©゙" doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MTG PHYSICS (ENGLISH)

SEMICONDUCTOR ELECTRONICS :

MATERIALS, DEVICES AND SIMPLE

CIRCUITS

Mcq

1. At absolute zero, Si acts as
A. metal
B. semiconductor
C. insulator
D. none of these

Answer: C

D Watch Video Solution
2. In good conductors of electricity, the type of bonding that exists is
A. Van der Waals
B. covalent
C. ionic
D. metallic

Answer: D

D Watch Video Solution

3. The manifestation of band structure in solids is due to
A. Heisenberg uncertainty principle
B. Pauli's exclusion principle
C. Bohr's correspondence principle
D. Boltzmann law

Answer: B

D Watch Video Solution

4. Carbon, silicon and germanium have four
valence elcectrons each . These are
characterised by valence and conduction
bands separated by energy band - gap respectively equal to $\left(E_{g}\right)_{c}\left(E_{g}\right)_{s i}$ and $\left(E_{g}\right)_{G e}$. Which of the following statements ture ?
A. $\left(E_{g}\right)_{S i}<\left(E_{g}\right)_{G e}<\left(E_{g}\right)_{C}$
B. $\left(E_{g}\right)_{C}<\left(E_{g}\right)_{G e}<\left(E_{g}\right)_{S i}$
C. $\left(E_{g}\right)_{C}>\left(E_{g}\right)_{S i}>\left(E_{g}\right)_{G e}$
D. $\left(E_{g}\right)_{C}=\left(E_{g}\right)_{S i}=\left(E_{g}\right)_{G e}$

Answer: C

- Watch Video Solution

5. If the energy of a photon of sodium light (λ
$=589 \mathrm{~nm}$) equals the band gap of semiconductor, the minimum energy required to create hole electron pair
A. 1.1 eV
B. 2.1 eV
C. 3.2 eV
D. 1.5 eV

Answer: B

D Watch Video Solution
6. The electrical conductivity of a semiconductor increases
when
electromagnetic radiation of wavelength
shorter than 2480 nm is incident on it. The
band gap in $(e V)$ for the semiconductor is.
A. 0.9
B. 0.7
C. 0.5
D. 1.1

Answer: C

D Watch Video Solution

7. Find the wavelength of light that may excite an electron in the valence band of diamond to
the conduction band. The energy gap is 5.50 eV
A. 226 nm
B. 312 nm
C. 432 nm

D. 550 nm

Answer: A

D Watch Video Solution

8. The maximum wavelength of
electromagnetic radiation, which can create a
hole-electron pair in germanium. (Given that
forbidden energy gap in germanium is 0.72 eV)
A. $1.7 \times 10^{-6} \mathrm{~m}$
B. $1.5 \times 10^{-5} \mathrm{~m}$
C. $1.3 \times 10^{-4} \mathrm{~m}$
D. $1.9 \times 10^{-5} \mathrm{~m}$

Answer: A

- Watch Video Solution

9. The probability of electrons to be found in
the conduction band of an intrinsic
semiconductor at a finite temperature
A. increases exponentially with increasing
band gap
B. decreases exponentially with increasing
band gap
C. decreases with increasing temperature.
D. is independent of the temperature and band gap.

Answer: B

D Watch Video Solution

10. Which of the following equations correctly represents the temperature variation of energy gap between the conduction and valence bands for Si ?

$$
\begin{aligned}
& \text { A. } E_{g(T)}=0.70-2.23 \times 10^{-4} \mathrm{TeV} \\
& \text { B. } E_{g(T)}=0.70+2.23 \times 10^{-4} \mathrm{TeV} \\
& \text { C. } E_{g(T)}=1.10-3.60 \times 10^{-4} \mathrm{TeV} \\
& \text { D. } E_{g(T)}=1.10+3.60 \times 10^{-4} \mathrm{TeV}
\end{aligned}
$$

Answer: C

11. An intrinsic semiconductor has a resistivity of $0.50 \Omega \mathrm{~m}$ at room temperature. Find the intrinsic carrier concentration if the mobilities of electrons and holes are $0.39 m^{2} V^{-1} s^{-1}$ and $0.11 m^{2} V^{-1} s^{-1}$ respectively
A. $1.2 \times 10^{18} m^{-3}$
B. $2.5 \times 10^{19} \mathrm{~m}^{-3}$
C. $1.9 \times 10^{20} \mathrm{~m}^{-3}$
D. $3.1 \times 10^{21} m^{-3}$

Answer: B

- Watch Video Solution

12. In pure semiconductor, the number of conduction electrons is 6×10^{18} per cubic metre. How many holes are there in a sample of size $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~mm}$?
A. 3×10^{10}
B. 6×10^{11}
C. 3×10^{11}

D. 6×10^{10}

Answer: B

D Watch Video Solution

13. Mobilities of electorns and holes in a sample of intrinsic germanium at room temperature are $0.54 m^{2} V^{-1} s^{-1}$ and
$0.18 m^{2} V^{-1} s^{-1}$ respectively.

If the electron and hole densities are equal to
$3.6 \times 10^{19} m^{-3}$ calculate the germanium

conductivity.

A. $4.14 S m^{-1}$
B. $2.12 S m^{-1}$
C. $1.13 S m^{-1}$
D. $5.6 S m^{-1}$

Answer: A
(Watch Video Solution
14. A block of pure silicon at $300 K$ has a length of 10 cm and an area of $1.0 \mathrm{~cm}^{2}$. A battery of emf $2 V$ is connected across it. The mobility of electron is $0.14 m^{2} v^{-1} S^{-1}$ and their number density is $1.5 \times 10^{16} m^{-3}$. The mobility of holes is $0.05 m^{2} v^{-1} S^{-1}$.

The electron current is

$$
\begin{aligned}
& \text { A. } 6.72 \times 10^{-4} \mathrm{~A} \\
& \text { B. } 6.72 \times 10^{-5} \mathrm{~A} \\
& \text { C. } 6.72 \times 10^{-6} \mathrm{~A}
\end{aligned}
$$

$$
\text { D. } 6.72 \times 10^{-7} \mathrm{~A}
$$

Answer: D

D Watch Video Solution

15. In an n - type silicon, which of the following statements is true?
(a) Electrons are majority carries and trivalent atoms are the dopants.
(b) Electrons are majority carries and pentavalent atoms are the dopants.
(c) Holes are minority carries and paentavalent atoms are the dopants.
(d) Holes are minority carries and trivalent atoms are the dopants.
A. Electrons are majority carriers and trivalent atoms are the dopants
B. Electrons are minority carriers and pentavalent atoms are the dopants
C. Holes are minority carriers and pentavalent atoms are the dopants

D. Holes are majority carriers and trivalent

 atoms are the dopants.
Answer: C

- Watch Video Solution

16. If a small amount of antimony is added to
germanium crystal
A. its resistance is increased
B. it becomes a p-type semiconductor

C. there will be more free electrons than

holes in the semiconductor
D. none of these

Answer: C

D Watch Video Solution

17. In n-type semiconductor when when all donor states are filled, then the net charge density in the donor states becomes
A. 1
B. gt 1
C. It 1, but not zero
D. zero

Answer: B

- Watch Video Solution

18. Suppose a pure Si-crystal has
5×10^{28} atoms m^{-3}. It is doped by 1 ppm concentration of pentavalent As. Calculate the
number of electrons and holes. Give that

$$
n_{i}=1.5 \times 10^{16} m^{-3}
$$

A. $4.5 \times 10^{9} m^{-3}$
B. $4.5 \times 10^{6} m^{-3}$
C. $2.5 \times 10^{9} \mathrm{~m}^{-3}$
D. $2.5 \times 10^{6} m^{-3}$

Answer: A
(Watch Video Solution
19. A semiconductor has equal electron and hole concentration of $6 \times 10^{8} / \mathrm{m}^{3}$. On doping
with certain impurity, electron concentration increases to $9 \times 10^{12} / \mathrm{m}^{3}$. (i) Identify the new semiconductor obtained after doping. (ii)

Calculate the new hole concentration. (iii) How does the energy gap vary with doping?
A. 2×10^{4} per m^{3}
B. 2×10^{2} per m^{3}
C. 4×10^{4} per m^{3}

D. 4×10^{2} per m^{3}

Answer: C

D Watch Video Solution

20. The number density of electrons and holes
in pure silicon at $27^{\circ} \mathrm{C}$ are equal and its value
is $2.0 \times 10^{16} \mathrm{~m}^{-3}$. On doping with indium the hole density increases to $4.5 \times 10^{22} m^{-3}$, the electron density in doped silicon is

$$
\text { A. } 10 \times 10^{9} m^{-3}
$$

B. $8.89 \times 10^{9} m^{-3}$
C. $11 \times 10^{9} m^{-3}$
D. $16.78 \times 10^{9} \mathrm{~m}^{-3}$

Answer: B

D Watch Video Solution
21. The dominant mechanisms for motion of charge carriers in forward and reverse biased
silicon $P-N$ junction are
A. drift in forward bias, diffusion in reverse
bias
B. diffusion in forward bias, drift in reverse bias
C. diffusion in both forward and reverse bias

D. drift in both forward and reverse bias

Answer: B

22. In an unbiased p-n junction electrons diffuse from n-region to p -region because :-
A. free electrons in the n-region attract them
B. they move across the junction by the potential difference
C. hole concentration in p-region is more
as compared to n-region
D. all of these

Answer: C

D Watch Video Solution

23. Region which have no free electron and holes in $\mathrm{P}-\mathrm{N}$ junction is
A. x-region
B. p-region
C. depletion region
D. none of these

Answer: C

D Watch Video Solution

24. In the depletion region of a diode.
A. There the mobile charges exist
B. Equal number of holes and electrons
exist. making the region neutral.
C. Recombination of holes and electrons
has taken place

D. None of these

Answer: A

D Watch Video Solution

25. In a $p-n$ junction diode, the barrier potential opposes diffusion of
A. minority carrier in both regions only
B. majority carriers only
C. electrons in pregion

D. holes in p region

Answer: B

D Watch Video Solution

26. A potential barrier of 0.3 V exists across a
p-n junction. If the depletion region is $1 \mu \mathrm{~m}$
wide, what is the intensity of electric field in
this region?

$$
\text { A. } 2 \times 10^{5} V m^{-1}
$$

$$
\text { B. } 3 \times 10^{5} V m^{-1}
$$

C. $4 \times 10^{5} V m^{-1}$
D. $5 \times 10^{5} \mathrm{Vm}^{-1}$

Answer: B

- Watch Video Solution

27. Which of the junction diodes shown below

 are forward biased ?

Answer: A
(D) Watch Video Solution

28. A forward biased diode is

A.
(a) $\mathrm{OV} \longrightarrow \perp-\mathrm{mu}-2 \mathrm{~V}$
B.
(b) $-4 \mathrm{~V} \longrightarrow-3 \mathrm{~m}-3 \mathrm{~V}$
c.
D. (d) $-2 \mathrm{~V} \longrightarrow \longrightarrow \mathrm{~m}+2 \mathrm{~V}$

Answer: A
29. When the voltage drop across a $p . n$ junction diode is increased from 0.65 V to
0.70 V , the change in the diode current is $5 m A$. What is the dynamic resistance of the diode?
A. 5Ω
B. 10Ω
C. 20Ω
D. 25Ω

Answer: B
30. The V-I characteristic of a silicon diode is shown in figure. The resistance of the diode at
$I_{D}=15 \mathrm{~mA}$ is

A. 5Ω
B. 10Ω
C. 2Ω
D. 20Ω

Answer: B

- Watch Video Solution

31. The breakdown in a reverse biased p-n
junction diode is more likely to occur due to
A. large velocity of the minority charge
carriers if the doping concentration is
small
B. large velocity of the minority charge
carriers if the doping concentration is
large
C. strong electric field in a depletion region
if the doping concentration is small
D. none of these

In the circuit shown if current for the diode is
$20 \mu A$, the potential difference across the diode is
A. 2 V
B. 4.5 V
C. 4 V
D. 2.5 V

Answer: C

- Watch Video Solution

33. Of the diodes shown in the following
figures, which one is reverse biased ?

Answer: C

- Watch Video Solution

34. The equivalent resistance of the circuit shown in figure between the points A and B if
$V_{A}<V_{B}$ is

A. 10Ω
B. 20Ω
C. 5Ω
D. 40Ω

Answer: B
35. The equivalent resistance between the points A and B , if $V_{A}>V_{B}$ is
A. 10Ω
B. 20Ω
C. 30Ω
D. 15Ω

Answer: A
36. The following table provides the set of values of V and I obtained for a given diode.

Let the characteristics α be nearly linear, over this range, the forward and reverse bias resistance of the given diode respectively are

	V	I
Forward biasing	2.0 V	60 mA
	2.4 V	80 mA
Reverse biasing	0 V	$0 \mu \mathrm{~A}$
	-2 V	$-0.25 \mu \mathrm{~A}$

A. $10 \Omega, 8 \times 10^{6} \Omega$
B. $20 \Omega, 4 \times 10^{5} \Omega$

C. $20 \Omega, 8 \times 10^{6} \Omega$

D. $10 \Omega, 10 \Omega$

Answer: C

D Watch Video Solution

37. The circuit shown in the figure contains two diodes each with a forward resistance of
30Ω and with infinite backward resistance. If the battery is 3 V , the current through the 50
Ω resistance (in ampere) is

A. zero
B. 0.01
C. 0.02
D. 0.03
38. The circuit has two oppositely connected ideal diodes in parallel. What is the current flowing in the circuit?

A. 2.0A
B. 1.33 A

C. 1.71 A

D. 2.31 A

Answer: C

D Watch Video Solution

39. In a full wave rectifier circuit operating from 50 Hz mains frequency, the fundamental
frequency in the ripple would be
A. 50 Hz in the dc output of half wave as
well as full wave rectifier
B. 100 Hz in the dc output of half wave as
well as full wave rectifier
C. 50 Hz in the dc output of half wave and

100 Hz in dc output of full wave rectifier
D. 100 Hz in the dc output of half wave and

50 Hz in the dc output of full wave rectifier

- Watch Video Solution

40. In a full wave junction diode rectifier, the input a.c. has r.m.s. value of 20 V . The transformer used is a step up transformer having primary and secondary turns ratio 1:2.

Calculate the d.c. voltade in the recitified output.
A. 12 V
B. 24 V
C. 36 V
D. 42 V

Answer: C

D Watch Video Solution

41. In a half wave rectifier circuit operating
from 50 Hz mains frequency, the fundamental
frequency in the ripple would be
A. 25 Hz
B. 50 Hz

C. 70.7 Hz

D. 100 Hz

Answer: B

D Watch Video Solution

42. A sinusoidal voltage of rms value 220 V is applied to a diode and a resistor R in the circuit shown in figure so that half wave rectification occurs. If the diode is ideal, what
is the rms voltage across R_{1} ?

A. $55 \sqrt{2}$ V
B. 110 V
C. $110 \sqrt{2}$ V
D. $220 \sqrt{2} \mathrm{~V}$

Answer: D

D
 Watch Video Solution

43. Which of the following circuits provides full

wave rectification of an ac input?

(a)

(b)

c.
(c)

(d)

Answer: D

- Watch Video Solution

44. What happens during regualtion action of a Zener diode?
A. The current through the series
resistance (R_{S}) changes
B. The resistance offered by the Zener
changes
C. The Zener resistance is constant.
D. Both (a) and (b)

Answer: D
45. A Zener diode is specified having a breakdown voltage of 9.1 V with a maximum power dissipation of 364 mW . What is the maximum current that the diode can handle.
A. 40 mA
B. 60 mA
C. 50 mA
D. 45 mA

Answer: A

- Watch Video Solution

46. In the circuit, Fig The current through the
zener diode is

A. 10 mA
B. 6.67 mA
C. 5 mA
D. 3.33 mA

Answer: D

D Watch Video Solution

47. From the Zener diode circuit shown in figure, the current through the Zener diode is

A. 34 mA
B. 31.5 mA
C. 36.5 mA
D. 2.5 mA

Answer: B

- Watch Video Solution

48. A Zener of power rating 1 W is to be used
as a voltage regulator. If Zener has a breakdown of 5 V and it has to regulate voltage which fluctuated between 3 V and 7 V , what should be the value of R_{s} for safe operation (see figure) ?

A. 5Ω
B. 10Ω
C. 15Ω
D. 20Ω

Answer: B

D Watch Video Solution
49. A p-n photodiode is made of a material
with a band gap of $2 \mathrm{e} V$. The minimum
frequency of the radiation that can be
absorbed by the material is nearly
(hc= 1240 eV nm)
A. $1 \times 10^{14} \mathrm{~Hz}$
B. $20 \times 10^{14} \mathrm{~Hz}$
C. $10 \times 10^{14} \mathrm{~Hz}$
D. $5 \times 10^{14} \mathrm{~Hz}$

Answer: D

D Watch Video Solution
50. A $p-n$ photodiode is fabricated from a semiconductor with a band gap of 2.5 eV . It can detect a signal of wavelength
A. $6000 \AA$
B. 6000 nm
C. 4000 nm
D. $4000 \AA$

Answer: D

D Watch Video Solution
51. Three photodiodes D_{1}, D_{2} and D_{3} are made of semiconductors having
band gaps of $2.5 e V, 2 e V$ and 3 eV , respectively. Which one will be able to detect light of wavelength $6000 \AA$?
A. D_{1}
B. D_{2}
C. D_{3}
D. D_{1} and D_{2} are both

Answer: B

- Watch Video Solution

52. The transfer characteristics of a base biased transistor has the operation regions, namely, cutoff, active region and saturation region. For using the transistor as an amplifier it has to operate in the
A. active region
B. cutoff region
C. saturation region

D. cutoff and saturation

Answer: A

D Watch Video Solution

53. The emitter of transistor is doped the heaviest because it
A. acts as a supplier of charge carriers
B. dissipates maximum power
C. has a larger resistance
D. has a small resistance

Answer: A

D Watch Video Solution

54. The heavily and lightly doped regions of a
bipolar junction transistor are respectively
A. base and emitter
B. base and collector
C. emitter and base

D. collector and emitter

Answer: C

D Watch Video Solution

55. For a transistor amplifier, the voltage gain
A. remains constant for all frequencies
B. is high high and low frequencies and
constant in the middle frequency range
C. is low at high and low frequencies and constant at mid frequencies
D. none of these

Answer: C

D Watch Video Solution
56. An oscillator is nothing but an amplifier with
A. larger gain

B. positive feedback

C. no feedback
D. negative feedback

Answer: B

D Watch Video Solution

57. The current amplification factor α of a common base transistor and the current amplification factor β of a common emitter transistor are not related by

> A. $\alpha=\frac{\beta}{1+\beta}$
> B. $\beta=\frac{\alpha}{1-\alpha}$
> C. $\frac{1}{\alpha}-\frac{1}{\beta}=1$
> D. $\beta=\frac{\alpha}{1+\alpha}$

Answer: D

D Watch Video Solution

58. If β, R_{L} and r are the ac current gain, load resistance and the input resistance of a
transistor respectively in CE configuration, the
voltage and the power gains respectively are
A. $\beta \frac{R_{L}}{r}$ and $\beta^{2} \frac{R_{L}}{r}$
B. $\beta \frac{r}{R_{L}}$ and $\beta^{2} \frac{r}{R_{L}}$
C. $\beta \frac{R_{L}}{r}$ and $\beta\left(\frac{R_{L}}{r}\right)^{2}$
D. $\beta \frac{r}{R_{L}}$ and $\beta\left(\frac{r}{R_{L}}\right)^{2}$

Answer: A

D Watch Video Solution

59. If α and β are the current gain in the CB
and CE configurations respectively of the
transistor circuit, then $\frac{\beta-\alpha}{\alpha \beta}=$
A. zero
B. 1
C. 2
D. 5

Answer: B
60. A transistor has a current amplification
factor (current gain) of 50. In a common emitter amplifier circuit, the collector resistance is chosen as 5Ω and the input resistance is 1Ω. The output voltage if input voltage is 0.01 V is
A. -2 V
B. -5 V
C. -2.5 V
D. -1 V

Answer: C

D Watch Video Solution

61. Two amplifiers are connected one after the other in series (cascaded). The first amplifier
has a voltage gain of 10 and the second has a voltage gain of 20 . If the input signal is 0.01 V
, calculate the output AC signal .
A. 4 V
B. 1V
C. 2 V
D. 6 V

Answer: C

D Watch Video Solution

62. The amplifiers X, Y and Z are connected in series. If the voltage gains of X, Y and Z are 10,20 and 30 , respectively and the input signal is $1 m V$ peak value, then what is the output signal voltage (peak value)
(i) if dc supply voltage is 10 V ?
(ii) if dc supply voltage is 5 V ?
A. 4 V
B. 5 V
C. 6 V
D. 7 V

Answer: C
(Watch Video Solution
63. what is the output signal voltage (peak value) if dc supply voltage is 5 V ?
A. 4 V
B. 5 V
C. 6 V
D. 7 V

Answer: B

D Watch Video Solution
64. In n-p-n transistor circuit, the collector current is 10 mA . If 90% of the holes reach the collector, find emitter and base currents.
A. $10 \mathrm{~mA}, 1 \mathrm{~mA}$
B. $22 \mathrm{~mA}, 11 \mathrm{~mA}$
C. $11 \mathrm{~mA}, 1 \mathrm{~mA}$
D. $20 \mathrm{~mA}, 10 \mathrm{~mA}$

Answer: C

65. A transistor connected in common emitter mode, the voltage drop across the collector is

2 V and β is 50 , the base current if R_{C} is $2 k \Omega$
is
A. $40 \mu A$
B. $20 \mu A$
C. $30 \mu A$
D. $15 \mu A$

Answer: B
66. The power gain for common base amplifier
is 800 and the voltage amplification factor is 840. The collector current when base current is 1.2 mA is
A. 24 mA
B. 12 mA
C. 6 mA
D. 3 mA
67. The current gain for a common emitter amplifier is 69 . If the emitter current is 7 mA , the base current is
A. 0.1 mA
B. 1 mA
C. 0.2 mA
D. 2 mA
68. The potential difference across the collector of a transistor, used in common emitter mode is 1.5 V , with the collector resistance of $3 k \Omega$, the emitter current is [$\beta=50]$
A. 0.70 mA
B. 0.51 mA
C. 1.1 mA

D. 1.9 mA

Answer: B

D Watch Video Solution

69. In a common -emitter transistor amplifier,
an increase of $50 \mu A$ in the base current causes an increase of 1.0 mA in the collector current. Calculat gain β. What will be the change in emitter current? Also calculate current gain α
A. 1050 mA
B. $1050 \mu \mathrm{~A}$
C. 5025 mA
D. $5025 \mu \mathrm{~A}$

Answer: B

D Watch Video Solution
70. For a common emitter transistor amplifier,
the audio signal voltage across the collector resistance of $2 k \Omega$ is 2 V . Suppose the current
amplification factor of the transistor is 100 ,
the base current if base resistance is $1 k \Omega$ is
A. $10 \mu A$
B. $20 \mu A$
C. $5 \mu A$
D. $2 \mu A$

Answer: A
(Watch Video Solution
71. The ac current gain of a transistor is 120 .

What is the change in the collector current in
the transistor whose base current changes by
$100 \mu A$?
A. 6 mA
B. 12 mA
C. 3 mA
D. 24 mA

Answer: B
72. In an n-p-n circuit transistor, the collector current is 10 mA . If 80% electrons emitted reach the collector, then
A. the emitter current will be 7.5 mA
B. the emitter current will be 12.5 mA
C. the base current will be 3.5 mA
D. the base current will be 1.5 mA

Answer: B
73. A common emitter amplifier gives an output of 3 V for an input of 0.01 V . If β of the resistance is 100 and the input resistance is $1 k \Omega$. then the collector resistance is
A. $3 k \Omega$
B. $30 \mathrm{k} \Omega$
C. $1 k \Omega$
D. $5 k \Omega$

Answer: A

- Watch Video Solution

74. The input resistance of a common emitter transistor amplifier, if the output resistance is
$500 k \Omega$, the current gain $\alpha=0.98$ and the power gain is 6.0625×10^{6} is
A. 198Ω
B. 300Ω
C. 100Ω

D. 400Ω

Answer: A

D Watch Video Solution

75. In the cuircuit shown here the transistor
used has a current gain $\beta=100$. What should be the bias resistor $R_{B E}$ so that
$V_{C E}=5 V\left(\right.$ neglect $\left.V_{B E}\right)$

A. $200 \times 10^{3} \Omega$
B. $1 \times 10^{6} \Omega$
C. 500Ω
D. $2 \times 10^{3} \Omega$

Answer: A

- Watch Video Solution

76. The input resistance of a transistor is 1000Ω on charging its base current by $10 \mu A$, the collector current increases by 2 mA . If a load resistance of $5 k \Omega$ is used in the circuit, the voltage gain of the amplifier is
A. 100
B. 500

C. 1000

D. 1500

Answer: C

- Watch Video Solution

77. A transistor has a current gain of 30 . If the
collector resistance is $6 k \Omega$, input resistance is
$1 k \Omega$, calculate its volage gain?
A. 90
B. 180
C. 45
D. 360

Answer: B

D Watch Video Solution

78. In a transistor connected in a common
$R_{C}=4 k \Omega, R_{1}=1 k \Omega, I_{C}=1 m A$
$I_{B}=20 \mu A$. Find the voltage gain.
A. 100
B. 200
C. 300
D. 400

Answer: B

D Watch Video Solution

79. In an n-p-n transistor 10^{10} electrons enter the emitter in 10^{-6} s. If 2% of the electrons are
lost in the base, find the current transfer ratio

and the current amplification factor.

A. 0.02
B. 7
C. 33
D. 49

Answer: A
(Watch Video Solution
80. If a change of $100 \mu A$ in the base current of
an $n-p-n$ transistor in $C E$ causes a change of $10 m A$ in the collector current, the $a c$ current gain of the transistor is
A. 50
B. 100
C. 200
D. 150

Answer: B
81. What is the voltage gain in a common emitter amplifier, where input resistance is 3Ω and load resistance 24Ω and $\beta=61$?
A. 8.4
B. 488
C. 240
D. 0

Answer: B
82. An amplifier has a voltage gain of 100 . The voltage gain in $d B$ is
A. 20 dB
B. 40 dB
C. 30 dB
D. 50 dB

Answer: B
83. A transistor is operated in common emitter configuration at $V_{C}=2 V$. Such that a change in the base current from $100 \mu A$ to $200 \mu A$ produces a change in the collector current of 5 mA to 10 mA . The current gain is
A. 100
B. 150
C. 75
D. 50

Answer: D

D Watch Video Solution

84. Fig.shows that transfer characteristics of a
base biased CE transistor. Which of the
following statements are true?

A. At $V_{i}=1 V$, it can be used as an amplifier

B. At $V_{i}=0.5 V$, it can be used as a switch

turned off

C. At $V_{i}=2.5 V$, it can be used as a switch

turned on
D. All of these

Answer: D

- Watch Video Solution

85. Boolean algebra is essentially based on
A. number
B. truth
C. logic
D. symbol

Answer: C

D Watch Video Solution

86. The symbolic representation of four logic gates are given in Fig.The logic symbol for OR,

NOT and NAND gates are respectively

A. (iv), (i), (iii)
B. (iv), (ii), (i)
C. (i), (ii), (iv)
D. (ii), (iv), (i)

Answer: B

D Watch Video Solution
87. In the circuit below, A and B represents two inputs and C represents the output. The
circuit represents

A. AND gate
B. NOR gate
C. OR gate
D. NAND gate

Answer: C
88. Write the truth table for the circuit shown
in figure given below. Name the gate that the
circuit resembles.

A. NAND
B. AND
C. OR
D. NOR

Answer: B

D Watch Video Solution

89. In boolean algebra, if $A=1$ and $B=0$
then the value of $A+\bar{B}$ is
A. A
B. A.B
C. $A+B$
D. Both (a) and (c)

Answer: D

D Watch Video Solution

90. What will be the input of A and B for the Boolean expression $\overline{(A+B)} \cdot \overline{(A . B)}=1$?
A. $(0,0)$
B. $(0,1)$
C. $(1,0)$
D. $(1,1)$

Answer: A

- Watch Video Solution

91. The circuit given in figure, is equivalent to

A. AND gate
B. OR gate
C. NOT gate
D. NAND gate

Answer: A

D Watch Video Solution
92. The combination of NAND gates is shown in figure.The equivalent circuit is

A. AND gate
B. NOR gate
C. OR gate
D. NOT gate

Answer: C

- Watch Video Solution

93. The diagram of a logic circuit is given below. The output F of the circuit is represented by

A. $\mathrm{W} .(\mathrm{X}+\mathrm{Y})$
B. W. (X.Y)
C. $\mathrm{W}+(\mathrm{X} . \mathrm{Y})$
D. $\mathrm{W}+(\mathrm{X}+\mathrm{Y})$

Answer: C

D Watch Video Solution

The truth table of the logic circuit shown-
(a) $\left|\begin{array}{lll}A & B & Y \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right|$
(b) $\left|\begin{array}{lll}A & B & Y \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right|$
C. $\left|\begin{array}{lll}A & B & Y \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right|$
(d) $\left|\begin{array}{lll}A & B & Y \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1\end{array}\right|$

Answer: A

- Watch Video Solution

95. Select the outputs Y of the combination of
gates shown below for inputs
$A=1, B=0, A=1, B=1$
and
$A=0, B=0$ respectively :-

A. $(0,1,1)$
B. $(1,0,1)$
C. $(1,1,1)$
D. $(1,0,0)$

Answer: D

- Watch Video Solution

96. The given truth table is for which

A. NAND

B. XOR

C. NOR

D. OR

Answer: A

- Watch Video Solution

97. Which of the following truth tables
corresponds to NAND gate?
$\left.\begin{array}{cc|ccc|ccc|ccc|c}A & B & Y \\ \hline 0 & 0 & 1 & & A & B & Y & & A & B & Y & \\ 0 & 1 & 1 & & 0 & 1 & 0 & & 0 & & B & 1\end{array}\right)$
(a) (iv)
(b) (iii)
(c)
(ii)
(d) (i)
A. (iv)
B. (iii)
C. (ii)
D. (i)

Answer: D

D Watch Video Solution

98. The decimal equivalent of the binary number $(11010.101)_{2}$ is
A. 9.625
B. 25.265
C. 26.625
D. 26.265

Answer: D

D Watch Video Solution

99. The following figure shows a logic gate circuit with two inputs A and B and the output
Y. The voltage waveforms of A, B and Y are as
given :

The logic gate is
A. NOR gate
B. OR gate
C. AND gate
D. NAND gate

Answer: D

- Watch Video Solution

100. The logic circuit shown below has the
input waveforems ' A ' and ' B ' as shown. Pick out
the correct output waveform

A.
(a)

B.

(b)
C.
(c) $-1+\square$
D. ${ }^{(4)}$

Answer: A

D Watch Video Solution

1. If each diode in figure has a forward bias
resistance of 25 Omega and infinite resistance
in reverse bias, what will be the values of the current I_{1}, I_{2}, I_{3} and I_{4} ?

A. $I_{2}=0.40 A, I_{4}=0.025 A$
B. $I_{2}=0.25 A, I_{4}=0.20 A$
C. $I_{1}=0.05 A, I_{3}=0.02 A$
D. $I_{2}=I_{4}=0.025 A$

Answer: D

- Watch Video Solution

2. In the circuit shown in figure, when the
input voltage of the base resistance is $10 \mathrm{~V}, V_{b e}$
is zero and $V_{c e}$ is also zero. Then
,
A. $\beta=110$
B. $I_{b}=25 \mu A$
C. $I_{c}=3.33 m A$
D. both (A) and (C)

Answer: D

- Watch Video Solution

3. A potential barrier of 0.50 V exists across a
$P-N$ junction. If the depletion region is $5.0 \times 10^{-7} \mathrm{~m}$, wide the intensity of the electric field in this region is
A. $10^{6} \mathrm{~V} / \mathrm{m}$
B. $10^{7} \mathrm{~V} / \mathrm{m}$
C. $10^{5} \mathrm{~V} / \mathrm{m}$

D. $10^{4} \mathrm{~V} / \mathrm{m}$

Answer: A

D Watch Video Solution

4. If an electron approaches the p-n junction from the n -side with a speed of $5 \times 10^{5} \mathrm{~ms}^{-1}$,with what speed will it enter the p -side?
A. $5 \times 10^{5} \mathrm{~m} / \mathrm{s}$
B. $2.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$

C. $2.7 \times 10^{5} \mathrm{~m} / \mathrm{s}$

D. $1 \times 10^{5} \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

5. An n-p-n transistor in a common-emitter mode is used as a simple voltage-amplifier with a collector current of 4 mA . The terminals of a 8 V battery is connected to the collector through a load-resistance R_{L} and to the base
through a resistance R_{B}. The collector-emitter
voltage $V_{C E}=4 V$, the base-emitter voltage
$V_{B E}=0.6 \mathrm{~V}$ and the current amplification factor $\beta_{d c}=100$. Then
A. $R_{L}=1 k \Omega, R_{B}=185 k \Omega$
B. $R_{L}=2 k \Omega=R_{B}$
C. $R_{L}=2 k \Omega, R_{B}=15 k \Omega$
D. $R_{L}=185 k \Omega, R_{B}=1 k \Omega$

Answer: A

6. The equivalent resistance of the circuit, across $A B$ is given by

A. 6.2Ω
B. 5.64Ω
C. 8.2Ω
D. 5.6Ω or 8.2Ω

Answer: D

- Watch Video Solution

7. In the circuit shown in figure, the silicon and

 germanium diodes start conducting at 0.7 V and 0.3 V respectively. What are the values ofV_{0} and I ?

A. $12 \mathrm{~V}, 2.4 \mathrm{~mA}$
B. 11.7 V, 2.34 mA
C. $11.3 \mathrm{~V}, 2.26 \mathrm{~mA}$
D. $11 \mathrm{~V}, 2.2 \mathrm{~mA}$

Answer: B

- Watch Video Solution

8. The Boolean expression of the output y in
terms of the input A and B for the circuit
shown in figure.

A. $\bar{A} B+A \bar{B}$
B. AB
C. $A B+\bar{A} \bar{B}$
D. $A \bar{B}+1$

Answer: C

D Watch Video Solution

Ncert

1. The conductivity of a semiconductor increases with increase in temperature because
A. number density of free current carriers increases
B. relaxation time increases.
C. both number density of carriers and relaxation time increase

D. number density of current carriers

increases, relaxation time decreases but
effect of decrease in relaxation time is
much less than increase in number
density

Answer: D

D Watch Video Solution

2. In Fig. V_{0} is the potential barrier across a p-
n junction, when no battery is connected across the junction

A. 1 and 3 both correspond to forward bias
of junction
B. 3 corresponds to forward bias of
junction and 1 corresponds to reverse
bias of junction
C. 1 corresponds to forward bias and 3
corresponds to reverse bias of junction.

D. 3 and 1 both correspond to reverse bias

of junction.
3. In figure , assuming the diodes to be ideal ,

A. D_{1} is forward biased and D_{2} is reverse biased and hence current flows from A to B.
B. D_{2} is forward biased and D_{1} is reverse biased and hence no current flows from B to A and vice versa.
C. D_{1} and D_{2} are both forward biased and hence current flows from A to B.
D. D_{1} and D_{2} are both reverse biased and hence no current flows from A to B and
vice versa

Answer: B

4. A 220 V ac supply is connected between points A and B as shown 220 V in figure. What will be the potential AC difference V across the capacitor?

A. 220 V
B. 110 V
C. 0 V
D. $200 \sqrt{2} V$

Answer: D

- Watch Video Solution

5. Hole is
A. an anti-particle of electron
B. a vacancy created when an electron
leaves a covalent bond
C. absence of free electrons.
D. an artificially created particle.

Answer: B

D Watch Video Solution
6. The output of the given circuit in figure given below,

A. would be zero at all times.
B. would be like a half wave rectifier with
positive cycles in output
C. would be like a half wave rectifier with negative cycles in output.
D. would be like that of a full wave rectifier.

Answer: C

D Watch Video Solution

7. In the circuit shown in figure, if the A diode forward voltage drop is 0.3 V , the voltage difference between A and B is 4

0.2 mA

 $5 \mathrm{k} \Omega$
A. 1.3 V
B. 2.3 V
C. 0
D. 0.5 V

Answer: B

- Watch Video Solution

8. Truth table for the given circuit (Fig.)is

	(a)	A	B
	E		
		0	0
	1		
	0	1	0
	1	0	1
	1	1	0

	(b)	A	B
	E		
	0	0	1
	0	1	0
	1	0	0
		1	1

(c) $\left.\begin{array}{c|c|c}A & B & E \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ & 1 & 0 \\ \\ & 1 & 1\end{array}\right)$

	(d)	A	B

Answer: C

1. Assertion: If there is some gap between the conduction band and the valence band, electrons in the valence band all remain bound and no free electrons are available in the conduction band. Then the material is an insulator.

Reason: Resistance of insulators is very low
A. If both assertion and reason are true and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: C
(Watch Video Solution
2. Assertion : The electrons in the conduction band have higher energy than those in the valence band of a semiconductor Reason : The conduction band lies above the energy gap and valence band lies below the energy gap.
A. If both assertion and reason are true
and reason is the correct explanation of assertion.
B. If both assertion and reason are true not
but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

3. Assertion : In a semiconductor, the conduction electrons have a higher mobility than holes.

Reason: The electrons experience fewer collisions.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true not
but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

4. Assertion: The probability of electrons to be found in the conduction band of an intrinsic semiconductor at a finite temperature decrease exponentially with increasing band
gap.

Reason: It will be more difficult for the electron to cross over the large band gap while going from valence band to conduction band.
A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true not

but reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

5. Assertion: The conductivity of an intrinsic semiconductor depends on its temperature.

Reason The conductivity of an intrinsic semiconductor is slightly higher than that of a lightly doped p-type semiconductor.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: C

6. Assertion: The conductivity of an intrinsic semiconductor depends on its temperature

Reason: No important electronic devices can be developed using intrinsic semiconductors.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

7. Assertion: Thickness of depletion layer is fixed in all semiconductor devices.

Reason: No free charge carriers are available in deplection layer.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: D
8. Assertion: Zener diode works on aa principle of of breakdown voltage.

Reason: Current increases suddenly after breakdown voltage.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: B

- Watch Video Solution

9. Assertion : Zener diode is used to obtain
voltage regulation

Reason : When Zener diode is operated in reverse bias, after a certain voltage
(breakdown voltage) the current suddenly increases.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true not
but reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

10. Assertion: The semiconductor used for
fabrication of visible LEDs must at least have a
band gap of 1.8 eV .
Reason: The spectral range of visible light is
0.4 eV to 1.8 eV
A. If both assertion and reason are true and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

11. Assertion : In a transistor the base is made thin.

Reason: A thin base makes the transistor stable.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

12. Assertion : Two p-n junction diodes placed back to back, will work as a n-p-n transistor.

Reason: The p-region of two p-n junction diodes back to back will form the base of n-p-n transistor.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: D
13. Assertion : In an oscillator, the feedback is
in the same phase which is called as positive
feedback.

Reason: If the feedback voltage is in opposite phase, the gain is greater than one.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

14. Assertion: In an OR gate if any of the input is high, the output is high.

Reason: OR gate is the most basic gate, with one input and one output
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false

D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

15.

Assertion:

This circuit acts as OR Gate.

Reason: Truth table for two input OR Gate is

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

Classification Of Metals Conductors And
 Semiconductors

1. At absolute zero, Si acts as
A. metal
B. semiconductor
C. insulator
D. none of these

Answer: C

D Watch Video Solution
2. In good conductors of electricity, the type of bonding that exists is
A. Van der Waals
B. covalent
C. ionic
D. metallic

Answer: D

D Watch Video Solution

3. The manifestation of band structure in solids is due to
A. Heisenberg uncertainty principle
B. Pauli's exclusion principle
C. Bohr's correspondence principle
D. Boltzmann law

Answer: B

D Watch Video Solution

4. Carbon, silicon and germanium have four
valence elcectrons each . These are
characterised by valence and conduction
bands separated by energy band - gap respectively equal to $\left(E_{g}\right)_{c}\left(E_{g}\right)_{s i}$ and $\left(E_{g}\right)_{G e}$. Which of the following statements ture ?
A. $\left(E_{g}\right)_{S i}<\left(E_{g}\right)_{G e}<\left(E_{g}\right)_{C}$
B. $\left(E_{g}\right)_{C}<\left(E_{g}\right)_{G e}<\left(E_{g}\right)_{S i}$
C. $\left(E_{g}\right)_{C}>\left(E_{g}\right)_{S i}>\left(E_{g}\right)_{G e}$
D. $\left(E_{g}\right)_{C}=\left(E_{g}\right)_{S i}=\left(E_{g}\right)_{G e}$

Answer: C

D Watch Video Solution

5. If the energy of a photon of sodium light (λ
$=589 \mathrm{~nm}$) equals the band gap of semiconductor, the minimum energy required to create hole electron pair
A. 1.1 eV
B. 2.1 eV
C. 3.2 eV
D. 1.5 eV

Answer: B

D Watch Video Solution
6. The electrical conductivity of a semiconductor increases
when
electromagnetic radiation of wavelength
shorter than 2480 nm is incident on it. The
band gap in $(e V)$ for the semiconductor is.
A. 0.9
B. 0.7
C. 0.5
D. 1.1

Answer: C

D Watch Video Solution

7. Find the wavelength of light that may excite an electron in the valence band of diamond to
the conduction band. The energy gap is 5.50 eV
A. 226 nm
B. 312 nm
C. 432 nm

D. 550 nm

Answer: A

- Watch Video Solution

8. The maximum wavelength of
electromagnetic radiation, which can create a
hole-electron pair in germanium. (Given that
forbidden energy gap in germanium is 0.72 eV)
A. $1.7 \times 10^{-6} \mathrm{~m}$
B. $1.5 \times 10^{-5} \mathrm{~m}$
C. $1.3 \times 10^{-4} \mathrm{~m}$
D. $1.9 \times 10^{-5} \mathrm{~m}$

Answer: A

D Watch Video Solution

Intrinsic Semiconductor

1. The probability of electrons to be found in
the conduction band of an intrinsic
semiconductor at a finite temperature
A. increases exponentially with increasing
band gap
B. decreases exponentially with increasing
band gap
C. decreases with increasing temperature.
D. is independent of the temperature and
band gap.

Answer: B
2. Which of the following equations correctly represents the temperature variation of energy gap between the conduction and valence bands for Si?
A. $E_{g(T)}=0.70-2.23 \times 10^{-4} \mathrm{~T} \mathrm{eV}$
B. $E_{g(T)}=0.70+2.23 \times 10^{-4} \mathrm{~T} \mathrm{eV}$
C. $E_{g(T)}=1.10-3.60 \times 10^{-4} \mathrm{~T} \mathrm{eV}$
D. $E_{g(T)}=1.10+3.60 \times 10^{-4} \mathrm{TeV}$

Answer: C

D Watch Video Solution

3. An intrinsic semiconductor has a resistivity of $0.50 \Omega \mathrm{~m}$ at room temperature. Find the intrinsic carrier concentration if the mobilities of electrons and holes are $0.39 m^{2} V^{-1} s^{-1}$ and $0.11 m^{2} V^{-1} s^{-1}$ respectively

$$
\text { A. } 1.2 \times 10^{18} m^{-3}
$$

B. $2.5 \times 10^{19} \mathrm{~m}^{-3}$
C. $1.9 \times 10^{20} m^{-3}$
D. $3.1 \times 10^{21} \mathrm{~m}^{-3}$

Answer: B

D Watch Video Solution

4. In pure semiconductor, the number of conduction electrons is 6×10^{18} per cubic metre. How many holes are there in a sample of size $1 \mathrm{~cm} \times 1 \mathrm{~cm} \times 1 \mathrm{~mm}$?
A. 3×10^{10}
B. 6×10^{11}
C. 3×10^{11}
D. 6×10^{10}

Answer: B

D Watch Video Solution

5. Mobilities of electorns and holes in a sample of intrinsic germanium at room temperature are $0.54 m^{2} V^{-1} s^{-1}$ and $0.18 m^{2} V^{-1} s^{-1}$
respectively.

If the electron and hole densities are equal to
$3.6 \times 10^{19} m^{-3}$ calculate the germanium
conductivity.
A. $4.14 S m^{-1}$
B. $2.12 S m^{-1}$
C. $1.13 S m^{-1}$
D. $5.6 S m^{-1}$

Answer: A

6. A block of pure silicon at 300 K has a length of 10 cm and an area of $1.0 \mathrm{~cm}^{2}$. A battery of emf $2 V$ is connected across it. The mobility of electron is $0.14 m^{2} v^{-1} S^{-1}$ and their number density is $1.5 \times 10^{16} \mathrm{~m}^{-3}$. The mobility of holes is $0.05 m^{2} v^{-1} S^{-1}$.

The electron current is
A. $6.72 \times 10^{-4} \mathrm{~A}$
B. $6.72 \times 10^{-5} \mathrm{~A}$
C. $6.72 \times 10^{-6} \mathrm{~A}$
D. $6.72 \times 10^{-7} \mathrm{~A}$

Answer: D

- Watch Video Solution

Extrinsic Semiconductor

1. In an n - type silicon, which of the following
statements is true?
(a) Electrons are majority carries and trivalent atoms are the dopants.
(b) Electrons are majority carries and pentavalent atoms are the dopants.
(c) Holes are minority carries and paentavalent atoms are the dopants.
(d) Holes are minority carries and trivalent atoms are the dopants.
A. Electrons are majority carriers and trivalent atoms are the dopants
B. Electrons are minority carriers and
pentavalent atoms are the dopants
C. Holes are minority carriers and pentavalent atoms are the dopants
D. Holes are majority carriers and trivalent atoms are the dopants.

Answer: C

D Watch Video Solution

2. If a small amount of antimony is added to germanium crystal
A. its resistance is increased
B. it becomes a p-type semiconductor
C. there will be more free electrons than
holes in the semiconductor

D. none of these

Answer: C

D Watch Video Solution
3. In n-type semiconductor when when all donor states are filled, then the net charge density in the donor states becomes
A. 1
B. gt 1
C. It 1, but not zero
D. zero

Answer: B

D Watch Video Solution
4. Suppose a pure Si-crystal has
5×10^{28} atoms m^{-3}. It is doped by 1 ppm concentration of pentavalent As. Calculate the number of electrons and holes. Give that $n_{i}=1.5 \times 10^{16} m^{-3}$.
A. $4.5 \times 10^{9} m^{-3}$
B. $4.5 \times 10^{6} m^{-3}$
C. $2.5 \times 10^{9} \mathrm{~m}^{-3}$
D. $2.5 \times 10^{6} m^{-3}$

Answer: A

- Watch Video Solution

5. A semiconductor has equal electron and hole concentration of $6 \times 10^{8} / \mathrm{m}^{3}$. On doping with certain impurity, electron concentration increases to $9 \times 10^{12} / \mathrm{m}^{3}$. (i) Identify the new semiconductor obtained after doping. (ii)

Calculate the new hole concentration. (iii) How does the energy gap vary with doping?
A. 2×10^{4} per m^{3}
B. 2×10^{2} per m^{3}
C. 4×10^{4} per m^{3}

$$
\text { D. } 4 \times 10^{2} \text { per } m^{3}
$$

Answer: C

D Watch Video Solution

6. The number density of electrons and holes
in pure silicon at $27^{\circ} \mathrm{C}$ are equal and its value
is $2.0 \times 10^{16} \mathrm{~m}^{-3}$. On doping with indium the
hole density increases to $4.5 \times 10^{22} m^{-3}$, the electron density in doped silicon is
A. $10 \times 10^{9} m^{-3}$
B. $8.89 \times 10^{9} m^{-3}$
C. $11 \times 10^{9} m^{-3}$
D. $16.78 \times 10^{9} m^{-3}$

Answer: B

- Watch Video Solution

1. The dominant mechanisms for motion of charge carriers in forward and reverse biased silicon $P-N$ junction are
A. drift in forward bias, diffusion in reverse
bias
B. diffusion in forward bias, drift in reverse bias
C. diffusion in both forward and reverse bias
D. drift in both forward and reverse bias

Answer: B

- Watch Video Solution

2. In an unbiased p-n junction electrons diffuse from n-region to p-region because :-
A. free electrons in the n-region attract
them
B. they move across the junction by the
C. hole concentration in p-region is more as compared to n-region

D. all of these

Answer: C

D Watch Video Solution

3. Region which have no free electron and holes in $\mathrm{P}-\mathrm{N}$ junction is
A. x-region
B. p-region
C. depletion region
D. none of these

Answer: C

D Watch Video Solution
4. In the depletion region of a diode.
A. There the mobile charges exist
B. Equal number of holes and electrons exist. making the region neutral.
C. Recombination of holes and electrons
has taken place
D. None of these

Answer: A

- Watch Video Solution

5. In a $p-n$ junction diode, the barrier potential opposes diffusion of
A. minority carrier in both regions only
B. majority carriers only
C. electrons in p region
D. holes in p region

Answer: B
(Watch Video Solution
6. A potential barrier of 0.3 V exists across a p -
n junction. If the depletion region is $1 \mu \mathrm{~m}$ wide, what is the intensity of electric field in
this region?

> A. $2 \times 10^{5} \mathrm{Vm}^{-1}$
> B. $3 \times 10^{5} \mathrm{Vm}^{-1}$
> C. $4 \times 10^{5} \mathrm{Vm}^{-1}$
> D. $5 \times 10^{5} \mathrm{Vm}^{-1}$

Answer: B

Semiconductor Diode

1. Which of the junction diodes shown below are forward biased ?
A.
(a)

(b)
B.

(c)

C.

Answer: A

D Watch Video Solution

2. A forward biased diode is

A.
(a) $\mathrm{OV} \longrightarrow \longrightarrow-2 \mathrm{~V}$
B.
(b)
$-4 \mathrm{~V} \longrightarrow 1-\mathrm{m}-3 \mathrm{~V}$
C.

Answer: A

- Watch Video Solution

3. When the voltage drop across a $p . n$ junction diode is increased from 0.65 V to
0.70 V , the change in the diode current is
$5 m A$. What is the dynamic resistance of the diode?
A. 5Ω
B. 10Ω
C. 20Ω
D. 25Ω

Answer: B

- Watch Video Solution

4. The V-I characteristic of a silicon diode is
shown in figure. The resistance of the diode at
$I_{D}=15 \mathrm{~mA}$ is

A. 5Ω
B. 10Ω
C. 2Ω
D. 20Ω
5. The breakdown in a reverse biased p-n
junction diode is more likely to occur due to
A. large velocity of the minority charge
carriers if the doping concentration is
small
B. large velocity of the minority charge
carriers if the doping concentration is
large

C. strong electric field in a depletion region

if the doping concentration is small
D. none of these

Answer: B

D Watch Video Solution

In the circuit shown if current for the diode is $20 \mu A$, the potential difference across the diode is
A. 2 V
B. 4.5 V
C. 4 V
D. 2.5 V

Answer: C

D Watch Video Solution

7. Of the diodes shown in the following figures,

which one is reverse biased?

Answer: C

D Watch Video Solution

8. The equivalent resistance of the circuit shown in figure between the points A and B if
$V_{A}<V_{B}$ is

A. 10Ω
B. 20Ω
C. 5Ω
D. 40Ω

Answer: B
9. The equivalent resistance between the points A and B , if $V_{A}>V_{B}$ is
A. 10Ω
B. 20Ω
C. 30Ω
D. 15Ω

Answer: A
10. The following table provides the set of values of V and I obtained for a given diode.

Let the characteristics α be nearly linear, over this range, the forward and reverse bias resistance of the given diode respectively are

	V	I
Forward biasing	2.0 V	60 mA
	2.4 V	80 mA
Reverse biasing	0 V	$0 \mu \mathrm{~A}$
	-2 V	$-0.25 \mu \mathrm{~A}$

A. $10 \Omega, 8 \times 10^{6} \Omega$
B. $20 \Omega, 4 \times 10^{5} \Omega$

C. $20 \Omega, 8 \times 10^{6} \Omega$

D. $10 \Omega, 10 \Omega$

Answer: C

D Watch Video Solution

11. The circuit shown in the figure contains two diodes each with a forward resistance of 30Ω and with infinite backward resistance. If the battery is 3 V , the current through the 50Ω
resistance (in ampere) is

A. zero
B. 0.01
C. 0.02
D. 0.03

Answer: C
12. The circuit has two oppositely connected ideal diodes in parallel. What is the current flowing in the circuit?

A. 2.0 A
B. 1.33 A
C. 1.71 A

D. 2.31 A

Answer: C

D Watch Video Solution

Application Of Junction Diode As A Rectifier

1. In a full wave rectifier circuit operating from

50 Hz mains frequency, the fundamental
frequency in the ripple would be
A. 50 Hz in the dc output of half wave as
well as full wave rectifier
B. 100 Hz in the dc output of half wave as
well as full wave rectifier
C. 50 Hz in the dc output of half wave and

100 Hz in dc output of full wave rectifier
D. 100 Hz in the dc output of half wave and

50 Hz in the dc output of full wave rectifier

- Watch Video Solution

2. In a full wave junction diode rectifier, the input a.c. has r.m.s. value of 20 V . The transformer used is a step up transformer having primary and secondary turns ratio 1:2.

Calculate the d.c. voltade in the recitified output.
A. 12 V
B. 24 V
C. 36 V
D. 42 V

Answer: C

D Watch Video Solution

3. In a half wave rectifier circuit operating from

50 Hz mains frequency, the fundamental
frequency in the ripple would be
A. 25 Hz
B. 50 Hz

C. 70.7 Hz

D. 100 Hz

Answer: B

D Watch Video Solution

4. A sinusoidal voltage of rms value 220 V is
applied to a diode and a resistor R in the circuit shown in figure so that half wave rectification occurs. If the diode is ideal, what
is the rms voltage across R_{1} ?

A. $55 \sqrt{2} \vee$
B. 110 V
C. $110 \sqrt{2}$ V
D. $220 \sqrt{2} \mathrm{~V}$

Answer: D

-
 Watch Video Solution

5. Which of the following circuits provides full

 wave rectification of an ac input?(a)

(b)

c.
(c)

(d)

Answer: D

- Watch Video Solution

Special Purpose P N Junction Diode

1. What happens during regualtion action of a

Zener diode?
A. The current through the series
resistance (R_{S}) changes
B. The resistance offered by the Zener changes
C. The Zener resistance is constant.
D. Both (a) and (b)

Answer: D

D Watch Video Solution

2. A Zener diode is specified having a breakdown voltage of 9.1 V with a maximum power dissipation of 364 mW . What is the maximum current that the diode can handle.
A. 40 mA
B. 60 mA
C. 50 mA
D. 45 mA

Answer: A

D Watch Video Solution

3. In the circuit, Fig The current through the
zener diode is

A. 10 mA
B. 6.67 mA
C. 5 mA
D. 3.33 mA

Answer: D

- Watch Video Solution

4. From the Zener diode circuit shown in
figure, the current through the Zener diode is

A. 34 mA
B. 31.5 mA
C. 36.5 mA

D. 2.5 mA

Answer: B

D Watch Video Solution

5. A Zener of power rating 1 W is to be used as
a voltage regulator. If Zener has a breakdown
of 5 V and it has to regulate voltage which
fluctuated between 3 V and 7 V , what should
be the value of R_{s} for safe operation (see
figure) ?

A. 5Ω
B. 10Ω
C. 15Ω
D. 20Ω

Answer: B

D Watch Video Solution
6. A p-n photodiode is made of a material with
a band gap of 2 eV . The minimum frequency of the radiation that can be absorbed by the material is nearly
(hc= 1240 eV nm)
A. $1 \times 10^{14} \mathrm{~Hz}$
B. $20 \times 10^{14} \mathrm{~Hz}$
C. $10 \times 10^{14} \mathrm{~Hz}$
D. $5 \times 10^{14} \mathrm{~Hz}$

Answer: D

D Watch Video Solution

7. A $p-n$ photodiode is fabricated from a semiconductor with a band gap of 2.5 eV . It can detect a signal of wavelength
A. $6000 \AA$
B. 6000 nm
C. 4000 nm
D. $4000 \AA$

Answer: D

- Watch Video Solution

8. Three photodiodes D_{1}, D_{2} and D_{3} are made of semiconductors having
band gaps of $2.5 \mathrm{eV}, 2 e V$ and 3 eV , respectively. Which one will be able to detect light of wavelength $6000 \AA$?
A. D_{1}
B. D_{2}
C. D_{3}
D. D_{1} and D_{2} are both

Answer: B

D Watch Video Solution

Junction Transistor

1. The transfer characteristics of a base biased
transistor has the operation regions, namely,
cutoff, active region and saturation region. For
using the transistor as an amplifier it has to operate in the
A. active region
B. cutoff region
C. saturation region

D. cutoff and saturation

Answer: A

D Watch Video Solution

2. The emitter of transistor is doped the heaviest because it
A. acts as a supplier of charge carriers
B. dissipates maximum power
C. has a larger resistance
D. has a small resistance

Answer: A

- Watch Video Solution

3. The heavily and lightly doped regions of a bipolar junction transistor are respectively
A. base and emitter
B. base and collector
C. emitter and base
D. collector and emitter

Answer: C

D Watch Video Solution
4. For a transistor amplifier, the voltage gain
A. remains constant for all frequencies
B. is high high and low frequencies and
constant in the middle frequency range
C. is low at high and low frequencies and
constant at mid frequencies
D. none of these

Answer: C

D Watch Video Solution
5. An oscillator is nothing but an amplifier with
A. larger gain
B. positive feedback
C. no feedback
D. negative feedback

Answer: B

- Watch Video Solution

6. The current amplification factor α of a common base transistor and the current amplification factor β of a common emitter transistor are not related by

$$
\begin{aligned}
& \text { A. } \alpha=\frac{\beta}{1+\beta} \\
& \text { B. } \beta=\frac{\alpha}{1-\alpha} \\
& \text { C. } \frac{1}{\alpha}-\frac{1}{\beta}=1 \\
& \text { D. } \beta=\frac{\alpha}{1+\alpha}
\end{aligned}
$$

Answer: D
7. If β, R_{L} and r are the ac current gain, load resistance and the input resistance of a transistor respectively in CE configuration, the voltage and the power gains respectively are
A. $\beta \frac{R_{L}}{r}$ and $\beta^{2} \frac{R_{L}}{r}$
B. $\beta \frac{r}{R_{L}}$ and $\beta^{2} \frac{r}{R_{L}}$
C. $\beta \frac{R_{L}}{r}$ and $\beta\left(\frac{R_{L}}{r}\right)^{2}$
D. $\beta \frac{r}{R_{L}}$ and $\beta\left(\frac{r}{R_{L}}\right)^{2}$

Answer: A
8. If α and β are the current gain in the CB and $C E$ configurations respectively of the transistor circuit, then $\frac{\beta-\alpha}{\alpha \beta}=$
A. zero
B. 1
C. 2
D. 5

- Watch Video Solution

9. A transistor has a current amplification
factor (current gain) of 50 . In a common emitter amplifier circuit, the collector resistance is chosen as 5Ω and the input resistance is 1Ω. The output voltage if input voltage is 0.01 V is
A. -2 V
B. -5 V
C. -2.5 V

Answer: C

D Watch Video Solution

10. Two amplifiers are connected one after the other in series (cascaded). The first amplifier
has a voltage gain of 10 and the second has a voltage gain of 20 . If the input signal is 0.01 V
, calculate the output AC signal .
A. 4 V
B. 1V
C. 2 V
D. 6 V

Answer: C

D Watch Video Solution

11. The amplifiers X, Y and Z are connected in series. If the voltage gains of X, Y and Z are

10, 20 and 30 , respectively and the input signal
is $1 m V$ peak value, then what is the output
signal voltage (peak value)
(i) if dc supply voltage is 10 V ?
(ii) if dc supply voltage is 5 V ?
A. 4 V
B. 5 V
C. 6 V
D. 7 V

Answer: C

- Watch Video Solution

12. what is the output signal voltage (peak value) if dc supply voltage is 5 V ?
A. 4 V
B. 5 V
C. 6 V
D. 7 V

Answer: B
13. In n-p-n transistor circuit, the collector current is 10 mA . If 90% of the holes reach the collector, find emitter and base currents.
A. $10 \mathrm{~mA}, 1 \mathrm{~mA}$
B. $22 \mathrm{~mA}, 11 \mathrm{~mA}$
C. $11 \mathrm{~mA}, 1 \mathrm{~mA}$
D. $20 \mathrm{~mA}, 10 \mathrm{~mA}$

Answer: C

- Watch Video Solution

14. A transistor connected in common emitter mode, the voltage drop across the collector is

2 V and β is 50 , the base current if R_{C} is $2 k \Omega$ is
A. $40 \mu A$
B. $20 \mu A$
C. $30 \mu A$
D. $15 \mu \mathrm{~A}$

Answer: B
15. The power gain for common base amplifier
is 800 and the voltage amplification factor is
840. The collector current when base current is 1.2 mA is
A. 24 mA
B. 12 mA
C. 6 mA
D. 3 mA

Answer: A

- Watch Video Solution

16. The current gain for a common emitter amplifier is 69 . If the emitter current is 7 mA , the base current is
A. 0.1 mA
B. 1 mA
C. 0.2 mA
D. 2 mA

Answer: A

D Watch Video Solution

17. The potential difference across the collector of a transistor, used in common emitter mode is 1.5 V , with the collector resistance of $3 k \Omega$, the emitter current is [$\beta=50]$
A. 0.70 mA
B. 0.51 mA

C. 1.1 mA

D. 1.9 mA

Answer: B

D Watch Video Solution

18. In a common -emitter transistor amplifier,
an increase of $50 \mu A$ in the base current causes an increase of 1.0 mA in the collector
current. Calculat gain β. What will be the
change in emitter current? Also calculate current gain α
A. 1050 mA
B. $1050 \mu \mathrm{~A}$
C. 5025 mA
D. $5025 \mu \mathrm{~A}$

Answer: B
(Watch Video Solution
19. For a common emitter transistor amplifier,
the audio signal voltage across the collector resistance of $2 k \Omega$ is 2 V . Suppose the current amplification factor of the transistor is 100 , the base current if base resistance is $1 k \Omega$ is
A. $10 \mu A$
B. $20 \mu \mathrm{~A}$
C. $5 \mu A$
D. $2 \mu A$
20. The ac current gain of a transistor is 120 .

What is the change in the collector current in
the transistor whose base current changes by $100 \mu A$?
A. 6 mA
B. 12 mA
C. 3 mA
D. 24 mA

Answer: B

D Watch Video Solution

21. In an n-p-n circuit transistor, the collector
current is 10 mA . If 80% electrons emitted
reach the collector, then
A. the emitter current will be 7.5 mA
B. the emitter current will be 12.5 mA
C. the base current will be 3.5 mA
D. the base current will be 1.5 mA

Answer: B

- Watch Video Solution

22. A common emitter amplifier gives an output of 3 V for an input of 0.01 V . If β of the resistance is 100 and the input resistance is $1 k \Omega$. then the collector resistance is
A. $3 k \Omega$
B. $30 \mathrm{k} \Omega$
C. $1 k \Omega$

D. $5 k \Omega$

Answer: A

D Watch Video Solution

23. The input resistance of a common emitter transistor amplifier, if the output resistance is
$500 k \Omega$, the current gain $\alpha=0.98$ and the power gain is 6.0625×10^{6} is
A. 198Ω
B. 300Ω
C. 100Ω
D. 400Ω

Answer: A

D Watch Video Solution
24. In the cuircuit shown here the transistor used has a current gain $\beta=100$. What should be the bias resistor $R_{B E}$ so that
$V_{C E}=5 V\left(\right.$ neglect $\left.V_{B E}\right)$

A. $200 \times 10^{3} \Omega$
B. $1 \times 10^{6} \Omega$
C. 500Ω
D. $2 \times 10^{3} \Omega$

Answer: A

- Watch Video Solution

25. The input resistance of a transistor is
1000Ω on charging its base current by $10 \mu A$,
the collector current increases by 2 mA . If a load resistance of $5 k \Omega$ is used in the circuit, the voltage gain of the amplifier is
A. 100
B. 500

C. 1000

D. 1500

Answer: C

D Watch Video Solution

26. A transistor has a current gain of 30 . If the
collector resistance is $6 k \Omega$, input resistance is
$1 k \Omega$, calculate its volage gain?
A. 90
B. 180
C. 45
D. 360

Answer: B

D Watch Video Solution

27. In a transistor connected in a common
$R_{C}=4 k \Omega, R_{1}=1 k \Omega, I_{C}=1 m A$
$I_{B}=20 \mu A$. Find the voltage gain.
A. 100
B. 200
C. 300
D. 400

Answer: B

D Watch Video Solution
28. In an n-p-n transistor 10^{10} electrons enter
the emitter in 10^{-6} s. If 2% of the electrons are
lost in the base, find the current transfer ratio

and the current amplification factor.

A. 0.02
B. 7
C. 33
D. 49

Answer: A
(Watch Video Solution
29. If a change of $100 \mu A$ in the base current of
an $n-p-n$ transistor in $C E$ causes a change of $10 m A$ in the collector current, the $a c$ current gain of the transistor is
A. 50
B. 100
C. 200
D. 150

Answer: B
30. What is the voltage gain in a common emitter amplifier, where input resistance is 3Ω and load resistance 24Ω and $\beta=61$?
A. 8.4
B. 488
C. 240
D. 0

Answer: B
31. An amplifier has a voltage gain of 100 . The voltage gain in $d B$ is
A. 20 dB
B. 40 dB
C. 30 dB
D. 50 dB

Answer: B
32. A transistor is operated in common emitter configuration at $V_{C}=2 V$. Such that a change in the base current from $100 \mu A$ to $200 \mu A$ produces a change in the collector current of 5 mA to 10 mA . The current gain is
A. 100
B. 150
C. 75
D. 50

Answer: D

D Watch Video Solution

33. Fig.shows that transfer characteristics of a base biased CE transistor. Which of the
following statements are true?

A. At $V_{i}=1 V$, it can be used as an amplifier

B. At $V_{i}=0.5 V$, it can be used as a switch

turned off

C. At $V_{i}=2.5 V$, it can be used as a switch

turned on

D. All of these

Answer: D

D Watch Video Solution

Digital Electronics And Logic Gates

1. Boolean algebra is essentially based on
A. number
B. truth
C. logic
D. symbol

Answer: C

D Watch Video Solution

2. The symbolic representation of four logic gates are given in Fig.The logic symbol for OR,

NOT and NAND gates are respectively

A. (iv), (i), (iii)
B. (iv), (ii), (i)
C. (i), (ii), (iv)
D. (ii), (iv), (i)

Answer: B

D Watch Video Solution
3. In the circuit below, A and B represents two inputs and C represents the output . The circuit represents

A. AND gate
B. NOR gate
C. OR gate

D. NAND gate

Answer: C

D Watch Video Solution

4. Write the truth table for the circuit shown
in figure given below. Name the gate that the
circuit resembles.

A. NAND
B. AND
C. OR
D. NOR

Answer: B
5. In boolean algebra, if $A=1$ and $B=0$
then the value of $A+\bar{B}$ is
A. A
B. A.B
C. $A+B$
D. Both (a) and (c)

Answer: D
6. What will be the input of A and B for the Boolean expression $\overline{(A+B)} \cdot \overline{(A . B)}=1$?
A. $(0,0)$
B. $(0,1)$
C. $(1,0)$
D. $(1,1)$

Answer: A

D Watch Video Solution
7. The circuit given in figure, is equivalent to

A. AND gate
B. OR gate
C. NOT gate
D. NAND gate

Answer: A

D Watch Video Solution
8. The combination of NAND gates is shown in
figure.The equivalent circuit is

A. AND gate
B. NOR gate
C. OR gate
D. NOT gate

Answer: C

- Watch Video Solution

9. The diagram of a logic circuit is given below.

The output F of the circuit is represented by

A. $\mathrm{W} .(\mathrm{X}+\mathrm{Y})$
B. W.(X.Y)
C. $\mathrm{W}+(\mathrm{X} . \mathrm{Y})$
D. $\mathrm{W}+(\mathrm{X}+\mathrm{Y})$

Answer: C

D Watch Video Solution

10.

The truth table of the logic circuit shown-
(a) $\left|\begin{array}{lll}A & B & Y \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right|$
(b) $\left|\begin{array}{lll}A & B & Y \\ 0 & 0 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 1\end{array}\right|$
C. $\left|\begin{array}{lll}A & B & Y \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right|$
(d) $\left|\begin{array}{lll}A & B & Y \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 1 & 1\end{array}\right|$

Answer: A
11. Select the outputs Y of the combination of $\begin{array}{lr}\text { gates shown below for inputs } \\ A=1, B=0, A=1, B=1 & \text { and } \\ A=0, B=0 \text { respectively :- } & \end{array}$

A. $(0,1,1)$
B. $(1,0,1)$
C. $(1,1,1)$
D. $(1,0,0)$

Answer: D
(D) Watch Video Solution
12. The given truth table is for which

A. NAND
B. XOR

C. NOR

D. OR

Answer: A

- Watch Video Solution

13. Which of the following truth tables
corresponds to NAND gate?

(a) (iv)
(b) (iii)
(c)
(ii)
(d) (i)
A. (iv)
B. (iii)
C. (ii)
D. (i)

Answer: D

D Watch Video Solution

14. The decimal equivalent of the binary number $(11010.101)_{2}$ is
A. 9.625
B. 25.265
C. 26.625
D. 26.265

Answer: D

D Watch Video Solution

15. The following figure shows a logic gate circuit with two inputs A and B and the output
Y. The voltage waveforms of A, B and Y are as
given :

The logic gate is
A. NOR gate
B. OR gate
C. AND gate
D. NAND gate

Answer: D

- Watch Video Solution

16. The logic circuit shown below has the input
waveforems ' A ' and ' B ' as shown. Pick out the

correct output waveform

A.
(a)

B.

(b) -1 -
C.
(c) $-4+\square$
D. ${ }^{\text {(1) }}$

Answer: A

D Watch Video Solution

Higher Order Thinking Skills

1. If each diode in figure has a forward bias
resistance of 25 Omega and infinite resistance
in reverse bias, what will be the values of the current I_{1}, I_{2}, I_{3} and I_{4} ?

A. $I_{2}=0.40 A, I_{4}=0.025 A$
B. $I_{2}=0.25 A, I_{4}=0.20 A$
C. $I_{1}=0.05 A, I_{3}=0.02 A$
D. $I_{2}=I_{4}=0.025 A$

Answer: D

- Watch Video Solution

2. In the circuit shown in figure, when the
input voltage of the base resistance is $10 \mathrm{~V}, V_{b e}$
is zero and $V_{c e}$ is also zero. Then
,
A. $\beta=110$
B. $I_{b}=25 \mu A$
C. $I_{c}=3.33 m A$
D. both (A) and (C)

Answer: D

- Watch Video Solution

3. A potential barrier of 0.50 V exists across a
$P-N$ junction. If the depletion region is $5.0 \times 10^{-7} \mathrm{~m}$, wide the intensity of the electric field in this region is
A. $10^{6} \mathrm{~V} / \mathrm{m}$
B. $10^{7} \mathrm{~V} / \mathrm{m}$
C. $10^{5} \mathrm{~V} / \mathrm{m}$

D. $10^{4} \mathrm{~V} / \mathrm{m}$

Answer: A

D Watch Video Solution

4. If an electron approaches the p-n junction from the n -side with a speed of $5 \times 10^{5} \mathrm{~ms}^{-1}$,with what speed will it enter the p -side?
A. $5 \times 10^{5} \mathrm{~m} / \mathrm{s}$
B. $2.5 \times 10^{6} \mathrm{~m} / \mathrm{s}$

C. $2.7 \times 10^{5} \mathrm{~m} / \mathrm{s}$

D. $1 \times 10^{5} \mathrm{~m} / \mathrm{s}$

Answer: C

D Watch Video Solution

5. An n-p-n transistor in a common-emitter mode is used as a simple voltage-amplifier with a collector current of 4 mA . The terminals of a 8 V battery is connected to the collector through a load-resistance R_{L} and to the base
through a resistance R_{B}. The collector-emitter
voltage $V_{C E}=4 V$, the base-emitter voltage
$V_{B E}=0.6 \mathrm{~V}$ and the current amplification factor $\beta_{d c}=100$. Then
A. $R_{L}=1 k \Omega, R_{B}=185 k \Omega$
B. $R_{L}=2 k \Omega=R_{B}$
C. $R_{L}=2 k \Omega, R_{B}=15 k \Omega$
D. $R_{L}=185 k \Omega, R_{B}=1 k \Omega$

Answer: A

6. The equivalent resistance of the circuit, across $A B$ is given by

A. 6.2Ω
B. 5.64Ω
C. 8.2Ω
D. 5.6Ω or 8.2Ω

Answer: D

- Watch Video Solution

7. In the circuit shown in figure, the silicon and

 germanium diodes start conducting at 0.7 V and 0.3 V respectively. What are the values ofV_{0} and I ?

A. $12 \mathrm{~V}, 2.4 \mathrm{~mA}$
B. 11.7 V, 2.34 mA
C. $11.3 \mathrm{~V}, 2.26 \mathrm{~mA}$
D. $11 \mathrm{~V}, 2.2 \mathrm{~mA}$

Answer: B

- Watch Video Solution

8. The Boolean expression of the output y in
terms of the input A and B for the circuit
shown in figure.

A. $\bar{A} B+A \bar{B}$
B. $A B$
C. $A B+\bar{A} \bar{B}$
D. $A \bar{B}+1$

Answer: C

D Watch Video Solution

Ncert Exemplar

1. The conductivity of a semiconductor increases with increase in temperature because
A. number density of free current carriers increases
B. relaxation time increases.
C. both number density of carriers and relaxation time increase

D. number density of current carriers

increases, relaxation time decreases but
effect of decrease in relaxation time is
much less than increase in number
density

Answer: D

D Watch Video Solution

2. In Fig. V_{0} is the potential barrier across a p-
n junction, when no battery is connected across the junction

A. 1 and 3 both correspond to forward bias
of junction
B. 3 corresponds to forward bias of
junction and 1 corresponds to reverse
bias of junction
C. 1 corresponds to forward bias and 3
corresponds to reverse bias of junction.

D. 3 and 1 both correspond to reverse bias

of junction.
3. In figure , assuming the diodes to be ideal ,

A. D_{1} is forward biased and D_{2} is reverse biased and hence current flows from A to B.
B. D_{2} is forward biased and D_{1} is reverse biased and hence no current flows from B to A and vice versa.
C. D_{1} and D_{2} are both forward biased and hence current flows from A to B.
D. D_{1} and D_{2} are both reverse biased and hence no current flows from A to B and
vice versa

Answer: B

4. A 220 V ac supply is connected between points A and B as shown 220 V in figure. What will be the potential AC difference V across the capacitor?

A. 220 V
B. 110 V
C. 0 V
D. $200 \sqrt{2} V$

Answer: D

- Watch Video Solution

5. Hole is
A. an anti-particle of electron
B. a vacancy created when an electron
leaves a covalent bond
C. absence of free electrons.
D. an artificially created particle.

Answer: B

D Watch Video Solution
6. The output of the given circuit in figure given below,

A. would be zero at all times.
B. would be like a half wave rectifier with
positive cycles in output
C. would be like a half wave rectifier with negative cycles in output.
D. would be like that of a full wave rectifier.

Answer: C

D Watch Video Solution

7. In the circuit shown in figure, if the A diode forward voltage drop is 0.3 V , the voltage difference between A and B is 4

0.2 mA

 $5 \mathrm{k} \Omega$
A. 1.3 V
B. 2.3 V
C. 0
D. 0.5 V

Answer: B

- Watch Video Solution

8. Truth table for the given circuit (Fig.)is

	(a)	A	B
	E		
		0	0
	1		
	0	1	0
	1	0	1
	1	1	0

	(b)	A	B
	E		
	0	0	1
	0	1	0
	1	0	0
		1	1

(c) $\left.\begin{array}{c|c|c}A & B & E \\ \hline 0 & 0 & 0 \\ 0 & 1 & 1 \\ & 1 & 0 \\ \\ & 1 & 1\end{array}\right)$

	(d)	A	B

Answer: C

1. Assertion: If there is some gap between the conduction band and the valence band, electrons in the valence band all remain bound and no free electrons are available in the conduction band. Then the material is an insulator.

Reason: Resistance of insulators is very low
A. If both assertion and reason are true and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: C
(Watch Video Solution
2. Assertion : The electrons in the conduction band have higher energy than those in the valence band of a semiconductor Reason : The conduction band lies above the energy gap and valence band lies below the energy gap.
A. If both assertion and reason are true
and reason is the correct explanation of assertion.
B. If both assertion and reason are true not
but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

3. Assertion : In a semiconductor, the conduction electrons have a higher mobility than holes.

Reason: The electrons experience fewer collisions.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true not
but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

4. Assertion: The probability of electrons to be found in the conduction band of an intrinsic semiconductor at a finite temperature decrease exponentially with increasing band
gap.

Reason: It will be more difficult for the electron to cross over the large band gap while going from valence band to conduction band.
A. If both assertion and reason are true and reason is the correct explanation of assertion.

B. If both assertion and reason are true not

but reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

5. Assertion: The conductivity of an intrinsic semiconductor depends on its temperature.

Reason The conductivity of an intrinsic semiconductor is slightly higher than that of a lightly doped p-type semiconductor.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: C

6. Assertion: The conductivity of an intrinsic semiconductor depends on its temperature

Reason: No important electronic devices can be developed using intrinsic semiconductors.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

7. Assertion: Thickness of depletion layer is fixed in all semiconductor devices.

Reason: No free charge carriers are available in deplection layer.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution
8. Assertion: Zener diode works on aa principle of of breakdown voltage.

Reason: Current increases suddenly after breakdown voltage.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: B

- Watch Video Solution

9. Assertion : Zener diode is used to obtain
voltage regulation

Reason : When Zener diode is operated in reverse bias, after a certain voltage
(breakdown voltage) the current suddenly increases.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true not
but reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

10. Assertion: The semiconductor used for
fabrication of visible LEDs must at least have a
band gap of 1.8 eV .
Reason: The spectral range of visible light is
0.4 eV to 1.8 eV
A. If both assertion and reason are true and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

11. Assertion : In a transistor the base is made thin.

Reason: A thin base makes the transistor stable.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

12. Assertion : Two p-n junction diodes placed back to back, will work as a n-p-n transistor.

Reason: The p-region of two p-n junction diodes back to back will form the base of n-p-n transistor.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct
explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution
13. Assertion : In an oscillator, the feedback is
in the same phase which is called as positive
feedback.

Reason: If the feedback voltage is in opposite phase, the gain is greater than one.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct explanation of assertion.
C. If assertion is true but reason is false
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

14. Assertion: In an OR gate if any of the input is high, the output is high.

Reason: OR gate is the most basic gate, with one input and one output
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct explanation of assertion.

C. If assertion is true but reason is false

D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

15.

Assertion:

This circuit acts as OR Gate.

Reason: Truth table for two input OR Gate is

A	B	Y
0	0	0
0	1	1
1	0	1
1	1	1

A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true not
but reason is not the correct

explanation of assertion.

C. If assertion is true but reason is false

D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

