

MATHS

BOOKS - VK GLOBAL PUBLICATION MATHS (HINGLISH)

POLYNOMIALS

Very Short Answer Questions

1. The graphs of y = p(x) for some polynomials are given

2. The graphs of y = p(x) for some polynomials are given

3. The graphs of y = p(x) for some polynomials are given

4. The graphs of y = p(x) for some polynomials are given

5. What will the quotient and remainder be on division of

$$ax^2+bx+c$$
 by $px^5+rx+5, p
eq 0$

6. If on division of a polynomial p(x) by a polynomial g(x), the quotient is zero, what is the relation between the degrees of p(x) and g(x)?

7. Can $\left(x-2
ight)$ be the remainder on division of a

polynomial p(x) by (x + 3)?

View Text Solution

8. Find the quadratic polynomial whose zeros are 3 and 4.

9. If one zero of the quadratic polynomial $x^2 - 5x - 6$ is

6 then find the other zero

10. If both the zeros of the quadratic polynomial $ax^2 + bx + c$ are equal and opposite in sign, then find the value of b.

Watch Video Solution

11. What should be added to the polynomial $x^2 - 5x + 4$, so that 3 is the zero of the resulting polynomial? (a) 1 (b) 2 (c) 4 (d) 5

13. Are the following statements 'True' or 'False'? Justify your answer.

(i) If the zeroes of a quadratic polynomial $ax^2 + bx + c$ are both positive, then a,b and c all have the same sign. (ii) If the graph of a polynomial intersects the X-axis at only one point, it cannot be a quadratic polynomial. (iii) If the graph of a polynomial intersects the X-axis at exactly two points, it need not ve a quadratic polynomial. (iv) If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.

(v) If all the zeroes of a cubic polynomial are negative, then all the coefficients and the constant term of the polynomial have the same sign.

(vi) If all three zeroes of a cubic polynomial $x^3 + ax^2 - bx + c$ are positive, then atleast one of a,b and c is non-negative.

(vii) The only value of k for which the quadratic polynomial $kx^2 + x + k$ has equal zeroes is $\frac{1}{2}$.

14. Are the following statements 'True' or 'False'? Justify your answer.

(i) If the zeroes of a quadratic polynomial $ax^2 + bx + c$ are both positive, then a,b and c all have the same sign. (ii) If the graph of a polynomial intersects the X-axis at only one point, it cannot be a quadratic polynomial. (iii) If the graph of a polynomial intersects the X-axis at exactly two points, it need not ve a quadratic polynomial. (iv) If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms. (v) If all the zeroes of a cubic polynomial are negative, then all the coefficients and the constant term of the polynomial have the same sign.

(vi) If all three zeroes of a cubic polynomial $x^3 + ax^2 - bx + c$ are positive, then atleast one of a,b

and c is non-negative.

(vii) The only value of k for which the quadratic polynomial $kx^2 + x + k$ has equal zeroes is $\frac{1}{2}$.

15. Are the following statements 'True' or 'False'? Justify your answer.

(i) If the zeroes of a quadratic polynomial $ax^2 + bx + c$ are both positive, then a,b and c all have the same sign. (ii) If the graph of a polynomial intersects the X-axis at only one point, it cannot be a quadratic polynomial. (iii) If the graph of a polynomial intersects the X-axis at exactly two points, it need not ve a quadratic polynomial. (iv) If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.

(v) If all the zeroes of a cubic polynomial are negative, then all the coefficients and the constant term of the polynomial have the same sign.

(vi) If all three zeroes of a cubic polynomial $x^3 + ax^2 - bx + c$ are positive, then atleast one of a,b and c is non-negative.

(vii) The only value of k for which the quadratic polynomial $kx^2 + x + k$ has equal zeroes is $rac{1}{2}$.

Watch Video Solution

Short Answer Questions I

1. If one of the zeros of the quadratic polynomial $f(x) = 4x^2 - 8kx - 9$ is equal in magnitude but opposite in sign of the other, find the value of k.

If lpha and eta are zeroes of polynomial 4. $p(x)=x^2-5x+6$, then find the value of lpha+eta-3lphaetaWatch Video Solution 5. Find the zeroes of the polynomial $p(x) = 4x^2 - 12x + 9.$ Watch Video Solution

6. If one root of $5x^2 + 13x + k = 0$ be the reciprocal of

the other root then the value of k is

7. If α and β are the zeroes of the polynomial $x^2 + x + 1$, then $\frac{1}{\alpha} + \frac{1}{\beta}$ = Watch Video Solution

8. If one of the zeroes of the cubic polynomial $ax^3 + bx^2 + cx + d$ is zero, the product of then other two zeroes is

9. If the product of two zeros of the polynomial $f(x)=2x^3+6x^2-4x+9$ is , then its third zero is (a) $rac{3}{2}$ (b) $-rac{3}{2}$ (c) $rac{9}{2}$ (d) $-rac{9}{2}$

Watch Video Solution

10. Find a quadratic polynomial each with the given numbers as the sum and product of its zeros respectively. (i) $-\frac{1}{4}, \frac{1}{4}$, (ii) $\sqrt{2}, \frac{1}{3}$

View Text Solution

1. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients $6x^2 - 3 - 7x$

Watch Video Solution

2. Find the zeroes of the following quadratic polynomials and verify the relationship between the zeroes and the coefficients $4u^2 + 8u$

3. Check whether the first polynomial is a factor of the second polynomial by dividing the second polynomial by

the first polynomial:

(i)
$$x^2 + 3x + 1$$
, $3x^4 + 5x^3 - 7x^2 + 2x + 2$
(ii) $t^2 - 3$, $2t^4 + 3t^3 - 2t^2 - 9t - 12$

4. If lpha and eta are the zeros of the quadratic polynomial $f(x)=2x^2-5x+7$, find a polynomial whose zeros are 2lpha+3eta and 3lpha+2eta .

Watch Video Solution

5. What must be subtracted from $8x^4 + 14x^3 - 2x^2 + 7x - 8$ so that the resulting polynomial is exactly divisible by $4x^2 + 3x - 2$.

7. Obtain the zeros of the quadratic polynomial $\sqrt{3}x^2 - 8x + 4\sqrt{3}$ and verify the relation between its zeros and coefficients.

8. If $lpha \, \, {
m and} \, \, eta$ are zeroes of the polynomial $6y^2 - 7y + 2$, find the quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$ Watch Video Solution **9.** If one zero of a polynomial $3x^2 - 8x + 2k + 1 = 0$ is seven times the other then k = Watch Video Solution **10.** One zero of the polynomial $2x^2 + 3x + kisrac{1}{2}$ then k =

11. If one zero of the polynomial $(a^2+9)x^2+13x+6a$ is reciprocal of the other, find the value of a.

Watch Video Solution

12. If the polynomial $(x^4 + 2x^3 + 8x^2 + 12x + 18)$ is divided by another polymial $(x^2 + 5)$, the remainder comes out to be (px + q). Find the values of p and q.

Long Answer Questions 4 Marks

1. Verify that the numbers given alongside of the cubic polynomials below are their zeroes. Also verify the relationship between the zeroes and the coefficients in each case:(i) $2x^3 + x^2 - 5x + 2; \frac{1}{2}, 1, -2$ (ii) $x^3 - 4x^2 + 5x - 2; 2, 1,$

Watch Video Solution

2. Find a cubic polynomial with the sum, sum of the products of its zeros taken two at a time, and product of its zeros as 2, -7, -14 respectively.

3. Find the zeros of the polynomial $f(x) = x^3 - 5x^2 - 2x + 24$, if it is given that the product of its two zeros is 12.

Watch Video Solution

4. If the remainder on division of $x^3 - kx^2 + 13x - 21$ by

-21 . find the quotient and the value of k. Hence, find the

zeros of the cubic polynomial $x^3 - kx^2 + 13x$.

Watch Video Solution

5. Obtain all other zeroes of $3x^4 + 6x^3 - 2x^2 - 10x - 5$,

if two of its zeroes are
$$\sqrt{rac{5}{3}}$$
 and $-\sqrt{rac{5}{3}}$.

Hots Higher Order Thinking Skills

1. If $lpha,eta,\gamma$ are zeroes of polynomial $6x^3+3x^2-5x+1$,

then find the value of $\alpha^{-1} + \beta^{-1} + \gamma^{-1}$.

2. Find the zeros of the polynomial $f(x) = x^3 - 12x^2 + 39x - 28$, if it is given that the zeros are in A.P.

3. If the polynomial $f(x)=x^4-6x^3+16x^2-25x+10$

is divided by another polynomial x^2-2x+k , the

remainder comes out to be x + a , find k and a .

Watch Video Solution

Proficiency Exercise Very Short Answer Questions

1. If one zero of the quadratic polynomial $x^2 + x - 2$ is -2,

find the other zero.

3. Find the quadratic polynomial whose zeros are - 3 and

-5.

4. Find the quadratic polynomial whose zeros are 2 and -6.verify the relation between the coefficients and the zeros of the polynomial.

Watch Video Solution

5. What number should be added to the polynomial

 $x^2+7x-35$ so that 3 is the zero of the polynomial?

View Text Solution

6. The graph of y = p(x) for some polynomials are given below. Find the number of zeros in each case.

7. The graph of y = p(x) for some polynomials are given below. Find the number of zeros in each case.

8. The graph of y = p(x) for some polynomials are given

9. The graph of y = p(x) for some polynomials are given below. Find the number of zeros in each case.

10. Can (y+5) be the remainder on division of a polynomial f(y) by (y-2) ?

11. Can x^2-1 be the quotient on division of

 $x^6 + 2x^3 + x - 1$ by a polynomial in x of degree 5?

12. If on division of a non-zero polynomial p(x) by a polynomial g(x), the remainder is zero, what is the relation between the degrees of p(x) and g(x)?

13. If on division of a polynomial p(x) by a polynomial g(x),

the quotient is zero, what is the relation between the

degrees of p(x) and g(x)?

14. If one zero of the quadratic polynomial p(x) =

 $x^2 + 4kx$ – 25 is negative of the other, find the value of k.

Watch Video Solution

Proficiency Exercise Short Answer Questions I

1. If
$$lpha,eta$$
 are the zeros of the polynomial $f(x)=x^2\!-\!3x+2$, then find $rac{1}{lpha}+rac{1}{eta}.$

2. If α and $\frac{1}{\alpha}$ are the zeroes of the polnomial $4x^2 - 2x + (k - 4)$, find the value of k.

• Watch Video Solution
3. If
$$\alpha, \beta$$
 are the zeros of the polynomial
 $f(x) = ax^2 + bx + C$, then find $\frac{1}{\alpha^2} + \frac{1}{\beta^2}$.
• Watch Video Solution

4. If the sum of the zeros of the polynomial $f(x) = 2x^3 - 3kx^2 + 4x - 5$ is 6, then the value of k is (a) 2 (b) 4 (c) - 2 (d) - 4

, then the value of k is

Watch Video Solution

6. Find the zeros of the polynomial $5y^2 - 11y + 2$

7. If one of the zeros of the quadratic polynomial $(k-2)x^2 - 2x - (k+5)$ is 4, find the value of k

8. Are the following statements 'True' or 'False'? Justify your answer.

(i) If the zeroes of a quadratic polynomial $ax^2 + bx + c$ are both positive, then a,b and c all have the same sign. (ii) If the graph of a polynomial intersects the X-axis at only one point, it cannot be a quadratic polynomial. (iii) If the graph of a polynomial intersects the X-axis at exactly two points, it need not ve a guadratic polynomial. (iv) If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms. (v) If all the zeroes of a cubic polynomial are negative, then all the coefficients and the constant term of the polynomial have the same sign.

(vi) If all three zeroes of a cubic polynomial

 $x^3 + ax^2 - bx + c$ are positive, then atleast one of a,b and c is non-negative.

(vii) The only value of k for which the quadratic polynomial $kx^2 + x + k$ has equal zeroes is $rac{1}{2}$.

Watch Video Solution

9. Are the following statements 'True' or 'False'? Justify your answer.

(i) If the zeroes of a quadratic polynomial $ax^2 + bx + c$ are both positive, then a,b and c all have the same sign. (ii) If the graph of a polynomial intersects the X-axis at only one point, it cannot be a quadratic polynomial. (iii) If the graph of a polynomial intersects the X-axis at exactly two points, it need not ve a quadratic polynomial. (iv) If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms.

(v) If all the zeroes of a cubic polynomial are negative, then all the coefficients and the constant term of the polynomial have the same sign.

(vi) If all three zeroes of a cubic polynomial $x^3 + ax^2 - bx + c$ are positive, then atleast one of a,b and c is non-negative.

(vii) The only value of k for which the quadratic polynomial $kx^2 + x + k$ has equal zeroes is $\frac{1}{2}$.

Watch Video Solution

10. Are the following statements 'True' or 'False'? Justify

your answer.

(i) If the zeroes of a quadratic polynomial $ax^2 + bx + c$ are both positive, then a,b and c all have the same sign. (ii) If the graph of a polynomial intersects the X-axis at only one point, it cannot be a quadratic polynomial. (iii) If the graph of a polynomial intersects the X-axis at exactly two points, it need not ve a guadratic polynomial. (iv) If two of the zeroes of a cubic polynomial are zero, then it does not have linear and constant terms. (v) If all the zeroes of a cubic polynomial are negative, then all the coefficients and the constant term of the

polynomial have the same sign.

(vi) If all three zeroes of a cubic polynomial $x^3 + ax^2 - bx + c$ are positive, then atleast one of a,b and c is non-negative.

(vii) The only value of k for which the quadratic polynomial $kx^2 + x + k$ has equal zeroes is $\frac{1}{2}$.

12. If lpha, eta are the zeros of the polynomial x^2+x-6 , find the value of $rac{1}{lpha^2}+rac{1}{eta^2}.$

13. If one root of the polynomial $f(x) = x^2 + 5x + k$ is

reciprocal of the other, find the value of k.

Watch Video Solution

15. If lpha and eta are zeros of $p(x) = x^2 + x - 1$, then find

 $\alpha^2\beta + \alpha\beta^2.$

1. If the sum of the zeros of the quadratic polynomial $f(t)=kt^2+2t+3k$ is equal to their product, find the value of k.

2. Find a quadratic polynomial each with the given numbers as the sum and product of the zeros respectively. (i) $\frac{2}{3}$, $-\frac{1}{3}$, (ii) 0, $-4\sqrt{3}$, (iii) $-\frac{3}{2\sqrt{5}}$, $-\frac{1}{2}$, (iv) $\frac{21}{8}$, $\frac{5}{16}$

3. Find the zeros of the following polynomials and verify the relationship between the zeros and the coefficients of the polynomials.

(i) $3x^2 + 4x - 4$, (ii) $7y^2 - \frac{11}{3}y - \frac{2}{3}$, (iii) $p^2 - 30$ (iv) $\sqrt{3}x^2 - 11x + 6\sqrt{3}$, (v) $a(x^2 + 1) - x(a^2 + 1)$, (vi) $6x^2 + x - 2$

4. Give examples of polynomials p(x), g(x), g(x) and r(x), which satisfy the division algorithm and (i) $(ii)(iii)deg \land p((iv)x(v)) \land = \land deg \land q((vi)x(vii))(viii)$ (ix) (ii) `(x) (xi) d eg" \"q((x i i) x (xiii))" \"="

5. Check whether g(x) is a factor of p(x) by dividing the first polynomial by the second polynomial:

(i)
$$p(x) = 4x^3 + 8x + 8x^2 + 7, g(x) = 2x^2 - x + 1$$
, (ii)

$$p(x)=x^4-5x-2, g(x)=2-x^2$$
, (iii)

 $p(x) = 13x^3 - 19x^2 + 12x + 14, g(x) = 2 - 2x + x^2$

Watch Video Solution

6. If (x-2) is a factor of $x^3 + ax^2 + bx + 16$ and b = 4a

find the values of a and b.

7. If α and β are the zeros of the quadratic polynomial $f(x) = 3x^2 - 5x - 2$, then evaluate (i) $\alpha^2 + \beta^2$, (ii) $\alpha^3 + \beta^3$, (iii) $\frac{\alpha^2}{\beta} + \frac{\beta^2}{\alpha}$ Watch Video Solution

8. If α and β are the zeros of the quadratic polynomial

 $f(x)=x^2-p(x+1)-c$, show that $(lpha+1)(eta+1)=1-c\,.$

Watch Video Solution

9. What must be subtracted from $x^3 - 6x^2 + 13x - 6$ so that the resulting polynomial is exactly divisible

 $x^2 + x + 1?$ Watch Video Solution

10. What must be added to $f(x)=x^4+2x^3-2x^2+x-1$ so that the resulting polynomial is divisible by x^2+x+1 ?

Watch Video Solution

11. If the polynomial $f(x)=ax^3+bx-c$ is divisible by the polynomial $g(x)=x^2+bx+c$, then ab= (a) 1 (b) $rac{1}{c}$ (c) -1 (d) $-rac{1}{c}$

12. If the zeroes of the quadratic polynomial $x^2 + (a+1)x + b$ are 2 and -3, then

Watch Video Solution

Proficiency Exercise Long Answer Questions

1. If α , β are zeroes of polynomial $6x^2 + x - 1$, then find the value of

(i) $lpha^3eta+lphaeta^3$, (ii) $rac{lpha}{eta}+rac{eta}{lpha}+2igg(rac{1}{lpha}+rac{1}{eta}igg)+3lphaeta$

2. If the zeros of the polynomial $f(x) = x^3 - 3x^2 - 6x + 8$ are of the form a-b,a,a + b, find all the zeros.

4. If lpha and eta are the zeros of the polynomial $f(x) = 4x^2 - 5x + 1$, find a quadratic polynomial whose

Watch Video Solution

5. Given that $\sqrt{3}$ is a zero of the polynomial $x^3 + x^2 - 3x - 3$, find its other two zeros.

View Text Solution

other zeros.

7. On dividing the polynomial $x^3 - 5x^2 + 6x - 4$ by a polynomial g(x), quotient and remainder are (x - 3) and (-3x + 5) respectively. Find g(x)

Watch Video Solution

8. Verify that the numbers given alongside the cubic polynomials below are their zeros. Also verify the relationship between the zeros and the coefficients.

(i)
$$x^3 - 2x^2 - 5x + 6, -2, 1, 3,$$
 (ii)

 $2x^3+7x^2+2x-3, 3, \ -1, rac{1}{2}$

9. (i) Obtain all other zeros of $2x^4 + 7x^3 - 19x^2 - 14x + 30$, if two of its zeros are $\sqrt{2}$ and $-\sqrt{2}$. (ii) Obtain all other zeros of $2x^3 + x^2 - 6x - 3$, if two of

its zeros are $-\sqrt{3}$ and $\sqrt{3}$.

Watch Video Solution

10. Find the cubic polynomial with the sum, sum of the products of its zeros taken two at a time, and the products of its zeros as – 3,-8 and 2 respectively.

11. If lpha and eta are the zeros of the quadratic polynomial $f(x)=3x^2-7x-6$, find a polynomial whose zeros are $lpha^2$ and eta^2

Watch Video Solution

Self Assessment Test

1. Find the polynomial whose sum and product of the zeros are $-\frac{1}{2}$ and $\frac{1}{2}$ respectively.

2. Can y + 1 be the remainder on division of a polynomial p(y) by y-5? Give reason.

4. Find the number of zeros of the polynomial represented in Fig.

5. What must be subtracted from $8x^4 + 14x^3 - 2x^2 + 7x - 8$ so that the resulting polynomial is exactly divisible by $4x^2 + 3x - 2$.

6. If the remainder on division of $x^3 + 2x^2 + kx + 3$ by x - 3 is 21, then find the quotient and the value of k. Hence, find the zeroes of the cubic polynomial $x^3 + 2x^2 + kx - 18$.

Watch Video Solution

7. Find all the zeros of p(x) = $x^3 - 9x^2 - 12x + 20$ if (x+2)

is a factor of p(x).

View Text Solution

8. if x+a is a factor of the polynomials $x^2 + px + q$ and

$$x^2+mx+n$$
 prove that $a=rac{n-q}{m-p}$

11. If α and β are the zeros of the quadratic polynomial $f(x) = 3x^2 - 7x - 6$, find a polynomial whose zeros are (i) α^2 and β^2 , (ii) $2\alpha + 3\beta$ and $3\alpha + 2\beta$.