©゙’ doubtnut

India's Number 1 Education App

MATHS

BOOKS - VK GLOBAL PUBLICATION MATHS

(HINGLISH)

MODEL QUESTION PAPER 3[UNSOLVED]

Section A

1. What is the HCF of the smallest composite number and the smallest prime number?
2. The graph of $y=f(x)$ is given in figure 1 . What is the number of zeros of $f(x)$?

3. Write the next of the AP $\sqrt{2}, \sqrt{8}, \sqrt{18}, \ldots$
4. ' O ' is the centre of the circle. Find $\angle(A D B)$

- Watch Video Solution

5. Do the equations $3 x+6 y=2$ and $6 x+12 y=4$ represent a pair of consistent lines ?
6. A die it thrown once. What is the probability of getting a prime number?

- Watch Video Solution

Section B

1. Given the $\operatorname{HCF}(54,336)=6$. Find $\operatorname{LCM}(54,336)$

- Watch Video Solution

2. Find a quadratic polynomial whose zeros are 1 and -3 . Verify the relation between the coefficients and zeros of the polynomial.

D Watch Video Solution

3. If 2 is a root of the equation $x^{2}+k x+12=0$
and the equation $x^{2}+k x+q=0$ has equal roots,
find the value of q.

- View Text Solution

4. If A, B and C are interior angles of a triangle $A B C$,
then show that $\sin \left(\frac{B+C}{2}\right)=\frac{\cos A}{2}$.

- Watch Video Solution

5. Dind θ; if $\sin \left(\theta+36^{\circ}\right)=\cos \theta$; where $\theta+36$ is an acute angle.

- Watch Video Solution

6. In the given figure, are shown two arcs PAQ and

PBQ. Arc PAQ is a part of circle with centre O and
radius $O P$ while are $P B Q$ is a semi-circle drawn on $P Q$
as diameter with centre M . $\mathrm{OP}=\mathrm{PQ}=10 \mathrm{~cm}$ show that
area of shaded region is $25\left(\sqrt{3}-\frac{\pi}{6}\right) \mathrm{cm}^{2}$

- Watch Video Solution

Section C

1. Show that $2+\sqrt{5}$ is an irrational number.

D
 Watch Video Solution

2. Find all zeroes of the polynomial $2 x^{4}-9 x^{3}+5 x^{2}+3 x-1$ if two of its zeroes are $2+\sqrt{3}$ and $2-\sqrt{3}$

- Watch Video Solution

3. Solve the following system of equations:
$\frac{5}{x-1}+\frac{1}{y-2}=2, \quad \frac{6}{x-1}-\frac{3}{y-2}=1$

- Watch Video Solution

4. The first and the last terms of an A.P. are 4 and 81 respectively. If the common difference is 7 , how many terms are there in the A.P. and what is their sum?

- Watch Video Solution

5. Show that $A(3,2), B(0,5), C(-3,2)$ and $D(0,-1)$ are the vertices of a square.

- Watch Video Solution

6. Find the area of the quadrilateral whose vertices are $A(0,0), B(6,0), C(4,3)$ and $D(0,3)$.

- View Text Solution

$$
\begin{aligned}
& \text { 7. } \begin{array}{c}
\text { In } \\
\frac{\text { the }}{S Q} \\
\frac{P S}{S Q}=\frac{P T}{T R} \text { and } \angle P S T=\angle P R Q .
\end{array} \text { Prove that }
\end{aligned}
$$

- Watch Video Solution

8. Prove that the angle between the two tangents drawn from an external point to a circle is supplementary to the angle subtended by the line
segments joining the points of contact at the centre.

- Watch Video Solution

9. A game of chance consists of spinning an arrow on a circular board, divided into 8 equal parts, which comes to rest pointing at one of the numbers $1,2,3$,
..., 8 , which are equally likely outcomes. What is the probability that the arrow will point at (i) an odd numbei ?
(ii) a number greater than 3 ?
(Hi) a
number less than $9 ?$

D Watch Video Solution
10. The mean of the following frequency distribution is 25 . Find the value of p.

Class	$0-10$	$10-20$	$20-30$	$30-40$	$40-50$
Frequency	2	3	5	3	p

D Watch Video Solution

Section D

1. A shopkeeper buys a number of books for Rs 1200.

If he had bought 10 more books for the same amount,each book would have cost him Rs20 less. How many books did he buy?
2. Prove that in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. Using the above, solve the following: A ladder reaches a window which is 12 m above the ground on one side of the street. Keeping its foot at the same point, the ladder is turned to the other side of the street to reach a window 9 m high. Find the width of the street if the length of the ladder is 15 m

- Watch Video Solution

3. Draw a circle of radius 3 cm . Take two points P and

Q on one of its extended diameter each at a distance of 7 cm from its centre. Draw tangents to the circle from these two points P and Q .

- Watch Video Solution

4. Anjali in an electrician and she has to repair an
electric fault on a pole of height 5 m . She needs to
reach to a point on the pole of 1.3 m below the top
of the pole to undertake the repair work. What
should be the length of the ladder that she should
use which, when inclined at angle of 60° from the
horizontal, would enable her to reach the required position? Further, how far from the foot of the pole should she place the foot of the ladder? What value is indicated from the question?

- Watch Video Solution

5. Prove that
$(\operatorname{cosec} A-\sin A)(\sec A-\cos A)=\frac{1}{(\tan A+\cot A)}$.

- Watch Video Solution

6. An elastic belt is placed around the rim of a pulley of radius 5 cm (Fig.) From one point C on the belt, the elastic belt is pulled directly away from the centre O of the pulley until it is at $P, 10 \mathrm{~cm}$ from the point O. Find the length of the belt that is still in contact with the pulley. Also, find the shaded area.
[use $\pi=3.14$ and $\sqrt{3}=1.73$]

- Watch Video Solution

7. A Right triangle whose sides are 15 cm and 20 cm ;
is made to revolve about its hypotenuse. Find the
volume and surface area of the double cone so formed.

- Watch Video Solution

8. Find the mean of the following frequency
distribution using assumed mean method:

Classes	$2-8$	$8-14$	$14-20$	$20-26$	$26-32$
Frequency (f)	6	3	12	11	8

D
 Watch Video Solution

