

MATHS

BOOKS - PSEB

THE TRIANGLE AND ITS PROPERTIES

1. Write the six elements (i.e., the 3 sides and

the 3 angles) of $\ riangle$ ABC

2. Write the :

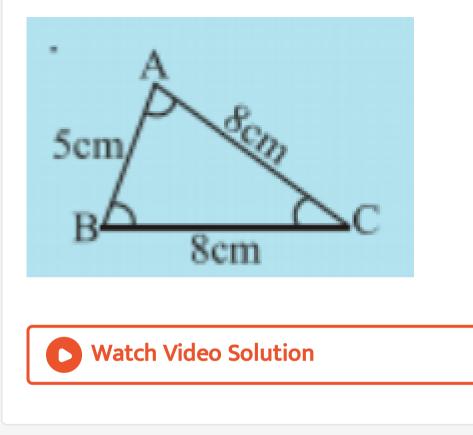
Side opposite to the vertex Q of $\ riangle PQR$

Watch Video Solution

3. Write the :

Angle opposite to the side LM of $\ riangle \ LMN$

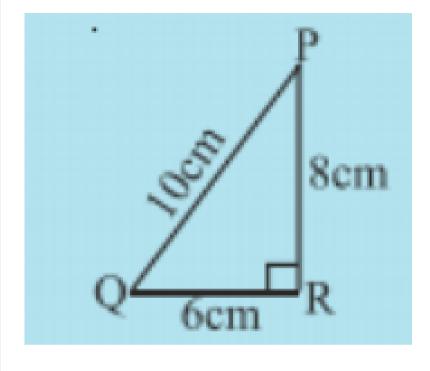
4. Write the :


Vertex opposite to the side RT of $\ riangle RST$

> Watch Video Solution

5. Look at fig and classify each of the triangles according to its

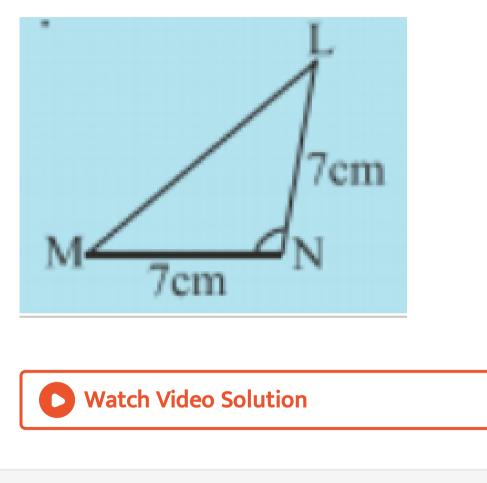
Sides


Angles

6. Look at fig and classify each of the triangles according to its

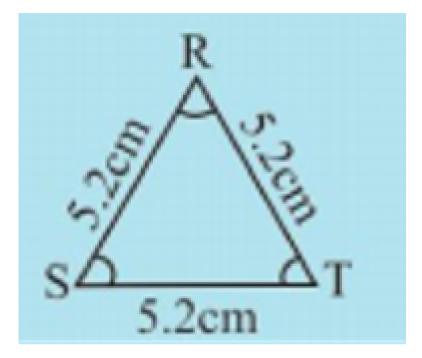
Sides

Angles



7. Look at fig and classify each of the triangles according to its

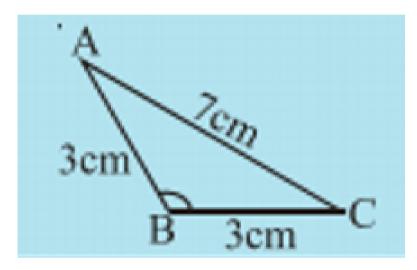
Sides


Angles

8. Look at fig and classify each of the triangles according to its

Sides

Angles

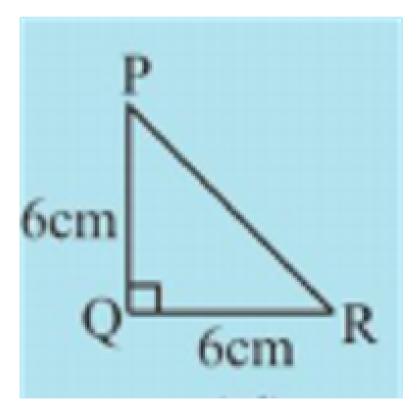


9. Look at fig and classify each of the triangles

according to its

Sides

Angles

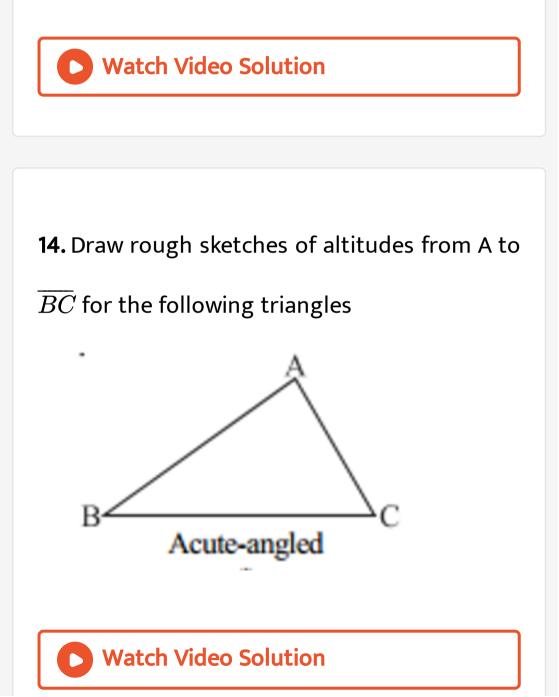


10. Look at fig and classify each of the triangles

according to its

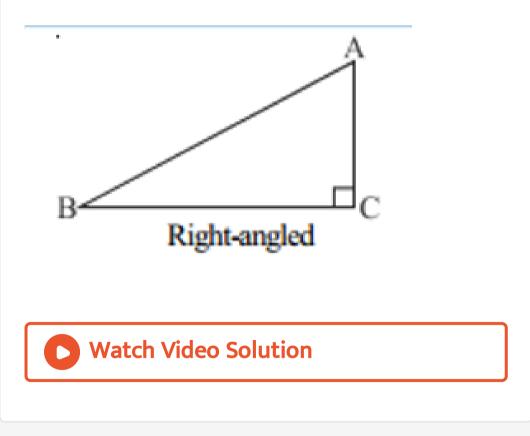
Sides

Angles

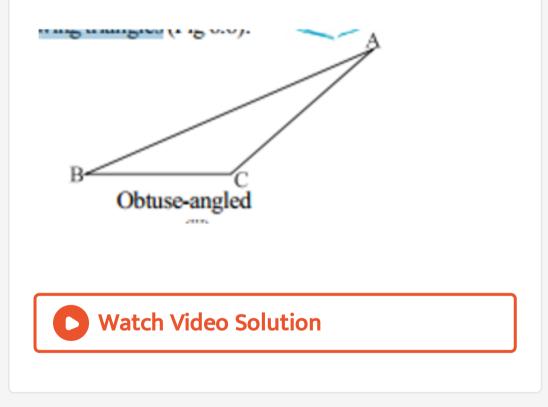

11. How many medians can a triangle have?

Watch Video Solution

12. Does a median lie wholly in the interior of the triangle? (If you think that this is not true, draw a figure to show such a case).



13. How many altitudes can a triangle have?


15. Draw rough sketches of altitudes from A to

 \overline{BC} for the following triangles

16. Draw rough sketches of altitudes from A to

 \overline{BC} for the following triangles

17. Will an altitude always lie in the interior of a triangle? If you think that this need not be

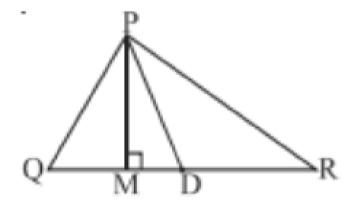
true, draw a rough sketch to show such a case.

18. Can you think of a triangle in which two altitudes of the triangle are two of its sides?

Watch Video Solution

19. Can the altitude and median be same for a

triangle?



20. In trianglePQR ,D is the mid-point of \overline{QR} .

 \overline{PM} is_____.

PD is____.

Is QM = MR?

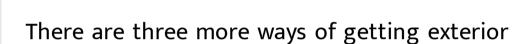
21. Draw rough sketches for the following:

In riangle ABC ,BE is a median.

22. Draw rough sketches for the following: In riangle PQR ,PQ and PR are altitude of the triangle.

23. Draw rough sketches for the following:

In `triangleXYZ,YL is an altitude in the exterior of the triangle.



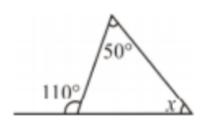
24. Verify by drawing a diagram if the median and altitude of an isosceles triangle can be

same.

25. Exterior angles can be formed for a triangle in many ways. Three of them are shown here

angles. Try to produce those rough sketches.

26. Are the exterior angles formed at each


vertex of a triangle equal?

27. What can you say about the sum of an exterior angle of a triangle and its adjacent interior angle?

Watch Video Solution

28. Find angle x in Fig.

29. What can you say about each of the interior opposite angles, when the exterior angle is

a right angle?

Watch Video Solution

30. What can you say about each of the interior opposite angles, when the exterior

angle is

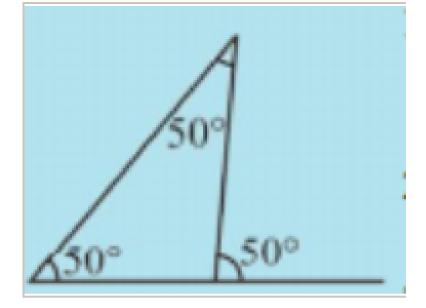
an obtuse angle?

31. What can you say about each of the interior opposite angles, when the exterior angle is

an acute angle?

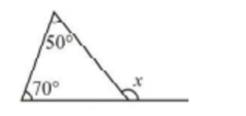
32. Can the exterior angle of a triangle be a

straight angle?


Watch Video Solution

33. The exterior angle of a triangle is of measure 70° and one of its interior opposite angles is of measure 20° . Find the measure of the other interior opposite angle.

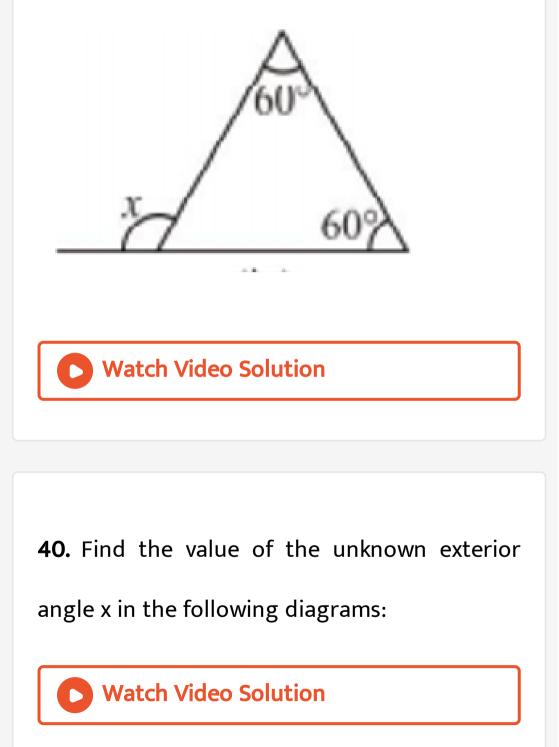
34. The two interior opposite angles of an exterior angles of a triangle are 60° and 80° . Find the measure of the exterior angle.


Watch Video Solution

35. Is something wrong in this diagram? Comment.

Watch Video Solution

36. Find the value of the unknown exterior angle x in the following diagrams:


37. Find the value of the unknown exterior angle x in the following diagrams:

38. Find the value of the unknown exterior angle x in the following diagrams:

Watch Video Solution

39. Find the value of the unknown exterior angle x in the following diagrams:

41. Find the value of the unknown exterior

angle x in the following diagrams:

42. Find the value of the unknown interior angle x in the following figures:

43. Find the value of the unknown interior angle x in the following figures:

Watch Video Solution

44. Find the value of the unknown interior angle x in the following figures:

45. Find the value of the unknown interior angle x in the following figures:

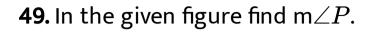
Watch Video Solution

46. Find the value of the unknown interior angle x in the following figures:

47. Find the value of the unknown interior angle x in the following figures:

Watch Video Solution

48. The total measure of the three angles of a


triangle is 180°.

To justify this let us use the exterior angle

property of a triangle.

50. Find the value of the unknown x in the

following diagrams:

51. Find the value of the unknown x in the

following diagrams:

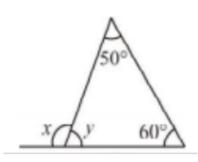
Watch Video Solution

52. Find the value of the unknown x in the

following diagrams:

53. Find the values of the unknowns x and y in

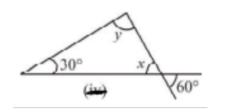
the following diagrams:


Watch Video Solution

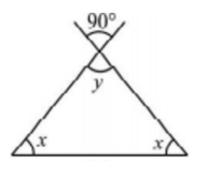
54. Find the values of the unknowns x and y in

the following diagrams:

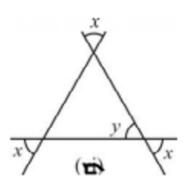
55. Find the values of the unknowns x and y in


the following diagrams:

56. Find the values of the unknowns x and y in


the following diagrams:

Watch Video Solution


57. Find the values of the unknowns x and y in

the following diagrams:

58. Find the values of the unknowns x and y in

the following diagrams:

59. Two angles of a triangle are 30° and 80° .

Find the third angle.

60. One of the angles of a trianlge is 80° and the other two angles are equal. Find the measure of each of the equal angles.

Watch Video Solution

61. The three angles of a triangle are in the ratio 1:2:1. Find all the angles of the triangle. Classify the triangle in two different ways.

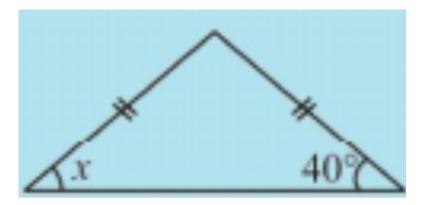
62. Can you have a triangle with two right angles?

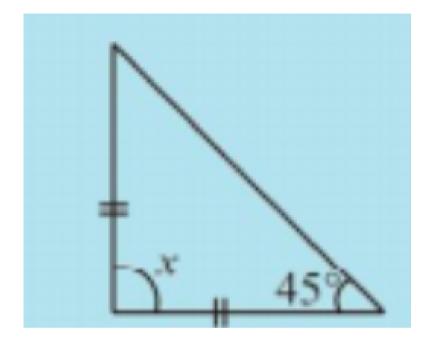
63. Can you have a triangle with two obtuse angles?

64. Can you have a triangle with two acute angles?

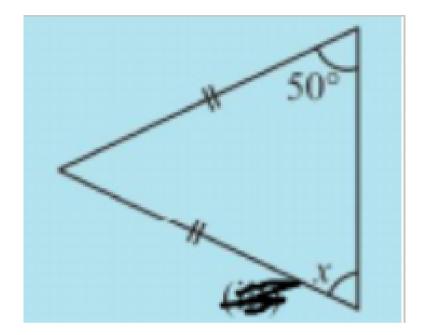
65. Can you have a triangle with all the three

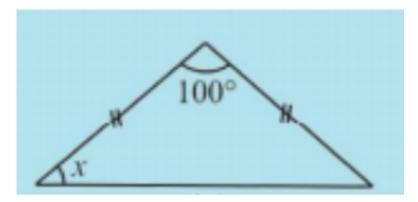
angles greater than 60° ?

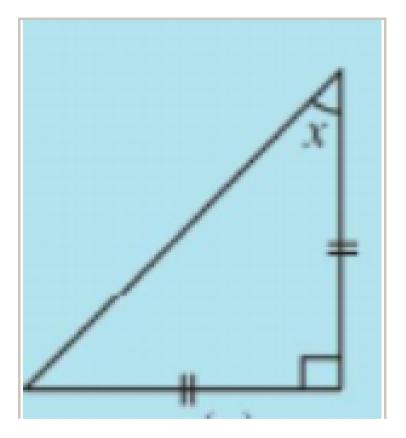

66. Can you have a triangle with all the angles

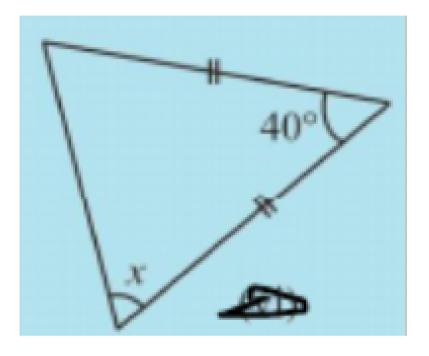

equal to 60° ?

Watch Video Solution

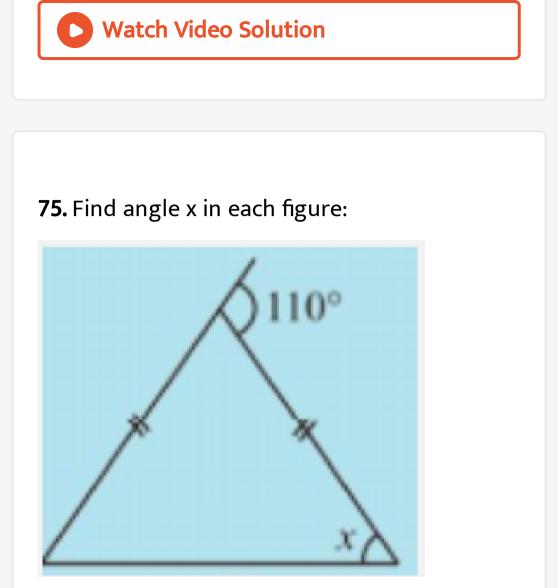

67. Can you have a triangle with all the three

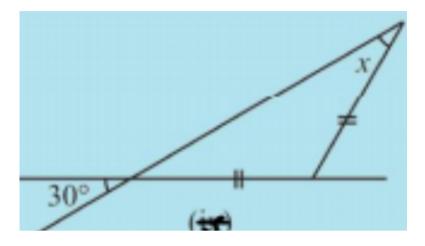

angles less than 60° ?

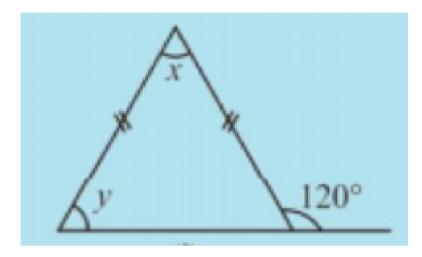


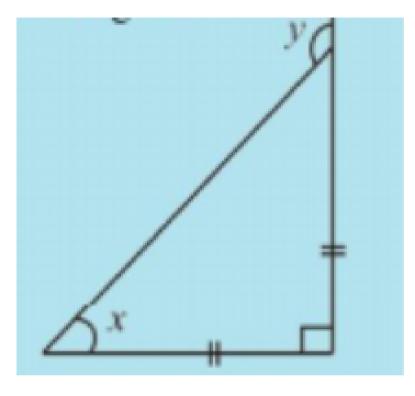


Watch Video Solution

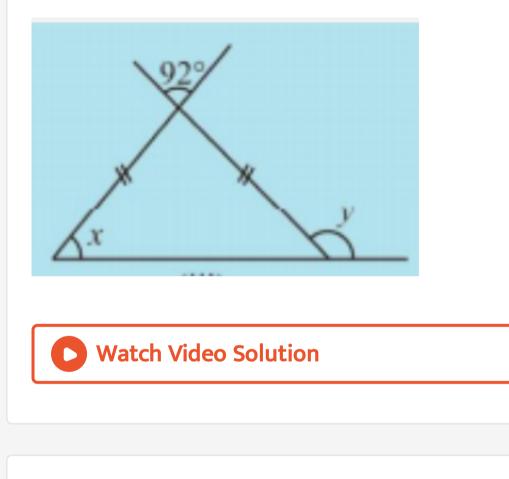





74. Find angle x in each figure:



77. Find angles x and y each figure.



78. Find angles x and y each figure.

79. Find angles x and y each figure.

80. Is there a triangle whose sides have lengths 10.2 cm, 5.8 cm and 4.5 cm?

81. The lengths of two sides of a triangle are 6 cm and 8 cm. Between which two numbers can length of the third side fall?

Watch Video Solution

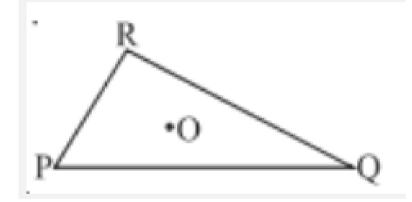
82. Is it possible to have a triangle with the

following sides?

2 cm, 3 cm, 5 cm

83. Is it possible to have a triangle with the following sides?

3 cm, 6 cm, 7 cm

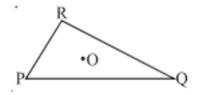

Watch Video Solution

84. Is it possible to have a triangle with the

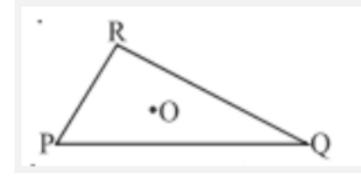
following sides?

6 cm, 3 cm, 2 cm

85. Take any point O in the interior of a triangle PQR. Is



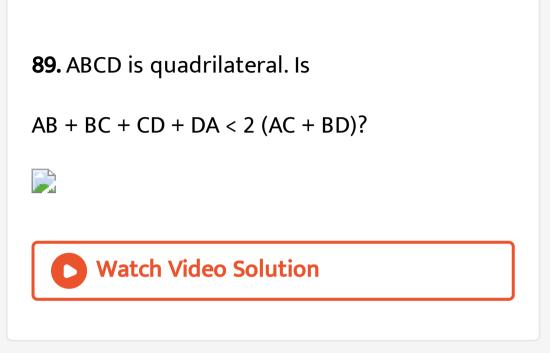
OP+OQ>PQ?


86. Take any point O in the interior of a triangle PQR. Is

OQ+OR>QR?

87. Take any point O in the interior of a triangle PQR. Is

OR+OP>RP?



88. AM is a median of a triangle ABC.

Is AB+BC+CA> 2 AM? (Consider the sides of

triangles $\ \bigtriangleup ABM$ triangleAMC`.)

90. The lengths of two sides of a triangle are

12 cm and 15 cm. Between what two measures

should the length of the third side fall?

91. Is the sum of any two angles of a triangle

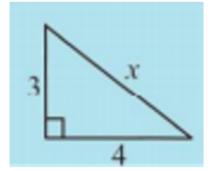
always greater than the third angle?

Watch Video Solution

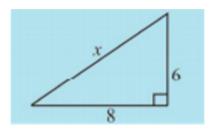
92. Determine whether the triangle whose lengths of sides are 3 cm, 4 cm, 5 cm is a right-

angled triangle.

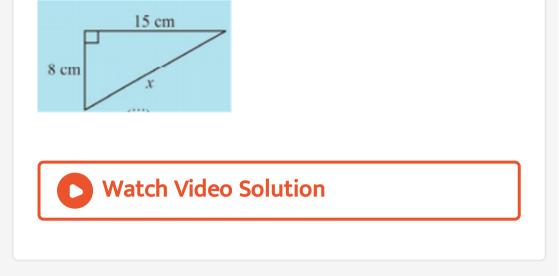
93. ABC is right-angled at C. If AC = 5 cm and BC

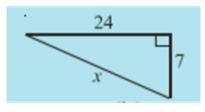

= 12 cm find the length of AB.

94. Find the unknown lengthx in the following

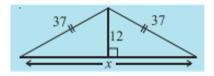

figures

95. Find the unknown lengthx in the following


figures

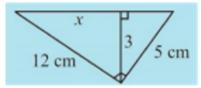

96. Find the unknown lengthx in the following

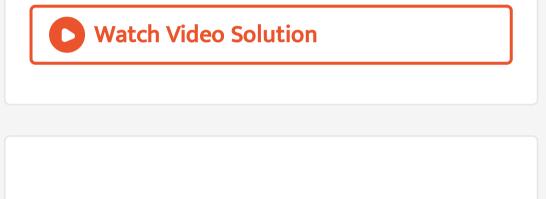
figures


97. Find the unknown length x in the following

figures

98. Find the unknown lengthx in the following


figures


99. Find the unknown lengthx in the following

figures

100. PQR is a triangle, right-angled at P. If PQ = 10 cm and PR = 24 cm, find QR.

101. ABC is a triangle, right-angled at C. If AB =

25 cm and AC = 7 cm, find BC.

102. A 15 m long ladder reached a window 12 m high from the ground on placing it against a wall at a distance a. Find the distance of the foot of the ladder from the wall.

103. Which of the following can be the sides of

a right triangle?

(i)2.5 cm,6.5 cm, 6 cm.

(ii) 2 cm, 2 cm, 5 cm.

(iii) 1.5 cm, 2cm, 2.5 cm.

In the case of right-angled triangles, identify

the right angles.

104. A tree is broken at a height of 5 m from the ground and its top touches the ground at a distance of 12 m from the base of the tree. Find the original height of the tree.

105. Angle Q and R of a $\ riangle \ PQR$ are 25° and 65° Write which of the following is true: $PQ^2 + QR^2 = RP^2$ 25° 65% Watch Video Solution 106. Angle Q and R of a $\ riangle \ PQR$ are 25° and 65° Write which of the following is true:

$PQ^2 + RP^2 = QR^2$

Watch Video Solution

107. Angle Q and R of a $\ riangle \ PQR$ are 25° and

 65° Write which of the following is true:

$RP^2 + QR^2 = PQ^2$

108. Find the perimeter of the rectangle whose

length is 40 cm and a diagonal is 41 cm.

Watch Video Solution

109. The diagonals of a rhombus measure 16

cm and 30 cm. Find its perimeter.

110. Which is the longest side in the triangle

PQR, right-angled at P?

Watch Video Solution

111. Which is the longest side in the triangle

ABC, right-angled at B?

112. Which is the longest side of a right triangle?

Watch Video Solution

113. 'The diagonal of a rectangle produce by itself the same area as produced by its length and breadth'– This is Baudhayan Theorem.Compare it with the Pythagoras property.

