©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - VK GLOBAL PUBLICATION MATHS
 (HINGLISH)

POLYNOMIALS

Very Short Answer Questions

1. The graphs of $y=p(x)$ for some polynomials are given
below. Find the number of zeros in each case.

- Watch Video Solution

2. The graphs of $y=p(x)$ for some polynomials are given
below. Find the number of zeros in each case.

- Watch Video Solution

3. The graphs of $y=p(x)$ for some polynomials are given below. Find the number of zeros in each case.

- Watch Video Solution

4. The graphs of $y=p(x)$ for some polynomials are given below. Find the number of zeros in each case.

D Watch Video Solution

5. What will the quotient and remainder be on division of $a x^{2}+b x+c$ by $p x^{5}+r x+5, p \neq 0$

- Watch Video Solution

6. If on division of a polynomial $p(x)$ by a polynomial $g(x)$, the quotient is zero, what is the relation between the degrees of $p(x)$ and $g(x)$?

D Watch Video Solution

7. Can $(x-2)$ be the remainder on division of a polynomial $\mathrm{p}(\mathrm{x})$ by $(x+3)$?

(D) View Text Solution

8. Find the quadratic polynomial whose zeros are 3 and 4.
9. If one zero of the quadratic polynomial $x^{2}-5 x-6$ is 6 then find the other zero

D Watch Video Solution

10. If both the zeros of the quadratic polynomial $a x^{2}+b x+c$ are equal and opposite in sign, then find the value of b.

D Watch Video Solution

11. What should be added to the polynomial $x^{2}-5 x+4$, so that 3 is the zero of the resulting polynomial? (a) 1 (b)

2 (c) 4 (d) 5

- Watch Video Solution

12. Can a quadratic polynomial $x^{2}+k x+k$ have equal zeros for some odd integer $k>1$?

- Watch Video Solution

13. Are the following statements 'True' or 'False'? Justify
your answer.
(i) If the zeroes of a quadratic polynomial $a x^{2}+b x+c$ are both positive, then a, b and c all have the same sign.
(ii) If the graph of a polynomial intersects the X -axis at only one point, it cannot be a quadratic polynomial.
(iii) If the graph of a polynomial intersects the X -axis at
exactly two points, it need not ve a quadratic polynomial.
(iv) If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.
(v) If all the zeroes of a cubic polynomial are negative, then all the coefficients and the constant term of the polynomial have the same sign.
(vi) If all three zeroes of a cubic polynomial $x^{3}+a x^{2}-b x+c$ are positive, then atleast one of a, b and c is non-negative.
(vii) The only value of k for which the quadratic polynomial $k x^{2}+x+k$ has equal zeroes is $\frac{1}{2}$.

D Watch Video Solution

14. Are the following statements 'True' or 'False'? Justify your answer.
(i) If the zeroes of a quadratic polynomial $a x^{2}+b x+c$ are both positive, then a, b and c all have the same sign.
(ii) If the graph of a polynomial intersects the X -axis at only one point, it cannot be a quadratic polynomial.
(iii) If the graph of a polynomial intersects the X -axis at exactly two points, it need not ve a quadratic polynomial.
(iv) If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.
(v) If all the zeroes of a cubic polynomial are negative, then all the coefficients and the constant term of the polynomial have the same sign.
(vi) If all three zeroes of a cubic polynomial $x^{3}+a x^{2}-b x+c$ are positive, then atleast one of a, b
and c is non-negative.
(vii) The only value of k for which the quadratic polynomial $k x^{2}+x+k$ has equal zeroes is $\frac{1}{2}$.

- Watch Video Solution

15. Are the following statements 'True' or 'False'? Justify
your answer.
(i) If the zeroes of a quadratic polynomial $a x^{2}+b x+c$ are both positive, then a, b and c all have the same sign.
(ii) If the graph of a polynomial intersects the X -axis at only one point, it cannot be a quadratic polynomial.
(iii) If the graph of a polynomial intersects the X-axis at exactly two points, it need not ve a quadratic polynomial.
(iv) If two of the zeroes of a cubic polynomial are zero,
then it does not have linear and constant terms.
(v) If all the zeroes of a cubic polynomial are negative, then all the coefficients and the constant term of the polynomial have the same sign.
(vi) If all three zeroes of a cubic polynomial $x^{3}+a x^{2}-b x+c$ are positive, then atleast one of a, b and c is non-negative.
(vii) The only value of k for which the quadratic polynomial $k x^{2}+x+k$ has equal zeroes is $\frac{1}{2}$.

D Watch Video Solution

Short Answer Questions I

1. If one of the zeros of the quadratic polynomial $f(x)=$ $4 x^{2}-8 k x-9$ is equal in magnitude but opposite in sign of the other, find the value of k.

- Watch Video Solution

2. Q. If one zero of the quadratic polynomial $(k-1) x^{2}+k x+1$ is- 3 , then find the value of K

(D) Watch Video Solution

3. If 1 is a zero of the polynomial $p(x)=a x^{2}-3(a-1) x-1$, then find the value of a.
4. If α and β are zeroes of polynomial $p(x)=x^{2}-5 x+6$, then find the value of $\alpha+\beta-3 \alpha \beta$

- Watch Video Solution

5. Find the zeroes of the polynomial
$p(x)=4 x^{2}-12 x+9$.

- Watch Video Solution

6. If one root of $5 x^{2}+13 x+k=0$ be the reciprocal of the other root then the value of k is
7. If α and β are the zeroes of the polynomial $x^{2}+x+1$, then $\frac{1}{\alpha}+\frac{1}{\beta}=$

- Watch Video Solution

8. If one of the zeroes of the cubic polynomial $a x^{3}+b x^{2}+c x+d$ is zero, the product of then other two zeroes is
9. If the product of two zeros of the polynomial $f(x)=2 x^{3}+6 x^{2}-4 x+9$ is, then its third zero is (a) $\frac{3}{2}$ (b) $-\frac{3}{2}$ (c) $\frac{9}{2}$ (d) $-\frac{9}{2}$

D Watch Video Solution

10. Find a quadratic polynomial each with the given numbers as the sum and product of its zeros respectively.
(i) $-\frac{1}{4}, \frac{1}{4}$, (ii) $\sqrt{2}, \frac{1}{3}$

- View Text Solution

Short Answer Questions li

1. Find the zeroes of the following quadratic polynomials

 and verify the relationship between the zeroes and the coefficients $6 x^{2}-3-7 x$
- Watch Video Solution

2. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients $4 u^{2}+8 u$

D Watch Video Solution

3. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by
the first polynomial:
(i) $x^{2}+3 x+1,3 x^{4}+5 x^{3}-7 x^{2}+2 x+2$
(ii) $t^{2}-3,2 t^{4}+3 t^{3}-2 t^{2}-9 t-12$

D View Text Solution

4. If α and β are the zeros of the quadratic polynomial
$f(x)=2 x^{2}-5 x+7$, find a polynomial whose zeros are
$2 \alpha+3 \beta$ and $3 \alpha+2 \beta$.

- Watch Video Solution

5. What must be subtracted from
$8 x^{4}+14 x^{3}-2 x^{2}+7 x-8$ so that the resulting polynomial is exactly divisible by $4 x^{2}+3 x-2$.

- Watch Video Solution

6. What must be added to
$f(x)=4 x^{4}+2 x^{3}-2 x^{2}+x-1$ so that the resulting polynomial is divisible by $g(x)=x^{2}+2 x-3$.

- Watch Video Solution

7. Obtain the zeros of the quadratic polynomial
$\sqrt{3} x^{2}-8 x+4 \sqrt{3}$ and verify the relation between its
zeros and coefficients.

Watch Video Solution

8. If α and β are zeroes of the polynomial $6 y^{2}-7 y+2$,
find the quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$

- Watch Video Solution

9. If one zero of a polynomial $3 x^{2}-8 x+2 k+1=0$ is
seven times the other then $\mathrm{k}=$ \qquad

- Watch Video Solution

10. One zero of the polynomial $2 x^{2}+3 x+k i s \frac{1}{2}$ then $\mathrm{k}=$
11. If one zero of the polynomial $\left(a^{2}+9\right) x^{2}+13 x+6 a$ is reciprocal of the other, find the value of a.

- Watch Video Solution

12. If the polynomial $\left(x^{4}+2 x^{3}+8 x^{2}+12 x+18\right)$ is divided by another polymial $\left(x^{2}+5\right)$, the remainder comes out to be $(p x+q)$. Find the values of p and q .

- Watch Video Solution

1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each \quad case:(i) $\quad 2 x^{3}+x^{2}-5 x+2 ; \frac{1}{2}, 1,-2$
$x^{3}-4 x^{2}+5 x-2 ;{ }^{\prime} 2, \backslash 1, \backslash$

D Watch Video Solution

2. Find a cubic polynomial with the sum, sum of the products of its zeros taken two at a time, and product of its zeros as $2,-7,-14$ respectively.
3. Find the zeros of the polynomial $f(x)=x^{3}-5 x^{2}-2 x+24$, if it is given that the product of its two zeros is 12 .

D Watch Video Solution

4. If the remainder on division of $x^{3}-k x^{2}+13 x-21$ by
-21 . find the quotient and the value of k. Hence, find the zeros of the cubic polynomial $x^{3}-k x^{2}+13 x$.

D Watch Video Solution

5. Obtain all other zeroes of $3 x^{4}+6 x^{3}-2 x^{2}-10 x-5$, if two of its zeroes are $\sqrt{\frac{5}{3}}$ and $-\sqrt{\frac{5}{3}}$.

(D) Watch Video Solution

6. If $\sqrt{2}$ is a zero of $p(x)=6 x^{3}+\sqrt{2} x^{2}-10 x-4 \sqrt{2}$, find the remaining zeros

D Watch Video Solution

Hots Higher Order Thinking Skills

1. If α, β, γ are zeroes of polynomial $6 x^{3}+3 x^{2}-5 x+1$, then find the value of $\alpha^{-1}+\beta^{-1}+\gamma^{-1}$.

D Watch Video Solution

2. Find the zeros of the polynomial $f(x)=x^{3}-12 x^{2}+39 x-28$, if it is given that the zeros are in A.P.

- Watch Video Solution

3. If the polynomial $f(x)=x^{4}-6 x^{3}+16 x^{2}-25 x+10$ is divided by another polynomial $x^{2}-2 x+k$, the remainder comes out to be $x+a$, find k and a.
4. If one zero of the quadratic polynomial $x^{2}+x-2$ is -2 , find the other zero.

- Watch Video Solution

2. Find the other zero of the quadratic polynomial $y^{2}+7 y-60$ if one zero is -12

- Watch Video Solution

3. Find the quadratic polynomial whose zeros are - 3 and -5.
4. Find the quadratic polynomial whose zeros are 2 and -6.verify the relation between the coefficients and the zeros of the polynomial.

- Watch Video Solution

5. What number should be added to the polynomial $x^{2}+7 x-35$ so that 3 is the zero of the polynomial?

D View Text Solution

6. The graph of $y=p(x)$ for some polynomials are given below. Find the number of zeros in each case.

- Watch Video Solution

7. The graph of $y=p(x)$ for some polynomials are given below. Find the number of zeros in each case.

- Watch Video Solution

8. The graph of $y=p(x)$ for some polynomials are given below. Find the number of zeros in each case.

0
 Watch Video Solution

9. The graph of $y=p(x)$ for some polynomials are given below. Find the number of zeros in each case.

- Watch Video Solution

10. Can $(y+5)$ be the remainder on division of a polynomial $f(y)$ by $(y-2)$?

- Watch Video Solution

11. Can $x^{2}-1$ be the quotient on division of $x^{6}+2 x^{3}+x-1$ by a polynomial in x of degree 5 ?

- Watch Video Solution

12. If on division of a non-zero polynomial $p(x)$ by a polynomial $g(x)$, the remainder is zero, what is the relation between the degrees of $p(x)$ and $g(x)$?

- Watch Video Solution

13. If on division of a polynomial $p(x)$ by a polynomial $g(x)$, the quotient is zero, what is the relation between the degrees of $\mathrm{p}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$?
14. If one zero of the quadratic polynomial $p(x)=$ $x^{2}+4 k x-25$ is negative of the other, find the value of k .

- Watch Video Solution

Proficiency Exercise Short Answer Questions I

1. If α, β are the zeros of the polynomial
$f(x)=x^{2}-3 x+2$, then find $\frac{1}{\alpha}+\frac{1}{\beta}$.
2. If α and $\frac{1}{\alpha}$ are the zeroes of the polnomial $4 x^{2}-2 x+(k-4)$, find the value of k.

- Watch Video Solution

3. If α, β are the zeros of the polynomial $f(x)=a x^{2}+b x+C$, then find $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$.

- Watch Video Solution

4. If the sum of the zeros of the polynomial $f(x)=2 x^{3}-3 k x^{2}+4 x-5$ is 6 , then the value of k is
(a) 2
(b) 4 (c) -2 (d) -4
5. If 1 is the zero of the quadratic polynomial $x^{2}+k x-5$, then the value of k is

D Watch Video Solution

6. Find the zeros of the polynomial $5 y^{2}-11 y+2$

- Watch Video Solution

7. If one of the zeros of the quadratic polynomial
$(k-2) x^{2}-2 x-(k+5)$ is 4 , find the value of k
8. Are the following statements 'True' or 'False'? Justify
your answer.
(i) If the zeroes of a quadratic polynomial $a x^{2}+b x+c$ are both positive, then a, b and c all have the same sign.
(ii) If the graph of a polynomial intersects the X -axis at only one point, it cannot be a quadratic polynomial.
(iii) If the graph of a polynomial intersects the X -axis at exactly two points, it need not ve a quadratic polynomial.
(iv) If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.
(v) If all the zeroes of a cubic polynomial are negative, then all the coefficients and the constant term of the polynomial have the same sign.
(vi) If all three zeroes of a cubic polynomial
$x^{3}+a x^{2}-b x+c$ are positive, then atleast one of a, b
and c is non-negative.
(vii) The only value of k for which the quadratic polynomial $k x^{2}+x+k$ has equal zeroes is $\frac{1}{2}$.

- Watch Video Solution

9. Are the following statements 'True' or 'False'? Justify
your answer.
(i) If the zeroes of a quadratic polynomial $a x^{2}+b x+c$ are both positive, then a, b and c all have the same sign.
(ii) If the graph of a polynomial intersects the X -axis at only one point, it cannot be a quadratic polynomial.
(iii) If the graph of a polynomial intersects the X-axis at exactly two points, it need not ve a quadratic polynomial.
(iv) If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.
(v) If all the zeroes of a cubic polynomial are negative, then all the coefficients and the constant term of the polynomial have the same sign.
(vi) If all three zeroes of a cubic polynomial $x^{3}+a x^{2}-b x+c$ are positive, then atleast one of a, b and c is non-negative.
(vii) The only value of k for which the quadratic polynomial $k x^{2}+x+k$ has equal zeroes is $\frac{1}{2}$.

- Watch Video Solution

10. Are the following statements 'True' or 'False'? Justify your answer.
(i) If the zeroes of a quadratic polynomial $a x^{2}+b x+c$
are both positive, then a, b and c all have the same sign.
(ii) If the graph of a polynomial intersects the X -axis at only one point, it cannot be a quadratic polynomial.
(iii) If the graph of a polynomial intersects the X -axis at exactly two points, it need not ve a quadratic polynomial.
(iv) If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.
(v) If all the zeroes of a cubic polynomial are negative,
then all the coefficients and the constant term of the polynomial have the same sign.
(vi) If all three zeroes of a cubic polynomial
$x^{3}+a x^{2}-b x+c$ are positive, then atleast one of a, b
and c is non-negative.
(vii) The only value of k for which the quadratic polynomial $k x^{2}+x+k$ has equal zeroes is $\frac{1}{2}$.

(D) Watch Video Solution

11. 20:t If a and B are the zeroes of the quadratie polynomial $a x^{2}+b x+c$, find the value of $\frac{1}{\alpha}+\frac{1}{\beta}$

- Watch Video Solution

12. If α, β are the zeros of the polynomial $x^{2}+x-6$, find the value of $\frac{1}{\alpha^{2}}+\frac{1}{\beta^{2}}$.
13. If one root of the polynomial $f(x)=x^{2}+5 x+k$ is reciprocal of the other, find the value of k.

- Watch Video Solution

14. If α, β are the two zeros of the polynomial
$f(y)=y^{2}-8 y+a$ and $\alpha^{2}+\beta^{2}=40$, find the value of
a.

- Watch Video Solution

15. If α and β are zeros of $p(x)=x^{2}+x-1$, then find $\alpha^{2} \beta+\alpha \beta^{2}$.
16. If the sum of the zeros of the quadratic polynomial $f(t)=k t^{2}+2 t+3 k$ is equal to their product, find the value of k.

- Watch Video Solution

2. Find a quadratic polynomial each with the given numbers as the sum and product of the zeros respectively. (i) $\frac{2}{3},-\frac{1}{3}$, (ii) $0,-4 \sqrt{3}$, (iii) $-\frac{3}{2 \sqrt{5}},-\frac{1}{2}$, (iv) $\frac{21}{8}, \frac{5}{16}$
3. Find the zeros of the following polynomials and verify the relationship between the zeros and the coefficients of the polynomials.
(i) $3 x^{2}+4 x-4$, (ii) $7 y^{2}-\frac{11}{3} y-\frac{2}{3}$, (iii) $p^{2}-30$
(iv) $\sqrt{3} x^{2}-11 x+6 \sqrt{3}$, (v) $a\left(x^{2}+1\right)-x\left(a^{2}+1\right)$, (vi) $6 x^{2}+x-2$

- View Text Solution

4. Give examples of polynomials $p(x), g(x), g(x)$ and $r(x)$, which satisfy the division algorithm and
$(i i)(i i i) d e g \backslash p((i v) x(v)) \backslash=\backslash d e g \backslash q((v i) x(v i i))(v i i i)$
(ix) (ii) `(x) (xi) d eg"\"q((x i i) x (xiii))" " "="
5. Check whether $g(x)$ is a factor of $p(x)$ by dividing the first polynomial by the second polynomial:
(i) $p(x)=4 x^{3}+8 x+8 x^{2}+7, g(x)=2 x^{2}-x+1$,
$p(x)=x^{4}-5 x-2, g(x)=2-x^{2}$,
$p(x)=13 x^{3}-19 x^{2}+12 x+14, g(x)=2-2 x+x^{2}$

- Watch Video Solution

6. If $(x-2)$ is a factor of $x^{3}+a x^{2}+b x+16$ and $b=4 a$ find the values of a and b.
7. If α and β are the zeros of the quadratic polynomial $f(x)=3 x^{2}-5 x-2$, then evaluate
(i) $\alpha^{2}+\beta^{2}$, (ii) $\alpha^{3}+\beta^{3}$, (iii) $\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}$

- Watch Video Solution

8. If α and β are the zeros of the quadratic polynomial

$$
f(x)=x^{2}-p(x+1)-c \quad, \quad \text { show } \quad \text { that }
$$

$$
(\alpha+1)(\beta+1)=1-c
$$

D Watch Video Solution

9. What must be subtracted from $x^{3}-6 x^{2}+13 x-6$ so that the resulting polynomial is exactly divisible
$x^{2}+x+1 ?$

(D) Watch Video Solution

10.

What
must be
added
$f(x)=x^{4}+2 x^{3}-2 x^{2}+x-1$ so that the resulting polynomial is divisible by $x^{2}+x+1$?

- Watch Video Solution

11. If the polynomial $f(x)=a x^{3}+b x-c$ is divisible by the polynomial $g(x)=x^{2}+b x+c$, then $a b=$ (a) 1 (b) $\frac{1}{c}(\mathrm{c})-1(\mathrm{~d})-\frac{1}{c}$
12. If the zeroes of the quadratic polynomial $x^{2}+(a+1) x+b$ are 2 and -3 , then

- Watch Video Solution

Proficiency Exercise Long Answer Questions

1. If α, β are zeroes of polynomial $6 x^{2}+x-1$, then find the value of
(i) $\alpha^{3} \beta+\alpha \beta^{3}$, (ii) $\frac{\alpha}{\beta}+\frac{\beta}{\alpha}+2\left(\frac{1}{\alpha}+\frac{1}{\beta}\right)+3 \alpha \beta$
2. If the zeros of the polynomial
$f(x)=x^{3}-3 x^{2}-6 x+8$ are of the form $\mathrm{a}-\mathrm{b}, \mathrm{a}, \mathrm{a}+\mathrm{b}$, find all the zeros.

- Watch Video Solution

3. If α and β are zeros of polynomial $f(x)=2 x^{2}+11 x+5$, then find
(i) $\alpha^{4}+\beta^{4}$, (ii) $\frac{1}{\alpha}+\frac{1}{\beta}-2 \alpha \beta$

- View Text Solution

4. If α and β are the zeros of the polynomial $f(x)=4 x^{2}-5 x+1$, find a quadratic polynomial whose
zeros are $\frac{\alpha^{2}}{\beta}$ and $\frac{\beta^{2}}{\alpha}$

- Watch Video Solution

5. Given that $\sqrt{3}$ is a zero of the polynomial $x^{3}+x^{2}-3 x-3$, find its other two zeros.

- View Text Solution

6. If two zeros of the polynomial $f(x)=x^{4}-6 x^{3}-26 x^{2}+138 x-35$ are $2 \pm \sqrt{3}$, find other zeros.
7. On dividing the polynomial $x^{3}-5 x^{2}+6 x-4$ by a polynomial $g(x)$, quotient and remainder are $(x-3)$ and $(-3 x+5)$ respectively. Find $g(x)$

- Watch Video Solution

8. Verify that the numbers given alongside the cubic polynomials below are their zeros. Also verify the relationship between the zeros and the coefficients.
(i) $\quad x^{3}-2 x^{2}-5 x+6,-2,1,3$,
$2 x^{3}+7 x^{2}+2 x-3,3,-1, \frac{1}{2}$

- Watch Video Solution

9. (i) Obtain all other zeros of $2 x^{4}+7 x^{3}-19 x^{2}-14 x+30$, if two of its zeros are $\sqrt{2}$ and $-\sqrt{2}$.
(ii) Obtain all other zeros of $2 x^{3}+x^{2}-6 x-3$, if two of its zeros are $-\sqrt{3}$ and $\sqrt{3}$.

- Watch Video Solution

10. Find the cubic polynomial with the sum, sum of the products of its zeros taken two at a time, and the products of its zeros as $-3,-8$ and 2 respectively.
11. If α and β are the zeros of the quadratic polynomial $f(x)=3 x^{2}-7 x-6$, find a polynomial whose zeros are α^{2} and β^{2}

- Watch Video Solution

Self Assessment Test

1. Find the polynomial whose sum and product of the
zeros are $-\frac{1}{2}$ and $\frac{1}{2}$ respectively.
2. Can $y+1$ be the remainder on division of a polynomial $p(y)$ by $y-5$? Give reason.

D View Text Solution

3. If α, β are the zeros of $k x^{2}-2 x+3 k$ such that $\alpha+\beta=\alpha \beta$ then $\mathrm{k}=$?

- Watch Video Solution

4. Find the number of zeros of the polynomial represented in Fig.

- Watch Video Solution

5. What must be subtracted from
$8 x^{4}+14 x^{3}-2 x^{2}+7 x-8$ so that the resulting polynomial is exactly divisible by $4 x^{2}+3 x-2$.
6. If the remainder on division of $x^{3}+2 x^{2}+k x+3$ by $x-3$ is 21 , then find the quotient and the value of k . Hence, find the zeroes of the cubic polynomial $x^{3}+2 x^{2}+k x-18$.

D Watch Video Solution

7. Find all the zeros of $\mathrm{p}(\mathrm{x})=x^{3}-9 x^{2}-12 x+20$ if $(\mathrm{x}+2)$ is a factor of $p(x)$.

D View Text Solution

8. if $\mathrm{x}+\mathrm{a}$ is a factor of the polynomials $x^{2}+p x+q$ and
$x^{2}+m x+n$ prove that $a=\frac{n-q}{m-p}$

D Watch Video Solution

9. Find the zeros of polynomial $f(x)=4 \sqrt{3} x^{2}+5 x-2 \sqrt{3}$; and verify relation between zeros and its coefficient.

D Watch Video Solution

10. Obtain all zeros of the polynomial $f(x)=x^{4}-3 x^{3}-x^{2}+9 x-6$, if two of its zeros are $-\sqrt{3}$ and $\sqrt{3}$.
11. If α and β are the zeros of the quadratic polynomial $f(x)=3 x^{2}-7 x-6$, find a polynomial whose zeros are (i) α^{2} and β^{2}, (ii) $2 \alpha+3 \beta$ and $3 \alpha+2 \beta$.
