đず doubtnut

India's Number 1 Education App

PHYSICS

BOOKS - MTG PHYSICS (ENGLISH)

WAVE OPTICS

Mcqs Corner

1. The idea of secondary wavelets for the propagation of a wave was first given by
A. Newton
B. Huygens
C. Maxwell
D. Fresnel

Answer: B

D Watch Video Solution

2. Wavefront is the locus of all points, where the particles of the medium vibrate with the same
A. phase
B. amplitude
C. frequency
D. period

Answer: A

D Watch Video Solution
3. Light propagates rectilinearly, due to
A. wave nature

B. wavelengths

C. velocity
D. frequency

Answer: A

- Watch Video Solution

4. Which of the following is correct for light diverging from a point source?
A. The intensity decreases in proporation
for the distance squared.
B. The wavefront is parabolic.
C. The intensity at the wavelength does not
depend on the distance.
D. None of these.

Answer: A
5. The refractive index of glass is 1.5 for light
waves of $\lambda=6000 \quad \tilde{A} . .$. in vacuum. Its
wavelength in glass is
A. 2000 Ã...
B. 4000 Ã...
C. 1000 Ã...
D. 3000 Ã...

Answer: B

- Watch Video Solution

6. Spherical wavefronts, emanating from a point source, strike a plane reflecting surface.

What will happen to these wave fronts, immediately after reflection?
A. They will remain spherical with the same
curvature, both in magnitude and sign.
B. They will become plane wave fronts.
C. They will become plane wave fronts.
D. They will remain spherical, but with
different curvature, both in magnitude
and sign.

Answer: C

D Watch Video Solution

7. Which of the following phenomenon is not explanined by Huygen's construction of wavefront?
A. reflection
B. diffraction

C. refraction

D. origin of spectra

Answer: D

D Watch Video Solution

8. A plane wave front falls on a convex lens.

The emergent wave front is
A. plane
B. diverging spherical
C. converging spherical
D. none of these.

Answer: C

D Watch Video Solution

9. Earth is moving towards a fixed star with a velocity of $30 \mathrm{kms}^{-1}$. An observer on earth observes a shift of $0.58 \AA$ in wavelength of
light coming from star. What is the actual wavelength of light emitted by star?
A. 5800 Ã...
B. 2400 Ã...
C. 12000 Ã...
D. 6000 Ã...

Answer: A

D Watch Video Solution

10. The spectral line for a given element in the
light received from a distant star is shifted towards longer wavelength side by 0.025%.

Calculate the velocity of star in the line of sight.

> A. $7.5 \times 10^{4} \mathrm{~ms}^{-1}$
> B. $-7.5 \times 10^{4} \mathrm{~ms}^{-1}$
> C. $3.7 \times 10^{4} \mathrm{~ms}^{-1}$
> D. $-3.7 \times 10^{4} \mathrm{~ms}^{-1}$

Answer: B
(Watch Video Solution
11. With what speed should a galaxy move with
respect to us to that the sodium line at
589.0 nm is observed at 589.6 nm ?
A. $206 \mathrm{~km} s^{-1}$
B. $306 \mathrm{~km} s^{-1}$
C. $103 \mathrm{~km} \mathrm{~s}^{-1}$
D. $51 \mathrm{~km} s^{-1}$

Answer: B

D Watch Video Solution
12. The $6563 \AA H_{2}$ line emitted by hydrogen in a star is found to be red shifted by $15 \AA$.

Estimate the speed with which the star is receding from earth.
A. $3.2 \times 10^{5} \mathrm{~ms}^{-1}$
B. $6.87 \times 10^{5} \mathrm{~ms}^{-1}$
C. $2 \times 10^{5} \mathrm{~ms}^{-1}$
D. $12.74 \times 10^{5} \mathrm{~ms}^{-1}$

Answer: B
13. The wavelength of spectral line coming from a distant star shifts from 600 nm to 600.1 nm . The velocity of the star relative to earth is
A. $50 \mathrm{~km} s^{-1}$
B. $100 \mathrm{~km} \mathrm{~s}{ }^{-1}$
C. $25 \mathrm{~km} \mathrm{~s}^{-1}$
D. 200 km s

Answer: A
14. A laser beam is used for locating distant objects because
A. it is monochromatic
B. it is not chromatic
C. it is not observed
D. it has small angular spread

Answer: D

15. In the case of light waves from two coherent sources S_{1} and S_{2}, there will be constructive interference at an arbitrary point P, the path difference $S_{1} P-S_{2} P$ is
A. $\left(n+\frac{1}{2}\right) \lambda$
B. $n \lambda$
C. $\left(n-\frac{1}{2}\right) \lambda$
D. $\frac{\lambda}{2}$
16. Which of the following is the path difference for destructive interference?
A. $n(\lambda+1)$
B. $(2 n+1) \frac{\lambda}{2}$
C. $n \lambda$
D. $(n+1) \frac{\lambda}{2}$

Answer: B
17. Answer the following questions:
(a) When a low flying aircraft passes overhead, we sometimes notice a slight shaking of the piture on our TV screen. Suggest a possible expanation.
(b) As you have learnt in the text, the principle of linear superposition of wave displacement is basic to understanding intensity distributions in diffractions and interference
patterns. What is the justification of this principle?
A. interference
B. diffraction
C. polarisation of direct signal
D. Both (b) and (c)

Answer: A
(Watch Video Solution
18. Two light waves superimposing at the midpoint of the screen are coming from coherent sources of light with phase difference 3pi rad.

Their amplitudes are 1 cm each. The resultant amplitude at the given point will be.
A. 5 cm
B. 3 cm
C. 2 cm
D. zero

Answer: D

- Watch Video Solution

19. Two beam of light having intensities I and

4 interfere to produce a fringe pattern on a screen. The phase difference between the beams is $\frac{\pi}{2}$ at point A and π at point B . Then the difference between resultant intensities at

A and B is : $(2001,2 M)$
A. 21
B. 41
C. 51

D. 7I

Answer: B

- Watch Video Solution

20. Light from two coherent sources of the same amplitude A and wavelength λ illuminates the screen. The intensity of the central maximum is I_{0}. If the sources were incoherent, the intensity at the same point will be
A. $4 I_{0}$
B. $2 I_{0}$
C. I_{0}
D. $\frac{I_{0}}{2}$

Answer: D

D Watch Video Solution

21. Consider the following statements in case of Young's double slit experiment.
(1) A slit S is necessary if we use an ordinary
extended source of light.
(2) A slit S is not needed if we use an ordinary but well collimated beam of light.
(3) A slit S is not needed if we use a spatially coherent source of light.

Which of the above statements are correct?
A. (1), (2) and (3)
B. (1) and (2) only
C. (2) and (3) only
D. (1) and (3) only

- Watch Video Solution

22. In Young's double slit experiment two disturbances arriving at a point P have phase difference fo $\frac{\pi}{3}$. The intensity of this point expressed as a fraction of maximum intensity
I_{0} is

$$
\begin{aligned}
& \text { A. } \frac{3}{2} I_{0} \\
& \text { B. } \frac{1}{2} I_{0} \\
& \text { C. } \frac{4}{3} I_{0}
\end{aligned}
$$

D. $\frac{3}{4} I_{0}$

Answer: D

D Watch Video Solution

23. In young's double slit experiment using monochromatic light of wavelengths λ, the intensity of light at a point on the screen with path difference λ is M units. The intensity of light at a point where path difference is $\lambda / 3$ is

$$
\text { A. } \frac{M}{2}
$$

B. $\frac{M}{4}$
C. $\frac{M}{8}$
D. $\frac{M}{16}$

Answer: B

D Watch Video Solution

24. In Young's double slit experiment, the slits
are horizontal. The intensity at a point P as
shown in figure is $\frac{3}{4} I_{0}$,where I_{0} is the maximum intensity.

Then the value of θ is,
(Given the distance between the two slits S_{1} and S_{2} is 2λ)

A. $\cos ^{-1}\left(\frac{1}{12}\right)$
B. $\sin ^{-1}\left(\frac{1}{12}\right)$
C. $\tan ^{-1}\left(\frac{1}{12}\right)$
D. $\sin ^{-1}\left(\frac{3}{5}\right)$

Answer: A

D Watch Video Solution

25. Two slits in Young's double slit experiment
have widths in the ratio 81:1. What is the the ratio of amplitudes of light waves coming from them ?
A. $3: 1$
B. 3:2
C. $9: 1$
D. $6: 1$

Answer: C

D Watch Video Solution

26. The intensity ratio of the maxima and minima in an interference pattern produced by two coherent sources of light is $9: 1$. The
intensities of the used light sources are in ratio
A. $3: 1$
B. $4: 1$
C. $9: 1$
D. 10: 1

Answer: B
(Watch Video Solution
27. The two coherent sources with intensity
ratio β produce interference. The fringe
visibility will be
A. $\frac{2 \sqrt{\beta}}{1+\beta}$
B. 2β
C. $\frac{2}{1+\beta}$
D. $\frac{\sqrt{\beta}}{1+\beta}$

Answer: A
28. The ratio of intensity at maxima and minima in the interference pattern is 25:9.

What will be the widths of the two slits in

Young's interference experiment?
A. 18: 3
B. $4: 1$
C. $8: 1$
D. 16: 1

Answer: D

29. In Young's double slit experiment, one of the slit is wider than other, so that amplitude of the light from one slit is double of that from other slit. If I_{m} be the maximum intensity, the resultant intensity I when they interfere at phase difference ϕ is given by:

$$
\begin{aligned}
& \text { A. } \frac{I_{m}}{3}\left(1+2 \cos ^{2} \frac{\phi}{2}\right) \\
& \text { B. } \frac{I_{m}}{5}\left(1+4 \cos ^{2} \frac{\phi}{2}\right) \\
& \text { C. } \frac{I_{m}}{9}\left(1+8 \cos ^{2} \frac{\phi}{2}\right)
\end{aligned}
$$

D. $\frac{I_{m}}{9}\left(8+\cos ^{2} \frac{\phi}{2}\right)$

Answer: C

D Watch Video Solution

30. In a Young's double-slit experiment, the slits are separated by 0.28 mm and screen is placed 1.4 m away. The distance between the central bright fringe and the fourth bright fringe is measured to be 1.2 cm . Determine
the wavelength of light used in the experiment.

A. $6 \times 10^{-7} m$
B. $3 \times 10^{-7} m$
C. $1.5 \times 10^{-7} m$
D. $5 \times 10^{-6} m$

Answer: A
(Watch Video Solution
31. The slits in Young's double slit experiment
are illuminated by light of wavelength 6000
Ã.... If the path difference at the central bright fright fringe is zero, what is the path difference for light from the slits at the fourth bright frings?

$$
\begin{aligned}
& \text { A. } 2.4 \times 10^{-6} m \\
& \text { B. } 1.2 \times 10^{-6} \mathrm{~m} \\
& \text { C. } 10^{-6} \mathrm{~m} \\
& \text { D. } 0.5 \times 10^{-6} \mathrm{~m}
\end{aligned}
$$

Answer: A

D Watch Video Solution

32. In a double slit experiment, the distance between the slits is d. The screen is at a distance D from the slits. If a bright fringe is formed opposite to one of the slits, its order is
A. $\frac{d}{\lambda}$
B. $\frac{\lambda^{2}}{d D}$
C. $\frac{D^{2}}{2 \lambda D}$
D. $\frac{d^{2}}{2 D \lambda}$

Answer: D

D Watch Video Solution

33. In Young's double slit experiment, the $10^{t h}$ maximum of wavelength λ_{1} is at a distance y_{1} from its central maximum and the $5^{\text {th }}$ maximum of wavelength λ_{2} is at a distance y_{2}
from its central maximum. The ratio y_{1} / y_{2} will be
A. $\frac{2 \lambda_{1}}{\lambda_{2}}$
B. $\frac{2 \lambda_{2}}{\lambda_{1}}$
C. $\frac{\lambda_{1}}{2 \lambda_{2}}$
D. $\frac{\lambda_{2}}{2 \lambda_{1}}$

Answer: A

D Watch Video Solution

34. A narrow slit of width 2 mm is illuminated by monochromatic light fo wavelength 500 nm .

The distance between the first minima on either side on a screen at a distance of 1 m is
A. 5 mm
B. 0.5 mm
C. 1 mm
D. 10 mm

Answer: B

- Watch Video Solution

35. The two slits are 1 mm apart from each other and illuminated with a light of wavelength $5 \times 10^{-7} \mathrm{~m}$. If the distance of the screen is 1 m from the slits, then the distance between third dark fringe and fifth bright fringe is
A. 1.2 mm
B. 0.75 mm
C. 1.25 mm
D. 0.625 mm

Answer: C

D Watch Video Solution

36. Young's experiment is performed with light of wavelength 6000 Ã... wherein 16 fringes occupy a certain region on the screen. If 24
frings occupy the same region with another light of wavelength λ, then λ is
A. 6000 Ã...
B. 4500 Ã...

C. 5000 Ã...

D. 4000 Ã...

Answer: D

D Watch Video Solution

37. Two sources of light of wavelength 2500 Ã...
and 3500 Ã... are used in Young's double slit experiment simultaneously. Which orders of fringes of two wavelength patterns coincide?
A. $3^{\text {rd }}$ order of $1^{\text {st }}$ source and $5^{t h}$ of the $2^{n d}$
B. $7^{\text {th }}$ order of $1^{\text {st }}$ and $5^{t h}$ order of $2^{\text {nd }}$
C. $5^{\text {th }}$ order of $1^{\text {st }}$ and $3^{r d}$ order of $2^{\text {nd }}$
D. $5^{\text {th }}$ order of $1^{\text {st }}$ and $7^{\text {th }}$ order of $2^{\text {nd }}$

Answer: B

D Watch Video Solution

38. A Young's double slit experiment uses a monochromatic source. The shape of the interference fringes formed on a screen is
A. parabola
B. straight line
C. circle
D. hyperbola

Answer: D

- Watch Video Solution

39. When interference of light takes place
A. energy is created in the region of maximum intensity
B. energy is distroyed in the region of maximum intensity
C. conservation of energy holds good and energy is redistributed
D. conservation of energy does not hold good

Answer: C

40. Two slits are made one millimeter apart and the screen is placed one metre away.

When blue-green light of wavelength 500 nm is used, the fringe separation is
A. $5 \times 10^{-4} m$
B. $2.5 \times 10^{-3} m$
C. $2 \times 10^{-4} m$
D. $10 \times 10^{-4} m$

- Watch Video Solution

41. In Young's double slit experiment, light waves of $\lambda=5.4 \times 10^{2} \quad \mathrm{~nm} \quad$ and
$\lambda=6.85 \times 10^{1} \mathrm{~nm}$ are used in turn, keeping
the same geometry of the set up. Calculate the ratio of the fringe widths in the two cases .
A. 1.3
B. 4.3
C. 7.9
D. 9.5

Answer: C

D Watch Video Solution

42. The fringe width in YDSE is $2.4 \times 10^{-4} m$, when red light of wavelength $6400 \AA$ is used. By how much will it change, if blue light of wavelength $4000 \AA$ is used ?

$$
\text { A. } 9 \times 10^{-4} m
$$

B. $0.9 \times 10^{-4} \mathrm{~m}$
C. $4.5 \times 10^{-4} m$
D. $0.45 \times 10^{-4} \mathrm{~m}$

Answer: B

D Watch Video Solution

43. In a double slit experiment, the distance between slits in increased ten times whereas
their distance from screen is halved then the fringe width is
A. becomes $\frac{1}{20}$
B. becomes $\frac{1}{90}$
C. it remains same
D. becomes $\frac{1}{10}$

Answer: A

D Watch Video Solution
44. Yellow light of wavelength 6000 Ã... produces fringes of width 0.8 mm in Young's double slit experiment. If the source is
replaced by another monochromatic source of wavelength 7500 Ã... and the separation between the slits is doubled then the fringe width becomes
A. 0.1 mm
B. 0.5 mm
C. 4.3 mm
D. 1 mm

Answer: B

45.

A small transparent slab containing material of $\mu=1.5$ is placed along $A S_{2}$ (figure). What will be the distance from O of the principle maxima and of the first minima on either side of the principal maxima obtained in the absence of the glass slab?
A. 0.19 D and -0.33 D
B. 0.19 D and -0.55 D
C. 0.33 D and -0.65 D
D. 0.33 D and -0.75 D

Answer: A

D View Text Solution

46. Interference fringes were produced in Young's double slit experiment using light of wavelength 5000 Ã.... When a film of material $2.5 \times 10^{-3} \mathrm{~cm}$ thick was placed over one of
the slits, the fringe pattern shifted by a distance equal to 20 fringe widths. The refractive index of the material of the film is
A. 1.25
B. 1.33
C. 1.4
D. 1.5

Answer: C

D Watch Video Solution
47. In a two-slit experiment with monochromatic light, fringes are obtained on a screen placed at some distance from the slits. If the screen is moved by $5 \times 10^{-2} \mathrm{~m}$ towards the slits, the change in fringe width is
3×10^{-5}. If the distance between the slits is
$10^{-3} \mathrm{~m}$, calculate the wavelength of the light used.
A. 3000 Ã...
B. 4000 Ã...
C. 6000 Ã...

D. 7000 Ã...

Answer: C

D Watch Video Solution

48. In a Young's double slit experiment an electron beam is used to obtain interference pattern. If the speed of electron decreases then
A. distance between two consecutive

fringes remains the same

B. distance between two consecutive

fringes decreases

C. distance between two consecutive
fringes increases
D. None of these.

Answer: C

49. In a double slit interference pattern, the first maxima for infrared light would be
A. at the same place as the first maxima for green light
B. closer to the centre than the first maxima for green light
C. farther from the centre than the first maxima for green light
D.infrared light does not produce an

Answer: C

- Watch Video Solution

50. In double slit experiment using light of wavelength 600 nm , the angular width of a fringe formed on a distant screen is 0.1°. What is the spacing between the two slits ?
A. $3.44 \times 10^{-4} m$
B. $1.54 \times 10^{-4} m$
C. $1.54 \times 10^{-3} m$

D. $1.44 \times 10^{-3} m$

Answer: A

D Watch Video Solution

51. In Young's double slit experiment, the distance between two sources is 0.1 mm . The distance of screen from the sources is 20 cm . Wavelength of light used is $5460 \AA$. Then angular position of the first dark fringe is
A. 0.08°
B. 0.16°
C. 0.20°
D. 0.31°

Answer: B

D Watch Video Solution

52. In a double slit experiment the angular width of a fringe is found to be 0.2° on a screen placed I m away. The wavelength of
light used in 600 nm . What will be the angular
width of the fringe if the entire experimental apparatus is immersed in water ? Take refractive index of water to be $4 / 3$.
A. 0.15°
B. 1°
C. 2°
D. 0.3°

Answer: A

D Watch Video Solution
53. In a Young's double slit esperiment, the angular width of a fringe formed on a distant screen is 1°. The slit separation is 0.01 mm .

The wavelength of the light is
A. 0.174 nm
B. 0.174 Ã...
C. $0.174 \mu m$
D. $0.174 \times 10^{-4} m$

Answer: C

- Watch Video Solution

54. In a Young's double slit experiment, let S_{1} and S_{2} be the two slits, and C be the centre of
the screen. If $\angle S_{1} C S_{2}=\theta$ and λ is the wavelength, the fringe width will be
A. $\frac{\lambda}{\theta}$
B. $\lambda \theta$
C. $\frac{2 \lambda}{\theta}$
D. $\frac{\lambda}{2 \theta}$

- Watch Video Solution

55. In a Young's double slit experiment, (slit distance d) monochromatic light of wavelength λ is used and the fringe pattern observed at a distance D from the slits. The angular position of the bright fringes are

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{N \lambda}{d}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{\left(N+\frac{1}{2}\right) \lambda}{d}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{N \lambda}{D}\right)
\end{aligned}
$$

D. $\sin ^{-1}\left(\frac{\left(N+\frac{1}{2}\right) \lambda}{D}\right)$

Answer: A

D Watch Video Solution

56. In Young's double slit experiment, the fringe width with light of wavelength 6000 Ã... is 3 mm . The fringe width, when the wavelength of light is changed to $4000 \tilde{A}$... is
A. 3 mm

B. 1 mm

C. 2 mm

D. 4 mm

Answer: C

D Watch Video Solution

57. The colours seen in the reflected white
light from a thin oil film are due to
A. Diffraction
B. Interference
C. Polarisation
D. Dispersion

Answer: B

D Watch Video Solution

58. What is the minimum thickness of a soap bubble needed for constructive interference in reflected light, if the light incident on the film
is 750 nm ? Assume that the refractive index
for the film is $n=1.33$
A. 282 nm
B. 70.5 nm
C. 141 nm
D. 387 nm

Answer: C
(Watch Video Solution
59. A parallel beam of sodium light of wavelength $6000 \AA$ is incident on a thin glass plate of $\mu=1.5$, such that the angle of refraction in the plate is 60°. The smallest thickness of the plate which will make it appear dark by reflected light is
A. 3926 Ã...
B. 4353 Ã...
C. 1396 Ã...
D. 1921 Ã...

Answer: A

D Watch Video Solution

60. On introducing a thin film in the path of one of the two interfering beam, the central fringe will shift by one fringe width. If $\mu=1.5, \quad$ the thickness of the film is (wavelength of monochromatic light is λ)
A. 4λ
B. 3λ
C. 2λ
D. λ

Answer: C

- Watch Video Solution

61. A slit of width is illuminated by white light.

For red light $(\lambda=6500 \AA)$, the first minima is obtained at $\theta=30^{\circ}$. Then the value of will be
A. 3200 Ã...
B. $6.5 \times 10^{-4} \mathrm{~mm}$
C. 1.3 micron
D. $2.6 \times 10^{-4} \mathrm{~cm}$

Answer: C

- Watch Video Solution

62. A parallel beam of light of wavelength 600 nm is incident normally on a slit of width d. If the distance between the slits and the screen is 0.8 m and the distance of $2^{\text {nd }}$ order
maximum from the centre of the screen is 15

mm . The width of the slit is

A. $40 \mu m$
B. $80 \mu \mathrm{~m}$
C. $160 \mu m$
D. $200 \mu m$

Answer: B
(Watch Video Solution
63. A screen is placed 50 cm from a single slit, which is illuminated with $6000 \AA$ light. If the distance between the first and third minima in the diffraction pattern is 3.00 mm , what is the width of the slit?

$$
\begin{aligned}
& \text { A. } 1 \times 10^{-4} \mathrm{~m} \\
& \text { B. } 2 \times 10^{-4} \mathrm{~m} \\
& \text { C. } 0.5 \times 10^{-4} \mathrm{~m} \\
& \text { D. } 4 \times 10^{-4} \mathrm{~m}
\end{aligned}
$$

64. Consider sunlight incident on a slit of width $10^{4} \AA$. The image seen through the slit shall
A. be a fine sharp slit white in colour at the centre
B. a bright slit white at the centre diffusing
to zero intensities at the edges

C. a bright slit white at the centre diffusing

 to regions of different coloursD. only be a diffused slit white in colour

Answer: A

D Watch Video Solution

65. A parallel beam of light of wavelength $6000 \AA ̊$ gets diffracted by a single slit of width
0.3 mm . The angular position of the first minima of diffracted light is :
A. $2 \times 10^{-3} \mathrm{rad}$
B. $3 \times 10^{-3} \mathrm{rad}$
C. $1.8 \times 10^{-3} \mathrm{rad}$
D. $6 \times 10^{-3} \mathrm{rad}$

Answer: A

D Watch Video Solution
66. In a single slit diffraction experiment, the width of the slit is made double its original
width. Then the central maximum of the

diffraction pattern will become

A. narrower and fainter
B. narrower and brighter
C. broader and fainter
D. broader and brighter

Answer: B

D Watch Video Solution

67. To observe diffraction, the size of the obstacle
A. should be $\lambda / 2$, where λ is the wavelength.
B. should be of the order of wavelength.
C. has no relation to wavelength.
D. should be much larger than the
wavelength.

Answer: B
68. In Young's double slit experiment, the distance d between the slits S_{1} and S_{2} is 1 mm . What should the width of each slit be so as to obtain 10 maxima of the double slit pattern within the central maximum of the single slit pattern?
A. 0.9 mm
B. 0.8 mm
C. 0.2 mm

D. 0.6 mm

Answer: C

D Watch Video Solution

69. A single slit is illuminated by light of wavelength 6000 Ã.... The slit width is 0.1 cm and the screen is placed 1 m away. The angular position of $10^{t h}$ minimum in radian is

$$
\text { A. } 2 \times 10^{-4}
$$

B. 6×10^{-3}
C. 3×10^{-3}
D. 1×10^{-4}

Answer: B

D Watch Video Solution

70. A parallel beam of light of wavelength 500 nm falls on a narrow slit and the resulting diffraction pattern is observe on screen 1 m away. It is observed that the first minimum is
at a distance of 2.5 mm from the centre of the
screen. Find the width of the slit.
A. 0.2 mm
B. 1 mm
C. 2 mm
D. 1.5 mm

Answer: A
(Watch Video Solution

71. In a Fraunhofer diffraction at single slit of

 width d with incident light of wavelength 5500$\tilde{A} . .$. , the first minimum is observed, at angle 30°. The first secondary maximum is observed at an angle $\theta=$

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{1}{4}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{3}{4}\right) \\
& \text { D. } \sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)
\end{aligned}
$$

- Watch Video Solution

72. A diffraction pattern is obtained using a beam of redlight. What happens if the red light is replaced by blue light
A. No change.
B. Diffraction bands become narrower and
crowded together.
C. Band become broader and farther apart.
D. Bands disappear altogether.

Answer: B

- Watch Video Solution

73. In a Fresnel biprism experiment, the two
positions of lens give separation between the
slits as 16 cm and 9 cm respectively. What is the actual distance of separation?
A. 12 cm
B. 12.5 cm
C. 13 cm

Answer: A

D Watch Video Solution

74. The angular resolution of a 10 cm diameter

 telescope at a wavelength $5000 \AA$ is of the orderA. $10^{6} \mathrm{rad}$
B. $10^{-2} \mathrm{rad}$

C. $10^{-4} \mathrm{rad}$

$$
\text { D. } 10^{-6} \mathrm{rad}
$$

Answer: D

D Watch Video Solution

75. For the same objective, what is the ratio of
the least separation between two points to be distinguished by a microscope for light of 5000 Ã... and electrons accelerated through 100 V used as an illuminating substance?
A. 3075
B. 3575
C. 4075
D. 5075

Answer: C

D Watch Video Solution

76. A telescope is used to resolve two stars separated by $4.6 \times 10^{-6} \mathrm{rad}$. If the wavelength of light used is $5460 \AA$, what
should be the aperture of the objective of the

telescope?

A. 0.1488 m

B. 0.567 m
C. 1 m
D. 2 m

Answer: A
(Watch Video Solution

77. The diameter of the pupil of human eye is

 about 2 mm . Human eye is most sensitive to the wavelength 555 nm . Find the limit of resolution of human eye.A. 1.2 min
B. 2.4 min
C. 0.6 min
D. 0.3 min

Answer: A

78. Two points separated by a distance of 0.1 mm can just be resolved in a microscope when a light of wavelength $6000 \AA$ is used. If the light of wavelength $4800 \AA$ is used this limit of resolution becomes
A. 0.8 mm
B. 0.12 mm
C. 0.1 mm
D. 0.08 mm

Answer: D

D Watch Video Solution

79. Two towers on the top of two hills are 40
km apart. The line joining them presses 50 m
above a hill half way between the towers.

What is the longest wavelength of radiowaves
which can be send between the towers
without apprecialbe fiffraction effects?
A. 1.25 m
B. 0.125 m
C. 2.50 m
D. 0.250 m

Answer: B

- Watch Video Solution

80. Light of wavelength 600 nm is incident on an aperture of size $2 m m$. Calculate the distance light can travel before its spread is more than the size of aperture.
A. 12.13 m
B. 6.67 m
C. 3.33 m
D. 2.19 m

Answer: B

D Watch Video Solution
81. For what distance is ray optics a good approximation when the aperture is 4 mm wide and the wavelength is 500 nm ?
A. 22 m
B. 32 m
C. 42 m
D. 52 m

Answer: B

D Watch Video Solution

82. The human eye has an approximate angular resolution of $\phi=5.8 \times 10^{-4} \mathrm{rad}$ and
a typical photo printer prints a minimum of

300 dpi (dots per inch, $=2.54 \mathrm{~cm}$). Aminimum
distance 'z' should a printed page be held so that one doesnot see the indivdual dots is
A. 14.5 cm
B. 20.5 cm
C. 29.5 cm
D. 28 cm

Answer: A

83. Which phenomenon leads us to the conclusion that light is transverse in nature?
A. refraction of light
B. diffraction of light
C. dispersion of light
D. polarization of light.

Answer: D

84. If the angle between the pass axis of polariser and analyser is 45°, write the ratio of intensities of original light and the transmitted light after passing through analyser.
A. $\frac{I}{2}$
B. $\frac{I}{3}$
C. I
D. $\frac{I}{4}$
85. The angle between pass axis of polarizer and analyser is 45°. The percentage of polarized light passing through analyser is
A. 75%
B. 25%
C. 50%
D. 100%
86. A transparent thin plate of a polaroid is
placed on another similar plate such that the angle between their axes is 30°. The intensities of the emergent and the upolarized incident light will be in the ratio of
A. 1:4
B. 1:3
C. 3:4
D. $3: 8$

Answer: D

D Watch Video Solution

87. Upolarised light of intensity $32 \mathrm{Wm} m^{-2}$ passes through three polarisers such that transmission axis of first is crossed with third. If intensity of emerging light is $2 \mathrm{~W} m^{-2}$, what is the angle of transmission axis between the first two polarisers?
A. 30°
B. 45°
C. 22.5°
D. 60°

Answer: C

D Watch Video Solution

88. Light from sodium lamp is made to pass
through two polaroids placed one after the other in the path of light. Taking the intensity
of the incident light as 100%, the intensity of
the out coming light that can be varied in the
range
A. 0% to 100%
B. 0% to 50%
C. 0% to 25%
D. 0% to 75%

Answer: B

D Watch Video Solution
89. From Brewster's law, except for polished metallic surfaces, the polarising angle
A. depends on wavelength and si different
for different colours
B. independent of wavelength and is
different for different colours
C. independent of wavelength and is same
for different colours
D. depends on wavelength and is same for
different colours

Answer: A

D Watch Video Solution

90. In case of linearly polarised light, the magnitude of the electric field vector
A. is parallel to the direction of
propagation
B. does not change with time
C. increases linearly with time

D. varies perodically with time

Answer: D

D Watch Video Solution

91. When ordinary light is made incident on a quarter wave plate, the emergent light is
A. linearly polarised
B. circularly polarised
C. unpolarised

D. elliptically polarised

Answer: D

D Watch Video Solution

92. At what angle of incidence will the light reflected from glass $(\mu=1.5)$ be completely polarised
A. 72.8°
B. 51.6°
C. 40.3°
D. 56.3°

Answer: D

D Watch Video Solution

93. An upolarized light beam is incident on a
surface at an angle of incidence equal to
Brewster's angle. Then,
A. the reflected and the refracted beam are
both partially polarized
B. the reflected beam is partially polarized
and the refracted beam is completely
polarized and are at right angles to each
other
C. the reflected beam is completely
polarized and the refracted beam is
partially polarized and are at right
angles to each other
D. both the reflected and the refracted
beams are completely polarized and are at right angles to each other.

Answer: C

D Watch Video Solution

94. Unpolarized light is incident on a plane glass surface. The angle of incidence so that reflected and refracted rays and perpendicular to each other, then
A. $\tan i_{\beta}=\frac{\mu}{2}$
B. $\tan i_{\beta}=\mu$
C. $\sin i_{\beta}=\mu$
D. $\cos i_{\beta}=\mu$

Answer: B

- Watch Video Solution

95. The refractive index of a medium is $\sqrt{3}$.

What is the angle of refraction, if unpolarizing
light is incident on the polarising angle of the medium ?
A. 60°
B. 45°
C. 30°
D. 0°

Answer: C
(Watch Video Solution
96. The velocity of light in air is $3 \times 10^{8} \mathrm{~ms}^{-1}$
and that in water is $2.2 \times 10^{8} \mathrm{~ms}^{-1}$. Find the polarising angle of incidence.
A. 45°
B. 50°
C. 53.74°
D. 63°

Answer: C

D Watch Video Solution
97. When the angle of incidence is 60° on the
surface of a glass slab, it is found that the reflected ray is completely polarised. The velocity of light in glass is
A. $\sqrt{2} \times 10^{8} m s^{-1}$
B. $\sqrt{3} \times 10^{8} m s^{-1}$
C. $2 \times 10^{8} \mathrm{~ms}^{-1}$
D. $3 \times 10^{8} \mathrm{~ms}^{-1}$

Answer: B
98. The critical angle of a certain medium is $\sin ^{-1}\left(\frac{3}{5}\right)$. The polarizing angle of the medium is :
A. $\sin ^{-1}\left(\frac{4}{5}\right)$
B. $\tan ^{-1}\left(\frac{5}{3}\right)$
C. $\tan ^{-1}\left(\frac{3}{4}\right)$
D. $\tan ^{-1}\left(\frac{4}{3}\right)$

Answer: B
99. Light is incident on a glass surface at polarising angle of 57.5° Then the angle between the incident ray and the refracted ray is
A. 57.5°
B. 115°
C. 205°
D. 145°

D Watch Video Solution

100. An optically active compound
A. rotates the plane of polarised light
B. changes the direction of polarised light
C. does not allow plane polarised light to
pass through
D. none of these.

Answer: A

- Watch Video Solution

Higher Order Thinking Skills

1. Figure shown a two slit arrangement with a source which emits unpolarised light. P is a polariser with axis whose direction is not given. If I_{0} is the intensity of the principal maxima when no polariser is present, calculte
in the present case, the intensity of the
principal maxima as well as the first minima.

A. $\frac{I_{0}}{8}$
B. $\frac{3}{4} I_{0}$
C. $\frac{I_{0}}{16}$

$$
\text { D. } \frac{2}{5} I_{0}
$$

Answer: A

D View Text Solution

2. A beam of light consisting of two wavelengths 650 nm and 520 nm is used to obtain interference fringes in a Young's double slit experiment.
(a) Find the distance of the third bright fringe on the screen from the central maximum for
the wavelength 650 nm .
(b) What is the least distance from the central
maximum where the bright fringes due to both the wavelengths coincide? The distance between the slits is 2 mm and the distance between the plane of the slits and screen is 120 cm .
A. 1.17 mm
B. 2.52 mm
C. 1.56 mm
D. 3.14 mm

Answer: C

D Watch Video Solution

3. Four identical monochromatic sources
A, B, C, D as shown in the (figure) produce waves
of the same wavelength λ and are coherent.

Two receiver R_{1} and R_{2} are at great but equal distances from B.
(i) Which of the two receivers picks up the larger signal when B is turned off?
(iii) Which of the two receivers picks up the
larger singnal when D is turned off ?
(iv) Which of the two receivers can distinguish which of the sources B or D has been turned off ?

A. R_{1}
B. R_{2}

C. R_{1} and R_{2}

D. None of these.

Answer: B

D View Text Solution
4. In question number 3 , which of the two receivers picks up the larger signal when B is turned off?
A. R_{1}
B. R_{2}
C. R_{1} and R_{2}
D. None of these.

Answer: C

D View Text Solution

5. In question number 3 , which of the two receivers picks up the larger signal when D is turned off?
A. R_{1}
B. R_{2}
C. R_{1} and R_{2}
D. None of these.

Answer: B

D View Text Solution
6. To ensure almost 100% transmittivity, photographic lenses are often coated with a
thin layer of dielectric material, like
$M g F_{2}(\mu=1.38)$. The minimum thickness of the film to be used so that at the centre of visible spectrum $(\lambda=5500 \AA)$ there is maximum transmission.
A. 5000 Ã...
B. 2000 Ã...
C. 1000 Ã...
D. 3000 Ã...

Answer: C

7. Two points nonochromatic and coherent sources of light of wavelength λ each are placed as shown in figure. The initial phase difference between the sources is zero 0 . $(d \gg d)$. Mark the correct statement(s).

A. If $d=\frac{7 \lambda}{2}, O$ will be minima.
B. If $d=\lambda$, only one maxima can be
observed on screen.
C. If $d=4.8 \lambda$ then total 10 minimas would
be there on screen.
D. If $d=\frac{5 \lambda}{2}$, then intensity at O would be
maximum.

Answer: D

D Watch Video Solution

8. Consider a two slit interference arrangements (figure) such that the distance of the screen from the slits is half the distance between the slits. Obtain the value of D in terms of λ such that the first minima on the screen falls at a distance D from the centre 0 .

A. $\frac{\lambda}{2.472}$
B. $\frac{\lambda}{2.236}$
c. $\frac{\lambda}{1.227}$
D. $\frac{\lambda}{3.412}$

Answer: A

- Watch Video Solution

Ncert Exemplar Problems

1. Consider a light beam incident from air to a glass slab at Brewster's angle as shown in
figure.

A polaroid is placed in the path of the emergent ray at point P and rotated about an axis passing through the centre and pependicular to the plane of the plaroid.

A. For a paricular orientation there shall be
darkness as observed through the
polaroid.
B. The intensity of light as seen through
the polaroid shall be independent of the rotation.
C. The intensity of light as seen through
the polaroid shall go through a minimum but not zero for two orientations of the polaroid.
D. The intensity of light as seen through
the polaroid shall go through a minimum for four orientations of the polaroid.

Answer: C

- Watch Video Solution

2. Consider sunlight incident on a slit of width
$10^{4} \AA$. The image seen through the slit shall
A. be a fine sharp slit white in colour at the centre
B. a bright slit white at the centre diffusing
to zero intensities at the edges
C. a bright slit white at the centre diffusing
to regions of different colours
D. only be a diffused slit white in colour

Answer: A

3. Consider a ray of light incident from air onto a slab of glass (refractive index n) of width d , at an angle θ. The phase difference between the ray reflected by the top surface of the glass and the bottom surface is

$$
\begin{aligned}
& \text { A. } \frac{4 \pi d}{\lambda}\left(1-\frac{1}{n^{2}} \sin ^{2} \theta\right)^{1 / 2}+\pi \\
& \text { B. } \frac{4 \pi d}{\lambda}\left(1-\frac{1}{n^{2}} \sin ^{2} \theta\right)^{1 / 2} \\
& \text { C. } \frac{4 \pi d}{\lambda}\left(1-\frac{1}{n^{2}} \sin ^{2} \theta\right)^{1 / 2}+\frac{\pi}{2} \\
& \text { D. } \frac{4 \pi d}{\lambda}\left(1-\frac{1}{n^{2}} \sin ^{2} \theta\right)^{1 / 2}+2 \pi
\end{aligned}
$$

- Watch Video Solution

4. In a Young's double slit experiment, the source is white light. One of the holes is covered by a red filter and another by a blue filter. In this case
A. there shall be alternate interference patterns of red and blue
B. there shall be an interference pattern
C. there shall be no interference fringes
D. there shall be an interference pattern for red mixing with one for blue.

Answer: C

D Watch Video Solution

5. Figure shows a standard two slit arrangement with slits $S_{1}, S_{2} . P_{1}, P_{2}$ are the two minima points on either side of P (Figure).

At P_{2} on the screen, there is a hole and behind
P_{2} is a second 2-slit arrangement with slits
S_{3}, S_{4} and a second screen behind them.
A. There would be no interference pattern
on the second screen but it would be
lighted.
B. The second screen would be totally dark.
C. There would be a single bright point on
the second screen.
D. There would be a regular two slit pattern on the second screen.

Answer: D

D Watch Video Solution

Assertion Reason Corner

1. Assertion : The frequencies of incident, reflected and refracted
monochromatic light are same.

Reason : The incident, reflected and refracted rays are coplanar.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

2. Assertion: When a light wave travels from a rarer to a denser medium, it loses speed. The reduction in speed imply a reduction in energy carried by the light wave.

Reason: The energy of a wave is proportional to velocity of wave.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D

D Watch Video Solution
3. Assertion : Wavefronts obtained from light emitted by a point source in an isotropic medium are always spherical.

Reason : Speed of light in isotropic medium is constant.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

4. Assertion : When a plane wave passes through a thin prism, the emerging wavefront gets tilted.

Reason : Speed of light is less is glass than in air.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

5. Assertion : The increase in wavelength due to doppler effect is termed as red shift.

Reason : In red shift, a wavelength in the
middle of the visible region of the spectrum moves towards the violet end of the spectrum.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

6. Assertion : Interference is not observed if
the two coherent slit sources are broad.

Reason : A broad source is equivalent to many narrow slit sources.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

7. Assertion : When a thin transparent sheet is
placed in front of both the slits of Young's experiment, the fringe width will remains same.

Reason : In Young's experiment, the fringe width is directly proportional to wavelength of the source used.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

8. Statement-I : In Young's double slit experiment interference pattern dissappears when one of the slits is closed Statement-II : Interference is observed due to superposition of light waves from two coherent source
A. If both assertion and reason are true
and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

9. Assertion : The fringe closest on either side of the central white fringe in case of interference pattern due to white light is red and the farthest appears blue.

Reason : The interference patterns due to different component colours of white light overlap.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

10. Assertion : All bright interference bands
have same intensity.
Reason : Because all bands do not receive same light from two sources.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

11. Assertion : If we look clearly at the shadow
cast by an opaque object, close to the region
of geometrical shadow, alternate dark and bright regions can be seen.

Reason : This happens due to the phenomenon of interference.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

12. Assertion : If the light from an ordinary source passes through a polaroid sheet, its intensity is reduced by half.

Reason : The electric vectors associated with
the light wave along the direction of the aligned molecules get absorbed by polaroid.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

13. Assertion : Sound waves cannot be polarised.

Reason : Sound waves are longitudinal in nature.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

14. Assertion : In interference and diffraction,
light energy is redistributed.

Reason : There is no gain or loss of energy,
which is consistent with the principle of conservation of energy.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

15. Assertion : Intensity pattern of interference and diffraction are not same.

Reason : When there are few sources of light,
then the result is usually called interference
but if there is a large number fo them, the word diffraction is more often used.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

Huygens Principle

1. The idea of secondary wavelets for the propagation of a wave was first given by
A. Newton
B. Huygens
C. Maxwell
D. Fresnel

Answer: B

- Watch Video Solution

2. Wavefront is the locus of all points, where
the particles of the medium vibrate with the
same
A. phase
B. amplitude
C. frequency
D. period

- Watch Video Solution

3. Light propagates rectilinearly, due to

A. wave nature
B. wavelengths
C. velocity
D. frequency

- Watch Video Solution

4. Which of the following is correct for light diverging from a point source ?
A. The intensity decreases in proporation
for the distance squared.
B. The wavefront is parabolic.
C. The intensity at the wavelength does not
depend on the distance.
D. None of these.

Answer: A

D Watch Video Solution

Refraction And Reflection Of A Plane Waves

 Using Huygens Experiment1. The refractive index of glass is 1.5 for light
waves of $\lambda=6000 \tilde{A}_{\text {... }}$ in vacuum. Its
wavelength in glass is
A. 2000 Ã...
B. 4000 Ã...
C. 1000 Ã...
D. 3000 Ã...

Answer: B

D Watch Video Solution

2. Spherical wavefronts, emanating from a point source, strike a plane reflecting surface.

What will happen to these wave fronts, immediately after reflection?
A. They will remain spherical with the same
curvature, both in magnitude and sign.
B. They will become plane wave fronts.
C. They will become plane wave fronts.
D. They will remain spherical, but with
different curvature, both in magnitude and sign.

Answer: C

3. Which of the following phenomenon is not explanined by Huygen's construction of wavefront?
A. reflection
B. diffraction
C. refraction
D. origin of spectra

Answer: D

4. A plane wave front falls on a convex lens.

The emergent wave front is
A. plane
B. diverging spherical
C. converging spherical
D. none of these.

Answer: C

- Watch Video Solution

5. Earth is moving towards a fixed star with a
velocity of $30 \mathrm{kms}^{-1}$. An observer on earth observes a shift of $0.58 \AA$ in wavelength of light coming from star. What is the actual wavelength of light emitted by star ?
A. 5800 Ã...
B. 2400 Ã...
C. 12000 Ã...
D. 6000 Ã...

Answer: A
6. The spectral line for a given element in the light received from a distant star is shifted towards longer wavelength side by 0.025%.

Calculate the velocity of star in the line of sight.
A. $7.5 \times 10^{4} m s^{-1}$
B. $-7.5 \times 10^{4} \mathrm{~ms}^{-1}$
C. $3.7 \times 10^{4} \mathrm{~ms}^{-1}$
D. $-3.7 \times 10^{4} \mathrm{~ms}^{-1}$

Answer: B

D Watch Video Solution

7. With what speed should a galaxy move with
respect to us to that the sodium line at
589.0 nm is observed at 589.6 nm ?
A. $206 \mathrm{~km} s^{-1}$
B. $306 \mathrm{~km} s^{-1}$
C. $103 \mathrm{~km} \mathrm{~s}^{-1}$
D. $51 \mathrm{~km} s^{-1}$

Answer: B

D Watch Video Solution

8. The $6563 \AA H_{2}$ line emitted by hydrogen in a star is found to be red shifted by $15 \AA$.

Estimate the speed with which the star is receding from earth.
A. $3.2 \times 10^{5} \mathrm{~ms}^{-1}$
B. $6.87 \times 10^{5} \mathrm{~ms}^{-1}$
C. $2 \times 10^{5} \mathrm{~ms}^{-1}$

D. $12.74 \times 10^{5} \mathrm{~ms}^{-1}$

Answer: B

D Watch Video Solution

9. The wavelength of spectral line coming from
a distant star shifts from 600 nm to 600.1 nm .

The velocity of the star relative to earth is
A. $50 \mathrm{~km} \mathrm{~s}^{-1}$
B. $100 \mathrm{~km} s^{-1}$
C. $25 \mathrm{~km} \mathrm{~s}^{-1}$
D. $200 \mathrm{~km} s^{-1}$

Answer: A

D Watch Video Solution

Coherent And Incoherent Addition Of Waves

1. A laser beam is used for locating distant objects because
A. it is monochromatic
B. it is not chromatic
C. it is not observed
D. it has small angular spread

Answer: D

D View Text Solution

2. In the case of light waves from two coherent sources S_{1} and S_{2}, there will be constructive
interference at an arbitrary point P, the path difference $S_{1} P-S_{2} P$ is
A. $\left(n+\frac{1}{2}\right) \lambda$
B. $n \lambda$
C. $\left(n-\frac{1}{2}\right) \lambda$
D. $\frac{\lambda}{2}$

Answer: B
(Watch Video Solution
3. Which of the following is the path difference for destructive interference?
A. $n(\lambda+1)$
B. $(2 n+1) \frac{\lambda}{2}$
C. $n \lambda$
D. $(n+1) \frac{\lambda}{2}$

Answer: B

- Watch Video Solution

4. Answer the following questions:
(a) When a low flying aircraft passes overhead, we sometimes notice a slight shaking of the piture on our TV screen. Suggest a possible expanation.
(b) As you have learnt in the text, the principle of linear superposition of wave displacement is basic to understanding intensity distributions in diffractions and interference patterns. What is the justification of this principle?
A. interference

B. diffraction

C. polarisation of direct signal
D. Both (b) and (c)

Answer: A

D Watch Video Solution

5. Two light waves superimposing at the midpoint of the screen are coming from coherent sources of light with phase difference 3pi rad.

Their amplitudes are 1 cm each. The resultant amplitude at the given point will be.
A. 5 cm
B. 3 cm
C. 2 cm
D. zero

Answer: D
(Watch Video Solution
6. Two beam of light having intensities I and 41
interfere to produce a fringe pattern on a screen. The phase difference between the beams is $\frac{\pi}{2}$ at point A and π at point B . Then the difference between resultant intensities at A and B is : $(2001,2 M)$
A. 21
B. 41
C. 5I
D. 71

Answer: B

- Watch Video Solution

7. Light from two coherent sources of the same amplitude A and wavelength λ illuminates the screen. The intensity of the central maximum is I_{0}. If the sources were incoherent, the intensity at the same point will be
A. $4 I_{0}$
B. $2 I_{0}$
C. I_{0}
D. $\frac{I_{0}}{2}$

Answer: D

- Watch Video Solution

Diffraction

1. A slit of width is illuminated by white light.

For red light $(\lambda=6500 \AA)$, the first minima is
obtained at $\theta=30^{\circ}$. Then the value of will be
A. 3200 Ã...
B. $6.5 \times 10^{-4} \mathrm{~mm}$
C. 1.3 micron
D. $2.6 \times 10^{-4} \mathrm{~cm}$

Answer: C
2. A parallel beam of light of wavelength 600 nm is incident normally on a slit of width d. If the distance between the slits and the screen
is 0.8 m and the distance of $2^{\text {nd }}$ order maximum from the centre of the screen is 15 mm . The width of the slit is
A. $40 \mu m$
B. $80 \mu \mathrm{~m}$
C. $160 \mu m$
D. $200 \mu \mathrm{~m}$

Answer: B

D Watch Video Solution

3. A screen is placed 50 cm from a single slit, which is illuminated with $6000 \AA$ light. If the distance between the first and third minima in the diffraction pattern is 3.00 mm , what is the width of the slit?

$$
\text { A. } 1 \times 10^{-4} m
$$

$$
\text { B. } 2 \times 10^{-4} m
$$

C. $0.5 \times 10^{-4} \mathrm{~m}$

D. $4 \times 10^{-4} m$

Answer: B

- Watch Video Solution

4. Consider sunlight incident on a slit of width
$10^{4} \AA$. The image seen through the slit shall
A. be a fine sharp slit white in colour at the
B. a bright slit white at the centre diffusing to zero intensities at the edges
C. a bright slit white at the centre diffusing
to regions of different colours
D. only be a diffused slit white in colour

Answer: A

- Watch Video Solution

5. A parallel beam of light of wavelength $6000 \AA$ gets diffracted by a single slit of width
0.3 mm . The angular position of the first minima of diffracted light is :
A. $2 \times 10^{-3} \mathrm{rad}$
B. $3 \times 10^{-3} \mathrm{rad}$
C. $1.8 \times 10^{-3} \mathrm{rad}$
D. $6 \times 10^{-3} \mathrm{rad}$

Answer: A

6. In a single slit diffraction experiment, the width of the slit is made double its original
width. Then the central maximum of the diffraction pattern will become
A. narrower and fainter
B. narrower and brighter
C. broader and fainter
D. broader and brighter

D Watch Video Solution

7. To observe diffraction, the size of the obstacle
A. should be $\lambda / 2$, where λ is the wavelength.
B. should be of the order of wavelength.
C. has no relation to wavelength.
D. should be much larger than the wavelength.

Answer: B

- Watch Video Solution

8. In Young's double slit experiment, the distance d between the slits S_{1} and S_{2} is 1 mm . What should the width of each slit be so as to obtain 10 maxima of the double slit
pattern within the central maximum of the
single slit pattern?
A. 0.9 mm
B. 0.8 mm
C. 0.2 mm
D. 0.6 mm

Answer: C
(Watch Video Solution
9. A single slit is illuminated by light of wavelength 6000 Ã.... The slit width is 0.1 cm and the screen is placed 1 m away. The angular position of $10^{t h}$ minimum in radian is
A. 2×10^{-4}
B. 6×10^{-3}
C. 3×10^{-3}
D. 1×10^{-4}

Answer: B
10. A parallel beam of light of wavelength 500 nm falls on a narrow slit and the resulting diffraction pattern is observe on screen 1 m away. It is observed that the first minimum is at a distance of 2.5 mm from the centre of the screen. Find the width of the slit.
A. 0.2 mm
B. 1 mm
C. 2 mm

D. 1.5 mm

Answer: A

D Watch Video Solution

11. In a Fraunhofer diffraction at single slit of width d with incident light of wavelength 5500

Ã..., the first minimum is observed, at angle 30°. The first secondary maximum is observed at an angle $\theta=$

$$
\text { A. } \sin ^{-1}\left(\frac{1}{\sqrt{2}}\right)
$$

B. $\sin ^{-1}\left(\frac{1}{4}\right)$
C. $\sin ^{-1}\left(\frac{3}{4}\right)$
D. $\sin ^{-1}\left(\frac{\sqrt{3}}{2}\right)$

Answer: C

D Watch Video Solution

12. A diffraction pattern is obtained using a beam of redlight. What happens if the red
light is replaced by blue light
A. No change.
B. Diffraction bands become narrower and crowded together.
C. Band become broader and farther apart.
D. Bands disappear altogether.

Answer: B

- Watch Video Solution

13. In a Fresnel biprism experiment, the two
positions of lens give separation between the
slits as 16 cm and 9 cm respectively. What is the actual distance of separation?
A. 12 cm
B. 12.5 cm
C. 13 cm
D. 14 cm

Answer: A
14. The angular resolution of a 10 cm diameter telescope at a wavelength $5000 \AA$ is of the order
A. $10^{6} \mathrm{rad}$
B. $10^{-2} \mathrm{rad}$
C. $10^{-4} \mathrm{rad}$
D. $10^{-6} \mathrm{rad}$

Answer: D
15. For the same objective, what is the ratio of the least separation between two points to be distinguished by a microscope for light of 5000 Ã... and electrons accelerated through 100 V used as an illuminating substance?
A. 3075
B. 3575
C. 4075
D. 5075

Answer: C

- Watch Video Solution

16. A telescope is used to resolve two stars separated by $4.6 \times 10^{-6} \mathrm{rad}$. If the wavelength of light used is $5460 \AA$, what should be the aperture of the objective of the telescope?
A. 0.1488 m
B. 0.567 m
C. 1 m
D. 2 m

Answer: A

D Watch Video Solution

17. The diameter of the pupil of human eye is
about 2 mm . Human eye is most sensitive to
the wavelength 555 nm . Find the limit of resolution of human eye.
A. 1.2 min
B. 2.4 min
C. 0.6 min
D. 0.3 min

Answer: A

D Watch Video Solution

18. Two points separated by a distance of
0.1 mm can just be resolved in a microscope when a light of wavelength $6000 \AA$ is used. If
the light of wavelength $4800 \AA$ is used this
limit of resolution becomes
A. 0.8 mm
B. 0.12 mm
C. 0.1 mm
D. 0.08 mm

Answer: D
(Watch Video Solution
19. Two towers on the top of two hills are 40
km apart. The line joining them presses 50 m above a hill half way between the towers.

What is the longest wavelength of radiowaves
which can be send between the towers
without apprecialbe fiffraction effects?
A. 1.25 m
B. 0.125 m
C. 2.50 m
D. 0.250 m

Answer: B

D Watch Video Solution

20. Light of wavelength 600 nm is incident on an aperture of size $2 m m$. Calculate the distance light can travel before its spread is more than the size of aperture.
A. 12.13 m
B. 6.67 m
C. 3.33 m
```
D. 2.19 m
```


Answer: B

D Watch Video Solution

21. For what distance is ray optics a good approximation when the aperture is 4 mm wide and the wavelength is 500 nm ?
A. 22 m
B. 32 m

C. 42 m

D. 52 m

Answer: B

D Watch Video Solution

22. The human eye has an approximate angular resolution of $\phi=5.8 \times 10^{-4} \mathrm{rad}$ and
a typical photo printer prints a minimum of 300 dpi (dots per inch, $=2.54 \mathrm{~cm}$). Aminimum distance 'z' should a printed page be held so
that one doesnot see the indivdual dots is
A. 14.5 cm
B. 20.5 cm
C. 29.5 cm
D. 28 cm

Answer: A

D Watch Video Solution

1. Which phenomenon leads us to the conclusion that light is transverse in nature ?
A. refraction of light
B. diffraction of light
C. dispersion of light
D. polarization of light.

Answer: D

D Watch Video Solution
2. If the angle between the pass axis of polariser and analyser is 45°, write the ratio of intensities of original light and the transmitted light after passing through analyser.

> A. $\frac{I}{2}$
> B. $\frac{I}{3}$
> C. I
> D. $\frac{I}{4}$
3. The angle between pass axis of polarizer and analyser is 45°. The percentage of polarized light passing through analyser is
A. 75%
B. 25%
C. 50%
D. 100%

- Watch Video Solution

4. A transparent thin plate of a polaroid is
placed on another similar plate such that the angle between their axes is 30°. The intensities of the emergent and the upolarized incident light will be in the ratio of
A. 1:4
B. 1:3
C. 3:4
D. $3: 8$

Answer: D

D Watch Video Solution

5. Upolarised light of intensity $32 \mathrm{Wm}^{-2}$ passes through three polarisers such that transmission axis of first is crossed with third. If intensity of emerging light is $2 \mathrm{~W} \mathrm{~m}^{-2}$, what is the angle of transmission axis between the first two polarisers?
A. 30°
B. 45°
C. 22.5°
D. 60°

Answer: C

D Watch Video Solution

6. Light from sodium lamp is made to pass
through two polaroids placed one after the other in the path of light. Taking the intensity
of the incident light as 100%, the intensity of
the out coming light that can be varied in the
range
A. 0% to 100%
B. 0% to 50%
C. 0% to 25%
D. 0% to 75%

Answer: B

D Watch Video Solution
7. From Brewster's law, except for polished metallic surfaces, the polarising angle
A. depends on wavelength and si different
for different colours
B. independent of wavelength and is
different for different colours
C. independent of wavelength and is same
for different colours
D. depends on wavelength and is same for
different colours

Answer: A

- Watch Video Solution

8. In case of linearly polarised light, the magnitude of the electric field vector
A. is parallel to the direction of
propagation
B. does not change with time
C. increases linearly with time

D. varies perodically with time

Answer: D

- Watch Video Solution

9. When ordinary light is made incident on a quarter wave plate, the emergent light is
A. linearly polarised
B. circularly polarised
C. unpolarised

D. elliptically polarised

Answer: D

D Watch Video Solution

10. At what angle of incidence will the light
reflected from glass $(\mu=1.5)$ be completely
polarised
A. 72.8°
B. 51.6°
C. 40.3°
D. 56.3°

Answer: D

D Watch Video Solution

11. An upolarized light beam is incident on a
surface at an angle of incidence equal to
Brewster's angle. Then,
A. the reflected and the refracted beam are
both partially polarized
B. the reflected beam is partially polarized
and the refracted beam is completely
polarized and are at right angles to each
other
C. the reflected beam is completely
polarized and the refracted beam is
partially polarized and are at right
angles to each other
D. both the reflected and the refracted
beams are completely polarized and are at right angles to each other.

Answer: C

D Watch Video Solution

12. Unpolarized light is incident on a plane glass surface. The angle of incidence so that reflected and refracted rays and perpendicular to each other, then
A. $\tan i_{\beta}=\frac{\mu}{2}$
B. $\tan i_{\beta}=\mu$
C. $\sin i_{\beta}=\mu$
D. $\cos i_{\beta}=\mu$

Answer: B

- Watch Video Solution

13. The refractive index of a medium is $\sqrt{3}$.

What is the angle of refraction, if unpolarizing
light is incident on the polarising angle of the medium ?
A. 60°
B. 45°
C. 30°
D. 0°

Answer: C
(Watch Video Solution
14. The velocity of light in air is $3 \times 10^{8} \mathrm{~ms}^{-1}$ and that in water is $2.2 \times 10^{8} \mathrm{~ms}^{-1}$. Find the polarising angle of incidence.
A. 45°
B. 50°
C. 53.74°
D. 63°

Answer: C

D Watch Video Solution
15. When the angle of incidence is 60° on the
surface of a glass slab, it is found that the reflected ray is completely polarised. The velocity of light in glass is
A. $\sqrt{2} \times 10^{8} m s^{-1}$
B. $\sqrt{3} \times 10^{8} m s^{-1}$
C. $2 \times 10^{8} \mathrm{~ms}^{-1}$
D. $3 \times 10^{8} \mathrm{~ms}^{-1}$

Answer: B
16. The critical angle of a certain medium is
$\sin ^{-1}\left(\frac{3}{5}\right)$. The polarizing angle of the medium is :
A. $\sin ^{-1}\left(\frac{4}{5}\right)$
B. $\tan ^{-1}\left(\frac{5}{3}\right)$
C. $\tan ^{-1}\left(\frac{3}{4}\right)$
D. $\tan ^{-1}\left(\frac{4}{3}\right)$

Answer: B

Watch Video Solution

17. Light is incident on a glass surface at polarising angle of 57.5° Then the angle between the incident ray and the refracted ray is
A. 57.5°
B. 115°
C. 205°
D. 145°

D Watch Video Solution

18. An optically active compound
A. rotates the plane of polarised light
B. changes the direction of polarised light
C. does not allow plane polarised light to
pass through
D. none of these.

Answer: A

D Watch Video Solution

Ncert Exemplar

1. Consider a light beam incident from air to a glass slab at Brewster's angle as shown in figure.

A polaroid is placed in the path of the emergent ray at point P and rotated about an axis passing through the centre and
pependicular to the plane of the plaroid.

A. For a paricular orientation there shall be
darkness as observed through the
polaroid.
B. The intensity of light as seen through
the polaroid shall be independent of the rotation.
C. The intensity of light as seen through
the polaroid shall go through a
minimum but not zero for two orientations of the polaroid.
D. The intensity of light as seen through
the polaroid shall go through a polaroid.

Answer: C

D Watch Video Solution

2. Consider sunlight incident on a slit of width
$10^{4} \AA$. The image seen through the slit shall
A. be a fine sharp slit white in colour at the
B. a bright slit white at the centre diffusing to zero intensities at the edges
C. a bright slit white at the centre diffusing
to regions of different colours
D. only be a diffused slit white in colour

Answer: A

- Watch Video Solution

3. Consider a ray of light incident from air onto a slab of glass (refractive index n) of width d , at an angle θ. The phase difference between the ray reflected by the top surface of the glass and the bottom surface is

$$
\begin{aligned}
& \text { A. } \frac{4 \pi d}{\lambda}\left(1-\frac{1}{n^{2}} \sin ^{2} \theta\right)^{1 / 2}+\pi \\
& \text { B. } \frac{4 \pi d}{\lambda}\left(1-\frac{1}{n^{2}} \sin ^{2} \theta\right)^{1 / 2} \\
& \text { C. } \frac{4 \pi d}{\lambda}\left(1-\frac{1}{n^{2}} \sin ^{2} \theta\right)^{1 / 2}+\frac{\pi}{2} \\
& \text { D. } \frac{4 \pi d}{\lambda}\left(1-\frac{1}{n^{2}} \sin ^{2} \theta\right)^{1 / 2}+2 \pi
\end{aligned}
$$

- Watch Video Solution

4. In a Young's double slit experiment, the source is white light. One of the holes is covered by a red filter and another by a blue filter. In this case
A. there shall be alternate interference patterns of red and blue
B. there shall be an interference pattern
C. there shall be no interference fringes
D. there shall be an interference pattern for red mixing with one for blue.

Answer: C

D Watch Video Solution

5. Figure shows a standard two slit arrangement with slits $S_{1}, S_{2} . P_{1}, P_{2}$ are the two minima points on either side of P (Figure).

At P_{2} on the screen, there is a hole and behind
P_{2} is a second 2-slit arrangement with slits
S_{3}, S_{4} and a second screen behind them.
A. There would be no interference pattern
on the second screen but it would be
lighted.
B. The second screen would be totally dark.
C. There would be a single bright point on
the second screen.
D. There would be a regular two slit pattern on the second screen.

Answer: D

D Watch Video Solution

Assertion And Reason

1. Assertion : The frequencies of incident, reflected and refracted
monochromatic light are same.

Reason : The incident, reflected and refracted rays are coplanar.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

2. Assertion: When a light wave travels from a rarer to a denser medium, it loses speed. The reduction in speed imply a reduction in energy carried by the light wave.

Reason: The energy of a wave is proportional to velocity of wave.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: D
3. Assertion : Wavefronts obtained from light emitted by a point source in an isotropic medium are always spherical.

Reason : Speed of light in isotropic medium is constant.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

4. Assertion : When a plane wave passes through a thin prism, the emerging wavefront gets tilted.

Reason : Speed of light is less is glass than in air.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

5. Assertion : The increase in wavelength due to doppler effect is termed as red shift.

Reason : In red shift, a wavelength in the
middle of the visible region of the spectrum moves towards the violet end of the spectrum.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

6. Assertion : Interference is not observed if
the two coherent slit sources are broad.

Reason : A broad source is equivalent to many narrow slit sources.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

7. Assertion : When a thin transparent sheet is
placed in front of both the slits of Young's experiment, the fringe width will remains same.

Reason : In Young's experiment, the fringe width is directly proportional to wavelength of the source used.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

8. Statement-I : In Young's double slit experiment interference pattern dissappears when one of the slits is closed Statement-II : Interference is observed due to superposition of light waves from two coherent source
A. If both assertion and reason are true
and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

9. Assertion : The fringe closest on either side of the central white fringe in case of interference pattern due to white light is red and the farthest appears blue.

Reason : The interference patterns due to different component colours of white light overlap.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of

assertion.

C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

10. Assertion : All bright interference bands
have same intensity.
Reason : Because all bands do not receive same light from two sources.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

D Watch Video Solution

11. Assertion : If we look clearly at the shadow
cast by an opaque object, close to the region
of geometrical shadow, alternate dark and bright regions can be seen.

Reason : This happens due to the phenomenon of interference.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: C

- Watch Video Solution

12. Assertion : If the light from an ordinary source passes through a polaroid sheet, its intensity is reduced by half.

Reason : The electric vectors associated with
the light wave along the direction of the aligned molecules get absorbed by polaroid.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

13. Assertion : Sound waves cannot be polarised.

Reason : Sound waves are longitudinal in nature.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

- Watch Video Solution

14. Assertion : In interference and diffraction,
light energy is redistributed.

Reason : There is no gain or loss of energy,
which is consistent with the principle of conservation of energy.
A. If both assertion and reason are true and reason is the correct explanation of assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of
assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: A

D Watch Video Solution

15. Assertion : Intensity pattern of interference and diffraction are not same.

Reason : When there are few sources of light,
then the result is usually called interference
but if there is a large number fo them, the word diffraction is more often used.
A. If both assertion and reason are true
and reason is the correct explanation of
assertion.
B. If both assertion and reason are true but
reason is not the correct explanation of assertion.
C. If assertion is true but reason is false.
D. If both assertion and reason are false.

Answer: B

D Watch Video Solution

Others

1. Consider the following statements in case of Young's double slit experiment.
(1) A slit S is necessary if we use an ordinary extended source of light.
(2) A slit S is not needed if we use an ordinary but well collimated beam of light.
(3) A slit S is not needed if we use a spatially
coherent source of light.

Which of the above statements are correct?
A. (1), (2) and (3)
B. (1) and (2) only
C. (2) and (3) only
D. (1) and (3) only

Answer: A

- Watch Video Solution

2. In Young's double slit experiment two disturbances arriving at a point P have phase difference fo $\frac{\pi}{3}$. The intensity of this point
expressed as a fraction of maximum intensity
I_{0} is

$$
\begin{aligned}
& \text { A. } \frac{3}{2} I_{0} \\
& \text { B. } \frac{1}{2} I_{0} \\
& \text { C. } \frac{4}{3} I_{0} \\
& \text { D. } \frac{3}{4} I_{0}
\end{aligned}
$$

Answer: D
(Watch Video Solution
3. In young's double slit experiment using monochromatic light of wavelengths λ, the intensity of light at a point on the screen with path difference λ is M units. The intensity of light at a point where path difference is $\lambda / 3$ is

> A. $\frac{M}{2}$
> B. $\frac{M}{4}$
> C. $\frac{M}{8}$
> D. $\frac{M}{16}$

- Watch Video Solution

4. In Young's double slit experiment, the slits are horizontal. The intensity at a point P as shown in figure is $\frac{3}{4} I_{0}$,where I_{0} is the maximum intensity.

Then the value of θ is,
(Given the distance between the two slits S_{1}
and S_{2} is 2λ)

A. $\cos ^{-1}\left(\frac{1}{12}\right)$
B. $\sin ^{-1}\left(\frac{1}{12}\right)$
C. $\tan ^{-1}\left(\frac{1}{12}\right)$
D. $\sin ^{-1}\left(\frac{3}{5}\right)$

Answer: A

D Watch Video Solution

5. Two slits in Young's double slit experiment
have widths in the ratio 81:1. What is the the ratio of amplitudes of light waves coming from them ?
A. $3: 1$
B. $3: 2$
C. 9:1
D. $6: 1$

Answer: C

D Watch Video Solution

6. The intensity ratio of the maxima and minima in an interference pattern produced by two coherent sources of light is $9: 1$. The intensities of the used light sources are in ratio
A. $3: 1$
B. $4: 1$
C. 9:1
D. $10: 1$

Answer: B

- Watch Video Solution

7. The two coherent sources with intensity ratio β produce interference. The fringe visibility will be
A. $\frac{2 \sqrt{\beta}}{1+\beta}$
B. 2β
C. $\frac{2}{1+\beta}$
D. $\frac{\sqrt{\beta}}{1+\beta}$

Answer: A

- Watch Video Solution

8. The ratio of intensity at maxima and minima
in the interference pattern is $25: 9$. What will
be the widths of the two slits in Young's interference experiment ?
A. 18: 3
B. $4: 1$
C. $8: 1$
D. 16: 1

Answer: D
(Watch Video Solution
9. In Young's double slit experiment, one of the
slit is wider than other, so that amplitude of
the light from one slit is double of that from other slit. If I_{m} be the maximum intensity, the resultant intensity I when they interfere at phase difference ϕ is given by:

$$
\begin{aligned}
& \text { A. } \frac{I_{m}}{3}\left(1+2 \cos ^{2} \frac{\phi}{2}\right) \\
& \text { B. } \frac{I_{m}}{5}\left(1+4 \cos ^{2} \frac{\phi}{2}\right) \\
& \text { C. } \frac{I_{m}}{9}\left(1+8 \cos ^{2} \frac{\phi}{2}\right) \\
& \text { D. } \frac{I_{m}}{9}\left(8+\cos ^{2} \frac{\phi}{2}\right)
\end{aligned}
$$

Answer: C

D Watch Video Solution

10. In a Young's double-slit experiment, the
slits are separated by 0.28 mm and screen is
placed 1.4 m away. The distance between the central bright fringe and the fourth bright fringe is measured to be 1.2 cm . Determine the wavelength of light used in the experiment.
A. $6 \times 10^{-7} m$
B. $3 \times 10^{-7} m$
C. $1.5 \times 10^{-7} \mathrm{~m}$
D. $5 \times 10^{-6} m$

Answer: A

D Watch Video Solution

11. The slits in Young's double slit experiment are illuminated by light of wavelength 6000

Ã.... If the path difference at the central bright
fright fringe is zero, what is the path difference for light from the slits at the fourth bright frings?

> A. $2.4 \times 10^{-6} m$
> B. $1.2 \times 10^{-6} \mathrm{~m}$
> C. $10^{-6} \mathrm{~m}$
> D. $0.5 \times 10^{-6} \mathrm{~m}$

Answer: A

D Watch Video Solution
12. In a double slit experiment, the distance between the slits is d. The screen is at a distance D from the slits. If a bright fringe is formed opposite to one of the slits, its order is
A. $\frac{d}{\lambda}$
B. $\frac{\lambda^{2}}{d D}$
C. $\frac{D^{2}}{2 \lambda D}$
D. $\frac{d^{2}}{2 D \lambda}$

Answer: D

D Watch Video Solution
13. In Young's double slit experiment, the $10^{\text {th }}$ maximum of wavelength λ_{1} is at a distance y_{1} from its central maximum and the $5^{\text {th }}$ maximum of wavelength λ_{2} is at a distance y_{2}
from its central maximum. The ratio y_{1} / y_{2} will be
A. $\frac{2 \lambda_{1}}{\lambda_{2}}$
B. $\frac{2 \lambda_{2}}{\lambda_{1}}$
C. $\frac{\lambda_{1}}{2 \lambda_{2}}$
D. $\frac{\lambda_{2}}{2 \lambda_{1}}$

Answer: A

D Watch Video Solution

14. A narrow slit of width 2 mm is illuminated
by monochromatic light fo wavelength 500 nm .

The distance between the first minima on either side on a screen at a distance of 1 m is
A. 5 mm
B. 0.5 mm
C. 1 mm

D. 10 mm

Answer: B

D Watch Video Solution

15. The two slits are 1 mm apart from each other and illuminated with a light of wavelength $5 \times 10^{-7} \mathrm{~m}$. If the distance of the screen is 1 m from the slits, then the distance between third dark fringe and fifth bright fringe is
A. 1.2 mm
B. 0.75 mm
C. 1.25 mm
D. 0.625 mm

Answer: C

D Watch Video Solution

16. Young's experiment is performed with light of wavelength 6000 Ã... wherein 16 fringes
frings occupy the same region with another light of wavelength λ, then λ is
A. 6000 Ã...
B. 4500 Ã...
C. 5000 Ã...
D. 4000 Ã...

Answer: D
(Watch Video Solution
17. Two sources of light of wavelength 2500 Ã...
and 3500 Ã... are used in Young's double slit experiment simultaneously. Which orders of fringes of two wavelength patterns coincide?
A. $3^{\text {rd }}$ order of $1^{\text {st }}$ source and $5^{\text {th }}$ of the $2^{\text {nd }}$
B. $7^{\text {th }}$ order of $1^{s t}$ and $5^{\text {th }}$ order of $2^{\text {nd }}$
C. $5^{\text {th }}$ order of $1^{s t}$ and $3^{\text {rd }}$ order of $2^{\text {nd }}$
D. $5^{\text {th }}$ order of $1^{s t}$ and $7^{\text {th }}$ order of $2^{n d}$

Answer: B

18. A Young's double slit experiment uses a monochromatic source. The shape of the interference fringes formed on a screen is
A. parabola
B. straight line
C. circle
D. hyperbola

Answer: D
19. When interference of light takes place
A. energy is created in the region of maximum intensity
B. energy is distroyed in the region of maximum intensity
C. conservation of energy holds good and
energy is redistributed

D. conservation of energy does not hold

good

Answer: C

D Watch Video Solution

20. Two slits are made one millimeter apart and the screen is placed one metre away.

When blue-green light of wavelength 500 nm is used, the fringe separation is
A. $5 \times 10^{-4} m$
B. $2.5 \times 10^{-3} m$
C. $2 \times 10^{-4} \mathrm{~m}$
D. $10 \times 10^{-4} m$

Answer: A

D Watch Video Solution
21. In Young's double slit experiment , light
waves of $\lambda=5.4 \times 10^{2} \quad \mathrm{~nm} \quad$ and
$\lambda=6.85 \times 10^{1} \mathrm{~nm}$ are used in turn, keeping
the same geometry of the set up. Calculate
the ratio of the fringe widths in the two cases.
A. 1.3
B. 4.3
C. 7.9
D. 9.5

Answer: C

- Watch Video Solution

22. The fringe width in YDSE is $2.4 \times 10^{-4} \mathrm{~m}$, when red light of wavelength $6400 \AA$ is used. By how much will it change, if blue light of wavelength $4000 \AA$ is used ?
A. $9 \times 10^{-4} m$
B. $0.9 \times 10^{-4} \mathrm{~m}$
C. $4.5 \times 10^{-4} m$
D. $0.45 \times 10^{-4} \mathrm{~m}$

Answer: B
23. In a double slit experiment, the distance between slits in increased ten times whereas
their distance from screen is halved then the fringe width is
A. becomes $\frac{1}{20}$
B. becomes $\frac{1}{90}$
C. it remains same
D. becomes $\frac{1}{10}$

Answer: A

- Watch Video Solution

24. Yellow light of wavelength 6000 Ã... produces fringes of width 0.8 mm in Young's double slit experiment. If the source is replaced by another monochromatic source of wavelength 7500 Ã... and the separation between the slits is doubled then the fringe width becomes
A. 0.1 mm
B. 0.5 mm
C. 4.3 mm
D. 1 mm

Answer: B

- Watch Video Solution

25.

A small transparent slab containing material of $\mu=1.5$ is placed along $A S_{2}$ (figure). What will be the distance from O of the principle maxima and of the first minima on either side of the principal maxima obtained in the absence of the glass slab?
A. 0.19 D and -0.33 D
B. 0.19 D and -0.55 D
C. 0.33 D and -0.65 D
D. 0.33 D and -0.75 D

Answer: A

D View Text Solution

26. Interference fringes were produced in

Young's double slit experiment using light of
wavelength 5000 Ã.... When a film of material
$2.5 \times 10^{-3} \mathrm{~cm}$ thick was placed over one of
the slits, the fringe pattern shifted by a distance equal to 20 fringe widths. The refractive index of the material of the film is
A. 1.25
B. 1.33
C. 1.4
D. 1.5

Answer: C

D Watch Video Solution
27. In a two-slit experiment with monochromatic light, fringes are obtained on a screen placed at some distance from the slits. If the screen is moved by $5 \times 10^{-2} \mathrm{~m}$ towards the slits, the change in fringe width is
3×10^{-5}. If the distance between the slits is $10^{-3} \mathrm{~m}$, calculate the wavelength of the light used.
A. 3000 Ã...
B. 4000 Ã...
C. 6000 Ã...

D. 7000 Ã...

Answer: C

D Watch Video Solution

28. In a Young's double slit experiment an electron beam is used to obtain interference pattern. If the speed of electron decreases then
A. distance between two consecutive

fringes remains the same

B. distance between two consecutive

fringes decreases

C. distance between two consecutive
fringes increases
D. None of these.

Answer: C

29. In a double slit interference pattern, the first maxima for infrared light would be
A. at the same place as the first maxima for green light
B. closer to the centre than the first maxima for green light
C. farther from the centre than the first maxima for green light
D.infrared light does not produce an

Answer: C

- Watch Video Solution

30. In double slit experiment using light of wavelength 600 nm , the angular width of a fringe formed on a distant screen is 0.1°. What is the spacing between the two slits ?
A. $3.44 \times 10^{-4} m$
B. $1.54 \times 10^{-4} m$
C. $1.54 \times 10^{-3} m$

D. $1.44 \times 10^{-3} m$

Answer: A

D Watch Video Solution

31. In Young's double slit experiment, the distance between two sources is 0.1 mm . The distance of screen from the sources is 20 cm .

Wavelength of light used is $5460 \AA$. Then angular position of the first dark fringe is
A. 0.08°
B. 0.16°
C. 0.20°
D. 0.31°

Answer: B

D Watch Video Solution

32. In a double slit experiment the angular width of a fringe is found to be 0.2° on a screen placed I m away. The wavelength of
light used in 600 nm . What will be the angular
width of the fringe if the entire experimental apparatus is immersed in water ? Take refractive index of water to be $4 / 3$.
A. 0.15°
B. 1°
C. 2°
D. 0.3°

Answer: A

D Watch Video Solution
33. In a Young's double slit esperiment, the angular width of a fringe formed on a distant screen is 1°. The slit separation is 0.01 mm .

The wavelength of the light is
A. 0.174 nm
B. 0.174 Ã...
C. $0.174 \mu m$
D. $0.174 \times 10^{-4} m$

Answer: C

- Watch Video Solution

34. In a Young's double slit experiment, let S_{1} and S_{2} be the two slits, and C be the centre of
the screen. If $\angle S_{1} C S_{2}=\theta$ and λ is the wavelength, the fringe width will be
A. $\frac{\lambda}{\theta}$
B. $\lambda \theta$
C. $\frac{2 \lambda}{\theta}$
D. $\frac{\lambda}{2 \theta}$

- Watch Video Solution

35. In a Young's double slit experiment, (slit distance d) monochromatic light of wavelength λ is used and the fringe pattern observed at a distance D from the slits. The angular position of the bright fringes are

$$
\begin{aligned}
& \text { A. } \sin ^{-1}\left(\frac{N \lambda}{d}\right) \\
& \text { B. } \sin ^{-1}\left(\frac{\left(N+\frac{1}{2}\right) \lambda}{d}\right) \\
& \text { C. } \sin ^{-1}\left(\frac{N \lambda}{D}\right)
\end{aligned}
$$

D. $\sin ^{-1}\left(\frac{\left(N+\frac{1}{2}\right) \lambda}{D}\right)$

Answer: A

D Watch Video Solution

36. In Young's double slit experiment, the fringe width with light of wavelength 6000 Ã... is 3 mm . The fringe width, when the wavelength of light is changed to $4000 \tilde{A} .$. is
A. 3 mm

B. 1 mm

C. 2 mm

D. 4 mm

Answer: C

D Watch Video Solution

37. The colours seen in the reflected white light from a thin oil film are due to
A. Diffraction
B. Interference
C. Polarisation
D. Dispersion

Answer: B

D Watch Video Solution

38. What is the minimum thickness of a soap
bubble needed for constructive interference in
reflected light, if the light incident on the film
is 750 nm ? Assume that the refractive index

for the film is $n=1.33$

A. 282 nm
B. 70.5 nm
C. 141 nm
D. 387 nm

Answer: C
(Watch Video Solution
39. A parallel beam of sodium light of wavelength $6000 \AA$ is incident on a thin glass plate of $\mu=1.5$, such that the angle of refraction in the plate is 60°. The smallest thickness of the plate which will make it appear dark by reflected light is
A. 3926 Ã...
B. 4353 Ã...
C. 1396 Ã...
D. 1921 Ã...

Answer: A

D Watch Video Solution

40. On introducing a thin film in the path of one of the two interfering beam, the central fringe will shift by one fringe width. If $\mu=1.5, \quad$ the thickness of the film is (wavelength of monochromatic light is λ)
A. 4λ
B. 3λ
C. 2λ
D. λ

Answer: C

(D) Watch Video Solution

