©゙’ doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MTG PHYSICS (ENGLISH)

NUCLEI

Mcqs

1. The set which repesents the isotope, isobar and isotone respectively is
A. $\left({ }_{\cdot 1}^{2} H,{ }_{\cdot 1}^{3} H\right),\left({ }_{79}^{197} \mathrm{Au},{ }_{80}^{198} \mathrm{Hg}\right)$ and $\left(\cdot{ }_{2}^{3} \mathrm{He},{ }_{1}^{2} \mathrm{H}\right)$
B. $\left({ }_{2}^{3} \mathrm{H},{ }_{\cdot 1}^{1} \mathrm{H}\right),\left({ }_{79}^{197} \mathrm{Au},{ }_{80}^{198} \mathrm{Hg}\right)$ and $\left(\cdot{ }_{1}^{1} \mathrm{He},{ }_{1}^{3} \mathrm{H}\right)$
C. $\left({ }_{2}^{3} H, .{ }_{1}^{3} H\right),\left(\cdot{ }_{1}^{2} H, .{ }_{1}^{2} H\right)$ and $\left({ }_{79}^{197} \mathrm{Au},{ }_{80}^{198} \mathrm{Hg}\right)$
D. $\left(\cdot{ }_{1}^{2} H, \cdot{ }_{1}^{3} H\right),\left({ }_{2}^{3} H e, \cdot{ }_{1}^{3} H\right)$ and $\left({ }_{79}^{197} \mathrm{Au},{ }_{80}^{198} \mathrm{Hg}\right)$

Answer: D

- Watch Video Solution

2. The natural boron of atomic weight 10.81 is found to have two isotopes.${ }^{10} B$ and.${ }^{11} B$.The ratio of abundance of isotopes of natural boron should be
A. $11: 10$
B. $81: 19$
C. 10: 11
D. 19:81

(D) Watch Video Solution

3. Two stable isotopes of lithium ${ }_{.}^{6} \mathrm{Li}$ and ${ }_{.}^{7} \mathrm{Li}$ have respective abundances of 7.5% and 92.5%. These isotopes have masses 6.0152 u and 7.016004 u respectively. Find the atomic weight of lithium
A. 6.941 u
B. 3.321 u
C. 2.561 u
D. 0.621 u

Answer: a

4. The most common kind of iron nucleus has a mass number of 56 . Find the approximate density of the nucleus.
A. $2.29 \times 10^{16} \mathrm{~kg} \mathrm{~m}^{-3}$
B. $2.29 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$
C. $2.29 \times 10^{18} \mathrm{~kg} \mathrm{~m}^{-3}$
D. $2.29 \times 10^{15} \mathrm{~kg} \mathrm{~m}^{-3}$

Answer: b

- Watch Video Solution

5. Order of magnitude of density of uranium nucleus is, [$m=$ $\left.1.67 \times 10^{\wedge}(-27) \mathrm{kg}\right]^{`}$

$$
\text { A. } 10^{20} \mathrm{~kg} \mathrm{~m}^{-3}
$$

B. $10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$
C. $10^{14} \mathrm{~kg} \mathrm{~m}^{-3}$
D. $10^{11} \mathrm{~kg} \mathrm{~m}^{-3}$

Answer: b

- Watch Video Solution

6. Two nuclei have their mass numbers in the ratio of $1: 3$. The ratio of their nuclear densities would be
A. $(3)^{1 / 3}: 1$
B. $1: 1$
C. $1: 3$
D. $3: 1$

- Watch Video Solution

7. The radius of a spherical nucleus as measured by electron scattering is 3.6 fm . What is the mass number of the nucleus most likely to be?
A. 27
B. 40
C. 56
D. 120

Answer: a
8. The ratio of the nuclear radii of the gold isotope ${ }_{79}^{197} \mathrm{Au}$ and silver isotope ${ }^{107} \mathrm{Ag}$ is
A. 1.23
B. 0.216
C. 2.13
D. 3.46

Answer: a

D Watch Video Solution

9. If the nucleus of ${ }_{13} A l^{27}$ has a nuclear radius of about 3.6 fm , then ${ }^{52} T e^{125}$ would have its radius approximately as
A. 9.6 fm
B. 12 fm
C. 4.8 fm
D. 6 fm

Answer: d

- Watch Video Solution

10. How much mass has to be converted into energy to produce electric power of 500 MW for one hour ?
A. $2 \times 10^{-5} \mathrm{~kg}$
B. $1 \times 10^{-5} \mathrm{~kg}$
C. $3 \times 10^{-5} \mathrm{~kg}$
D. $4 \times 10^{-5} \mathrm{~kg}$

Answer: a

- Watch Video Solution

11. if in a nuclear fusion reaction, mass defect to 0.3%, then energy released in fusion of 1 kg mass
A. 27×10^{10} J
B. $27 \times 10^{11} \mathrm{~J}$
C. 27×10^{12} J
D. $27 \times 10^{13} \mathrm{~J}$

Answer: d
12. The equivalent energy of 1 g of substance is
A. 9×10^{13} J
B. $6 \times 10^{12} \mathrm{~J}$
C. $3 \times 10^{13} \mathrm{~J}$
D. $6 \times 10^{13} \mathrm{~J}$

Answer: a

- Watch Video Solution

13. Fission of nuclei is possible because the binding energy
A. increases with mass number at low mass numbers
B. decreases with mass number at low mass numbers
C. increases with mass number at high mass numbers
D. decreases with mass number at high mass numbers

Answer: d

D Watch Video Solution

14. The mass of ${ }_{3}^{7} \mathrm{Li}$ is 0.042 amu less than the sum of masses of its constituents. The binding energy per nucleon is
A. 5.586 MeV
B. 10.522 MeV
C. 2.433 MeV

Answer: a

- Watch Video Solution

15. The binding energy per nucleon of deuterium and helium nuclei are 1.1 MeV and 7.0 MeV respectively. When two deuterium nuclei fuse to form a helium nucleus the energy released in the fusion is
A. 23.6 MeV
B. 2.2 MeV
C. 28.0 MeV
D. 30.2 MeV

D Watch Video Solution

16. Let m_{p} be the mass of a proton , m_{n} the mass of a neutron, M_{1} the mass of a $\cdot{ }_{10}^{20} N e$ nucleus and M_{2} the mass of a $\cdot{ }_{20}^{40} C a$ nucleus. Then
A. $M_{2}=M_{1}$
B. $M_{2}>M_{1}$
C. $M_{2}<2 M_{1}$
D. $M_{1}<10\left(m_{n}+m_{p}\right)$

Answer: d

17. The mass of proton is 1.0073 u and that of neutron is $1.0087 \mathrm{u}\left(\mathrm{u}=\right.$ atomic mass unit). The binding energy of.${ }_{2}^{4} \mathrm{He}$, if mass of $\cdot{ }_{2}^{4} \mathrm{He}$ is 4.0015 u is
A. 0.0305 erg
B. 0.0305 J
C. 28.4 MeV
D. 0.061 u

Answer: c

D Watch Video Solution

18. If the binding energy per nucleon of deuterium is 1.115

MeV , its mass defect in atomic mass unit is
A. 0.0048
B. 0.0024
C. 0.0012
D. 0.0006

Answer: b

(D) Watch Video Solution

19. The half - life period of a radioactive element x is same as the mean life time of another radioactive element y Initially both of them have the same number of atoms. Then,n
A. X and Y decay at same rate always
B. X will decay faster than Y
C. Y will decay faster than X
D. X and Y have same decay rate initially

Answer: c

D Watch Video Solution

20. Sample of two radioactive nuclides A and B are taken. λ_{A} and λ_{B} are the disintergration constants of A and B respectively. In which of the following cases, the two sample can simultaneously have the same decay rate at any time?
A. Initial rate of decay of A is twice the initial rate of decay

$$
\text { of } \mathrm{B} \text { and } \lambda_{A}=\lambda_{B}
$$

B. Initial rate of decay of A is twice the initial rate of decay of B and $\lambda_{A}>\lambda_{B}$.
C. Initial rate of decay of B is twice the initial rate of decay of A and $\lambda_{A}>\lambda_{B}$.
D. Initial rate of decay of B is twice the initial rate of decay of A at $\mathrm{t}=2 \mathrm{~h}$ and $\lambda_{B}=\lambda_{A}$

Answer: b

- View Text Solution

21. The half life of ${ }_{.92}^{238} U$ undergoing α-decay is 4.5×10^{9} years. The activity of 1 g sample of ${ }_{92}^{238} U$ is
A. $1.23 \times 10^{4} \mathrm{~Bq}$
B. $1.23 \times 10^{5} \mathrm{~Bq}$
C. $1.23 \times 10^{3} \mathrm{~Bq}$
D. $1.23 \times 10^{6} \mathrm{~Bq}$

Answer: a

(Watch Video Solution

22. The half life of a radioactive substance is 20 s , the time taken for the sample to decay by $7 / 8^{\text {th }}$ of its initial value is
A. 20 s
B. 40 s
C. 60 s
D. 80 s

Answer: c

D Watch Video Solution

23. 1 mg redium has 2.68×10^{18} atoms. Its half life is 1620 years. How many radium atoms will disintegrate from 1 mg of pure radium in 3240 years ?
A. 2.01×10^{9}
B. 2.01×10^{18}
C. 1.01×10^{9}
D. 1.01×10^{18}

Answer: b

24. Radon has 3.8 days as its half-life . How much radon will be left out of 15 mg mass after 38 days?
A. 1.05 mg
B. 0.015 mg
C. 0.231 mg
D. 0.50 mg

Answer: b

(Watch Video Solution

25. The half life of a radioactive substance is 30 days. What is the time taken to disintegrate to $3 / 4^{\text {th }}$ of its original mass ?
A. 30 days
B. 15 days
C. 60 days
D. 90 days

Answer: c

D Watch Video Solution

26. The half life of polonium is 140 days. In what time will 15 g of polonium be disintegrated out of its initial mass of 16 g ?
A. 230 days
B. 560 days
C. 730 days
D. 160 days

Answer: b

(Watch Video Solution

27. In a sample of radioactive material, what fraction of the initial number of active nuclei will remain undisintegrated after half of the half life of the sample?
A. $\frac{1}{4}$
B. $\frac{1}{2 \sqrt{2}}$
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{2}-1$

Answer: c

- Watch Video Solution

28. At a given instant, there are 25% undecayed radioactive nuclei in a sample. After 10 seconds the number of undecayed nuclei reduces to 12.5%, the mean life of the nuclei is
A. 10.21 s
B. 14.43 s
C. 5.31 s
D. 7.43 s

Answer: b

D Watch Video Solution

29. Two redioactive nuclei A and B have disintegration constants λ_{A} and λ_{B} and initially N_{A} and N_{B} number of nuclei of them are taken, then the time after which their undisintegrated nuclei are same is
A. $\frac{\lambda_{A} \lambda_{B}}{\left(\lambda_{A}-\lambda_{B}\right)} \operatorname{In}\left(\frac{N_{B}}{N_{A}}\right)$
B. $\frac{1}{\left(\lambda_{A}+\lambda_{B}\right)} \operatorname{In}\left(\frac{N_{B}}{N_{A}}\right)$
C. $\frac{1}{\left(\lambda_{B}-\lambda_{A}\right)} \operatorname{In}\left(\frac{N_{B}}{N_{A}}\right)$
D. $\frac{1}{\left(\lambda_{A}-\lambda_{B}\right)} \operatorname{In}\left(\frac{N_{B}}{N_{A}}\right)$

Answer: c

(D) Watch Video Solution

30. A freshly prepared radioactive source of half-life $2 h$ emits radiation of intensity which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is
A. 128 h
B. 24 h
C. 6 h
D. 12 h

Answer: d

- Watch Video Solution

31. Two samples X and Y contain equal amount of radioactive substances. If $\frac{1^{\text {th }}}{16}$ of the sample Y, remain after 8 hours, then the ratio of half life periods of X and Y is
A. 2: 1
B. 1:2
C. 1: 4
D. $4: 1$

Answer: a

D View Text Solution

32. The decay constant of a radioactive isotope is λ. If A_{1} and
A_{2} are its activites at time t_{1} and t_{2} respectively, then the
number of nuclei which have decayed the time $\left(t_{1}-t_{2}\right)$
A. $A_{1} t_{1}-A_{2} t_{2}$
B. $A_{1}-A_{2}$
C. $\left(A_{1}-A_{2}\right) / \lambda$
D. $\lambda\left(A_{1}-A_{2}\right)$

Answer: c

(Watch Video Solution

33. A 280 day old radioactive substances shows an activity of 6000 dps, 140 days later its activity becomes 3000 dps. What was its initial activity?
A. 20000 dps
B. 24000 dps
C. 12000 dps
D. 6000 dps

Answer: b

(Watch Video Solution

34. Tritium has a half life of 12.5 years against beta decay.

What fraction of a sample of pure tritium will remain undecayed after 25 years?
A. one half
B. one fourth
C. one third
D. can't say

Answer: b

- Watch Video Solution

35. The decay constant, for a given radioactive sample, is 0.3465 day $^{-1}$.What percentage of this sample will get decayed in a period of 4 days?
A. 100%
B. 50%
C. 75%
D. 10%

Answer: c

- Watch Video Solution

36. The count rate of a radioactive sample falls from $4.0 \times 10^{6} s^{-1}$ to $1.0 \times 10^{6} s^{-1}$ in 20 hours. What will be the count rate after 100 hours from beginning ?
A. $3.91 \times 10^{3} s^{-1}$
B. $3.91 \times 10^{2} s^{-1}$
C. $3.91 \times 10^{4} s^{-1}$
D. $3.91 \times 10^{6} s^{-1}$

Answer: a

D Watch Video Solution

37. Carbon dating is best suited for determining the age of fossils of their age in years is of the order of
A. 10^{3}
B. 10^{4}
C. 10^{5}
D. 10^{6}

Answer: b

- Watch Video Solution

38. The half life of radioactive Radon is 3.8 days. The time at the end of which $\frac{1}{20} t h$ of the radon sample will remain undecayed is (given $\log e=0.4343$)
A. 3.8 days
B. 16.5 days
C. 33 days
D. 76 days

Answer: b

(D) Watch Video Solution

39. A radioactive element X with half life $2 h$ decays giving a stable element Y . After a time t , ratio of X and Y atoms is 1:16
.Time t is
A. 6 h
B. 4 h
C. 8 h
D. 16 h

Answer: c

(D) Watch Video Solution

40. The half life of ${ }_{38}^{90} S r$ is 28 years. The disintegration rate of 15 mg of this isotope is of the order of
A. $10^{11} \mathrm{~Bq}$
B. $10^{10} \mathrm{~Bq}$
C. $10^{7} \mathrm{~Bq}$
D. $10^{9} \mathrm{~Bq}$

- Watch Video Solution

41. A sample of a radioactive element has a mass of 10 g at an instant $\mathrm{t}=0$. The approximate mass of this element in the sample left after two mean lives is
A. 1.35 g
B. 2.50 g
C. 3.70 g
D. 6.30 g

Answer: a

- Watch Video Solution

42. The count rate from $100 \mathrm{~cm}^{3}$ of a radioactive liquid is c. Some of this liquid is now discarded. The count rate of the remaining liquid is found to be $c / 10$ after three half-lives. The volume of the remaining liquid, in cm^{3}, is
A. 20
B. 40
C. 60
D. 80

Answer: d

- Watch Video Solution

43. A sample of radioactive material has mass m, decay constant λ, and molecular weight M. Avogadro constant $=N_{A}$. The initial activity of the sample is:
A. λm
B. $\frac{\lambda m}{M}$
C. $\frac{\lambda m N_{A}}{M}$
D. $m N_{A} \lambda$

Answer: c

D Watch Video Solution

44. Two radioactive substance A and B have decay constants
5λ and λ respectively. At $t=0$ they have the same number of
nuclei. The ratio of number of nuclei of nuclei of A to those of
B will be $\left(\frac{1}{e}\right)^{2}$ after a time interval
A. 4λ
B. 2λ
C. $1 / 2 \lambda$
D. $1 / 4 \lambda$

Answer: c

- Watch Video Solution

45. Plutonium decays with half life of 24000 years. If plutonium is stored for 72000 years, the fraction of it that remains is
A. $1 / 8$
B. $1 / 3$
C. $1 / 4$
D. $1 / 2$

Answer: a

D Watch Video Solution

46. A fraction f_{1} of a radioactive sample decays in one mean
life, and a fraction f_{2} decays in one half life. Then
A. $f_{1}>f_{2}$
B. $f_{1}<f_{2}$
C. $f_{1}=f_{2}$
D. either of (a),(b) or (c) depending on the values of the mean life and half life.

Answer: a

D Watch Video Solution

47. The activity of a radioactive sample is measures as N_{0} counts per minute at $t=0$ and N_{0} / e counts per minute at $t=5 \mathrm{~min}$. The time (in minute) at which the activity reduces to half its value is.
A. $\frac{\log _{e} 2}{5}$
B. $\frac{5}{\log _{e} 2}$
C. $5 \log _{10} 2$
D. $5 \log _{e} 2$

Answer: d

- Watch Video Solution

48. The number of beta particles emitter by radioactive sustance is twice the number of alpha particles emitter by it.

The resulting daughter is an
A. isomer of parent
B. isotone of parent
C. isotope of parent
D. isobar of parent

Answer: c

- Watch Video Solution

49. During negative B decay, an anti- neutrino is also emmited along with the ejected electron. Then
A. only linear momentum will be conserved
B. total linear momentum and total anuglar momentum
but not total energy will be conserved
C. total linear momentum and total energy but not total angular momentum will be conserved
D. total linear momentum , total angular momentum and total energy will be conserved.

Answer: d

50. Which of the following cannot be emitted by radioactive substances during their decay?
A. Neutrinos
B. Protons
C. Electrons
D. Helium nuclei

Answer: b

D Watch Video Solution

51. A radioactive decay can form an isotope of the original
A. one α and four β
B. one α and two β
C. one α and one β
D. four α and one β

Answer: b

- View Text Solution

52. Pick out the incorrect statement from the following .
A. β^{-}emission from the nucleus is always accompanied
with a neutrino
B. The energy of the α-particle emitted from a given nucleus is always constant.
C. γ-ray emission makes the nucleus more stable.
D. Nuclear force is charge-independent

Answer: a

- View Text Solution

53. Consider $\alpha-, \beta$ - particles and $\gamma-$ rays, each having an energy fo 0.5 Mev in increasing order f penertation power, the radiations are:
A. α, β, γ
B. α, γ, β
C. β, γ, α
D. γ, β, α

D View Text Solution

54. The electron emitted in beta radiation originates from
A. inner orbits of atom
B. free electrons existing in the nuclei
C. decay of a neutron in a nuclei
D. photon escaping from the nucleus

Answer: c

55. Radioactive $\cdot{ }_{27}^{60} \mathrm{Co}$ is transformed into stable $\cdot{ }_{28}^{60} \mathrm{Ni}$ by emitting two γ-rays of energies
A. 1.33 MeV and 1.17 MeV in succession
B. 1.17 MeV and 1.33 MeV in succession
C. 1.37 MeV and 1.13 MeV in succession
D. 1.13 MeV and 1.37 MeV in succession

Answer: b

D Watch Video Solution

56. Complete the series . ${ }^{6} \mathrm{He} \rightarrow \mathrm{e}^{-}+.{ }^{6} \mathrm{Li}+$
A. neutrino
B. antineutrino
C. proton
D. neutron

Answer: b

(Watch Video Solution

57. A nucleus of $U x_{1}$ has a half life of 24.1 days. How long a sample of $U x_{1}$ will take to change to 90% of $U x_{2}$.
A. 80 days
B. 40 days
C. 20 days
D. 10 days

Answer: a

- Watch Video Solution

58. An element A decays into element C by a two-step process:
$A \rightarrow B+{ }_{.2} H e^{4}$
$B \rightarrow C+2 e^{-}$

Then.
A. A and C are isotopes
B. A and C are isobars
C. B and C are isotopes
D. A and B are isobars

- Watch Video Solution

59. The equation

$$
4 \mathrm{H}^{+} \rightarrow_{2}^{4} \mathrm{He}^{2+}+2 e \overline{+} 26 \mathrm{MeVrepresents}
$$

A. β-decay
B. γ-decay
C. fusion
D. fission

Answer: c

(Watch Video Solution

60. Light energy emitted by star is due to
A. breaking of nuclei
B. joining of nuclei
C. burning of nuclei
D. reflection of solar light

Answer: b

(D) Watch Video Solution

61. In a nuclear reaction, which of the following options are conserved?
A. mass only
B. energy only
C. momentum only
D. mass, energy and momentum

Answer: d

- Watch Video Solution

62. Which of the following are used as control rods in a nuclear reactor ?
A. cadmium
B. graphite
C. krypton
D. plutonium

Answer: a
63. Fast neutrons can easily be slowed down by
A. the use of lead shielding
B. passing them through water
C. elastic collisions with heavy nuclei
D. applying a strong electric field

Answer: b

- Watch Video Solution

64. Which of the following equations, pick out the possible nuclear fusion reactions?
A. $\cdot{ }_{6}^{13} C+\cdot{ }_{1}^{1} H \rightarrow{ }_{6}^{14} C+4.3 \mathrm{MeV}$
B. ${ }_{6}^{12} C+{ }_{1}^{1} H \rightarrow{ }_{7}^{13} N+2 \mathrm{MeV}$
C. ${ }_{7}^{14} \mathrm{~N}+\cdot{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{.}^{15} \mathrm{O}+7.3 \mathrm{MeV}$
D. ${ }_{92}^{235} U+{ }_{\cdot}^{1} N \rightarrow{ }_{0}^{140} \mathrm{Xe}+.{ }_{54}^{94} S r+\cdot{ }_{0}^{1} n+.{ }_{0}^{1} n+200$

MeV

Answer: b and d

D Watch Video Solution

65. If 200 MeV energy is released in the fission of a single U^{235} nucleus, the number of fissions required per second to produce 1 kilowatt power shall be (Given $\left.1 e V=1.6 \times 10^{-19} J\right)$.
A. 3.125×10^{13}
B. 1.52×10^{6}
C. 3.125×10^{12}
D. 3.125×10^{14}

Answer: a

(D) Watch Video Solution

66. In a nuclear fusion reaction, two nuclei, A \& B , fuse to produce a nucleus C, releasing an amount of energy ΔE in the process.If the mass defects of the three nuclei are $\Delta M_{A}, \Delta M_{B} \& \Delta M_{C}$ respectively, then which of the following relations holds ? Here, c is the speed of light.

$$
\text { A. } \Delta M_{A}+\Delta M_{B}=\Delta M_{C}-\Delta E / c^{2}
$$

B. $\Delta M_{A}+\Delta M_{B}=\Delta M_{C}+\Delta E / c^{2}$
C. $\Delta M_{A}-\Delta M_{B}=\Delta M_{C}-\Delta E / c^{2}$
D. $\Delta M_{A}-\Delta M_{B}=\Delta M_{C}+\Delta E / c^{2}$

Answer: a

- Watch Video Solution

67. Mass numbers of the elements A,B,C and D are 30,60,90 and 120 respectively. The specific binding energy of them are 5

MeV , 8.5 MeV , 6 MeV and 7 MeV respectively. Then, in which of the following reaction/s energy is released?
$(1) \mathrm{D} \rightarrow 2 \mathrm{~B},(2) \mathrm{C} \rightarrow \mathrm{B}+\mathrm{A},(3) \mathrm{B} \rightarrow 2 \mathrm{~A}$
A. only in (1)
B. only in (3)
C. in (1) , (3)
D. in (1), (2) and (3)

Answer: a

D Watch Video Solution

68. The fission properties of ${ }_{94}^{239} \mathrm{Pu}$ are very similar to those of ${ }_{92}^{235} \mathrm{U}$. The average energy released per fission is 180 MeV . If all the atoms in 1 kg of pure ${ }_{94}^{239} \mathrm{Pu}$ undergo fission, then the total energy released in MeV is
A. $4.53 \times 10^{26} \mathrm{MeV}$
B. $2.21 \times 10^{14} \mathrm{MeV}$
C. $1 \times 10^{13} \mathrm{MeV}$
D. $6.33 \times 10^{24} \mathrm{MeV}$

Answer: a

- Watch Video Solution

69. A ancleus of mass number 220, initially at rest, emits an α particle, If the Q -value of the reaction is 5.5 Me V , then the energy of the emitted α-particle will be
A. 4.4 MeV
B. 5.4 MeV
C. 5.6 MeV
D. 6.5 MeV

- Watch Video Solution

1. Sometimes a radioactive nucleus decays into a nucleus which inself is radioactive . An example is : ${ }^{38}$ Sulphur $\xrightarrow[=2.48 \mathrm{~h}]{\text { half-life }} 38 \xrightarrow[=0.62 \mathrm{~h}]{\text { half-life }} 38$ (stable)

Assume that we start with $1000{ }^{38} S$ nuclei at time t=0 . The number of ${ }^{38} \mathrm{Cl}$ is of count zero at $\mathrm{t}=0$ and will again be zero at $t=\infty$. At what value of t , would the number of counts be a maximum?
A. 1.65 h
B. 2.62 h
C. 3.24 h

Answer: a

D View Text Solution

2. The deuteron is bound by nuclear forces just as H -atom is made up of p and e bound by electrostatic forces. If we consider the forces between neutron and proton in deuteron as given in the form of a Coulomb force but with an effective charge e': $F=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r^{2}}$
estimate the value of $\left(e^{\prime} / e\right)$ given that the following binding energy of a deuteron is 2.2 MeV .
A. 1.89
B. 9.24
C. 3.64
D. 7.62

Answer: c

D Watch Video Solution

3. A fission reaction is given by

- $(92)^{236} U \rightarrow{ }_{54}^{140} X e+{ }_{38}^{94} S t+x+y$, where x and y are two particle Consider $-(92)^{236} U$ to be at rest, the kinetic energies of the products are deneted by $k_{x e} K_{s t} K_{x}(2 \mathrm{MeV})$ and $\mathrm{Ky}(2 \mathrm{MeV})$ repectively . Let the binding energy per nucleus of - $(92)^{236} U,{ }_{54}^{140} \mathrm{Xe}$ and ${ }_{38}^{94} S t b e 7.5 \mathrm{MeV}, 8.4 M e V$ and 8.5 MeV , respectively Considering different conservation laws, the correct option (s) is (are)
A. $\mathrm{x}=\mathrm{n}, \mathrm{y}=\mathrm{n}, K_{\mathrm{Sr}}=129 \mathrm{MeV}, K_{\mathrm{Xe}}=86 \mathrm{MeV}$
B. $\mathrm{x}=\mathrm{p}, \mathrm{y}=e^{-}, K_{\mathrm{Sr}}=129 \mathrm{MeV}, K_{\mathrm{Xe}}=86 \mathrm{MeV}$
C. $\mathrm{x}=\mathrm{p}, \mathrm{y}=\mathrm{n}, K_{\mathrm{Sr}}=129 \mathrm{MeV}, K_{\mathrm{Xe}}=86 \mathrm{MeV}$
D. $\mathrm{x}=\mathrm{n}, \mathrm{y}=\mathrm{n}, K_{\mathrm{Sr}}=86 \mathrm{MeV}, K_{\mathrm{Xe}}=129 \mathrm{MeV}$

Answer: a

- Watch Video Solution

4. How long can an electric lamp of 100W be kept glowing by fusion of 2.0 kg of deuterium? The fusion reaction can be taken as $\cdot{ }_{1} H^{2}+{ }_{\cdot 1} H^{2} \rightarrow{ }_{\cdot 1} H^{3}+n+3.17 \mathrm{MeV}$
A. 2.4×10^{6} years
B. 7.4×10^{4} years
C. 1.6×10^{6} years
D. 4.9×10^{4} years

Answer: d

D Watch Video Solution

5. Nuclei of a radioactive element A are being produced at a constant rate α. The element has a decay constant λ. At time $t=0$, there are N_{0} nuclei of the element.
(a) Calculate the number N of nuclei of A at time t.
(b) If $\alpha=2 N_{0} \lambda$, calculate the number of nuclei of A after one half-life of A , and also the limiting value of N as $t \rightarrow \infty$.
A. $\frac{1}{\lambda}\left[\alpha+\left(\alpha-N_{0} \lambda\right) e^{-\lambda t}\right]$
B. $\frac{1}{\lambda}\left[\alpha-\left(\alpha-N_{0} \lambda\right) e^{-\lambda t}\right]$
C. $\lambda\left[\alpha-\left(\alpha-N_{0} \lambda\right) e^{-\lambda t}\right]$
D. $\left[\alpha-\left(N_{0} \lambda-\alpha\right) e^{-\lambda t}\right]$

Answer: b

- Watch Video Solution

6. If $\alpha=2 N_{0} \lambda$, calculate the number of nuclei of A after one half-life of A, and also the limiting value of N as
A. $2 N_{0}, \frac{5}{2} N_{0}$
B. $3 N_{0}, 2 N_{0}$
C. $4 N_{0}, 2 N_{0}$
D. $\frac{3}{2} N_{0}, 2 N_{0}$

D View Text Solution

7. The element curium ${ }_{96}^{248} \mathrm{Cm}$ has a mean life of $10^{13} \mathrm{~s}$. Its primary decay modes are spontaneous fission and α-decay, the former with a probability of 8% and the later with a probability of 92%, each fission releases 200 MeV of energy.

The masses involved in decay are as follows
${ }_{.96}^{248} \mathrm{Cm}=248.072220 u$,
${ }_{94}^{244} P_{u}=244.064100 u$ and $.{ }_{2}^{4} \mathrm{He}=4.002603 u$. Calculate the power output from a sample of $10^{20} \mathrm{Cm}$ atoms. ($\left.1 u=931 M e V / c^{2}\right)$
A. $4.42 \times 10^{-3} \mathrm{~W}$
B. $3.32 \times 10^{-5} \mathrm{~W}$
C. $4.42 \times 10^{-5} \mathrm{~W}$
D. $3.32 \times 10^{-3} \mathrm{~W}$

Answer: b

- Watch Video Solution

Exemplar Problems

1. Suppose we consider a large number of containers each containing initially 10000 atoms of a radioactive material with a half life of 1 yr . After 1 yr
A. all the containers will have 5000 atoms of the material.
B. all the containers will contain the same number of atoms of the material but that number will only be
C. the containers will in general have different number of the atoms of the material but their average will be close to 5000
D. none of containers can have more than 5000 atoms.

Answer: c

(Watch Video Solution

2. The gravitational force between a H -atom and another particle of mass m will be given by Newton's law $F=G \frac{M . m}{r^{2}}$, where r is in km and

$$
\text { A. } M=m_{\text {proton }}+m_{\text {electron }}
$$

B. $M=m_{\text {proton }}+m_{\text {electron }}-\frac{B}{c^{2}}(\mathrm{~B}=13.6 \mathrm{eV})$
C. M is not related to the mass of hydrogen atom
D. $M=m_{\text {proton }}+m_{\text {electron }}-\frac{|V|}{c^{2}}(|\mathrm{~V}|=$ magnitude of the potential energy of electron in the H -atom)

Answer: b

(D) Watch Video Solution

3. When a nucleus in an atom undergoes a radioactive decay the electronic energy levels of the atom
A. do not change for any type of radioactivity
B. change for α and β radioactivity but not for γ radioactivity
C. change for α-radioactivity but not for others
D. change for β-radioactivity but not for others

Answer: b

- Watch Video Solution

4. M_{x} and M_{y} denote the atomic masses of the parent and the daughter nuclei respectively in radioactive decay. The Qvalue for a β^{-}decay is Q_{1} and that for a β^{+}decay is Q_{2}. If m_{e} denotes the mass of an electron then which of the following statements is correct?
A. $Q_{1}=\left(M_{x}-M_{y}\right) c^{2}$ and $Q_{2}=\left(M_{x}-M_{y}-2 m_{e}\right) c^{2}$
B. $Q_{1}=\left(M_{x}-M_{y}\right) c^{2}$ and $Q_{2}=\left(M_{x}-M_{y}\right) c^{2}$

$$
\begin{array}{rlr}
\text { C. } Q_{1} & =\left(M_{x}-M_{y}-2 m_{e}\right) c^{2} & \text { and } \\
\qquad Q_{2} & =\left(M_{x}-M_{y}+2 m_{e}\right) c^{2} & \text { and } \\
\text { D. } Q_{1} & =\left(M_{x}-M_{y}+2 m_{e}\right) c^{2} & \\
Q_{2} & =\left(M_{x}-M_{y}+2 m_{e}\right) c^{2} &
\end{array}
$$

Answer: a

(D) Watch Video Solution

5. Tritium is an isotope of hydrogen whose nucleus triton contains 2 neutrons and 1 proton. Free neutrons decay into
$p+e^{-}+\bar{V}$. If one of the neutrons in triton decays, then it would transform into He^{3} nucleus. This does not happen. This is because
A. Triton energy is less than that of a $H e^{3}$ nucleus
B. The electron created in the beta decay process cannot remain in the nucleus
C. both the neutrons in triton have a decay simultaneously resulting in a nucleus with 3 protons which is not a He^{3} nucleus.
D. because free neutrons decay due to external perturbations which is absent in a triton nucleus.

Answer: a

D Watch Video Solution

6. Heavy stable nuclei have more neutrons than protons. This is because of the fact that
A. neutrons are heavier than protons .
B. electrostatic force between protons are repulsive
C. neutrons decay into protons through beta decay
D. nuclear forces between neutrons are weaker than that between protons.

Answer: b

(Watch Video Solution

7. In a nuclear reactor, moderators slow down the neutrons which come out in a fission process. The moderator used have light nuclei. Heavy nuclei will not serve the purpose because
A. they will break up
B. elastic collision of neutrons with heavy nuclei will not slow them down
C. the net weight of the reactor would be unbearably high
D. substances with heavy nuclei do not occur in liquid or gaseous state at room temperature .

Answer: b

- Watch Video Solution

Assertion Reason

1. Assertion:The whole mass of the atom is concentrated in the nucleus.

Reason:The whole mass of the atom is concentrated in the
nucleus

Reason:The mass of a nucleus can be either less than or more than the sum of the masses of nucleons present in it.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

Answer: c

(Watch Video Solution

2. Assertion : The radius of a nucleus determined by electron scattering is found to be slightly different from that determined by alpha particle scattering .

Reason : Electron scattering senses the charge distribution of the nucleus whereas alpha and similar particles sense the nuclear matter.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

Answer: a

- View Text Solution

3. Assertion:Isotopes of an element can be separated by using a mass spectrometer.

Reason: Separation of isotopes is possible because of difference in electron number of isotopes .
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not
the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

- View Text Solution

4. Assertion:When a nucleus is in an excited state, it can make
a transition to a lower energy state by the emission of gamma rays .

Reason:These are energy levels for a nucleus just like there are energy levels in atoms .
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not
the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

- View Text Solution

5. Assertion:Binding energy per nucleon is nearly constant for element in the range $A=30$ to $A=170$.

Reason : The nuclear force between two nucleons falls rapidly to zero as their distance is more than a few femtometres.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

(D) Watch Video Solution

6. Assertion:Nuclear force between neutron-neutron, protonneutron and proton-proton is approximately the same Reason : The nuclear force does not depend on the electric charge
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

(Watch Video Solution

7. Assertion:A free neutron is unstable

Reason : Free neutron disintegrates into proton, electron and an antineutrino i.e. $n \rightarrow p+e^{-}+\bar{v}$
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not
the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

- View Text Solution

8. Assertion:The detection of neutrinos is extremely difficult . Reason : Neutrinos interact only very weakly with matter.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false
9. Assertion:An α-particle is emitted when uranium 238 decays into thorium

Reason : The decay of uranium 238 to thorium is repesented by ${ }_{92}^{238} U \rightarrow{ }_{90}^{234} \mathrm{Th}+{ }_{.2}^{4} \mathrm{He}$. The helium nuclei is called an alpha particle.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not
the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

D View Text Solution

10. Assertion:The mass of β-particles when they are emitted is higher than the mass of electrons obtained by other means.

Reason: β-particle and electron, both are similar particles.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not
the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

- Watch Video Solution

11. Assertion:Neutrons penetrate matter more readily as compared to protons.

Reason:A neutron has no charge .
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not
the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

- Watch Video Solution

12. Assertion:There occurs a chain reaction when uranium is bombarded with slow neutrons.

Reason:When uranium is bombarded with slow neutrons more neutrons are produced
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

D View Text Solution

13. Assertion:Fusion of hydrogen nuclei into helium nuclei is the source of energy of all stars.

Reason:In fusion heavier nuclei split to form lighter nuclei.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not
the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

- View Text Solution

14. Assertion:Nuclear sources will give a million times larger energy than conventional sources.

Reason:Nuclear energy sources are massive than conventional energy sources.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

- View Text Solution

15. Assertion:Naturally, thermonuclear fusion reaction is not possible on earth.

Reason : For thermonuclear fusion to take place, extreme condition of temperature and pressure are required.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

D View Text Solution

Atomic Masses

1. The set which repesents the isotope, isobar and isotone respectively is
A. $\left(\cdot{ }_{1}^{2} H,{ }_{\cdot 1}^{3} H\right),\left({ }_{79}^{197} \mathrm{Au},{ }_{80}^{198} \mathrm{Hg}\right)$ and $\left(\cdot{ }_{2}^{3} \mathrm{He},{ }_{1}^{2} \mathrm{H}\right)$
B. $\left({ }_{\cdot 2}^{3} H,{ }_{\cdot 1}^{1} H\right),\left({ }_{79}^{197} \mathrm{Au},{ }_{80}^{198} \mathrm{Hg}\right)$ and $\left(\cdot{ }_{1}^{1} \mathrm{He},{ }_{1}^{3} \mathrm{H}\right)$
C. $\left({ }_{2}^{3} H, \cdot{ }_{1}^{3} H\right),\left(\cdot{ }_{1}^{2} H, .{ }_{1}^{2} H\right)$ and $\left({ }_{79}^{197} \mathrm{Au},{ }_{80}^{198} \mathrm{Hg}\right)$
D. $\left({ }_{1}^{2} H, .{ }_{1}^{3} H\right),\left({ }_{2}^{3} \mathrm{He}, .{ }_{1}^{3} \mathrm{H}\right)$ and $\left({ }_{79}^{197} \mathrm{Au},{ }_{80}^{198} \mathrm{Hg}\right)$

Answer: D
2. The natural boron of atomic weight 10.81 is found to have two isotopes $\cdot{ }^{10} B$ and $\cdot{ }^{11} B$.The ratio of abundance of isotopes of natural boron should be
A. $11: 10$
B. $81: 19$
C. 10: 11
D. 19:81

Answer: d

- Watch Video Solution

3. Two stable isotopes of lithium $\cdot{ }_{3}^{6} \mathrm{Li}$ and $\cdot{ }_{3}^{7} \mathrm{Li}$ have respective abundances of 7.5% and 92.5%. These isotopes have masses 6.0152 u and 7.016004 u respectively. Find the atomic weight of lithium
A. 6.941 u
B. 3.321 u
C. 2.561 u
D. 0.621 u

Answer: a

1. The most common kind of iron nucleus has a mass number of 56 . Find the approximate density of the nucleus.
A. $2.29 \times 10^{16} \mathrm{~kg} \mathrm{~m}^{-3}$
B. $2.29 \times 10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$
C. $2.29 \times 10^{18} \mathrm{~kg} \mathrm{~m}^{-3}$
D. $2.29 \times 10^{15} \mathrm{~kg} \mathrm{~m}^{-3}$

Answer: b

- Watch Video Solution

2. Order of magnitude of density of uranium nucleus is, [$m=$ $\left.1.67 \times 10^{\wedge}(-27) \mathrm{kg}\right]^{`}$
A. $10^{20} \mathrm{~kg} \mathrm{~m}^{-3}$
B. $10^{17} \mathrm{~kg} \mathrm{~m}^{-3}$
C. $10^{14} \mathrm{~kg} \mathrm{~m}^{-3}$
D. $10^{11} \mathrm{~kg} \mathrm{~m}^{-3}$

Answer: b

(Watch Video Solution

3. Two nuclei have their mass numbers in the ratio of $1: 3$. The ratio of their nuclear densities would be
A. $(3)^{1 / 3}: 1$
B. $1: 1$
C. $1: 3$
D. $3: 1$

Answer: b

D Watch Video Solution

4. The radius of a spherical nucleus as measured by electron scattering is 3.6 fm . What is the mass number of the nucleus most likely to be ?
A. 27
B. 40
C. 56
D. 120

Answer: a
5. The ratio of the nuclear radii of the gold isotope ${ }_{.79}^{197} \mathrm{Au}$ and silver isotope ${ }_{47}^{107} \mathrm{Ag}$ is
A. 1.23
B. 0.216
C. 2.13
D. 3.46

Answer: a

D Watch Video Solution

6. If the nucleus of ${ }_{13} A l^{27}$ has a nuclear radius of about 3.6 fm , then ${ }^{52}$ $T e^{125}$ would have its radius approximately as
A. 9.6 fm
B. 12 fm
C. 4.8 fm
D. 6 fm

Answer: d

D Watch Video Solution

Mass Energy And Nuclear Binding Energy

1. How much mass has to be converted into energy to produce electric power of 500 MW for one hour ?
A. $2 \times 10^{-5} \mathrm{~kg}$
B. $1 \times 10^{-5} \mathrm{~kg}$
C. $3 \times 10^{-5} \mathrm{~kg}$
D. $4 \times 10^{-5} \mathrm{~kg}$

Answer: a

- Watch Video Solution

2. if in a nuclear fusion reaction, mass defect to 0.3%, then energy released in fusion of 1 kg mass
A. 27×10^{10} J
B. $27 \times 10^{11} \mathrm{~J}$
C. 27×10^{12} J
D. $27 \times 10^{13} \mathrm{~J}$

Answer: d

- Watch Video Solution

3. The equivalent energy of 1 g of substance is
A. 9×10^{13} J
B. $6 \times 10^{12} \mathrm{~J}$
C. $3 \times 10^{13} \mathrm{~J}$
D. $6 \times 10^{13} \mathrm{~J}$

Answer: a

- Watch Video Solution

4. Fission of nuclei is possible because the binding energy per nuclei in them
A. increases with mass number at low mass numbers
B. decreases with mass number at low mass numbers
C. increases with mass number at high mass numbers
D. decreases with mass number at high mass numbers

Answer: d

(D) Watch Video Solution

5. The mass of.$_{3}^{7} L i$ is 0.042 amu less than the sum of masses
of its constituents. The binding energy per nucleon is
A. 5.586 MeV
B. 10.522 MeV
C. 2.433 MeV
D. 3.739 MeV

Answer: a

(D) Watch Video Solution

6. The binding energy per nucleon of deuterium and helium nuclei are 1.1 MeV and 7.0 MeV respectively. When two deuterium nuclei fuse to form a helium nucleus the energy released in the fusion is
A. 23.6 MeV
B. 2.2 MeV
C. 28.0 MeV
D. 30.2 MeV

Answer: a

(D) Watch Video Solution

7. Let m_{p} be the mass of a proton , m_{n} the mass of a neutron, M_{1} the mass of a ${ }_{10}^{20} \mathrm{Ne}$ nucleus and M_{2} the mass of a $\cdot{ }_{20}^{40} \mathrm{Ca}$ nucleus. Then
A. $M_{2}=M_{1}$
B. $M_{2}>M_{1}$
C. $M_{2}<2 M_{1}$
D. $M_{1}<10\left(m_{n}+m_{p}\right)$

Answer: d

- Watch Video Solution

8. The mass of proton is 1.0073 u and that of neutron is 1.0087
$\mathrm{u}\left(\mathrm{u}=\right.$ atomic mass unit). The binding energy of.${ }_{2}^{4} \mathrm{He}$, if mass of ${ }_{2}^{4} \mathrm{He}$ is 4.0015 u is
A. 0.0305 erg
B. 0.0305 J
C. 28.4 MeV
D. 0.061 u

(D) Watch Video Solution

9. If the binding energy per nucleon of deuterium is 1.115 MeV , its mass defect in atomic mass unit is
A. 0.0048
B. 0.0024
C. 0.0012
D. 0.0006

Answer: b

D Watch Video Solution

1. The half - life period of a radioactive element x is same as the mean life time of another radioactive element y Initially both of them have the same number of atoms. Then, n
A. X and Y decay at same rate always
B. X will decay faster than Y
C. Y will decay faster than X
D. X and Y have same decay rate initially

Answer: c

(D) Watch Video Solution

2. Sample of two radioactive nuclides A and B are taken. λ_{A} and λ_{B} are the disintergration constants of A and B
respectively. In which of the following cases, the two sample can simultaneously have the same decay rate at any time?
A. Initial rate of decay of A is twice the initial rate of decay of B and $\lambda_{A}=\lambda_{B}$.
B. Initial rate of decay of A is twice the initial rate of decay of B and $\lambda_{A}>\lambda_{B}$.
C. Initial rate of decay of B is twice the initial rate of decay of A and $\lambda_{A}>\lambda_{B}$.
D. Initial rate of decay of B is twice the initial rate of decay of A at $\mathrm{t}=2 \mathrm{~h}$ and $\lambda_{B}=\lambda_{A}$

Answer: b
3. The half life of ${ }_{.92}^{238} U$ undergoing α-decay is 4.5×10^{9} years. The activity of 1 g sample of ${ }_{92}^{238} U$ is
A. $1.23 \times 10^{4} \mathrm{~Bq}$
B. $1.23 \times 10^{5} \mathrm{~Bq}$
C. $1.23 \times 10^{3} \mathrm{~Bq}$
D. $1.23 \times 10^{6} \mathrm{~Bq}$

Answer: a

- Watch Video Solution

4. The half life of a radioactive substance is 20 s, the time taken for the sample to decay by $7 / 8^{\text {th }}$ of its initial value is
B. 40 s
C. 60 s
D. 80 s

Answer: c

D Watch Video Solution

5. 1 mg redium has 2.68×10^{18} atoms. Its half life is 1620 years. How many radium atoms will disintegrate from 1 mg of pure radium in 3240 years?
A. 2.01×10^{9}
B. 2.01×10^{18}
C. 1.01×10^{9}
D. 1.01×10^{18}

Answer: b

(Watch Video Solution

6. Radon has 3.8 days as its half-life. How much radon will be left out of 15 mg mass after 38 days?
A. 1.05 mg
B. 0.015 mg
C. 0.231 mg
D. 0.50 mg

Answer: b
7. The half life of a radioactive substance is 30 days. What is the time taken to disintegrate to $3 / 4^{\text {th }}$ of its original mass ?
A. 30 days
B. 15 days
C. 60 days
D. 90 days

Answer: c

(D) Watch Video Solution

8. The half life of polonium is 140 days. In what time will 15 g of polonium be disintegrated out of its initial mass of 16 g ?
A. 230 days
B. 560 days
C. 730 days
D. 160 days

Answer: b

(D) Watch Video Solution

9. In a sample of radioactive material, what fraction of the initial number of active nuclei will remain undisintegrated after half of the half life of the sample?
A. $\frac{1}{4}$
B. $\frac{1}{2 \sqrt{2}}$
C. $\frac{1}{\sqrt{2}}$
D. $\sqrt{2}-1$

Answer: c

- Watch Video Solution

10. At a given instant, there are 25% undecayed radioactive nuclei in a sample. After 10 seconds the number of undecayed nuclei reduces to 12.5%, the mean life of the nuclei is
A. 10.21 s
B. 14.43 s
C. 5.31 s
D. 7.43 s

D Watch Video Solution

11. Two redioactive nuclei A and B have disintegration constants λ_{A} and λ_{B} and initially N_{A} and N_{B} number of nuclei of them are taken, then the time after which their undisintegrated nuclei are same is
A. $\frac{\lambda_{A} \lambda_{B}}{\left(\lambda_{A}-\lambda_{B}\right)} \operatorname{In}\left(\frac{N_{B}}{N_{A}}\right)$
B. $\frac{1}{\left(\lambda_{A}+\lambda_{B}\right)} \operatorname{In}\left(\frac{N_{B}}{N_{A}}\right)$
C. $\frac{1}{\left(\lambda_{B}-\lambda_{A}\right)} \operatorname{In}\left(\frac{N_{B}}{N_{A}}\right)$
D. $\frac{1}{\left(\lambda_{A}-\lambda_{B}\right)} \operatorname{In}\left(\frac{N_{B}}{N_{A}}\right)$

Answer: c

12. A freshly prepared radioactive source of half-life $2 h$ emits radiation of intensity which is 64 times the permissible safe level. The minimum time after which it would be possible to work safely with this source is
A. 128 h
B. 24 h
C. 6 h
D. 12 h

Answer: d
13. Two samples X and Y contain equal amount of radioactive substances. If $\frac{1^{\text {th }}}{16}$ of the sample Y, remain after 8 hours, then the ratio of half life periods of X and Y is
A. $2: 1$
B. 1:2
C. 1:4
D. $4: 1$

Answer: a

- View Text Solution

14. The decay constant of a radioactive isotope is λ. If A_{1} and
A_{2} are its activites at time t_{1} and t_{2} respectively, then the number of nuclei which have decayed the time $\left(t_{1}-t_{2}\right)$
A. $A_{1} t_{1}-A_{2} t_{2}$
B. $A_{1}-A_{2}$
C. $\left(A_{1}-A_{2}\right) / \lambda$
D. $\lambda\left(A_{1}-A_{2}\right)$

Answer: c

- Watch Video Solution

15. A 280 day old radioactive substances shows an activity of 6000 dps, 140 days later its activity becomes 3000 dps. What was its initial activity?
A. 20000 dps
B. 24000 dps
C. 12000 dps
D. 6000 dps

Answer: b

D Watch Video Solution

16. Tritium has a half life of 12.5 years against beta decay.

What fraction of a sample of pure tritium will remain undecayed after 25 years?
A. one half
B. one fourth
C. one third
D. can't say

D Watch Video Solution

17. The decay constant, for a given radioactive sample, is 0.3465 day $^{-1}$.What percentage of this sample will get decayed in a period of 4 days?
A. 100%
B. 50%
C. 75%
D. 10%

Answer: c

18. The count rate of a radioactive sample falls from $4.0 \times 10^{6} s^{-1}$ to $1.0 \times 10^{6} s^{-1}$ in 20 hours. What will be the count rate after 100 hours from beginning ?
A. $3.91 \times 10^{3} s^{-1}$
B. $3.91 \times 10^{2} s^{-1}$
C. $3.91 \times 10^{4} s^{-1}$
D. $3.91 \times 10^{6} s^{-1}$

Answer: a

(D) Watch Video Solution

19. Carbon dating is best suited for determining the age of fossils of their age in years is of the order of
A. 10^{3}
B. 10^{4}
C. 10^{5}
D. 10^{6}

Answer: b

(D) Watch Video Solution

20. The half life of radioactive Radon is 3.8 days . The time at the end of which $\frac{1}{20} t h$ of the radon sample will remain undecayed is (given $\log e=0.4343$)
A. 3.8 days
B. 16.5 days
C. 33 days
D. 76 days

Answer: b

D Watch Video Solution

21. A radioactive element X with half life $2 h$ decays giving a stable element Y. After a time t, ratio of X and Y atoms is 1:16
.Time t is
A. 6 h
B. 4 h
C. 8 h
D. 16 h

D Watch Video Solution

22. The half life of ${ }_{.38}^{90} S r$ is 28 years. The disintegration rate of

15 mg of this isotope is of the order of
A. $10^{11} \mathrm{~Bq}$
B. $10^{10} \mathrm{~Bq}$
C. $10^{7} \mathrm{~Bq}$
D. $10^{9} \mathrm{~Bq}$

Answer: b
23. A sample of a radioactive element has a mass of 10 g at an instant $t=0$. The approximate mass of this element in the sample left after two mean lives is
A. 1.35 g
B. 2.50 g
C. 3.70 g
D. 6.30 g

Answer: a

- Watch Video Solution

24. The count rate from $100 \mathrm{~cm}^{3}$ of a radioactive liquid is c.

Some of this liquid is now discarded. The count rate of the
remaining liquid is found to be $c / 10$ after three half-lives. The volume of the remaining liquid, in cm^{3}, is
A. 20
B. 40
C. 60
D. 80

Answer: d

D Watch Video Solution

25. The variation of decay rate of two radioactive samples A and B with time is shown in fig.

Which of the following statements are true?
A. Decay constant of A is greater than that of B, hence A always decays faster than B.
B. Decay constant of A is greater than that of B, but it does not always decays faster than B.
C. Decay constant of B is smaller than that of A but still its decay rate becomes equal to that of A at a later instant.
D. Both (b) and (c)

Answer: d

(Watch Video Solution

26. A sample of radioactive material has mass m, decay constant λ, and molecular weight M. Avogadro constant $=N_{A}$. The initial activity of the sample is:
A. λm
B. $\frac{\lambda m}{M}$
C. $\frac{\lambda m N_{A}}{M}$
D. $m N_{A} \lambda$

- Watch Video Solution

27. Two radioactive substance A and B have decay constants
5λ and λ respectively. At $t=0$ they have the same number of nuclei. The ratio of number of nuclei of nuclei of A to those of B will be $\left(\frac{1}{e}\right)^{2}$ after a time interval
A. 4λ
B. 2λ
C. $1 / 2 \lambda$
D. $1 / 4 \lambda$

Answer: c

28. Plutonium decays with half life of 24000 years. If plutonium is stored for 72000 years, the fraction of it that remains is
A. $1 / 8$
B. $1 / 3$
C. $1 / 4$
D. $1 / 2$

Answer: a

D Watch Video Solution

29. A fraction f_{1} of a radioactive sample decays in one mean
life, and a fraction f_{2} decays in one half life. Then
A. $f_{1}>f_{2}$
B. $f_{1}<f_{2}$
C. $f_{1}=f_{2}$
D. either of (a),(b) or (c) depending on the values of the mean life and half life.

Answer: a

- Watch Video Solution

30. The activity of a radioactive sample is measures as N_{0} counts per minute at $t=0$ and N_{0} / e counts per minute at $t=5 \mathrm{~min}$. The time (in minute) at which the activity reduces to half its value is.
A. $\frac{\log _{e} 2}{5}$
B. $\frac{5}{\log _{e} 2}$
C. $5 \log _{10} 2$
D. $5 \log _{e} 2$

Answer: d

(D) Watch Video Solution

31. The number of beta particles emitter by radioactive sustance is twice the number of alpha particles emitter by it. The resulting daughter is an
A. isomer of parent
B. isotone of parent
C. isotope of parent
D. isobar of parent

Answer: c

D Watch Video Solution

32. During negative B decay, an anti- neutrino is also emmited along with the ejected electron. Then
A. only linear momentum will be conserved
B. total linear momentum and total anuglar momentum
but not total energy will be conserved
C. total linear momentum and total energy but not total
D. total linear momentum, total angular momentum and total energy will be conserved.

Answer: d

D Watch Video Solution

33. Which of the following cannot be emitted by radioactive substances during their decay?
A. Neutrinos
B. Protons
C. Electrons
D. Helium nuclei

- Watch Video Solution

34. A radioactive decay can form an isotope of the original nucleus with the emission of particles
A. one α and four β
B. one α and two β
C. one α and one β
D. four α and one β

Answer: b

- View Text Solution

35. Pick out the incorrect statement from the following .
A. β^{-}emission from the nucleus is always accompanied
with a neutrino
B. The energy of the α-particle emitted from a given nucleus is always constant.
C. γ-ray emission makes the nucleus more stable.
D. Nuclear force is charge-independent

Answer: a

- View Text Solution

36. Consider $\alpha-, \beta$-particles and $\gamma-$ rays, each having an energy fo 0.5 Mev in increasing order f penertation power, the radiations are:
A. α, β, γ
B. α, γ, β
C. β, γ, α
D. γ, β, α

Answer: a

D View Text Solution

37. The electron emitted in beta radiation originates from
A. inner orbits of atom
B. free electrons existing in the nuclei
C. decay of a neutron in a nuclei
D. photon escaping from the nucleus

D Watch Video Solution

38. Radioactive $\cdot{ }_{27}^{60} \mathrm{Co}$ is transformed into stable $\cdot{ }_{28}^{60} \mathrm{Ni}$ by emitting two γ-rays of energies
A. 1.33 MeV and 1.17 MeV in succession
B. 1.17 MeV and 1.33 MeV in succession
C. 1.37 MeV and 1.13 MeV in succession
D. 1.13 MeV and 1.37 MeV in succession

Answer: b

39. Complete the series . ${ }^{6} \mathrm{He} \rightarrow e^{-}+.{ }^{6} \mathrm{Li}+$
A. neutrino
B. antineutrino
C. proton
D. neutron

Answer: b

- Watch Video Solution

40. A nucleus of $U x_{1}$ has a half life of 24.1 days. How long a sample of $U x_{1}$ will take to change to 90% of $U x_{2}$.
A. 80 days
B. 40 days
C. 20 days
D. 10 days

Answer: a

D Watch Video Solution

41. An element A decays into element C by a two-step process:
$A \rightarrow B+{ }_{.2} H e^{4}$
$B \rightarrow C+2 e^{-}$

Then.
A. A and C are isotopes
B. A and C are isobars
C. B and C are isotopes
D. A and B are isobars

Answer: a

(Watch Video Solution

42. The equation
$4 \mathrm{H}^{+} \rightarrow_{2}^{4} \mathrm{He}^{2+}+2 e \overline{+} 26 \mathrm{MeVrepresents}$
A. β-decay
B. γ-decay
C. fusion
D. fission

Answer: c

Nuclear Energy

1. Light energy emitted by star is due to
A. breaking of nuclei
B. joining of nuclei
C. burning of nuclei
D. reflection of solar light

Answer: b

- Watch Video Solution

2. In a nuclear reaction, which of the following options are conserved?
A. mass only
B. energy only
C. momentum only
D. mass, energy and momentum

Answer: d

D Watch Video Solution

3. Which of the following are used as control rods in a nuclear reactor ?
A. cadmium
B. graphite
C. krypton
D. plutonium

Answer: a

D Watch Video Solution

4. Fast neutrons can easily be slowed down by
A. the use of lead shielding
B. passing them through water
C. elastic collisions with heavy nuclei
D. applying a strong electric field

D Watch Video Solution

5. Which of the following equations, pick out the possible nuclear fusion reactions?
A. ${ }_{6}^{13} \mathrm{C}+\cdot{ }_{1}^{1} \mathrm{H} \rightarrow{ }_{.}^{14} \mathrm{C}+4.3 \mathrm{MeV}$
B. ${ }_{6}^{12} C+{ }_{1}^{1} H \rightarrow{ }_{7}^{13} N+2 \mathrm{MeV}$
C. ${ }_{7}^{14} N+.{ }_{1}^{1} H \rightarrow{ }_{8}^{15} \mathrm{O}+7.3 \mathrm{MeV}$
D. $.{ }_{92}^{235} U+{ }_{\cdot 0}^{1} N \rightarrow \cdot{ }_{54}^{140} \mathrm{Xe}+\cdot{ }_{.98}^{94} S r+\cdot{ }_{0}^{1} n+\cdot{ }_{0}^{1} n+200$

MeV

Answer: b and d
6. If 200 MeV energy is released in the fission of a single U^{235} nucleus, the number of fissions required per second to produce 1 kilowatt power shall be (Given

$$
\left.1 e V=1.6 \times 10^{-19} J\right)
$$

A. 3.125×10^{13}
B. 1.52×10^{6}
C. 3.125×10^{12}
D. 3.125×10^{14}

Answer: a

7. In a nuclear fusion reaction, two nuclei, A \& B , fuse to produce a nucleus C, releasing an amount of energy ΔE in the process.If the mass defects of the three nuclei are $\Delta M_{A}, \Delta M_{B} \& \Delta M_{C}$ respectively, then which of the following relations holds ? Here, c is the speed of light.

$$
\begin{aligned}
& \text { A. } \Delta M_{A}+\Delta M_{B}=\Delta M_{C}-\Delta E / c^{2} \\
& \text { B. } \Delta M_{A}+\Delta M_{B}=\Delta M_{C}+\Delta E / c^{2} \\
& \text { C. } \Delta M_{A}-\Delta M_{B}=\Delta M_{C}-\Delta E / c^{2} \\
& \text { D. } \Delta M_{A}-\Delta M_{B}=\Delta M_{C}+\Delta E / c^{2}
\end{aligned}
$$

Answer: a

8. Mass numbers of the elements A, B, C and D are $30,60,90$ and 120 respectively. The specific binding energy of them are 5

MeV , 8.5 MeV , 6 MeV and 7 MeV respectively. Then, in which of the following reaction/s energy is released?
$(1) \mathrm{D} \rightarrow 2 \mathrm{~B},(2) \mathrm{C} \rightarrow \mathrm{B}+\mathrm{A},(3) \mathrm{B} \rightarrow 2 \mathrm{~A}$
A. only in (1)
B. only in (3)
C. in (1) , (3)
D. in (1), (2) and (3)

Answer: a

9. The fission properties of ${ }_{94}^{239} \mathrm{Pu}$ are very similar to those of ${ }_{.}^{235} \mathrm{U}$. The average energy released per fission is 180 MeV . If all the atoms in 1 kg of pure ${ }_{94}^{239} \mathrm{Pu}$ undergo fission, then the total energy released in MeV is
A. $4.53 \times 10^{26} \mathrm{MeV}$
B. $2.21 \times 10^{14} \mathrm{MeV}$
C. $1 \times 10^{13} \mathrm{MeV}$
D. $6.33 \times 10^{24} \mathrm{MeV}$

Answer: a

- Watch Video Solution

10. A ancleus of mass number 220, initially at rest, emits an α particle, If the Q -value of the reaction is 5.5 Me V , then the energy of the emitted α-particle will be
A. 4.4 MeV
B. 5.4 MeV
C. 5.6 MeV
D. 6.5 MeV

Answer: b

- Watch Video Solution

1. Sometimes a radioactive nucleus decays into a nucleus which inself is radioactive . An example is : ${ }^{38}$ Sulphur $\xrightarrow[=2.48 \mathrm{~h}]{\text { half-life }} 38 \xrightarrow[=0.62 \mathrm{~h}]{\stackrel{\text { half-life }}{ }} 38 \mathrm{Ar}$ (stable)

Assume that we start with $1000{ }^{38} S$ nuclei at time $\mathrm{t}=0$. The number of ${ }^{38} \mathrm{Cl}$ is of count zero at $\mathrm{t}=0$ and will again be zero at $t=\infty$. At what value of t , would the number of counts be a maximum ?
A. 1.65 h
B. 2.62 h
C. 3.24 h
D. 3.95 h

Answer: a

2. The deuteron is bound by nuclear forces just as H -atom is made up of p and e bound by electrostatic forces. If we consider the forces between neutron and proton in deuteron as given in the form of a Coulomb force but with an effective charge e': $F=\frac{1}{4 \pi \varepsilon_{0}} \frac{e^{2}}{r^{2}}$
estimate the value of $\left(e^{\prime} / e\right)$ given that the following binding energy of a deuteron is 2.2 MeV .
A. 1.89
B. 9.24
C. 3.64
D. 7.62

Answer: c

3. fission
reaction
is
given
by

- $(92)^{236} U \rightarrow{ }_{54}^{140} \mathrm{Xe}+{ }_{38}^{94} S t+x+y$, where x and y are two particle Consider $-(92)^{236} U$ to be at rest , the kinetic energies of the products are deneted by $k_{x e} K_{s t} K_{x}(2 \mathrm{MeV})$ and $\mathrm{Ky}(2 \mathrm{MeV})$ repectively . Let the binding energy per nucleus of
- $(92)^{236} U,{ }_{54}^{140} \mathrm{Xe}$ and ${ }_{38}^{94} S t b e 7.5 \mathrm{MeV}, 8.4 \mathrm{MeV}$ and 8.5 MeV , respectively Considering different conservation laws, the correct option (s) is (are)
A. $\mathrm{x}=\mathrm{n}, \mathrm{y}=\mathrm{n}, K_{\mathrm{Sr}}=129 \mathrm{MeV}, K_{\mathrm{Xe}}=86 \mathrm{MeV}$
B. $\mathrm{x}=\mathrm{p}, \mathrm{y}=e^{-}, K_{\mathrm{Sr}}=129 \mathrm{MeV}, K_{\mathrm{Xe}}=86 \mathrm{MeV}$
C. $\mathrm{x}=\mathrm{p}, \mathrm{y}=\mathrm{n}, K_{\mathrm{Sr}}=129 \mathrm{MeV}, K_{\mathrm{Xe}}=86 \mathrm{MeV}$
D. $\mathrm{x}=\mathrm{n}, \mathrm{y}=\mathrm{n}, K_{\mathrm{Sr}}=86 \mathrm{MeV}, K_{\mathrm{Xe}}=129 \mathrm{MeV}$

D Watch Video Solution

4. How long can an electric lamp of 100W be kept glowing by fusion of 2.0 kg of deuterium? The fusion reaction can be taken as $\cdot{ }_{1} H^{2}+{ }_{\cdot 1} H^{2} \rightarrow{ }_{\cdot 1} H^{3}+n+3.17 M e V$
A. 2.4×10^{6} years
B. 7.4×10^{4} years
C. 1.6×10^{6} years
D. 4.9×10^{4} years

Answer: d

5. Nuclei of a radioactive element A are being produced at a constant rate α. The element has a decay constant λ. At time $t=0$, there are N_{0} nuclei of the element.
(a) Calculate the number N of nuclei of A at time t.
(b) If $\alpha=2 N_{0} \lambda$, calculate the number of nuclei of A after one half-life of A , and also the limiting value of N as $t \rightarrow \infty$.
A. $\frac{1}{\lambda}\left[\alpha+\left(\alpha-N_{0} \lambda\right) e^{-\lambda t}\right]$
B. $\frac{1}{\lambda}\left[\alpha-\left(\alpha-N_{0} \lambda\right) e^{-\lambda t}\right]$
C. $\lambda\left[\alpha-\left(\alpha-N_{0} \lambda\right) e^{-\lambda t}\right]$
D. $\left[\alpha-\left(N_{0} \lambda-\alpha\right) e^{-\lambda t}\right]$

Answer: b

6. If $\alpha=2 N_{0} \lambda$, calculate the number of nuclei of A after one half-life of A, and also the limiting value of N as
A. $2 N_{0}, \frac{5}{2} N_{0}$
B. $3 N_{0}, 2 N_{0}$
C. $4 N_{0}, 2 N_{0}$
D. $\frac{3}{2} N_{0}, 2 N_{0}$

Answer: d

D View Text Solution

7. The element curium ${ }_{96}^{248} \mathrm{Cm}$ has a mean life of $10^{13} \mathrm{~s}$. Its primary decay modes are spontaneous fission and α-decay, the former with a probability of 8% and the later with a
probability of 92%, each fission releases 200 MeV of energy.

The masses involved in decay are as follows
${ }_{.96}^{248} \mathrm{Cm}=248.072220 u$,
${ }_{.94}^{244} P_{u}=244.064100 u$ and $\cdot{ }_{2}^{4} H e=4.002603 u$. Calculate the power output from a sample of $10^{20} \mathrm{Cm}$ atoms. $\left.1 u=931 M e V / c^{2}\right)$
A. $4.42 \times 10^{-3} \mathrm{~W}$
B. $3.32 \times 10^{-5} \mathrm{~W}$
C. $4.42 \times 10^{-5} \mathrm{~W}$
D. $3.32 \times 10^{-3} \mathrm{~W}$

Answer: b

- Watch Video Solution

8. The above is a plot of binding energy per nucleon E_{b}, against the nuclear mass $\mathrm{M}, \mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}$ correspond to different nuclei. Consider four reactions
(i) $A+B \rightarrow C+\varepsilon$ (ii) $C \rightarrow A+B+\varepsilon$
(iii) $D+E \rightarrow F+\varepsilon$ and (iv) $F \rightarrow D+E+\varepsilon$
where ε is the energy released ? In which reactions is ε positive?

A. (i) and (iii)
B. (ii) and (iv)
C. (ii) and (iii)
D. (i) and (iv)

(D) Watch Video Solution

Ncert Exemplar

1. Suppose we consider a large number of containers each containing initially 10000 atoms of a radioactive material with a half life of 1 yr . After 1 yr
A. all the containers will have 5000 atoms of the material.
B. all the containers will contain the same number of atoms of the material but that number will only be approximately 5000
C. the containers will in general have different number of
the atoms of the material but their average will be close
to 5000
D. none of containers can have more than 5000 atoms.

Answer: c

(D) Watch Video Solution

2. The gravitational force between a H -atom and another particle of mass m will be given by Newton's law
$F=G \frac{M . m}{r^{2}}$, where r is in km and
A. $M=m_{\text {proton }}+m_{\text {electron }}$
B. $M=m_{\text {proton }}+m_{\text {electron }}-\frac{B}{c^{2}}(\mathrm{~B}=13.6 \mathrm{eV})$
C. M is not related to the mass of hydrogen atom
D. $M=m_{\text {proton }}+m_{\text {electron }}-\frac{|V|}{c^{2}}(|\mathrm{~V}|=$ magnitude of the potential energy of electron in the H -atom)

Answer: b

- Watch Video Solution

3. When a nucleus in an atom undergoes a radioactive decay the electronic energy levels of the atom
A. do not change for any type of radioactivity
B. change for α and β radioactivity but not for γ radioactivity
C. change for α-radioactivity but not for others
D. change for β-radioactivity but not for others

Answer: b

(D) Watch Video Solution

4. M_{x} and M_{y} denote the atomic masses of the parent and the daughter nuclei respectively in radioactive decay. The Q value for a β^{-}decay is Q_{1} and that for a β^{+}decay is Q_{2}. If m_{e} denotes the mass of an electron then which of the following statements is correct?

$$
\begin{aligned}
& \text { A. } Q_{1}=\left(M_{x}-M_{y}\right) c^{2} \text { and } Q_{2}=\left(M_{x}-M_{y}-2 m_{e}\right) c^{2} \\
& \text { B. } Q_{1}=\left(M_{x}-M_{y}\right) c^{2} \text { and } Q_{2}=\left(M_{x}-M_{y}\right) c^{2} \\
& \text { C. } Q_{1}=\left(M_{x}-M_{y}-2 m_{e}\right) c^{2} \\
& \qquad Q_{2}=\left(M_{x}-M_{y}+2 m_{e}\right) c^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { D. } \begin{aligned}
Q_{1} & =\left(M_{x}-M_{y}+2 m_{e}\right) c^{2} \\
\qquad Q_{2} & =\left(M_{x}-M_{y}+2 m_{e}\right) c^{2}
\end{aligned} .
\end{aligned}
$$

Answer: a

D Watch Video Solution

5. Tritium is an isotope of hydrogen whose nucleus triton contains 2 neutrons and 1 proton. Free neutrons decay into
$p+e^{-}+\bar{V}$. If one of the neutrons in triton decays, then it would transform into He^{3} nucleus. This does not happen.

This is because
A. Triton energy is less than that of a $H e^{3}$ nucleus
B. The electron created in the beta decay process cannot
C. both the neutrons in triton have a decay simultaneously
resulting in a nucleus with 3 protons which is not a He^{3} nucleus.
D. because free neutrons decay due to external perturbations which is absent in a triton nucleus.

Answer: a

(D) Watch Video Solution

6. Heavy stable nuclei have more neutrons than protons. This is because of the fact that
A. neutrons are heavier than protons .
B. electrostatic force between protons are repulsive
C. neutrons decay into protons through beta decay
D. nuclear forces between neutrons are weaker than that between protons.

Answer: b

(D) Watch Video Solution

7. In a nuclear reactor, moderators slow down the neutrons which come out in a fission process. The moderator used have light nuclei. Heavy nuclei will not serve the purpose because
A. they will break up
B. elastic collision of neutrons with heavy nuclei will not
C. the net weight of the reactor would be unbearably high
D. substances with heavy nuclei do not occur in liquid or gaseous state at room temperature .

Answer: b

- Watch Video Solution

Assertion And Reason

1. Assertion:The whole mass of the atom is concentrated in the nucleus.

Reason:The whole mass of the atom is concentrated in the nucleus

Reason:The mass of a nucleus can be either less than or more than the sum of the masses of nucleons present in it.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

Answer: c

- Watch Video Solution

2. Assertion : The radius of a nucleus determined by electron scattering is found to be slightly different from that determined by alpha particle scattering .

Reason : Electron scattering senses the charge distribution of the nucleus whereas alpha and similar particles sense the nuclear matter.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

Answer: a

- View Text Solution

3. Assertion:Isotopes of an element can be separated by using a mass spectrometer.

Reason: Separation of isotopes is possible because of difference in electron number of isotopes .
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not
the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

- View Text Solution

4. Assertion:When a nucleus is in an excited state, it can make
a transition to a lower energy state by the emission of gamma rays .

Reason:These are energy levels for a nucleus just like there are energy levels in atoms .
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not
the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

- View Text Solution

5. Assertion:Binding energy per nucleon is nearly constant for element in the range $A=30$ to $A=170$.

Reason : The nuclear force between two nucleons falls rapidly to zero as their distance is more than a few femtometres.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

(D) Watch Video Solution

6. Assertion:Nuclear force between neutron-neutron, protonneutron and proton-proton is approximately the same Reason : The nuclear force does not depend on the electric charge
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

(Watch Video Solution

7. Assertion:A free neutron is unstable

Reason : Free neutron disintegrates into proton, electron and an antineutrino i.e. $n \rightarrow p+e^{-}+\bar{v}$
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not
the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

- View Text Solution

8. Assertion:The detection of neutrinos is extremely difficult . Reason : Neutrinos interact only very weakly with matter.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false
9. Assertion:An α-particle is emitted when uranium 238 decays into thorium

Reason : The decay of uranium 238 to thorium is repesented by ${ }_{92}^{238} U \rightarrow{ }_{90}^{234} \mathrm{Th}+{ }_{.2}^{4} \mathrm{He}$. The helium nuclei is called an alpha particle.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not
the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

D View Text Solution

10. Assertion:The mass of β-particles when they are emitted is higher than the mass of electrons obtained by other means.

Reason: β-particle and electron, both are similar particles.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not
the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

D Watch Video Solution

11. Assertion:Neutrons penetrate matter more readily as compared to protons.

Reason:A neutron has no charge .
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not
the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

D Watch Video Solution

12. Assertion:There occurs a chain reaction when uranium is bombarded with slow neutrons.

Reason:When uranium is bombarded with slow neutrons more neutrons are produced
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

D View Text Solution

13. Assertion:Fusion of hydrogen nuclei into helium nuclei is the source of energy of all stars.

Reason:In fusion heavier nuclei split to form lighter nuclei.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not
the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

- View Text Solution

14. Assertion:Nuclear sources will give a million times larger energy than conventional sources.

Reason:Nuclear energy sources are massive than conventional energy sources.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

- View Text Solution

15. Assertion:Naturally, thermonuclear fusion reaction is not possible on earth.

Reason : For thermonuclear fusion to take place, extreme condition of temperature and pressure are required.
A. If both assertion and reason are true and reason is the correct explanation of assertion .
B. If both assertion and reason are true but reason is not the correct explanation of assertion .
C. If assertion is true but reason is false .
D. If both assertion and reason are false

Answer: a

D View Text Solution

