© 'doubtnut

MATHS

BOOKS - NCERT EXEMPLAR

RATIONAL NUMBERS

Example Choose The Correct Answer

1. Which of the following is not true?
A. $\frac{2}{3}+\frac{5}{4}=\frac{5}{4}+\frac{2}{3}$
B. $\frac{2}{3}-\frac{5}{4}=\frac{5}{4}-\frac{2}{3}$
C. $\frac{2}{3} \times \frac{5}{4}=\frac{5}{4} \times \frac{2}{3}$
D. $\frac{2}{3} \div \frac{5}{4}=\frac{2}{3} \times \frac{4}{5}$

Answer: B
2. Multiplicative inverse of $\frac{0}{1}$ is
A. 1
B. -1
C. 0
D. not defined

Answer: D

- Watch Video Solution

3. Three rational numbers lying between $\frac{-3}{4}$ and $\frac{1}{2}$ are
A. $-\frac{1}{2}, 0, \frac{3}{4}$
B. $\frac{-1}{4}, \frac{1}{4}, \frac{3}{4}$
C. $\frac{-1}{4}, 0, \frac{1}{4}$
D. $\frac{-5}{4}, 0, \frac{1}{4}$

Answer: C

- Watch Video Solution

Example Fill In The Blanks

1. The product of a non-zero rational number and its reciprocal is \qquad .

- Watch Video Solution

2. If $x=\frac{1}{3}$ and $y=\frac{6}{7}$ then $x y=\frac{y}{x}=$

Watch Video Solution

1. Every rational number has a reciprocal.

- Watch Video Solution

2. $\frac{-4}{5}$ is larger than $\frac{-5}{4}$.

Watch Video Solution

Example

1. Find $\frac{4}{7} \times \frac{14}{3} \div \frac{2}{3}$

- Watch Video Solution

2. Using appropriate properties, find $\frac{2}{3} \times \frac{-5}{7}+\frac{7}{3}+\frac{2}{3} \times \frac{-2}{7}$.
3. Let O, P and Z represent the numbers 0,3 and -5 respectively on the number line. Points Q, R and S are between O and P such that $O Q=Q R=$ $R S=S P$.

What are the rational numbers represented by the points Q, R and S . Next choose a point T between Z and O so that $\mathrm{ZT}=\mathrm{TO}$. Which rational number does T represent?

- Watch Video Solution

4. A farmer has a field of area $49 \frac{4}{5}$ ha. He wants to divide it equally among his one son and two daughters. Find the area of each one's share.
(ha means hectare, 1 hectare $=10,000 \mathrm{~m}^{2}$)

- Watch Video Solution

5. Let $\mathrm{a}, \mathrm{b}, \mathrm{c}$ be the three rational numbers where $a=\frac{2}{3}, b=\frac{4}{5}$ and $c=-\frac{5}{6}$

Verify:
(i) $a+(b+c)=(a+b)+c$ (Associative property of addition)
(ii) $a \times(b \times c)=(a \times b) \times c$ (Associative property of multiplication)

- Watch Video Solution

6. Solve the following questions and write your observations.
$\frac{5}{3}+0=$?

- Watch Video Solution

7. Solve the following questions and write your observations.
$\frac{-2}{5}+0=?$

- Watch Video Solution

8. Solve the following questions and write your observations.
$\frac{3}{7}+0=$?
9. Solve the following questions and write your observations. $\frac{2}{3} \times 1=$?

- Watch Video Solution

10. Solve the following questions and write your observations.
$\frac{-6}{7} \times 1=$?

- Watch Video Solution

11. Solve the following questions and write your observations.

$$
\frac{9}{8} \times 1=?
$$

- Watch Video Solution

12. Write any 5 rational numbers between $\frac{-5}{6}$ and $\frac{7}{8}$.
13. Identify the rational number which is different from the other three : $\frac{2}{3}, \frac{-4}{5}, \frac{1}{2}, \frac{1}{3}$. Explain your reasoning.

- Watch Video Solution

Example Problem Solving Strategies

1. The product of two rational numbers is -7 . If one of the number is -10 , find the other.

- Watch Video Solution

Exercise Choose The Correct Answer

1. A number which can be expressed as $\frac{p}{q}$ where p and q are integers and $q \neq 0$ is
A. natural number
B. whole number
C. integer
D. rational number

Answer:

- Watch Video Solution

2. A number of the form $\frac{p}{q}$ is said to be a rational number if
A. p and q are integers.
B. p and q are integers and $q \neq 0$
C. p and q are integers and $p \neq 0$
D. p and q are integers and $p \neq 0$ also $q \neq 0$.

Answer: B

3. The numerical expression $\frac{3}{8}+\frac{(-5)}{7}=\frac{-19}{56}$ shows that
A. rational numbers are closed under addition.
B. rational numbers are not closed under addition.
C. rational numbers are closed under multiplication
D. addition of rational numbers is not commutative.

Answer: A

- Watch Video Solution

4. Which of the following is not true?
A. rational numbers are closed under addition
B. rational numbers are closed under subtraction
C. rational numbers are closed under multiplication.
D. rational numbers are closed under division.

Answer:

- Watch Video Solution

5. $-\frac{3}{8}+\frac{1}{7}=\frac{1}{7}+\left(\frac{-3}{8}\right)$ is an example to show that
A. addition of rational numbers is commutative
B. rational numbers are closed under addition.
C. addition of rational number is associative.
D. rational numbers are distributive under addition.

Answer: A

- Watch Video Solution

6. Which of the following expressions shows that rational numbers are associative under multiplication
A. $\frac{2}{3} \times\left(\frac{-6}{7} \times \frac{3}{5}\right)=\left(\frac{2}{3} \times \frac{-6}{7}\right) \times \frac{3}{5}$
B. $\frac{2}{3} \times\left(\frac{-6}{7} \times \frac{3}{5}\right)=\frac{2}{3} \times\left(\frac{3}{5} \times \frac{-6}{7}\right)$
C. $\frac{2}{3} \times\left(\frac{-6}{7} \times \frac{3}{5}\right)=\left(\frac{3}{5} \times \frac{2}{3}\right) \times \frac{-6}{7}$
D. $\left(\frac{2}{3} \times \frac{-6}{7}\right) \times \frac{3}{5}=\left(\frac{-6}{7} \times \frac{2}{3}\right) \times \frac{3}{5}$

Answer:

- Watch Video Solution

7.Zero (0) is
A. the identity for addition of rational numbers.
B. the identity for subtraction of rational numbers.
C. the identity for multiplication of rational numbers.
D. the identity for division of rational numbers.

D Watch Video Solution

8. One (1) is
A. the identity for addition of rational numbers
B. the identity for subtraction of rational numbers
C. the identity for multiplication of rational numbers.
D. the identity for division of rational numbers.

Answer: C

- Watch Video Solution

9. The additive inverse of $\frac{-7}{19}$ is
A. $\frac{-7}{19}$
B. $\frac{7}{19}$
C. $\frac{19}{7}$
D. $\frac{-19}{7}$

Answer: B

- Watch Video Solution

10. Multiplicative inverse of a negative rational number is
A. a positive rational number.
B. a negative rational number
C. 0
D. 1

Answer: B

11. If $x+0=0+x=x$, which is rational number, then 0 is called
A. identity for addition of rational numbers.
B. additive inverse of x.
C. multiplicative inverse of x.
D. reciprocal of x.

Answer:

- Watch Video Solution

12. To get the product 1 , we should multiply $\frac{8}{21}$ by
A. $\frac{8}{21}$
B. $\frac{-8}{21}$
C. $\frac{21}{8}$
D. $\frac{-21}{8}$

Answer:

- Watch Video Solution

13. $-(-x)$ is same as
A. $-x$
B. x
C. $\frac{1}{x}$
D. $\frac{-1}{x}$

Answer:

14. The multiplicative inverse of $-1 \frac{1}{7}$ is
A. $\frac{8}{7}$
B. $\frac{-8}{7}$
C. $\frac{7}{8}$
D. $\frac{7}{-8}$

Answer: D

- Watch Video Solution

15. If x be any rational number then $\mathrm{x}+0$ is equal to
A. x
B. 0
C. $-x$
D. Not defined

Answer:

16. v20.1
A. 1
B. -1
C. 0
D. Not defined

Answer:

- Watch Video Solution

17. The reciprocal of -1 is
A. 1
B. -1
C. 0
D. Not defined

Answer:

- Watch Video Solution

18. The reciprocal of 0 is
A. 1
B. -1
C. 0
D. Not defined

Answer:

19. The reciprocal of any rational number $\frac{p}{q}$, where p and q are integers and $q \neq 0$, is
A. $\frac{p}{q}$
B. 1
C. 0
D. $\frac{q}{p}$

Answer:

- Watch Video Solution

20. If y be the reciprocal of rational number x, then the reciprocal of y will be
A. x
B. y
C. $\frac{x}{y}$
D. $\frac{y}{x}$

Answer:

21. The reciprocal of $\frac{-3}{8} \times\left(\frac{-7}{13}\right)$ is
A. $\frac{104}{21}$
B. $\frac{-104}{21}$
C. $\frac{21}{104}$
D. $\frac{-21}{104}$

Answer:

- Watch Video Solution

22. Which of the following is an example of distributive property of multiplication over addition for rational numbers.
A. $-\frac{1}{4} \times\left\{\frac{2}{3}+\left(\frac{-4}{7}\right)\right\}=\left[-\frac{1}{4} \times \frac{2}{3}\right]+\left[-\frac{1}{4} \times\left(\frac{-4}{7}\right)\right]$
B. $-\frac{1}{4} \times\left\{\frac{2}{3}+\left(\frac{-4}{7}\right)\right\}=\left[\frac{1}{4} \times \frac{2}{3}\right]-\left(\frac{-4}{7}\right)$
C. $-\frac{1}{4} \times\left\{\frac{2}{3}+\left(\frac{-4}{7}\right)\right\}=\frac{2}{3}+\left(-\frac{1}{4}\right) \times \frac{-4}{7}$
D. $-\frac{1}{4} \times\left\{\frac{2}{3}+\left(\frac{-4}{7}\right)\right\}=\left\{\frac{2}{3}+\left(\frac{-4}{7}\right)\right\}-\frac{1}{4}$

Answer:

- Watch Video Solution

23. Between two given rational numbers, we can find
A. one and only one rational number.
B. only two rational numbers.
C. only ten rational numbers
D. infinitely many rational numbers.

Answer:

24. $\frac{x+y}{2}$ is a rational number.
A. Between x and y
B. Less than x and y both
C. Greater than x and y both
D. Less than x but greater than y

Answer: A

- Watch Video Solution

25. Which of the following statements is always true?
A. $\frac{x-y}{2}$ is a rational number between x and y .
B. $\frac{x+y}{2}$ is a rational number between x and y .
C. $\frac{x \times y}{2}$ is a rational number between x and y .
D. $\frac{x \div y}{2}$ is a rational number between x and y .

Answer:

D Watch Video Solution

Exercise Fill In The Blanks

1. The equivalent of $\frac{5}{7}$, whose numerator is 45 is \qquad .

Watch Video Solution
2. The equivalent rational number of $\frac{7}{9}$, whose denominator is 45 is
\qquad .

- Watch Video Solution

3. Between the numbers $\frac{15}{20}$ and $\frac{35}{40}$, the greater number is \qquad .
4. The reciprocal of a positive rational number is \qquad .

- Watch Video Solution

5. The reciprocal of a negative rational number

- Watch Video Solution

6. Fill in the blanks:
(i) The product of a rational number and its reciprocal is \qquad
(ii) Zero has reciprocal.
(iii) The numbers and are their own reciprocals.
(iv) Zero is the reciprocal of any number.
(v) The reciprocal of a, where $a \neq 0$, is \qquad . .
(vi) The reciprocal of $\frac{1}{a}$, where $a \neq 0$, is
(vii) The reciprocal of a positive rational number is \qquad
(viii) The reciprocal of a negative rational number is \qquad
7. Fill in the blanks:
(i) The product of a rational number and its reciprocal is \qquad
(ii) Zero has \qquad reciprocal.
(iii) The numbers and are their own reciprocals.
(iv) Zero is the reciprocal of any number.
(v) The reciprocal of a, where $a \neq 0$, is \qquad
(vi) The reciprocal of $\frac{1}{a}$, where $a \neq 0$, is \qquad .
(vii) The reciprocal of a positive rational number is \qquad .
(viii) The reciprocal of a negative rational number is \qquad

- Watch Video Solution

8. If y be the reciprocal of x, then the reciprocal of y^{2} in terms of x will be
\qquad .

- Watch Video Solution

9. The reciprocal of $\frac{2}{5} \times\left(\frac{-4}{9}\right)$ is \qquad .

(Watch Video Solution

10. $(213 \times 657)^{-1}=213^{-1} \times$ \qquad

Watch Video Solution
11. The negative of 1 is \qquad .

- Watch Video Solution

12. For rational numbers $\frac{a}{b}, \frac{c}{d}$ and $\frac{e}{f}$ we have $\frac{a}{b} \times\left(\frac{c}{d}+\frac{e}{f}\right)=$ ___-_+ \qquad .

- Watch Video Solution

13. $\frac{-5}{7}$ is \qquad than -3.

- Watch Video Solution

14. There are ___ rational numbers between any two rational numbers.

- Watch Video Solution

15. The rational numbers $\frac{1}{3}$ and $\frac{-1}{3}$ are on the \qquad the number line.

- Watch Video Solution

16. The negative of a negative rational number is always a \qquad rational number
17. Rational numbers can be added or multiplied in any \qquad .

- Watch Video Solution

18. The reciprocal of $\frac{-5}{7}$ is \qquad .

- Watch Video Solution

19. The multiplicative inverse of $\frac{4}{3}$ is \qquad .

- Watch Video Solution

20. The rational number 10.11 in the form $\frac{p}{q}$ is \qquad .
21. $\frac{1}{5} \times\left[\frac{2}{7}+\frac{3}{8}\right]=\left[\frac{1}{5} \times \frac{2}{7}\right]+$ \qquad .

- Watch Video Solution

22. The two rational numbers lying between -2 and -5 with denominator as 1 are \qquad and \qquad .

- Watch Video Solution

Exercise True T Or False F

1. If $\frac{x}{y}$ is a rational number, then y is always a whole number.

- Watch Video Solution

2. If $\frac{p}{q}$ is a rational number, then p cannot be equal to zero.
3. If $\frac{r}{s}$ is a rational number, then s cannot be equal to zero.

D Watch Video Solution

4. $\frac{5}{6}$ lies between $\frac{2}{3}$ and 1. True or false.

- Watch Video Solution

5. $\frac{5}{10}$ lies between $\frac{1}{2}$ and 1. True or false.

- Watch Video Solution

6. $\frac{-7}{2}$ lies between -3 and -4 . True or false.

- Watch Video Solution

7. $\frac{9}{6}$ lies between 1 and 2. True or false.

- Watch Video Solution

8. If $a \neq 0$, the multiplicative inverse of $\frac{a}{b}$ is $\frac{b}{a}$.

Watch Video Solution

9. The multiplicative inverse of $\frac{-3}{5}$ is $\frac{5}{3}$.

- Watch Video Solution

10. The additive inverse of $\frac{1}{2}$ is -2 . True or false.

- Watch Video Solution

11. If $\frac{x}{y}$ is the additive inverse of $\frac{c}{d}$, then $\frac{x}{y}+\frac{c}{d}=0$. True or false.
12. Write the negation of each of the following statements: For every real number $x, x+0=x=0+x$ For every real number, x, x is less than $x+1$

D Watch Video Solution

13. If $\frac{x}{y}$ is the additive inverse of $\frac{c}{d}$, then $\frac{x}{y}-\frac{c}{d}=0$. True or false.

- Watch Video Solution

14. The reciprocal of a non-zero rational number $\frac{q}{p}$ is the rational number $\frac{q}{p}$. True or false.

D Watch Video Solution

15. If $x+y=0$, then $-y$ is known as the negative of x, where x and y are rational numbers. True or false.

- Watch Video Solution

16. The negative of the negative of any rational number is the number itself. True or false.

- Watch Video Solution

17. The negative of 0 does not exist.

- Watch Video Solution

18. The negative of 1 is 1 itself.

- Watch Video Solution

19. For all rational numbers x and $\mathrm{y}, x-y=y-x$.

- Watch Video Solution

20. For all rational numbers x and $\mathrm{y}, x \times y=y \times x$.

- Watch Video Solution

21. For every rational number $x, x \times 0=x$.

- Watch Video Solution

22. For every rational numbers x, y and z, $x+(y \times z)=(x+y) \times(x+z)$.
23. For all rational numbers a, b and $c, a(b+c)=a b+b c$.

- Watch Video Solution

24.1 is the only number which is its own reciprocal.

- Watch Video Solution

25. -1 is not the reciprocal of any rational number.

- Watch Video Solution

26. For any rational number $x, x+(-1)=-x$.

- Watch Video Solution

27. For rational numbers x and y , if $x<y$ then $x-y$ is a positive rational number.

Watch Video Solution

28. If x and y are negative rational numbers, then so is $x+y$.

- Watch Video Solution

29. Between any two rational numbers there are exactly ten rational numbers.

- Watch Video Solution

30. State True or False

Rational numbers are closed under addition and multiplication but not under subtraction.
31. state true of false

Subtraction of rational number is commutative.

- Watch Video Solution

32. $-\frac{3}{4}$ is smaller than -2 .

- Watch Video Solution

33. 0 is a rational number.

- Watch Video Solution

34. All positive rational numbers lie between 0 and 1000 .
35. The population of India in 2004-05 is a rational number.

- Watch Video Solution

36. There are countless rational numbers between $\frac{5}{6}$ and $\frac{8}{9}$.

- Watch Video Solution

37. The reciprocal of x^{-1} is $\frac{1}{x}$.

- Watch Video Solution

38. The rational number $\frac{57}{23}$ lies to the left of zero on the number line.

- Watch Video Solution

39. The rational number $\frac{7}{-4}$ lies to the right of zero on the number line.

- Watch Video Solution

40. The rational number $\frac{-8}{-3}$ lies neither to the right nor to the left of zero on the number line.

- Watch Video Solution

41. The rational numbers $\frac{1}{2}$ and -1 are on the opposite sides of zero on the number line.

- Watch Video Solution

42. Every fraction is a rational number.

- Watch Video Solution

43. Every integer is a rational number.

- Watch Video Solution

44. The rational numbers can be represented on the number line.

- Watch Video Solution

45. The negative of a negative rational number is a positive rational number

D Watch Video Solution

46. State true of false

If x and y are two rational numbers such that $x>y$, then $x-y$ is always a positive rational number.
47. 0 is the smallest rational number.

- Watch Video Solution

48. Every whole number is an integer.

- Watch Video Solution

49. Which of the following statements are true and which are false?
(i) Every whole number is a rational number.
(ii) Every integer is a rational number.
(iii) 0 is a whole number but it is not a rational number.

- Watch Video Solution

50. Which of the following statements are true and which are false?
(i) Every whole number is a rational number.
(ii) Every integer is a rational number.
(iii) 0 is a whole number but it is not a rational number.

- Watch Video Solution

51. The rational numbers $\frac{1}{2}$ and $-\frac{5}{2}$ are on the opposite sides of 0 on the number line.

- Watch Video Solution

52. Rational numbers can be added (or multiplied) in any order
$\frac{-4}{5} \times \frac{-6}{5}=\frac{-6}{5} \times \frac{-4}{5}$

- Watch Video Solution

1. Solve the following: Select the rational numbers from the list which are also the integers.
$\frac{9}{4}, \frac{8}{4}, \frac{7}{4}, \frac{6}{4}, \frac{9}{3}, \frac{8}{3}, \frac{7}{3}, \frac{6}{3}, \frac{5}{2}, \frac{4}{2}, \frac{3}{1}, \frac{3}{2}, \frac{1}{1}, \frac{0}{1}, \frac{-1}{1}, \frac{-2}{1}, \frac{-3}{2}, \frac{-4}{2}, \frac{-5}{2}$

- Watch Video Solution

2. Select those rational numbers which can be written as a rational number with denominator $4: \frac{7}{8}, \frac{64}{16}, \frac{36}{-12}, \frac{-16}{17}, \frac{5}{-4}, \frac{140}{28}$

- Watch Video Solution

3. Using suitable rearrangement and find the sum:
$\frac{4}{7}+\left(\frac{-4}{9}\right)+\frac{3}{7}+\left(\frac{-13}{9}\right)$

- Watch Video Solution

4. Using suitable rearrangement and find the sum:
$-5+\frac{7}{10}+\frac{3}{7}+(-3)+\frac{5}{14}+\frac{-4}{5}$

- Watch Video Solution

5. Verify $-(-x)=x$ for $x=\frac{3}{5}$

- Watch Video Solution

6. Verify $-(-x)=x$ for $x=\frac{-7}{9}$

- Watch Video Solution

7. Verify $-(-x)=x$ for $x=\frac{13}{-15}$

- Watch Video Solution

8. Give one example each to show that the rational numbers are closed under addition, subtraction and multiplication. Are rational numbers closed under division? Give two examples in support of your answer.

- Watch Video Solution

9. Verify the property $x+y=y+x$ of rational numbers by taking
$x=\frac{1}{2}, y=\frac{1}{2}$

- Watch Video Solution

10. Verify the property $x+y=y+x$ of rational numbers by taking
$x=\frac{-2}{3}, y=\frac{-5}{6}$

- Watch Video Solution

11. Verify the property $\mathrm{x}+\mathrm{y}=\mathrm{y}+\mathrm{x}$ of rational numbers by taking $x=\frac{-3}{7}, y=\frac{20}{21}$

Watch Video Solution

12. Verify the property $\mathrm{x}+\mathrm{y}=\mathrm{y}+\mathrm{x}$ of rational numbers by taking
$x=\frac{-2}{5}, y=\frac{-9}{10}$

- Watch Video Solution

13. Simplify each of the following using suitable property.
(i) $\left[\frac{1}{2} \times \frac{1}{4}\right]+\left[\frac{1}{2} \times 6\right]$

- Watch Video Solution

14. Simplify each of the following by using suitable property. Also name the property.

$$
\left[\frac{1}{5} \times \frac{2}{15}\right]-\left[\frac{1}{5} \times \frac{2}{5}\right]
$$

- Watch Video Solution

15. Simplify each of the following by using suitable property. Also name the property.
$\frac{-3}{5} \times\left\{\frac{3}{7}+\left(\frac{-5}{6}\right)\right\}$

- Watch Video Solution

16. Tell which property allows you to compute

$$
\frac{1}{5} \times\left[\frac{5}{6} \times \frac{7}{9}\right] \text { as }\left[\frac{1}{5} \times \frac{5}{6}\right] \times \frac{7}{9}
$$

- Watch Video Solution

17. Verify the property $x \times y=y \times x$ of rational numbers by using
$x=7$ and $y=\frac{1}{2}$
and What is the name of this property?

Watch Video Solution

18. Verify the property $x \times y=y \times x$ of rational numbers by using $x=\frac{2}{3}$ and $y=\frac{9}{4}$
and What is the name of this property?

- Watch Video Solution

19. Verify the property $x \times y=y \times x$ of rational numbers by using $x=\frac{-5}{7}$ and $y=\frac{14}{15}$
and What is the name of this property?

- Watch Video Solution

20. Verify the property $x \times y=y \times x$ of rational numbers by using
$x=\frac{-3}{8}$ and $y=\frac{-4}{9}$
and What is the name of this property?
21. Verify the property $x \times(y \times z)=(x \times y) \times z$ of rational numbers by using
$x=1, y=\frac{-1}{2}$ and $z=\frac{1}{4}$.

- Watch Video Solution

22. Verify the property $x \times(y \times z)=(x \times y) \times z$ of rational numbers by using
$x=\frac{2}{3}, y=\frac{-3}{7}$ and $z=\frac{1}{2}$.

- Watch Video Solution

23. Verify the property $x \times(y \times z)=(x \times y) \times z$ of rational numbers by using
$x=\frac{-2}{7}, y=\frac{-5}{6}$ and $z=\frac{1}{4}$.
24. Verify the property $x \times(y \times z)=(x \times y) \times z$ of rational numbers by using
$x=0, y=\frac{1}{2}$.

- Watch Video Solution

25. Verify the property $x \times(y+z)=x \times y+x \times z$ of rational numbers by taking.
$x=\frac{-1}{2}, y=\frac{3}{4}, z=\frac{1}{4}$

- Watch Video Solution

26. Verify the property $x \times(y+z)=x \times y+x \times z$ of rational numbers by taking.
$x=\frac{-1}{2}, y=\frac{2}{3}, z=\frac{3}{4}$

- Watch Video Solution

27. Verify the property $x \times(y+z)=x \times y+x \times z$ of rational numbers by taking.
$x=\frac{-2}{3}, y=\frac{-4}{6}, z=\frac{-7}{9}$

- Watch Video Solution

28. Verify the property $x \times(y+z)=x \times y+x \times z$ of rational numbers by taking.
$x=\frac{-1}{5}, y=\frac{2}{15}, z=\frac{-3}{10}$

- Watch Video Solution

29. Use the distributibity of multiplication of rational numbers over their addition to simplify:
(i) $\frac{3}{5} \times\left(\frac{35}{24}+\frac{10}{1}\right)$
(ii) $\frac{-5}{4} \times\left(\frac{8}{5}+\frac{16}{5}\right)$
30. Use the distributibity of multiplication of rational numbers over their addition to simplify: $\frac{3}{5} x\left(\frac{35}{24}+\frac{10}{1}\right)$ (ii) $\frac{-5}{4} x\left(\frac{8}{5}+\frac{16}{5}\right)$

- Watch Video Solution

31. Use the distributibity of multiplication of rational numbers over their addition to simplify: $\frac{2}{7} x\left(\frac{7}{16}-\frac{21}{4}\right)$ (ii) $\frac{3}{4} x\left(\frac{8}{9}-40\right)$

- Watch Video Solution

32. Use the distributivity of multiplication of rational numbers over their addition to simplify:
(i) $\frac{2}{7} \times\left(\frac{7}{16}-\frac{21}{4}\right)$
(ii) $\frac{3}{4} \times\left(\frac{8}{9}-40\right)$

- Watch Video Solution

33. Simplify
$\frac{32}{5}+\frac{23}{11} \times \frac{22}{15}$

- Watch Video Solution

34. Simplify
$\frac{3}{7} \times \frac{28}{15} \div \frac{14}{5}$

Watch Video Solution
35. Simplify
$\frac{3}{7}+\frac{-2}{21} \times \frac{-5}{6}$

- Watch Video Solution

36. Simplify
$\frac{7}{8}+\frac{1}{16}-\frac{1}{12}$
37. Identify the rational number that does not belong with the other three. Explain your reasoning
$\frac{5}{11}, \frac{1}{2}, \frac{4}{9}, \frac{7}{3}$

- Watch Video Solution

38. The cost of $\frac{19}{4}$ metres of wire is Rs. $\frac{171}{2}$. Find the cost of one metre of the wire.

- Watch Video Solution

39. A train travels $\frac{1445}{2} \mathrm{~km}$ in $\frac{17}{2}$ hours. Find the speed of the train in km/h.

- Watch Video Solution

40. If 16 shirts of equal size can be made out of 24 m of cloth, how much cloth is needed for making one shirt?

Watch Video Solution

41. $\frac{7}{11}$ of all the money in Hamid's bank account is Rs. 77,000 . How much money does Hamid have in his bank account?

- Watch Video Solution

42. A $117 \frac{1}{3} \mathrm{~m}$ long rope is cut into equal pieces measuring $7 \frac{1}{3} \mathrm{~m}$ each. How many such small pieces are these?

- Watch Video Solution

43. $\frac{1}{6}$ of the class students are above average, $\frac{1}{4}$ are average and rest are below average. If there are 48 students in all, how many students are
below average in the class?

- Watch Video Solution

44. $\frac{2}{5}$ of total number of students of a school come by car while $\frac{1}{4}$ of students come by bus to school. All the other students walk to school of which $\frac{1}{3}$ walk on their own and the rest are escorted by their parents. If 224 students come to school walking on their own, how many students study in that school?

- Watch Video Solution

45. Huma, Hubna and Seema received a total of Rs. 2,016 as monthly allowance from their mother such that Seema gets $\frac{1}{2}$ of what Huma gets and Hubna gets $1 \frac{2}{3}$ times Seema's share. How much money do the three sisters get individually?

- Watch Video Solution

46. A mother and her two daughters got a room constructed for Rs. 62,000. The elder daughter contributes $\frac{3}{8}$ of her mother's contribution while the younger daughter contributes $\frac{1}{2}$ of her mother's share. How much do the three contribute individually?

- Watch Video Solution

47. Tell which property allows you to compare $\frac{2}{3} \times\left[\frac{3}{4} \times \frac{5}{7}\right]$ and $\left[\frac{2}{3} \times \frac{5}{7}\right] \times \frac{3}{4}$

- Watch Video Solution

48. Name the property used in the following.
$\frac{-7}{11} \times \frac{-3}{5}=\frac{-3}{5} \times \frac{-7}{11}$

- Watch Video Solution

49. Name the property used in the following.
$-\frac{2}{3} \times\left[\frac{3}{4}+\frac{-1}{2}\right]=\left[\frac{-2}{3} \times \frac{3}{4}\right]+\left[\frac{-2}{3} \times \frac{-1}{2}\right]$

- Watch Video Solution

50. Name the property used in the following.
$\frac{1}{3}+\left(\frac{4}{9}+\left(\frac{-4}{3}\right)\right)=\left(\frac{1}{3}+\frac{4}{9}\right)+\left(\frac{-4}{3}\right)$

- Watch Video Solution

51. Name the property used in the following.
$\frac{-2}{7}+0=0+\frac{-2}{7}=-\frac{2}{7}$

Watch Video Solution

52. Name the property used in the following.
$\frac{3}{8} \times 1=1 \times \frac{3}{8}=\frac{3}{8}$

- Watch Video Solution

53. Find the multiplicative inverse of
$\begin{array}{ll}\text { (i) }-\frac{1}{8} & \text { (ii) } 3 \frac{1}{3}\end{array}$

- Watch Video Solution

54. Arrange the numbers $\frac{1}{4}, \frac{13}{16}, \frac{5}{8}$ in the descending order.

- Watch Video Solution

55. The product of two rational numbers is $\frac{-14}{27}$. If one of the numbers be $\frac{7}{9}$, find the other.

- Watch Video Solution

56. By what number should we multiply $\frac{-15}{28}$ so that the product may be $\frac{-5}{7}$?

Watch Video Solution

57. By what number should we multiply $\frac{-8}{13}$ so that the product may be 24 ?

- Watch Video Solution

58. The product of two rational numbers is -7 . If one of the number is -5 , find the other?

- Watch Video Solution

59. Can you find a rational number whose multiplicative inverse is -1 ?
60. Find five rational numbers between 0 and 1 .

- Watch Video Solution

61. Find two rational numbers whose absolute value is $\frac{1}{5}$.

- Watch Video Solution

62. From a rope 40 metres long, pieces of equal size are cut. If the length of one piece is $\frac{10}{3}$ metre, find the number of such pieces.

- Watch Video Solution

63. $5 \frac{1}{2}$ metres long rope is cut into 12 equal pieces. What is the length of each piece?
64. Write the following rational numbers in the descending order.
$\frac{8}{7}, \frac{-9}{8}, \frac{-3}{2}, 0, \frac{2}{5}$

- Watch Video Solution

65. Find $0 \div \frac{2}{3}$

- Watch Video Solution

66. Find $\frac{1}{3} \times \frac{-5}{7} \times \frac{-21}{10}$

- Watch Video Solution

67. On a winter day the temperature at a place in Himachal Pradesh was
$-16^{\circ} \mathrm{C}$. Convert it in degree Fahrenheit (${ }^{\circ} F$) by using the formula.
$\frac{C}{5}=\frac{F-32}{9}$
68. Find the sum of additive inverse and multiplicative inverse of 7 .

- Watch Video Solution

69. Find the product of additive inverse and multiplicative inverse of $-\frac{1}{3}$.

- Watch Video Solution

70. The diagram shows the wingspans of different species of birds. Use the diagram to answer the question given below:

(a) How much longer is the wingspan of an Albatross than the wingspan

of a Sea gull?

(b) How much longer is the wingspan of a Golden eagle than the wingspan of a Blue jay?

Watch Video Solution

71. Shalini has to cut out circles of diameter $1 \frac{1}{4} \mathrm{~cm}$ from an aluminium strip of dimensions $8 \frac{3}{4} \mathrm{~cm}$ by $1 \frac{1}{4} \mathrm{~cm}$. How many full circles can Shalini cut? Also calculate the wastage of the aluminium strip.

- Watch Video Solution

72. One fruit salad recipe requires $\frac{1}{2}$ cup of sugar. Another recipe for the same fruit salad requires 2 tablespoons of sugar. If 1 tablespoon is equivalent to $\frac{1}{16}$ cup, how much more sugar does the first recipe require?
73. Four friends had a competition to see how far could they hop on one foot. The table given shows the distance covered by each.

Name	Distance covered (km)
Seema	$\frac{1}{25}$
Nancy	$\frac{1}{32}$
Megha	$\frac{1}{40}$
Sont	$\frac{1}{20}$

(a) How farther did Soni hop than Nancy?
(b) What is the total distance covered by Seema and Megha?
(c) Who walked farther, Nancy or Megha?

- Watch Video Solution

74. The table given below shows the distances, in kilometres, between four villages of a state. To find the distance between two villages, locate the square where the row for one village and the column for the other
village intersect.
(a) Compare the distance between Himgaon and Rawalpur to Sonapur and Ramgarh?
(b) If you drove from Himgaon to Sonapur and then from Sonapur to Rawalpur, how far would you drive?

- Watch Video Solution

75. The table shows the portion of some common materials that are recycled.

Material	Recycled
Paper	$\frac{5}{11}$
Alımblımm cans	$\frac{5}{8}$
(ilass	$\frac{2}{5}$
Scrap	$\frac{3}{4}$

(a) Is the rational number expressing the amount of paper recycled more
than $\frac{1}{2}$ or less than $\frac{1}{2}$?
(b) Which items have a recycled amount less than $\frac{1}{2}$?
(c) Is the quantity of aluminium cans recycled more (or less) than half of the quantity of aluminium cans?
(d) Arrange the rate of recycling the materials from the greatest to the smallest.

- Watch Video Solution

76. The overall width in cm of several wide-screen televisions are 97.28 cm , $98 \frac{4}{9} \mathrm{~cm}, 98 \frac{1}{25} \mathrm{~cm}$ and 97.94 cm . Express these numbers as rational numbers in the form $\frac{p}{q}$ and arrange the widths in ascending order.

- Watch Video Solution

77. Roller Coaster at an amusement park is $\frac{2}{3} \mathrm{~m}$ high. If a new roller coaster is built that is $\frac{3}{5}$ times the height of the existing coaster, what will be the height of the new roller coaster?
78. Here is a table which gives the information about the total rainfall for several months compared to the average monthly rains of a town. Write each decimal in the form of rational number $\frac{p}{q}$.

- Watch Video Solution

79. The average life expectancies of males for several states are shown in the table. Express each decimal in the form $\frac{p}{q}$ and arrange the states from the least to the greatest male life expectancy. State-wise data are included below, more indicators can be found in the "FACTFILE" section on the homepage for each state.

State	Male
Andhra Pradesh	61.6
Assam	57.1
Bihar	60.7
Gujarat	61.9
Haryana	64.1
Hımachal Pradesh	65.1
Karnataka	62.4
Kerala	70.6
Madhya Pradesh	56.5
Maharashtra	64.5
Ortssa	57.6
Punjab	66.9
Rajasthan	59.8
Tamıl Nadu	63.7
Uttar Pradesh	58.9
West Bengal	62.8
Indla	60.8

Source: Registrar General of India (2003) SRS Based Abridged Lefe Tables.

SRS Analytical Studies, Report No. 3 of 2003, New Delhi: Registrar General of India. The data are for the 1995-99 period, states subsequently divided are therefore included in their pre-partition states (Chhatisgarh in MP, Uttaranchal in UP and Jharkhand in Bihar)

- Watch Video Solution

80. A skirt that is $35 \frac{7}{8} \mathrm{~cm}$ long has a hem of $3 \frac{1}{8} \mathrm{~cm}$. How long will the skirt be if the hem is let down?
81. Manavi and Kuber each receives an equal allowance. The table shows the fraction of their allowance each deposits into his/her saving account and the fraction each spends at the mall. If allowance of each is Rs. 1260 find the amount left with each.

Where money goes	Fraction of allowance	
	Manavi	Kuber
Saving Account	$\frac{1}{2}$	$\frac{1}{3}$
Spend at mall	$\frac{1}{4}$	$\frac{3}{5}$
Left over	$?$	$?$

Watch Video Solution

82. Read the problem given below, and then answer the questions that follow

Five friends are standing in line for the opening of a show. They are in line according to their arrival. Shreya arrived 3 minutes after Sachin. Roy took
his place in line at 9:01 P.M. He was 1 minute behind Reena and 7 minutes ahead of Shreya. The first person arrived at 9:00 P.M. Babu showed up 6 minutes after the first person. List the time of each person's arrival.

Whose arrival information helped you determine each person's arrival time?

- Watch Video Solution

83. Read the problem given below, and then answer the questions that follow

Five friends are standing in line for the opening of a show. They are in line according to their arrival. Shreya arrived 3 minutes after Sachin. Roy took his place in line at 9:01 P.M. He was 1 minute behind Reena and 7 minutes ahead of Shreya. The first person arrived at 9:00 P.M. Babu showed up 6 minutes after the first person. List the time of each person's arrival.

Can you determine the order without the time?

- Watch Video Solution

84. Read the problem given below, and then answer the questions that follow

Five friends are standing in line for the opening of a show. They are in line according to their arrival. Shreya arrived 3 minutes after Sachin. Roy took his place in line at 9:01 P.M. He was 1 minute behind Reena and 7 minutes ahead of Shreya. The first person arrived at 9:00 P.M. Babu showed up 6 minutes after the first person. List the time of each person's arrival. List the friends' order of arrival from the earliest to the last.

- Watch Video Solution

Games And Puzzles

1. Given below is a magic square. Place the numbers $\frac{70}{95}, \frac{-21}{-133}, \frac{25}{95}, \frac{24}{38}$ in the appropriate squares so that sum in each row, column and diagonal is equal.

Hint: (Rewrite each rational number in its lowest term.)

- Watch Video Solution

Think And Discuss

1. Some other easier ways to find the answer.

Is the product greater than both the rational numb or less than both the rational numbers?

