©゙" doubtnut

MATHS

BOOKS - VK GLOBAL PUBLICATION

MATHS (HINGLISH)

PRE-MID TERM TEST PAPER

Section A

1. If two positive integers a and b can be
$a=x^{2} y^{5}$ and $b=x^{3} y^{2}$, wherex, y are prime numbers, then find LCM of a and b.

D Watch Video Solution

2. The decimal representation of an irrational number is

D Watch Video Solution

3. Find the sum and product of zeros of the quadratic polynomial $a x^{2}+b x+c$.
4. Find the point at which, pair of equations $x=a$ and $y=b$ intersects, when graphically represent.

- Watch Video Solution

Section B

1. Can two number have 18 as their HCF and 380 as their LCM? Give reason

D Watch Video Solution

2. Show that the system of equations
$-x+2 y+2=0$ and $\frac{1}{2} x-\frac{1}{2} y-1=0$
has a unique solution.

D Watch Video Solution
3. Can $(x-1)$ be the remainder on division of
a polynomial $P(x)$ by $2 x+3$? Justify your answer.

D Watch Video Solution

4. Can the number $6^{n}, n$ being a natural number, end with the digit 5? Give reason.

D Watch Video Solution

5. Is the pair of equations
$x+2 y-3=0$ and $6 y+3 x-9=0$
consistent? Justify your answer.

- Watch Video Solution

6. Find the zeros of the polynomial
$4 x^{2}-12 x+9$.

D Watch Video Solution

1. The LCM of two numbers is 14 times their

HCF. The sum of LCM and HCF is 600 . If one number is 280 , then find the other number.

- Watch Video Solution

2. Show that the square of an odd positive integer is of the form $8 q+1$, for some integer q.
3. If α and β are zeroes of the polynomial
$6 y^{2}-7 y+2$, find the quadratic polynomial whose zeroes are $\frac{1}{\alpha}$ and $\frac{1}{\beta}$

- Watch Video Solution

4. For what value of p and q, will the following pair of linear equations have infinitely many solutions?
$4 x+5 y=2$
$(2 p+7 q) x+(p+8 q) y=2 q-p+1$

Section D

1. Draw the graphs of the pair of linear equations
$x-y+2=0$ and $4 x-y-4=0$.

Calculate the area of the triangle formed by the lines so drawn and the x-axis.
2. Find the quadratic polynomial, the sum and product of whose zeroes are $\sqrt{2}$ and $-\frac{3}{2}$, respectively Also find its zeroes.

D Watch Video Solution

3. Prove that $\sqrt{2}+\sqrt{3}$ is irrational.
(Watch Video Solution
