

MATHS

BOOKS - ASHOK PUBLICATION ASSAM

Rational Numbers

Example

1. The co-ordinate of the two points A and B on the number line are 6 & 14 respectively. If co-

ordinate of the C on the line is 10, then show tha C is equidistant from A and B.

Watch Video Solution

2. The co-ordinate of the two points A and B on the number line are 6 & 14 respectively. If co-ordinate of the C on the line is 10, then show tha C is equidistant from A and B.

3. Determine the distances between the points

:

2,6

Watch Video Solution

4. Determine the distances between the points

:

-2, +1

- 5. Determine the distances between the points
- :

$$-rac{1}{2},\,-rac{1}{4}$$

Watch Video Solution

- **6.** Determine the distances between the points
- :
- -2, -7

- 7. Determine the distances between the points
- 0, √2

Watch Video Solution

- 8. Determine the distances between the points
- 0,-√2.

9. x is a real number,

If x < y, on which side of x does y lie?

Watch Video Solution

10. x is a real number,

If x < y and y < 0 what will be the positions of x and y?

11. Using appropriate properties find.

$$-rac{2}{3} imes rac{3}{5} + rac{5}{2} - rac{3}{5} imes rac{1}{6}$$

Watch Video Solution

12. Using appropriate properties find.

$$rac{2}{5} imes \left(-rac{3}{7}
ight) - rac{1}{6} imes rac{3}{2} + rac{1}{14} imes rac{2}{5}$$

13. Write the additive inverse of the following

$$\frac{2}{8}$$

Watch Video Solution

14. Write the additive, inverse of the following.

$$\frac{-5}{9}$$

15. Write the additive, inverse of each of the following.

 $\frac{-6}{-5}$

Watch Video Solution

16. Write the additive, inverse of the following.

 $\frac{2}{-9}$

17. Write the additive inverse of the following.

$$\frac{19}{-6}$$

Watch Video Solution

18. Verify that -(-x) = x for

$$x=rac{11}{15}$$

19. Verify that
$$-(-x) = x$$
 for

Watch Video Solution

20. Find the multiplicative inverse of the following.

-13

21. Find the multiplicative inverse of the following.

 $\frac{-13}{19}$

Watch Video Solution

22. Find the multiplicative inverse of the following.

 $\frac{1}{5}$

23. Find the multiplicative inverse of the

following.

$$\frac{-5}{-8} imes \frac{-3}{7}$$

Watch Video Solution

24. Find the multiplicative inverse of the following.

$$-1 imesrac{-2}{-5}$$

25. Find the multiplicative inverse of the following.

-1

Watch Video Solution

26. Name the property under multiplication used in each of the following.

$$\frac{-4}{5} \times 1 = 1 \times \frac{-4}{5} = -\frac{4}{5}$$

27. Name the property under multiplication used in each of the following.

$$\frac{-13}{17} imes \frac{-2}{7} = \frac{-2}{7} imes \frac{-13}{17}$$

Watch Video Solution

28. Name the property under multiplication used in each of the following.

$$\frac{-19}{29} \times \frac{29}{-19} = 1$$

Watch Video Solution

30. Tell what property allows you to compute.

$$rac{1}{3} imes \left(6 imesrac{4}{3}
ight)$$
 as $\left(rac{1}{3} imes 6
ight) imesrac{4}{3}$

Watch Video Solution

31. Is $\frac{8}{9}$ the multiplicative inverse of $-1\frac{1}{9}$?

Why or why not?

32. Is 0.3 the multplicative inverse of `3(1)/(3)? Why or why not?

33. Write the rational number that does not a have a reciprocal

34. Write the rational number that are equal to their reciprocals

Watch Video Solution

35. Write the rational number that is equal to its negative

Watch Video Solution

36. Fill in the blanks.

Zero has --- reciprocal.

37. Fill in the blanks.

The number ---- and ---- aretheir own reciprocals.

38. Fill in the blanks.

The reciprocal of -5 is ----

39. Fill in the blanks.

Reciprocal of $\frac{1}{x}$ where x is 0 is -----

Watch Video Solution

40. Fill in the blanks.

The product of two rational numbers is always

a -----

41. Fill in the blanks.

The reciprocal of a positive rational number is

Watch Video Solution

42. Write five rational numbers greater than -2

Watch Video Solution

43. Find ten rational numbers between $\frac{3}{5}$ and

44. Fill in the blanks in the following table.

Numbers	Closed under			
	Addition	Subtraction	Multiplication	Division
Rational numbers	Ýes	Yes		No
Integers		Yes		No
Whole numbers			Yes	
Natural numbers		No		

Watch Video Solution

45. Complete the following table.

Numbers	Associative for				
	Addition	Subtraction	Multiplication	Division	
Rational numbers				No	
Integers			Yes		
Whole numbers	Yes				
Natural numbers		No			

46. Complete the following table.

Numbers	Associative for				
	Addition	Subtraction	Multiplication	Division	
Rational numbers				No	
Integers	••••		Yes	••••	
Whole numbers	Yes				
Natural numbers		No			

Watch Video Solution

47. Find using distributive Law:

$$\left\{rac{7}{5}
ight) imes \left(rac{-3}{12}
ight)
ight\}+\left\{rac{7}{5} imes rac{5}{12}
ight\}$$

48. Find using distributive Law:

$$\left\{rac{9}{16} imesrac{4}{12}
ight\}+\left\{rac{9}{16} imesrac{1-3}{9}
ight\}$$



Watch Video Solution

49. Write the rational number for each point labelled with a letter.

50. Write the rational number for each point labelled with a letter.

Watch Video Solution

51. According to which properties the following results are true:

$$(-4)\times 5=5\times (-4)$$

52. According to which properties the following results are true:

$$3(4+5) = 3 \times 4 + 3 \times 5$$

53. According to which properties the following results are true:

$$(5+4)+7=5+(4+7)$$

54. According to which properties the following results are true:

$$(-8)\times 0=0$$

55. According to which properties the following results are true:

$$1\times(-7)=-7$$

56. Is the set of integers closed under the operation of substraction? Give examples

Watch Video Solution

57. Is the set of integers closed under the operation of substraction? Give examples

Watch Video Solution

58. Is the set of integers closed under the operation of Multiplication? Give examples

59. Is the set of integers closed under the operation of Division? Give examples

60. Simplify:

$$8 \times (-4) \times (-2)$$

61. Simplify:

$$(8+4) \div (-2)$$

Watch Video Solution

62. Simplify:

$$\left(\frac{-3 \times -4}{3} - 5\right)(-60)$$

63. Simplify:

$$rac{-1 imes4 imes-6}{-24}$$

Watch Video Solution

64. Simplify:

$$\left(\,-\,3
ight)^2 imes\left(\,-\,2
ight)^3$$

65. Simplify:

$$\frac{\left(-4\right)^2\times\left(-3\right)}{2\times\left(-6-2\right)}$$

Watch Video Solution

66. Simplify:

$$\frac{8\times (\,-4)\times (\,-2)^2}{(\,-16)\times (\,-8)}$$

67. Show that:

'0' is a rational number.

Watch Video Solution

68. Show that:

Every natural number is a rational number.

69. Show that:

Every integer is a rational number.

Watch Video Solution

70. Which rational number has no multiplicative inverse?

71. Can a rational number be its own additive inverse?

Watch Video Solution

72. Can a rational number be its own multiplicative inverse?

73. Express the following rational numbers in recurring decimals

 $\frac{3}{7}$

Watch Video Solution

74. Expression the following rational numbers in recurring decimals

 $\frac{9}{16}$

75. Express the following rational numbers in recurring decimals

 $\frac{29}{80}$

Watch Video Solution

76. Express the following rational numbers in recurring decimals

 $\frac{16}{27}$

 $3.\overline{50}$

Watch Video Solution

78. Show that the following resurring decimals are rational numbers?

 $0.\,\bar{5}$

 $2.\,\bar{6}$

Watch Video Solution

80. Show that the following resurring decimals are rational numbers?

 $0.\,\overline{63}$

17. $\overline{18}$

Watch Video Solution

82. Show that the following resurring decimals are rational numbers?

 $65.\overline{81}$

 $0.\ \overline{635}$

Watch Video Solution

84. Show that the following resurring decimals are rational numbers?

 $1.\overline{93}$

85. Show that $0.\ \bar{9} = 1$

Watch Video Solution

86. Find if the following real number is rational or irrational:

$$5\frac{1}{3}$$

87. Find if the following real number is rational or irrational:

0

Watch Video Solution

88. Find if the following real number is rational or irrational:

$$-\frac{1}{4}$$

89. Find if the following real number is rational or irrational:

$$-\sqrt{2}$$

Watch Video Solution

90. Find if the following real number is rational or irrational:

$$2-\sqrt{2}$$

91. Find if the following real number is rational or irrational:

 $0.\,\overline{62}$

Watch Video Solution

92. Find if the following real number is rational or irrational:

 π

93. Find if the following real number is rational or irrational:

 $3. \overline{124}$

Watch Video Solution

94. Find if the following real number is rational or irrational:

1.010010001...

95. Find if the following real number is rational or irrational:

$$-\,rac{\pi}{4}$$

Watch Video Solution

96. Is the set of natural numbers N closed under the operation subtraction? Is the set of integers also closed under this operation?

97. Is there any additive inverse element of a natural number? What about this, in the case integers?

Watch Video Solution

98. Whether every rational number (except 0) has a multiplicative inverse? Is is true in the case of an integers (except 0)?

99. Which element in the set of rational numbers is called multiplicative identity?

Watch Video Solution

100. Use the symbols <, =, > appropriately in place of "?"

`4?3'

101. Use the symbols <, =, > appropriately in place of "?"

3?4

Watch Video Solution

102. Use the symbols <, =, > appropriately in place of "?"

-3? -1

103. Use the symbols <, =, > appropriately in place of "?"

-2?0

Watch Video Solution

104. Use the symbols <, =, > appropriately in place of "?"

$$-9+1?(-2) imes 4$$

105. Use the symbols <, =, > appropriately in

place of "?"

$$-\frac{1}{2}?-\frac{1}{3}$$

Watch Video Solution

106. Use the symbols <, =, > appropriately in place of "?"

$$-2(5+1)\,?\,(\,-4) imes 3$$

107. Use the symbols <, =, > appropriately in place of "?"

$$-3?0$$

Watch Video Solution

108. Show that

$$3 + 4 + 5 = 5 + 4 + 3$$

109. Show that

$$a + b + c = b + c + a$$

Watch Video Solution

110. Show that

$$a+b+c=c+a+b$$

111. Show that

$$7 \times 5 \times 2 = 5 \times 2 \times 7$$

Watch Video Solution

112. What is the additive inverse of the following real number?

3

113. What is the additive inverse of the following real number?

3/4

Watch Video Solution

114. What is the additive inverse of the following real number?

0

115. What is the additive inverse of the following real number?

Watch Video Solution

116. What is the additive inverse of the following real number?

$$-\sqrt{3}$$

117. What is the additive inverse of the following real number?

 $-\pi$

Watch Video Solution

118. What is the additive inverse of each of the following real numbers?

-3.15

119. What is the additive inverse of each of the following real numbers?

$$\sqrt{2} + 1$$

Watch Video Solution

120. Find the multiplicative inverse elements of the following real numbers:

1/2

121. Find the multiplicative inverse elements of the following real numbers:

-4

Watch Video Solution

122. Find the multiplicative inverse elements of the following real numbers:

0

123. Find the multiplicative inverse elements of the following real numbers:

Watch Video Solution

124. Find the multiplicative inverse elements of the following real numbers:

 $1 + \pi$

125. Find the multiplicative inverse elements of the following real numbers:

12.34

Watch Video Solution

126. Find the multiplicative inverse elements of the following real numbers:

.00013

127. In the set of real numbers, does subtraction satisfy the commutative law?

Watch Video Solution

128. In the set of real numbers.

does subtraction satisfy the associative law?

129. In the set of real numbers.

is there an identify with respect to subtraction?

Watch Video Solution

130. In the set of real numbers.

is there an identify with respect to multiplication?

131. Are the following relations true? If not, illustrate with examples.

$$a(b+c) = ab + ac$$

Watch Video Solution

132. Are the following relations true? If not, illustrate with examples.

$$a + (b \times c) = (a + b) \times (a + c)$$

133. Are the following relations true? If not,

illustrate with examples.

$$(a-b)+b=a$$

Watch Video Solution

134. Are the following relations true? If not, illustrate with examples.

$$a \div (b+c) = (a \div b) \times (a \div c)$$

135. Carry out the operation of addition using additive inverse:

$$79 + -47$$

Watch Video Solution

136. Carry out the operation of addition using additive inverse:

$$-19 + 13$$

137. Carry out the operation of addition using additive inverse:

$$434 + -234$$

Watch Video Solution

138. Carry out the operation of addition using additive inverse:

$$99 + -999$$

139. Is the set A = {-2, -4, -6, -8,.....} closed, under addition

Watch Video Solution

140. Is the set A = {-2, -4, -6, -8,....} closed, under subtraction

Watch Video Solution

under multiplication? Given at least three

141. Is the set A = {-2, -4, -6, -8,....} closed,

example in each case.

Watch Video Solution

142. Examine which of the following are rationals and which are not:

$$\frac{\sqrt{80}}{11}$$

Watch Video Solution

143. Examine which of the following are rationals and which are not:

$$\frac{\sqrt{8}}{8}$$

144. Examine which of the following are rationals and which are not:

$$-\frac{17}{19}$$

Watch Video Solution

145. Examine which of the following are rationals and which are not:

Watch Video Solution

146. Examine which of the following are rationals and which are not:

$$\frac{1.01}{11}$$

Watch Video Solution

147. Examine if the following are rationals or not:

148. Examine which of the following are rationals and which are not:

1.3

149. Examine which of the following are rationals and which are not:

7.77...

Watch Video Solution

150. Examine which of the following are rationals and which are not:

1.141.....

Watch Video Solution

151. Examine which of the following are rationals and which are not:

Watch Video Solution

152. Find the product using the property or properties mentioned in braket against each of the following:

 $17\frac{7}{9} \times 9$ (distributive property).

153. Find the product using the property or properties mentioned in braket against each of the following :

 $101\frac{11}{37} imes 37$ (distributive & commutative properties).

Watch Video Solution

154. Find the product using the property or properties mentioned in bracket against each of the following :

156. Is
$$\pi$$
 a rational or irrational? Justify your answer.

Watch Video Solution

 $\left(1+rac{4}{7}
ight) imesrac{1}{11} imes7$ (distributive and

155. Is
$$\frac{K}{0}=lpha$$
 a rational or irrational?

associative properties)

