© ${ }^{\text {T doubtnut }}$

India's Number 1 Education App

MATHS

BOOKS - VK GLOBAL PUBLICATION MATHS (HINGLISH)

TRIANGLES

Very Short Answer Questions

1. Two sides and the perimeter of one triangle are respectively three times the corresponding sides and the perimeter of the other triangle.

Are the two triangles similar? Why?

- Watch Video Solution

2. A and B are respectively the points on the sides $P Q$ and $P R$ of a
$\Delta P Q R$ such that $\mathrm{PQ}=12.5 \mathrm{~cm}, \mathrm{PA}=5 \mathrm{~cm}, \mathrm{BR}=6 \mathrm{~cm}$ and $\mathrm{PB}=4 \mathrm{~cm}$. Is AB

QR? Give reason for your answer.

(D) Watch Video Solution

3.

$\triangle A B C \sim \triangle Q R P, \frac{\operatorname{Area}(\triangle A B C)}{\operatorname{Area}(\triangle P Q R)}=\frac{9}{4}, A B=18 \mathrm{~cm}, B C=15 \mathrm{~cm}$
, then find the length of PR.

- Watch Video Solution

4. If $\triangle A B C \sim \triangle P Q R$ with $\frac{B C}{Q R}=\frac{1}{3}$,then $\frac{\operatorname{ar}(\triangle P R Q)}{\operatorname{ar}(\triangle B C A)}$ is equal to

- Watch Video Solution

5. $\triangle A B C \sim \triangle D E F$ if $D E: A B=2: 3$ and $\operatorname{ar} \triangle D E F=44$ sq. Units then ar
$\triangle A B C=$ \qquad sq. units.
6. Is the triangle with sides $12 \mathrm{~cm}, 16 \mathrm{~cm}$ and 18 cm a right triangle?

- Watch Video Solution

Short Answer Questions I

$$
\begin{aligned}
& \text { 1. In } \quad \Delta P Q R \\
& \angle P=55^{\circ}, \angle Q=25^{\circ}, \angle M=100^{\circ} \text { and } \angle S=25^{\circ} . \\
& \triangle Q P R \sim \triangle T S M \text { ? Why ? }
\end{aligned}
$$

- Watch Video Solution

2. If ABC and DEF are similar triangles such that $\angle A=47^{\circ}$ and
$\angle E=63^{\circ}$, then the measures of $\angle C=70^{\circ}$. Is it true? Give reason.
3. Let $\triangle A B C \sim \triangle D E F$ and their areas be , respectively, $64 \mathrm{~cm}^{2}$ and $121 \mathrm{~cm}^{2}$. If $\mathrm{EF}=15.4 \mathrm{~cm}$, find BC

- Watch Video Solution

4. $A B C$ is an isosceles triangle right angled at C. Prove that $A B^{2}=2 A C^{2}$.

D Watch Video Solution

5. Sides of triangle are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
(i) $7 \mathrm{~cm}, 24 \mathrm{~cm}, 25 \mathrm{~cm}$ (ii) $3 \mathrm{~cm}, 8 \mathrm{~cm}, 6 \mathrm{~cm}$

D Watch Video Solution

6. If $A B C$ and $D E F$ are similar such that $2 A B=D E$ and $B C=8 \mathrm{~cm}$, then $E F=$ (a) 16 cm (b) 12 cm (c) 8 cm (d) 4 cm .

- Watch Video Solution

7. If the ratio of the perimeter of two similar triangles is $4: 25$, then find the ratio of the areas of the similar triangles.

- Watch Video Solution

$$
\begin{aligned}
& \text { 8. In an } \\
& \text { 8. isosceles }
\end{aligned} \Delta A B C \text {, if }
$$

- Watch Video Solution

9. The lengths of the diagonals of a rhombus are 16 cm and 12 cm . The length of each side of the rhombus is
10. A man goes 24 m due west and then 10 m due north. How far is he from the starting point?

- Watch Video Solution

11. $\triangle A B C \sim \Delta D E F$ such that $\mathrm{AB}=9.1 \mathrm{~cm}$ and $\mathrm{DE}=6.5 \mathrm{~cm}$. If the perimeter of $\triangle D E F$ is 25 cm , what is the perimeter of $\triangle A B C$?

- Watch Video Solution

12. $\triangle A B C \sim \triangle P Q R$, if area of $\triangle A B C=81 \mathrm{~cm}^{2}$, area of
$\Delta P Q R=169 \mathrm{~cm}^{2}$ and $\mathrm{AC}=7.2 \mathrm{~cm}$, find the length of PR .
13. In Fig. 7.11, $D e \| B C$. If $\mathrm{AD}=\mathrm{x}, \mathrm{DB}=\mathrm{x}-2, \mathrm{AE}=\mathrm{x}+2$ and $\mathrm{EC}=\mathrm{x}-1$, find the value of x .

Fig. 7.11

(D) Watch Video Solution

2. E and F are points on the sides PQ and PR respectively of a $\triangle P Q R$. Show that $E f|\mid Q R$. If $\mathrm{PQ}=1.28 \mathrm{~cm}, \mathrm{PR}=2.56 \mathrm{~cm}, \mathrm{PE}=0.18 \mathrm{~cm}$ and $\mathrm{PF}=$ 0.36 cm .

- Watch Video Solution

3. A vertical pole of length 6 m casts a shadow 4 m long on the ground and at the same time a tower casts a shadow 28 m long. Find the height of the tower.

- Watch Video Solution

4. In figure, If $\mathrm{LM} \| \mathrm{CB}$ and $\mathrm{LN} \| \mathrm{CD}$, prove that $\frac{A M}{A B}=\frac{A N}{A D}$.
5. In Fig. 7.15, $D E \| O Q$ and $D f \| O R$,Show that $E f \| Q R$.

Fig. 7.15

- Watch Video Solution

6. The line joining the mid-points of two sides of a triangle is parallel to the third side.

- Watch Video Solution

7. State which pairs of triangles in Figure are similar. Write the similarity criterion used by you for answering the question and also write the pairs of similar triangles in the symbolic form:

- Watch Video Solution

8. In Fig. 4.96, $\frac{A O}{O C}=\frac{B O}{O D}=\frac{1}{2}$ and $A B=5 \mathrm{~cm}$. Find the value of $D C$. (FIGURE)

- Watch Video Solution

9. E is a point on the side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects CD at F. Show that $\triangle A B E \sim \triangle C F B$.

Fig. 7.19

- Watch Video Solution

10. In the given figure, S and T are points on sides PR and QR of $\triangle P Q R$ such that $\angle P=\angle R T S$. Show that $\triangle R P Q \sim \Delta R T S$.

- Watch Video Solution

11. In figure $A B C$ and $A M P$ are two right triangles, right angles at B and M respectively. Prove that (i) $\triangle A B C \Delta A M P$ (ii) $\frac{C A}{P A}=\frac{B C}{M P}$
12. D is a point on the side $B C$ of a triangle $A B C$ such that $\angle A D C=\angle B A C$. Show that $C A^{2}=C B \dot{C} D$.

- Watch Video Solution

13. $A B C$ is an equilateral triangle of side 2 a . Find each of its altitudes.

D Watch Video Solution

14. An aeroplane leaves an airport and flies due north at a speed of 1000 km per hour. At the same tune, another aeroplane leaves the same airport and flies due west at a speed of 1200 km per hour. |How far apart will be the two planes after $111 / 2$

- Watch Video Solution

15. In the given figure, $\triangle A B C$ and $\triangle D B C$ are on the same base BC .

If AD intersects BC at O , prove that $\frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle D B C)}=\frac{A O}{D O}$

- Watch Video Solution

16. In the given figure, PA, QB and RC each is perpendicular to AC such that $P A=x, R C=y, Q B=z, A B=a$, and $B C=b$ Prove that $\frac{1}{x}+\frac{1}{y}=\frac{1}{z}$

17. In Fig. 7.27 , if $\triangle A B C \sim \Delta D E F$ and their sides are oflengths (in cm) as marked along them, then find the lengths of the sides of each triangle.

- Watch Video Solution

18. In $\triangle A B C$ it is given that $\frac{A B}{A C}=\frac{B D}{D C}$. If $\angle B=70^{\circ}$ and $\angle C=50^{\circ}$ then $\angle B A D=?$

D Watch Video Solution

19. If the diagonals of a quadrilateral divide each other proportionally, prove that it is a trapezium
20. In the given figure $\frac{P S}{S Q}=\frac{P T}{T R}$ and $\angle P S T=\angle P R Q$. Prove that

- Watch Video Solution

21. Diagonals of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of triangles $A O B$ and COD.
22. In the given Fig. 7.32, find the value of x in terms of a, b and c .

Fig. 7.32

- Watch Video Solution

23. In the given Fig. 7.33, $C d \| L A$ and $D E \| A C$. Find the length of CL if $B E=4 \mathrm{~cm}$ and $E C=2 \mathrm{~cm}$.

- Watch Video Solution

24. In the given Fig. 7. $34, \mathrm{AB}=\mathrm{AC}$. E is a point on CB produced. If AD is perpendicular to BC and EF perpendicular to AC , prove that $\triangle A B D$ is

similar to $\triangle C E F$.

Fig. 7.34

- Watch Video Solution

Long Answer Questions

1. The line drawn from the midpoint of one side of a triangle parallel to another side bisects the third side.
2. $A B C D$ is a trapezium in which $A B|\mid D C$ and its diagonals intersect each other at the point O. Show that $\frac{A O}{B O}=\frac{C O}{D O}$.

- Watch Video Solution

3. If $A D$ and $P M$ are medians of triangles $A B C$ and $P Q R$, respectively where $\triangle A B C \triangle P Q R$, prove that $\frac{A B}{P Q}=\frac{A D}{P M}$

D Watch Video Solution

4. In Fig. 4.123, ABCD is a trapezium with $A B|\mid D C$. If $\triangle A E D$ is similar to $\triangle B E C$, prove that $A D=B C$.

- Watch Video Solution

5. Prove that the area of an equilateral triangle described on a side of a right-angled isosceles triangle is half the area of the equilateral
triangle described on its hypotenuse.

- Watch Video Solution

6. If the areas of two similar triangles are equal, prove that they are congruent.

- Watch Video Solution

7. The areas of the two similar triangles are in the ratio of the square of the corresponding medians.

- Watch Video Solution

8. O is the a point in the interior of
$\triangle A B C, O D \perp B C, O E \perp A C$ and $A C$ and $O F \perp A B$, as shown in the figure,

Prove that :
(i) $O A^{2}+O B^{2}+O C^{2}-O D^{2}-O D^{2}-O F^{2}=A F^{2}+B D^{2}+C E^{2}$
(ii) $A F^{2}+B D^{2}+C E^{2}=A D^{2}+B F^{2}+C D^{2}$

D Watch Video Solution

9. The perpendicular from A on side $B C$ of a $A B C$ intersects $B C$ at D such that $\mathrm{DB}=3 \mathrm{CD}$. Prove that $2 A B^{2}=2 A C^{2}+B C^{2}$.
10. In an equilateral triangle, prove that three times the square of one side is equal to four times the square of one of its altitudes.

D Watch Video Solution

11. Prove that, if a line is drawn parallel to one side of a triangle to intersect the other two sides in distinct points, the other two sides are divided in the same ratio.

Using the above result, do the following:
In Fig. 7.45 $D E \| B C$ and $\mathrm{BD}=\mathrm{CE}$. Prove that $\triangle A B C$ is an isosceles
triangle.

D Watch Video Solution
12. In $\triangle A B C A=90^{\circ}$ and $A C \perp B D$, then Show that (a) $A B^{2}=B C \cdot B D(b) A C^{2}=B C \cdot D C(c) A D^{2}=B D \cdot C D$
13. Diagonals of a trapezium $A B C D$ with $A B|\mid D C$ intersect each other at the point O. If $A B=2 C D$, find the ratio of the areas of triangles $A O B$ and COD.

- Watch Video Solution

14. Prove that, in a right triangle, the square of the hypotenuse is equal to the sum of squares of the other two sides. Using the above, do the following:

Prove that, in a $\triangle A B C$, if AD is perpendicular to BC , dien $A B^{2}+C D^{2}=A C^{2}+B D^{2}$.
15. In a triangle, if the square on one side is equal to the sum of the squares on the other two sides, prove that the angle opposite to the first side is a right angle. Use the above theorem to find the measure of $\angle P K R$ in Fig. 7.52.

Fig. 7.52

- Watch Video Solution

16. ABC is a triangle in which $A B=A C$ and D is a point on AC such that $B C^{2}=A C \times C D$. Prove that $B D=B C$.
17. Prove that the area of an equilateral triangle described on one side of a square is equal to half the area of the equilateral triangle described on one of its diagonals.

(D) Watch Video Solution

18. D and E are points on the sides $C A$ and $C B$ respectively of a triangle ABC right angled at C . Prove that $A E^{2}+B D^{2}=A B^{2}+D E^{2}$.

(D) Watch Video Solution

Hots High Order Thinking Skills

1. In Fig. 7.58, $\triangle F E C \equiv \triangle G D B$ and $\angle 1=\angle 2$. Prove that $\triangle A D E \sim \triangle A B C$.

Fig. 7.58

- Watch Video Solution

2. Sides $A B$ and $A C$ and median $A D$ of a triangle $A B C$ are respectively proportional to sides PQ and PR and median PM of another triangle PQR. Show that $\triangle A B C \Delta P Q R$.

- Watch Video Solution

3. In figure, P is the mid-point of $B C, Q$ is the mid-point of $B C, Q$ is the mid-point of $A P$, such that $B Q$ produced meets $A C$ at R.
4. In figure $A B C$ and DBC are two triangles on the same base $B C$. If $A D$ intersects BC at O , show that $\frac{\operatorname{ar}(A B C)}{\operatorname{ar}(D B C)}=\frac{A O}{D O}$.

D Watch Video Solution

5. Two poles of height a metres and b metres are p metres apart. Prove that the height of the point of intersection of the lines joining the top of each pole to the foot of the opposite pole is given by $\frac{a b}{a+b}$ metres.

- Watch Video Solution

6. In an equilateral triangle $A B C, D$ is a point on side $B C$ such that $B D=\frac{1}{3} B C$. Prove that $9 A D^{2}=7 A B^{2}$.
7. Through the mid-point M of the side $C D$ of a parallelogram $A B C D$, the line $B M$ is drawn intersecting $A C$ at LandAD produced at E. Prove that $E L=2 B L$.

- Watch Video Solution

Proficiency Exercise Very Short Answer Questions

1. If $\triangle A B C$ and $\triangle D E F$ are similar triangles such that $\angle A=45^{\circ}$ and $\angle F=56^{\circ}$, then find the ratio of their corresponding attitudes.

- Watch Video Solution

2. If $\triangle A B C$ and $\triangle D E F$ are two tnangles such that $\frac{A B}{E F}=\frac{B C}{F D}=\frac{C A}{D E}=\frac{3}{4}$ then find $\operatorname{ar}(\triangle D E F): \operatorname{ar}(\triangle A B C)$.
3. If $\triangle A B C \sim \triangle P Q R, \frac{\operatorname{ar}(\triangle A B C)}{\operatorname{ar}(\triangle P Q R)}=\frac{16}{9}, \mathrm{AB}=2 \mathrm{~cm}$ and $\mathrm{AC}=12 \mathrm{~cm}$, then find the value of PR.

D Watch Video Solution

4. In $\triangle A B C, \mathrm{AB}=24 \mathrm{~cm}, \mathrm{BC}=10 \mathrm{~cm}$ and $\mathrm{AC}=26 \mathrm{~cm}$. Is this triangle right triangle?

- Watch Video Solution

5. It is given that $\triangle D E F \sim \Delta R P Q$. Is it true to say that $\angle D=\angle R$ and $\angle F=\angle P$? Why?
6. A and Bare respectively the points on the sides $P Q$ and $P R$ of a triangle $P Q R$ such that $P Q=10.5 \mathrm{~m} P A=4.5 \mathrm{~m}, \mathrm{BR}=8 \mathrm{~m}$ and $\mathrm{PB}=6 \mathrm{~m}$. ls $A B \| Q R$?

D Watch Video Solution

7. Is the following statement true? Why? "Two quadrilaterals are similar, if their corresponding angles are equal".

- Watch Video Solution

8. If in two right triangles, one of the acute angles of one triangle is equal to an acute angle of the other triangle. Can you say that two triangles will be similar? Why?

D Watch Video Solution

9. If $\Delta A B C \sim \Delta Z Y X$, then name the angles equal to ΔB and ΔZ respectively.

- Watch Video Solution

10. L and M are respectively the points on the sides DE and DF of a triangle DEF, such that $\mathrm{DL}=4, L E=\frac{4}{3}, D M=6$ and $D F=8$. Is $L m \| E F$? Give reason.

- Watch Video Solution

11. E and F are points on the sides PQ and PR respectively of $\triangle P Q R$.

For each of the following cases, state whether $E F \| Q R$: (i) $P E=3.9 \mathrm{~cm}$.

$$
\begin{aligned}
& \mathrm{EQ}=3 \mathrm{~cm} . \mathrm{PF}=3.6 \mathrm{~cm} \text { and } \mathrm{FR}=2.4 \text { (ii) } \mathrm{PE}=4 \mathrm{~cm} . \mathrm{QE}=4.5 \mathrm{~cm} . \mathrm{PF}=\mathrm{S} \mathrm{~cm} \\
& \text { and } \mathrm{RF}=9 \mathrm{~cm} \text { (iii) }
\end{aligned}
$$

12. L and M are points on the sides DE and DF respectively of a MJEF.

State whether LM II EF or not.
$D E=8 \mathrm{~cm}, \mathrm{DF}=15 \mathrm{~cm}, \mathrm{LE}=3.2 \mathrm{~cm}$ and $\mathrm{MF}=6 \mathrm{~cm}$.

Fig. 7.66
13. The ratio of the corresponding altitudes of two similar triangles is $\frac{2}{5}$. Is it correct to say that ratio of their areas is also $\frac{2}{5}$? Why?

- Watch Video Solution

14. If the areas of two similar triangles $A B C$ and $P Q R$ are in the ratio $9: 16$ and $B C=4.5 \mathrm{~cm}$, what is the length of $Q R$?

- Watch Video Solution

Proficiency Exercise Short Answer Type Questions li

1. The lengths of the diagonals of a rhombus are 30 cm and 40 cm .

Find the side of the rhombus.

- Watch Video Solution

2. $P Q \| B C$ and $A P: P B=1: 2$ find $\frac{\operatorname{area}(\Delta A P Q)}{\operatorname{area}(\Delta A B C)}$.

- Watch Video Solution

3. $\frac{O A}{O C}=\frac{O D}{O B}$. Prove that $\angle A=\angle C$ and $\angle B=\angle D$.

Fig. 7.68

- Watch Video Solution

4. Sides of triangles are given below. Determine which of them are right triangles. In case of a right triangle, write the length of its hypotenuse.
(i) $13 \mathrm{~cm}, 12 \mathrm{~cm}, 5 \mathrm{~cm}$ (ii) $20 \mathrm{~cm}, 25 \mathrm{~cm}, 30 \mathrm{~cm}$.
5. In $\triangle A B C, D E \| B C$. If $\mathrm{AD}=4 \mathrm{~cm}, \mathrm{DB}=4.5 \mathrm{~cm}$ and $\mathrm{AE}=8 \mathrm{~cm}$, find AC .

D Watch Video Solution

6. $A B C$ and $B D E$ are two equilateral triangles such that D is the mid-point of $B C$. The ratio of the areas of the triangles $A B C$ and $B D E$ is $2: 1$ (b) $1: 2$ (c) $4: 1$ (d) $1: 4$

- Watch Video Solution

7. In the given figure, AD is the bisector of $\angle B A C$. If $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{AC}=6$ cm and $\mathrm{BC}=12 \mathrm{~cm}$, find BD and DC .

D Watch Video Solution

8. The perimeters of two similar triangles $A B C$ and $P Q R$ are 60 cm and 36 cm respectively. If $P Q=9 \mathrm{~cm}$, then find the length of $A B$.
9. Two poles of height 9 m and 15 m stand vertically upright on a plane ground. If the distance between their tops is 10 m , then find the distance between their feet.

D Watch Video Solution

10. The area of two similar triangles $P Q R$ and $X Y Z$ are $144 \mathrm{~cm}^{2}$ and $49 \mathrm{~cm}^{2}$ respectively. If the shortest side of larger $\triangle P Q R$ be 24 cm , then find the shortest side of the smaller triangle XYZ.

D Watch Video Solution

11. $\triangle A B C \sim \triangle D E F$. If $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{BC}=3.5 \mathrm{~cm}, \mathrm{CA}=2.5 \mathrm{cmandDF}=7.5 \mathrm{~cm}$, then find perimeter of $\triangle D E F$.
12. In $\triangle A B C, D E \| B C$. If $\mathrm{AD}=2.4 \mathrm{~cm}, \mathrm{AE}=3.2 \mathrm{~cm}, \mathrm{DE}=2 \mathrm{~cm}$ and $\mathrm{BC}=5$ cm , find BD and CE .

D Watch Video Solution

13. In the given figure, in $\triangle A B C, D E| | B C$ so that $\mathrm{AD}=(4 \mathrm{x}-3) \mathrm{cm}$, $A E=(8 x-7) c m, B D=(3 x-1) c m$ and $C E=(5 x-3) c m$. Find the value of x.

D Watch Video Solution

14. If a line intersects sides AB and AC of a $\triangle A B C$ at D and E respectively and is parallel to BC , prove that $\frac{A D}{A B}=\frac{A E}{A C}$

- Watch Video Solution

15. In Fig. 7.69, $D E \| B C$. If $\frac{A E}{E C}=\frac{4}{13}$ and $\mathrm{AB}=20.4 \mathrm{~cm}$, find AD .

Fig. 7.69

- Watch Video Solution

16. $A B C D$ is a trapezium in which ABIIDC and P and Qare points on AD and BC respectively such that $P Q \| D C$. If $\mathrm{PD}=12 \mathrm{~cm}, \mathrm{BQ}=42 \mathrm{~cm}$ and $Q C=18 \mathrm{~cm}$, find $A D$.
17. The Hypotenuse of a right triangle is 25 cm and out of the remaining two sides, one is larger than the other by 5 cm , find the lenghts of the other two sides.

- Watch Video Solution

18. For going to a city B from city A there is a route via city C such that $A C \perp C B, \mathrm{AC}=2 \mathrm{x} \mathrm{km}$ and $\mathrm{CB}=2(\mathrm{x}+7) \mathrm{km}$. It is proposed to construct a 26 km highway which directly connects the two cities A and B. Find how much distance will be saved in reaching city B from city A after the construction of the highway.

- Watch Video Solution

19. The diagonals of a quadrilateral $A B C D$ intersect each other at the point O such that $\frac{A O}{B O}=\frac{C O}{D O}$. Show that ABCD is a trapezium.
20. A street light bulb is fixed on a pole 6 m above the level of the street. If a women of height 1.5 m casts a shadow of 3 m , then find how far she is away from the base of the pole.

- Watch Video Solution

21. In Fig.7.70, find $\angle E$.

Fig. 7.70
22. D, E and F are respectively the mid-points of sides $A B$. $B C$ and $C A$ of $\triangle A B C$. Find the ratio of the areas of DDEF and $\triangle A B C$.

- Watch Video Solution

23. A 15 high tower casts a sshadow 24 long at a certain time at the same time, a telephone pole casts a shadow 16 long. Find the height of the telephone pole.

- Watch Video Solution

24. Prove that the sum of the squares of the sides of a rhombus is equal to the sum of the squares of its diagonals.

- Watch Video Solution

25. In Fig. 3, $A B C$ is a right triangle, right angled at C and D is the midpoint of $B C$. Prove that $A B^{2}=4 A D^{2}-3 A C^{2}$.

- Watch Video Solution

26. In Fig, $A B C$ is an isosceles triangle in which $A B=A C$.Eis a point on the side CB produced such that $F E \perp A C$. If $A D \perp C B$, prove that $A B \times E F=A D \times E C$.

27. $A D$ is an altitude of an equilateral triangle $A B C$. On $A D$ as base, another equilateral triangle $A D E$ is constructed. Prove that Area $(A D E):$ Area $(A B C)=3: 4$.

(Watch Video Solution

28. In figure, P is the mid-point of $B C, Q$ is the mid-point of $B C, Q$ is the mid-point of $A P$, such that $B Q$ produced meets $A C$ at R.

- Watch Video Solution

29. $A B \perp B C$ and $D E \perp A C$. Prove that $\triangle A B C \sim \triangle A E D$.

$$
\text { Fig. } 7.74
$$

- Watch Video Solution

30. Two triangles $B A C a n d B D C$, right angled at $A a n d D$ respectively, are drawn on the same base $B C$ and on the same side of $B C$. If $A C$ and $D B$ intersect at P, prove that $A P x P C=D P x P B$.
31. E is a point on side $A D$ produced of a parallelogram $A B C D$ and $B E$ intersects $C D$ at F. Prove that $D A B E D C F B$.

- Watch Video Solution

32. D and E are respectively the points on the sides $A B$ and $A C$ of a triangle ABC such that $\mathrm{AE}=5 \mathrm{~cm}, \mathrm{AC}=7.5 \mathrm{~cm}, \mathrm{DE}=4.2 \mathrm{~cm}$ and $D E \| B C$. Then find length of BC.

- Watch Video Solution

33. If $A B C$ is an equilateral triangle with each side a cm such that $A D \perp B C$, then find $A D^{2}$.
34. In $A B C, D E$ is parallel to base $B C$, with D on $A B$ and E on $A C$. If $\frac{A D}{D B}=\frac{2}{3}$, find $\frac{B C}{D E}$.

(D) Watch Video Solution

35. If E is a point on side $r: A$ of an equilateral triangle $A B C$ such that $B E \perp C A$, then prove that $A B^{2}+B C^{2}+C A^{2}=4 B E^{2}$.

- Watch Video Solution

36. O is any point inside a rectangle $A B C D$. Prove that $O B^{2}+O D^{2}=O A^{2}+O C^{2}$.

- Watch Video Solution

37. In the given figure, $\frac{A D}{D B}=\frac{A E}{E C}$ and $\angle A D E=\angle A C B$. Prove that $\triangle A B C$ is an isosceles triangle.

B

C

- Watch Video Solution

38. In Fig. 4.72, $A B C D$. If $O A=3 x-19, O B=x-4$, $O C=x-3$ and $O D=4$, find x. (FIGURE)

D Watch Video Solution

39. $A B C$ is a triangle and $P Q$ is a straight line meeting $A B$ in P and $A C$ in Q. If $A P=1 \mathrm{~cm}, P B=3 \mathrm{~cm}, A Q=1.5 \mathrm{~cm}, Q C=4.5 \mathrm{~m}$, prove that area of $A P Q$ is one-sixteenth of the area of $A B C$.

(D) Watch Video Solution

Proficiency Exercise Long Answer Questions

1. CD and GH are respectively the bisectors of $\angle A C B$ and $\angle E G F$ such that D and H lie on sides AB and FE of $\triangle A B C$ and $\triangle E F G$ respectively. If $\triangle A B C \triangle F E G$, show that:(i) $\frac{C D}{G H}=\frac{A G}{F G}$ (ii) 'DeltaD

- Watch Video Solution

2. In the Fig. given below, $O B$ is the perpendicular bisector of the line segment $\mathrm{DE}, F A \perp O B$ and FE intersects OB at the point C . Prove
that $\frac{1}{O A}+\frac{1}{O B}=\frac{2}{O C}$

- Watch Video Solution

3. In the adjoining figure, $P Q R$, is a right triangle, right angled at $\mathrm{Q} . \mathrm{X}$ and Y are the points on PQ and QR such that $P X: X Q=1: 2$ and $Q Y: Y R=2: 1$. Prove that $9\left(P Y^{2}+X R^{2}\right)=13 P R^{2}$
4. 14 In Fig. 6.21, PA, QB Rc and SD are all perpendiculars to a line I, AB 6 $\mathrm{cm}, \mathrm{Bc} 9 \mathrm{~cm}, \mathrm{CD} \mathrm{g} \mathrm{cm}$ and SP 36 om Find PO, QR an RS. Fig. 6.21

- Watch Video Solution

5. If a perpendicular is drawn from the vertex containing the right angle of a right triangle to the hypotenuse then prove that the triangle on each side of the perpendicular are similar to each other and to the original triangle. Also, prove that the square of the perpendicular is equal to the product of the lengths of the two parts of the hypotenuse.

- Watch Video Solution

6. In given figure $P Q R$ is a right angled triangle, right angled at Q and $\mathrm{QS} \perp \mathrm{PR}$. If $\mathrm{PQ}=6 \mathrm{~cm}$ and $\mathrm{PS}=4 \mathrm{~cm}$, then find QS, RS and QR .

(D) Watch Video Solution

7. In fig.7.84, DEFG is a square and $\angle B A C=90^{\circ}$. Prove that:

Fig. 7.84
(i) $\triangle A G F \sim \triangle D B G$ (ii) $\triangle A G F \sim \triangle E F C$ (iii) $\quad \triangle D B G \sim \triangle E F C \quad$ (iv) $D E^{2}=B D \times E C$

- Watch Video Solution

8. Prove that the area of the semicircle drawn on the hypotenuse of a right angled triangle is equal to the sum of the areas of the semicircles drawn on the other two sides of the triangle

- Watch Video Solution

9. Ii $\triangle P Q R$, $\mathrm{PD} \perp \mathrm{QR}$ such that D lies on QR , if $\mathrm{PQ}=\mathrm{a}, \mathrm{PR}=\mathrm{b}, \mathrm{Q} \mathrm{D}=\mathrm{c}$ and $D R=d$, then prove that $(a+b)(a-b)=(c+d)(c-d)$.

- Watch Video Solution

10. P and Q are the mid-points of the sides $C A$ and $C B$ respectively of a $\triangle A B C$, right angled at C , prove that.
(i) $4 A Q^{2}=4 A C^{2}+B C^{2}$
(ii) $4 B P^{2}=4 B C^{2}+A C^{2}$
$4\left(A Q^{2}+B P^{2}\right) 5 A B^{2}$

- Watch Video Solution

11. In Fig. $7.85, D E \| B C$ and $\mathrm{AD}: \mathrm{DB}=5: 4$. Find $\frac{\operatorname{Area}(\triangle D E F)}{\operatorname{Area}(\triangle C F B)}$

Fig. 7.85
12. D and E are points on the sides $A B$ and $A C$ respectively of a $A B C$ such that $D E B C$ and divides $A B C$ into two parts, equal in area, find $\frac{B D}{A B}$.

- Watch Video Solution

13. In Fig. 7.86, if D and E trisects $B C$. Prove that $8 A E^{2}=3 A C^{2}+5 A D^{2}$.

Fig. 7.86
14. In a triangle $A B C, A C>A B, D$ is the mid-point of $B C$ and $A E \perp B C$. Prove that: (i) $A B^{2}=A D^{2}-B C D E+\frac{1}{4} B C^{2}$ $A B^{2}+A C^{2}=2 A D^{2}+\frac{1}{2} B C^{2}$

(D) Watch Video Solution

15. In an equilateral triangle with side a, prove that Altitude $=\frac{a \sqrt{3}}{2}$
(ii) Area $=\frac{\sqrt{3}}{4} a^{2}$

- Watch Video Solution

Self Assessment Test

1. L and M are respectively the points on the sides DE and DF of a triangle DEF, such that $\mathrm{DL}=4, L E=\frac{4}{3}, D M=6$ and $D F=8$. Is
$L m \| E F$? Give reason.

(D) Watch Video Solution

2. A vertical stick 20 m long casts a shadow 10 m long on the ground. At the same time, a tower casts a shadow 50 m long on the ground. The height of the tower is (a) 100 m (b) 120 m (c) 25 m (d) 200 m

- Watch Video Solution

3. The lengths of the diagonals of a rhombus are 24 cm and 32 cm .

Find the length of the side of the rhombus.

D Watch Video Solution

4. XY is drawn parallel to the base BC of a $\triangle A B C$ cutting AB at X and
$A C$ at Y. If $A B=4 B X$ and $Y C=2 c m$, then find $A Y$.
5. $\triangle A B C$ is an isosceles triangle with $\mathrm{AC}=\mathrm{BC}$. If $A B^{2}=2 A C^{2}$. Prove that $\triangle A B C$ is a right triangle.

- Watch Video Solution

6. A 5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall such that it reaches the wall at a point 4 m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the
distance by which the top of the ladder would slide upwards on teh wall.

D Watch Video Solution

7. In the given figure, $\frac{A D}{D B}=\frac{A E}{E C}$ and $\angle A D E=\angle A C B$. Prove that $\triangle A B C$ is an isosceles triangle.

B C
8. In Fig. 4.72, $A B C D$. If $O A=3 x-19, O B=x-4, O C=x-3$ and $O D=4$, find x. (FIGURE)

- Watch Video Solution

9. $A B C$ is a right triangle right-angled at C. Let $B C=a, C A=b, A B=c$ and let p be the length of perpendicular from C on $A B$, prove that (i) $c p=a b$ (ii) $\frac{1}{p^{2}}=\frac{1}{a^{2}}+\frac{1}{b^{2}}$

- Watch Video Solution

10. State and prove Basic Proportionality Theoram (Thales Theoram)

- Watch Video Solution

