J$
B. Zero
C. $25 \mu \mathrm{~J}$
D. $52 \mu \mathrm{~J}$

Answer: A

D Watch Video Solution
17. Consider a parallel plate capcaitor with
plates 20 cm by 20 cm and separated by 2 mm .

The dielectric constant of the material
between the plates is 5 . The plates are connected to a voltage source of 500 V . The energy density of the field between the plates
will be close to
A. $2.65 \mathrm{~J} / \mathrm{m}^{3}$
B. $1.95 \mathrm{~J} / \mathrm{m}^{3}$
C. $1.38 \mathrm{~J} / \mathrm{m}^{3}$
D. $0.69 \mathrm{~J} / \mathrm{m}^{3}$

Answer: C

18. The total energy stored in the condensery
system shown in the figure wili be

A. $8 \mu J$
B. $16 \mu J$
C. $2 \mu J$
D. $4 \mu J$

Answer: A

- Watch Video Solution

Van De Graaff Generator

1. Van de Graaff generator is used for
A. store electrical energy
B. build up high voltages of few million
volts
C. decelerate charged particle like
electrons
D. both (a) and (b) are correct

Answer: B

- Watch Video Solution

2. Which of the following statements is/are true about the principle of Van de Graaff generator?
A. The action of sharp points.
B. The charge given to a hollow conductor is transfered to outer surface and it distributed uniformly over it.
C. It is used for accelerating uncharged particle.

D. Both (a) and (b) are true.

Answer: D

3. Who established the fact of animal electricity?
A. Van de Graaff
B. Count Alessandro Volta
C. Gustav Robert Kirchhoff
D. Hans Christing Oersted

Answer: B

D Watch Video Solution
4. In case of a Van Graaff generator, the breakdown field of air is
A. $2 \times 10^{8} V m^{-1}$
B. $3 \times 10^{6} V m^{-1}$
C. $2 \times 10^{-8} V m^{-1}$
D. $3 \times 10^{4} V m^{-1}$

Answer: B
5. In a Van de Graaff type generator, a spherical metal shell is to be $15 \times 10^{6} V$ electrode. The dielectric strength of the gas surrounding the electrode is $5 \times 10^{7} \mathrm{Vm}^{-1}$.

The minimum radius of the spherical shell required is
A. 0.1 m
B. 0.2 m
C. 0.5 m
D. 0.3 m

Answer: D

- Watch Video Solution

Higher Order Thinking Skills

1. In a regular polygon of n sides, each corner
is at a distance r from the centre. Identical
charges are placed at ($n-1$) corners. At the centre, the intensity is E and the potential is
V. The ratio V / E has magnitude
A. rn
B. $r(n-1)$
C. $(n-1) / r$
D. $r(n-1) / n$

Answer: B

D Watch Video Solution
2. The potential at a point distant x (mesured in μm) due to some charges situated on the
x -axis is given by $V(x)=\frac{20}{x^{2}-4} \quad \mathrm{~V}$. The electric field at $x=4 \mu m$ is given by
A. $\frac{5}{3} V \mu m^{-1}$ and in positive x direction
B. $\frac{10}{9} V \mu m^{-1}$ and in negative x direction
C. $\frac{10}{9} V \mu m^{-1}$ and in positive x direction
D. $\frac{5}{3} V \mu m^{-1}$ and in negative x direction.

Answer: C

D Watch Video Solution

3. An infinite cylinder of radius r_{o}, carrying linear charge density λ. The equation of the equipotential surface for the cylinder is

$$
\begin{aligned}
& \text { A. } r=r_{0} e^{\pi \varepsilon_{0}\left[V(r)+V\left(r_{0}\right)\right] \lambda} \\
& \text { B. } r=r_{0} e^{2 \pi \varepsilon_{0}\left[V(r)-V\left(r_{0}\right)\right] \lambda^{2}} \\
& \text { C. } r=r_{0} e^{-2 \pi \varepsilon_{0}\left[V(r)=V\left(r_{0}\right)\right] \lambda} \\
& \text { D. } r=r_{0} e^{-2 \pi \varepsilon_{0}\left[V(r)-V\left(r_{0}\right)\right] \lambda}
\end{aligned}
$$

Answer: C

4. Three charges $\mathrm{Q},+q$ and $+q$ are placed at the vertices of a right-angled isosceles triangle as shown. The net electrostatic energy of the configuration is zero if Q is equal to

A. $\frac{-q}{1+\sqrt{2}}$
B. $\frac{-2 q}{2+\sqrt{2}}$

C. $-2 q$

D. $+q$

Answer: B

D Watch Video Solution

5. Three cahrges each $+q$, are placed at the corners of an isosceles trinagle $A B C$ of sides
$B C$ and $A C, 2 a, D$ and E are the mid-points of $B C$ and $C A$. The work done in taking a
charge Q from D to E is

A. $\frac{q Q}{8 \pi \varepsilon_{0} a}$
B. $\frac{q Q}{4 \pi \varepsilon_{0} a}$
C. zero
D. $\frac{3 q Q}{4 \pi \varepsilon_{0} a}$

Answer: C

D Watch Video Solution

6. Three concentric spherical shells have radii
a, b and $c(a<b<c)$ and have surface
charge densities $\sigma,-$ sigam and σ respectively. If V_{A}, V_{B} and V_{C} denote the potentials of the three shells, then for $c=a+b$, we have

$$
\text { A. } V_{C}=V_{B}=V_{A}
$$

B. $V_{C}=V_{A} \neq V_{B}$
C. $V_{C}=V_{B} \neq V_{A}$
D. $V_{C} \neq V_{B} \neq V_{A}$

Answer: B

D Watch Video Solution

7. A parallel plate capacitor is filled by a dielectric whose relative permittivity varies with the applied voltage (U) as $\varepsilon=\alpha U$ where $\alpha=2 V^{-1}$. A similar capacitor with no
dielectric is charged to $U_{0}=78 \mathrm{~V}$. It is then is
connected to the uncharged capacitor with
the dielectric. Find the final voltage on the capacitors.
A. 2 V
B. 3 V
C. 5 V
D. 6 V

Answer: D

8. For the circuit shown in figure, which of the following statements is true ?

A. With S_{1} closed, $V_{1}=15 \mathrm{~V}, V_{2}=20 \mathrm{~V}$
B. With S_{3} closed, $V_{1}=V_{2}=25 \mathrm{~V}$
C. With S_{1} and S_{2} closed, $V_{1}=V_{2}=0$
D. With
S_{1} and S_{3}
closed,

$$
V_{1}=30 \mathrm{~V}, V_{2}=20 \mathrm{~V}
$$

Answer: D

D Watch Video Solution

Ncert Exemplar

1. A capacitor of $4 \mu F$ is connected as shown in
the circuit. The internal resistance of the
battery is 0.5Ω. The amount of charge on the
capacitor plates will be

A. 0
B. $4 \mu C$
C. $16 \mu C$
D. $8 \mu C$
2. A positively charged particle is released from rest in a uniform electric field. The electric potential energy of the charge.
A. remains a constant because the electric
field is uniform.
B. increases because the charge moves
along the electric field.
C. decreases because the charge moves
along the electric field.
D. decreases because the charge moves
opposite to the electric field.

Answer: C

D Watch Video Solution

3. Figure shows some equipotential lines distributed in space. A charged object is
moved from point A to point B.
Fig. (i)
Fig. (ii)

Fig. (iii)
A. The work done in figure (i) is the greatest.
B. The work done in figure (ii) is the least.
C. The work done is the same in figure (i),
(ii) and (iii).
D. The work done in figure (iii) is greater
than figure (ii) but equal to that in figure
(i).

Answer: C

- Watch Video Solution

4. The electrostatic potential on the surface of
a charged concducting sphere is 100 V . Two
statements are made in this regard
S_{1} : at any inside the sphere, electric intensity
is zero.
S_{2} : at any point inside the sphere, the electrostatic potential is 100 V .
A. S_{1} is true but S_{2} is false
B. Both S_{1} and S_{2} are false
C. S_{1} is true, S_{2} is also true and S_{1} is the cause of S_{2}
D. S_{1} is true, S_{2} is also true but the statements are independent.

Answer: C

D Watch Video Solution

5. Equipotentials at a great distance from a collection of charges whose total sum is not zero are approximately
A. spheres
B. planes
C. paraboloids
D. ellipsoids.

Answer: A

D Watch Video Solution
6. A parallel plate capacitor is made of two
dielectric blocks in series. One of the blocks
has thickness d_{1} and dielectric constant K_{1}
and the other has thickness d_{2} and dielectric constant K_{2} as shown in figure. This arrangement can be through as a dielectric slab of thickness $d\left(=d_{1}+d_{2}\right)$ and effective dielectric constant K. The K is.

A. $\frac{K_{1} d_{1}+K_{2} d_{2}}{d_{1}+d_{2}}$
B. $\frac{K_{1} d_{1}+K_{2} d_{2}}{K_{1}+K_{2}}$
C. $\frac{\left(K_{1}+K_{2}\right)\left(d_{1}+d_{2}\right)}{K_{2} d_{1}+K_{1} d_{2}}$
D. $\frac{2 K_{1} K_{2}}{K_{1}+K_{2}}$

Answer: C

D Watch Video Solution

Assertion And Reason

1. Assertion: Work done in moving a charge between any two points in a unifrom electric field is independent of the path followed by the charge, between these points.

Reason: Electrostatic forces are nonconservative.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

2. Electric field inside a conductor can be zero only, if potential inside the conductor is
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

3. Assertion: In case of charged spherical shells, E-r graph is discontinuous while V-r graph is continuous

Reason: According to Gauss's theorem only
the charge inside a closed surface ca produce electric field at some point.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution
4. Assertion: For a point charge concentric spheres centered at a location of the charge are equipotential surfaces.

Reason : An equipotential surface is a surface over which potential has zero value.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

5. Assertion: Polar mlecules have permanent dipole moment.

Reason : In polar molecule, the centres of positive and negative charges coincide evcen wehen there is no external field.
A. If both assertion and reason are ture and reason is the correct explanation of assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

6. Assertion. Dielectric polarization means formation of positive and negative charges inside the dielectric.

Reason. Free electrons are formed in this process.
A. If both assertion and reason are ture and reason is the correct explanation of assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of
assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

7. Assertion: In the absence of an external electric field, the dipole moment per unit volume of a polar dicletric is zero.

Reason : The dipoles of a polar diclectric are randomaly oriented.
A. If both assertion and reason are ture and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

8. Can there be a potential difference between two adjacent conductors that carry same amount of positive charge ?
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

9. Assertion: The potential difference between
the two conductors of a capacitor is small.

Reason : A capacitor is so configured that it cofines the electric field lines within a small region of space.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

10. Assertion: Increasing the charge on the plates of a capacitor means increasing the capacitance.

Resion : Capacitance is directly proportinal to charge.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of

assertion .

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

11. As the distance between the plates of a parallel plate capacitor decreased
A. If both assertion and reason are ture and reason is the correct explanation of assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of
assertion .
C. If assertion is true but reason is false.

D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

12. Assertion: The distance between the
parallel plates of a capacitor is halved, then its
capacitance is doubled.

Reason: The capacitance depends on the introduced dielectric.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution
13. Assertion. Capacity of a parallel plate condenser remains unaffected on introduced
a conducting or insulating slab between the plates.

Reason. In both the cases, electric field intensity between the plates increases.
A. If both assertion and reason are ture
and reason is the correct explanation of assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of

assertion .

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution

14. Assertion: Charge on all the condensers
connected is series in the same.

Reason : Capacitance of capacitor is directly proportional to charge on it.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but
reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

15. Assertion- In a series combination of capacitors, charge on each capacitor is same.

Reason- In such a combination, charge cannot move only along one route.
A. If both assertion and reason are ture
and reason is the correct explanation of
assertion.
B. If both assertin and reason are ture but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

\square

