

MATHS

BOOKS - S CHAND IIT JEE FOUNDATION

CIRCLES

Question Bank 24

1. O is the centre of a circle with radius 5 cm. LM

is the diameter of the circle. P is a point on the

plane of the circle such that LP = 6 cm and MP = 8 cm. Then P lies.

A. on LM

B. outside the circle

C. inside the circle

D. on the circle

Answer: D

Watch Video Solution

1. The chord of a circle is equal to its radius, find the angle subtended by this chord at the centre.

- A. 60°
- B. 75°
- C. 120°
- D. 150°

Answer: D

Watch Video Solution

Question Bank 26

1. Given a circle with centre O. The smallest chord

PQ is of length 4 cm largest chord AB is of

length 10 cm and chord EF is of length 7 cm.

Then, the radius of the circle is

A. 3 cm

B. 2 cm

C. 5 cm

D. 3.5 cm

Answer: C

Question Bank 27

1. The radius of a circle is 6 cm. The perpendicular distance from the centre of the circle to the chord which is 8 cm in length is

A.
$$\sqrt{5}$$
 cm

B.
$$2\sqrt{5}$$
 cm

C.
$$2\sqrt{7}$$
 cm

D.
$$\sqrt{7}$$
 cm

Answer: B

Watch Video Solution

Question Bank 28

1. PQ and RS are two parallel chords of a circle with centre C such that PQ = 8 cm and RS = 16 cm.

If the chords are on the same side of the centre and the distance between them is 4 cm, then the radius of the circle is:

A. $3\sqrt{2}$ cm

- B. $3\sqrt{5}$ cm
- C. $4\sqrt{5}$ cm
- D. $5\sqrt{5}$ cm

Answer: C

Watch Video Solution

Question Bank 29

1. In the given figure, O is the centre of the circle.

The measure of \angle ADB is

A. 90°

B. 85°

C. 95°

D. 120°

Answer: C

watch video Solution

Question Bank 30

1. Given that AOB is a straight line and O is the centre of the circle. Find the value of y.

- A. 44°
- B. 11°
- C. 68°
- D. 36°

Answer: C

Watch Video Solution

Question Bank 31

1. In the given diagram, AB is the diameter of the given circle with centre O. C and D are points on the circumference of the circle. If $\angle ABD=35^\circ$ and $\angle CDB=15^\circ$, then \angle CBD equals.

A. 55°

B. 75°

C. 40°

D. 25°

Answer: C

Watch Video Solution

Question Bank 32

1. In the diagram, A, B, C, D, E are points on the circle.

AB||DC,

 $\angle ADE = 39^{\circ} \; ext{ and } \; \angle ABC = 62^{\circ}. \; ext{ Then } \; ext{ the}$

values of x and y respectively are:

A. 23° , 51°

B.
$$79^{\circ}$$
 , 62°

C.
$$62^{\circ}$$
 , 79°

D.
$$51^\circ$$
 , 23°

Answer: B

Question Bank 33

1. In the given figure, O is the centre of the circle,

$$\angle ACB = 54^{\circ}$$
 and BCF is a straight line. Find x.

B. 54°

C. 108°

D. 90°

Answer: C

Watch Video Solution

Question Bank 34

1. In the given figure, BOD is the diameter of the circle with centre O.

 $\angle COD = 92^{\circ} \; ext{ and } \; \angle ABD = 65^{\circ}. \;\;\; ext{Then} \;\;\; \mathsf{y}$

equals

A. 65°

B. 46°

C. 44°

D. 21°

Answer: D

Watch Video Solution

Question Bank 35

1. O is the centre of the circle x and y respectively equal.

- A. 38° , 45°
- B. 35° , 62°
- C. 62° , 35°
- D. 46° , 38°

Answer: B

Watch Video Solution

Question Bank 36

1. In the given figure, AB and AC are tangents to the circle with centre O. Given that $\angle BAC=70^\circ$ and P is a point on the minor are BC, find \angle BPC.

A. 110°

B. 140°

C. 125°

D. 136°

Answer: C

Watch Video Solution

Question Bank 37

1. The length of a tangent drawn from a point 10 cm away from the centre of the circle of radius 5 cm is

A. 5 cm

- B. $5\sqrt{3}$ cm
- C. $2\sqrt{3}$ cm
- D. $\sqrt{15}$ cm

Answer: B

Watch Video Solution

Question Bank 38

1. In the figure shown here, a circle touches the side BC of a triangle ABC at P and AB and AC

produced at Q and R respectively. What is AQ equal to?

A. One-third of the perimeter of Δ ABC.

B. Half of the perimeter of Δ ABC.

- C. Two-third of the perimeter of Δ ABC
- D. Three-fourth of the perimeter of Δ ABC

Answer: B

Watch Video Solution

Question Bank 39

1. In the given figure, AB and AC are tangents to the circle at B and C respectively and O is the

centre of the circle, then x equals

- A. $65^{\,\circ}$
- B. 32.5°
- C. 57.5°
- D. 45°

Answer: C

Watch Video Solution

Question Bank 40

1. ABC is an isosceles triangle (AB = AC) circumscribed about a circle. Then, which of the following statements is correct?

A. BD = AD

$$B. AD = CF$$

$$C. BF = CF$$

$$D.AE = BF$$

Answer: C

Watch Video Solution

Question Bank 41

1. In the figure, CDE is a straight line and A, B, C and D are points on the circle. $\angle BCD = 44^{\circ}$,

find the value of x.

A. 44°

B. 68°

C. 90°

D. 56°

Answer: C

Question Bank 42

1. From a point P which is at a distance of 13 cm from the centre O of a circle of radius 5 cm, the pair of tangents PQ and PR to the circle are drawn. Then the area of the quadrilateral PQOR is:

A. 60 cm^2

B. 65 cm^2

C. 30 cm^2

D. 32.5 cm^2

Answer: A

Watch Video Solution

Question Bank 43

1. In the given figure, $\angle AFD = 25^{\circ}$. $\therefore \angle EFC$ equals

A. $65^{\,\circ}$

B. $155^{\,\circ}$

C. 90°

D. 25°

Answer: D

Watch Video Solution

Self Assessment Sheet 24

1. O is the centre of a circle. There is a point P in the region of the circle. If PA = PB = PC where A, B and C are points on the circumference of the circle, then OP must be equal to:

A.
$$\frac{PA + PB + PC}{3}$$

$$\mathsf{B.}\; \frac{PA+PB+PC}{2}$$

$$\mathsf{C.}\,\frac{AB+BC}{2}$$

D. zero

Answer: D

2. In the given figure, O is the centre of the circle.

Given that OD = OE = 3 cm and AD = 4 cm. Find the length of the longest chord.

A. 6 cm

B. 8 cm

C. 10 cm

D. 9 cm

Answer: C

Watch Video Solution

3. AOD is a diameter of the circle with centre O.

Given that

 $\angle BDA = 18^{\circ} \ \ {
m and} \ \ \angle BDC = 38^{\circ} \ . \ \angle BCD$

equals

A. 90°

B. 108°

C. 76°

D. 52°

Answer: B

- **4.** Tangents drawn at the end points of a diameter are
 - A. Perpendicular
 - B. Parallel
 - C. Intersecting
 - D. None of these

Answer: B

5. In the given figure, AB is a chord of the circle with centre O and PQ is a tangent at point B of

the circle. If $\angle AOB = 110^{\circ}$, then \angle ABQ is

A. $45^{\,\circ}$

B. $70\,^\circ$

C. 55°

D. $35\,^\circ$

Answer: C

Watch Video Solution

6. In the given figure, if PA and PB are tangents to the circle with centre O such that $\angle APB = 54^\circ$, then \angle OAB equals

A. 36°

B. 18°

C. 27°

D. 36°

Answer: C

Watch Video Solution

7. If two tangents inclined at an angle of 60° are drawn to a circle of radius 4 cm, then the length of each tangent is equal to :

A.
$$2\sqrt{3}$$
 cm

D.
$$4\sqrt{3}$$
 cm

Answer: D

8. In the given figure, RST is the tangent to the circle with centre O, at S. AOS is a straight line BO||RT and $\angle ORS = 46^{\circ}$. Then \angle BAC equals

- A. 22°
- B. 46°
- C. 23°
- D. 32°

Answer: C

Watch Video Solution

9. In the diagram, CB and CD are tangents to the circle with centre O. AOC is a straight line and

 $\angle OCB = 34^{\circ}$. $\angle ABO$ equals.

A. 56°

B.
$$28^{\circ}$$

C.
$$34^{\circ}$$

D.
$$32^{\circ}$$

Answer: B

Watch Video Solution

10. ED is the tangent to the circle with centre O.

 $\angle BCD = 52^{\circ}$. Then, \angle CAB equals

A. 38°

B. 76°

C. 52°

D. 46°

Answer: C

Watch Video Solution

Unit Test 4

1. ABC is an isosceles triangle in which altitudes

BE and CF are drawn to equal sides AC and AB

respectively (see Fig. 7.31). Show that these altitudes are equal.

A.
$$\angle B = \angle C$$

B.
$$\angle BAE = \angle FAC$$

$$\mathsf{C}.\, \angle AFC = \angle AEB$$

Answer: A

Watch Video Solution

2. In the given figure, ΔCDE is an equlatel triangle triangle formed on a side CD of a square

ABCD.Show that $\Delta ADE \cong \Delta BCE$.

A. RHS

B. SSS

C. AAS

D. SAS

Answer: D

3. The centroid and the orthocentre are coincident for which one of the following triangles?

A. Scalene triangle

- B. Isosceles triangle
- C. Equilateral triangle
- D. Right angled triangle

Answer: C

Watch Video Solution

4. ABC is an isosceles triangle right angled at B. Similar triangles ACD and ABE are constructed on sides AC and AB. The ratio between the areas of ΔABE and ΔACD is

A.
$$\sqrt{2}:1$$

B.
$$1:2$$

D.
$$\sqrt{2}:1$$

Answer: B

Watch Video Solution

5. In $\triangle ABC$ and $\triangle DEF$, it is given that AB = 5 cm, BC = 4 cm, CA = 4.2 cm, DE = 10 cm, EF = 8 cm and FD = 8.4 cm. If AL is perpendicular to BC and

DM is perpendicular to EF, then what is the ratio of AL to DM.

- A. $\frac{1}{2}$
- $\mathsf{B.}\;\frac{1}{3}$
- C. $\frac{1}{4}$

D. 1

Answer: A

Watch Video Solution

6. In \triangle PQR, PQ = 4 cm, QR = 3 cm, and RP = 3.5 cm. Δ DEF is similar to Δ PQR. If EF = 9 cm, then what is the perimeter of Δ DEF ?

A. 10.5 cm

B. 21 cm

C. 31.5 cm

D. Cannot be determined as data is

insufficient

Answer: C

Vatch Video Solution

7. In a \triangle PQR, perpendicular Ps from P to QR meets QR at S. If PS : QS : RS = 2 : 4 : 1, then which of the following is correct ?

A. PQR is an equilateral triangle

B. PQR is right angled at P

C. PQR is an isosceles triangle

D. PQ = 3 PR

Answer: B

Watch Video Solution

8. s at t are transversals cutting a set of parallel lines such that a segment of length 3 in s corresponds to a segment of length 5 in t. What is the length of segment in t corresponding to a segment of length 12 in s?

B.
$$\frac{36}{5}$$

D.
$$\frac{5}{4}$$

Answer: A

Watch Video Solution

9. A point within an equilateral triangle, where perimeter is 18 m is 1 m from one side and 2 m from another side. Its distance from the third side is:

A.
$$3\sqrt{3}+3$$

B.
$$3\sqrt{3} - 3$$

$$\mathsf{C.}\,3-\sqrt{3}$$

D.
$$3+\sqrt{3}$$

Answer: B

Watch Video Solution

10. The perimeter of two similar triangles are 24 cm and 1 cm respectively. If one side of the first triangle is 10 cm, then the corresponding side of the second triangle is

A. 9 cm

B. 20/3 cm

C. 16/3 cm

D. 5 cm

Answer: B

Watch Video Solution

11. In a circle of radius 10 cm, a chord is drawn 6 cm from the centre. If a chord half the length of the original chord were drawn, its distance in centimeters from the centre would be

A. $\sqrt{84}$

- B. 9
- C. 8
- D. 3π

Answer: A

Watch Video Solution

12. The number of tangents that can be drawn to two non-intersecting circles is

A. 4

- B. 3
- C. 2
- D. 1

Answer: A

Watch Video Solution

13. ABCD is a parallelogram. A circle passes through A and D and cuts AB at E and DC at F.

Given $\angle BEF = 80^{\circ}$, find $\angle ABC$.

A. 100°

B. 40°

C. 80°

D. 104°

Answer: C

14. In the given figure, PR is the diameter of the circle. PQ = 7 cm, QR = 6 cm and RS = 2 cm. The perimeter of the cyclc quadrilateral PQRS is

A. 18 cm

B. $20\sqrt{2}$ cm

C. 24 cm

D. $22\sqrt{3}$ cm

Answer: C

Watch Video Solution

15. In the given figure, \angle y equals

- A. 75°
- B. 145°
- C. 90°
- D. 105°

Answer: D

Watch Video Solution

16. TP and TQ are tangents from T to the circle with centre O. Then is it possible to draw a circle

through the points P, O, Q and T?

A. No

B. Yes

C. Cannot say

D. Data insufficient

Answer: B

Watch Video Solution

17. BC, AB and AC are tangents to the circle at D,

E and F respectively.

$$\angle EBD = x^{\circ}, \angle FCD = y^{\circ}.$$
 Then \angle EDF equals

A. x + y

B. $\frac{x}{2} - y$

C.
$$90^{\circ}-(x+y)$$

D.
$$\frac{x+y}{2}$$

Answer: D

Watch Video Solution

18. Find ∠ y.

- A. 32°
- B. 72°
- C. 64°
- D. 44°

Answer: C

Watch Video Solution

19. TP and TQ are the tangents to a circle, with centre O. Find x.

A. $15^{\,\circ}$

B. 60°

C. 30°

D. 45°

Answer: C

Watch Video Solution

20. AB and AC are tangents to the circle with centre O. Then x equals.

B. 18°

C. 20°

D. 36°

Answer: B

Watch Video Solution

21. Diagonals of a quadrilateral bisect each other.

If $\angle A=45^{\circ}$, then \angle B equals

A. 45°

B. 55°

C. 135°

D. 115°

Answer: C

Watch Video Solution

22. If APB and CQD are two parallel lines, then the bisectors of the angles APQ, BPQ, CQP and PQD form

A. square

B. a rhombus

C. a rectangle

D. kite

Answer: C

Watch Video Solution

23. The interior angle of a regular polygon with n sides is 6 times that of an exterior angle of a regular polygon with $\frac{3}{2}$ n sides. Then n equals

A. 12

B. 20

C. 10

D. 18

Answer: C

Watch Video Solution

24. In the given figure, ABCD is a square. M is the midpoint of AB and $PQ \perp CM$. Which of the

following statements is not true?

A.AM = MB

B. CP = CQ

C. CP = CB

D. PM = MQ

Answer: C

Watch Video Solution

AC||ED. Given that

25. In the diagram, ACDE is a trapezium with

 $\angle EAB = 52^{\circ}, \angle CDR = 126^{\circ} \text{ and } \angle PBC = 90^{\circ}$

and EQ||DR. Then \angle BCD equals

- A. 36°
- B. 74°
- C. 54°
- D. 38°

Answer: B

Watch Video Solution