©゙" doubtnut

India's Number 1 Education App

MATHS

BOOKS - S CHAND IIT JEE FOUNDATION

TRIANGLES

Solved Examples

1. In the given figure, line I is the bisector of an
angle A and B is any point on $I . B P$ and $B Q$ are
perpendiculars from B to the arms of $\angle A$.

Show that B is equidistant from the arms of
$\angle A$.

D Watch Video Solution

2. $A B C$ is a triangle and D is the mid-point of
$B C$. The perpendiculars from D to $A B$ and
$A C$ are equal. Prove that the triangle is isosceles.

D Watch Video Solution

3. In Fig. 4.91, $Q A$ and $P B$ are perpendiculars
to $A B$. If $A O=10 \mathrm{~cm}, B O=6 \mathrm{~cm}$ and
$P B=9 \mathrm{~cm}$. Find $A Q$. (FIGURE)

D Watch Video Solution
4. D is a point on the side $B C$ of $A B C$ such
that $\angle A D C=\angle B A C$. Prove that $\frac{C A}{C D}=\frac{C B}{C A}$ or, $C A^{2}=C B \times C D$.

- Watch Video Solution

5. If $\triangle A B C$ is similar to $\triangle D E F$ such that $B C=3 \mathrm{~cm}, E F=4 \mathrm{~cm} \quad$ and \quad area \quad of
$\triangle A B C=54 \mathrm{~cm}^{2}$. Find the area of $\triangle D E F$.

- Watch Video Solution

6. Prove that the area of the equilateral triangle described on the side of a square is half the area of the equilateral triangle described on its diagonal.

D Watch Video Solution

7. In an isosceles triangle $A B C$ with $A B=A C, B D$
is perpendicular from B to side $A C$. Prove that
$B D^{2}-C D^{2}=2 C D . A D$
8. In the given figure, M is the mid-point of the side CD of the parallelogram $A B C D$. What is ON:OB?

A. 3:2
B. 2:1
C. 3:1
D. $5: 2$

Answer: A::B

D Watch Video Solution

9. In the given triangle, $A B$ is parallel to $P Q . A P=c, P C=b, P Q=a, A B=x$. What is the value of
x ?

D Watch Video Solution

10. In Fig. 7.86, if D and E trisects $B C$. Prove that
$8 A E^{2}=3 A C^{2}+5 A D^{2}$.

Fig. 7.86

- Watch Video Solution

Question Bank

1. In the given figure, $\triangle R T Q \cong \triangle P S Q$ by ASA
congruency condition. Which of the following
pairs does not satisfy the condition.

A. $P Q=Q R$
B. $\angle P=\angle R$
C. $\angle T Q P=\angle S Q R$
D. None of these

Answer: D
2. It is given that $A B=B C$ and $A D=E C$.

The $\triangle A B C \cong \triangle C B D$ by _-_-_-_ congruency.

A. SSS
B. ASA
C. SAS

D. AAS

Answer: C

D Watch Video Solution

3. $A B C D$ is a quadrilateral. $A M$ and $C N$ are perpendiculars to $B D, A M=C N$ and diagonals

AC and BD intersect at O, then which one of the following is correct?
A. $\mathrm{AO}=\mathrm{OC}$

B. $\mathrm{BO}=\mathrm{OD}$

C. $\mathrm{AO}=\mathrm{BO}$
D. $\mathrm{CO}=\mathrm{DO}$

Answer: A

D Watch Video Solution
4. Squares ABDE and ACFH are drawn externally on the sides $A B$ and $A C$ respectively of a scalene $\triangle A B C$. Which one of the following is correct?
A. $\mathrm{BH}=\mathrm{CE}$
B. $A D=A F$
C. $B F=C D$
D. $D F=E H$

Answer: A

D Watch Video Solution

5. In the given figure, the two sides $A B$ and $B C$, and the median AD of $\triangle A B C$ are correspondingly equal to the two sides PQ and

QR , and the medium PM of $\triangle P Q R$. Prove that $\triangle A B C \cong \triangle P Q R$.

A. $\triangle A B D \cong \triangle P Q M$

B. $\triangle A B C \cong \triangle P Q R$
C. $\triangle A B D \cong \Delta P M R$
D. $\triangle A D C \cong \Delta P M R$

Answer: C

D Watch Video Solution

6. In the given figure, $O A=O B, O C=O D$,
$\angle A O B=\angle C O D$. Which of the following
statements is true?

A. $A C=C D$
B. $O A=O D$
C. $A C=B D$

D. $\angle O C A=\angle O D C$

Answer: C

D Watch Video Solution

7. $P S$ is a median and QL and RM are perpendiculars drawn from Q and R respectively on PS and PS produced. Then
which of the following statements is correct?

A. $P Q=R M$
B. QL=RM
C. $\mathrm{PL}=\mathrm{SR}$
D. $P S=S M$

Answer: B
8. In the adjoining figure, QX and RX are the bisectors of the angles Q and R respectively of the angles Q and R respectively of the triangle PQR . If $X S \perp P Q$. Prove that :
(i) $\Delta X T Q \cong \triangle X S Q$
(ii) PX bisects angle P.

A. SAS
B. RHS
C. AAS
D. ASA

Answer: C

D Watch Video Solution

9. In the given figure $A D=B C, A C=B D$.

Then $\Delta P A B$ is

A. equilateral
B. right angled
C. scalene
D. isosceles

Answer: D

- Watch Video Solution

10. In a right angled triangle, one acute angle
is double the other. The hypotenuse is
the smallest side.
A. $\sqrt{2}$ times
B. three times
C. double
D. 4 times

Answer: C

D Watch Video Solution
11. If $\triangle A B C \sim \triangle E D F$ and $\triangle A B C$ is not similar to $\triangle D E F$, then which of the following is not true?
A. $B C \cdot E F=A C . F D$
B. $A B \cdot E F=A C . D E$
C. $B C . D E=A B . E F$
D. $B C . D E=A B . F D$

Answer: C

D Watch Video Solution
12. In the figure, x equals

A. $\frac{a b}{a+c}$
B. $\frac{a c}{a+b}$
C. $\frac{a c}{b+c}$
D. $\frac{a b}{b+c}$

Answer: C

D Watch Video Solution
13. What value of x will make $D E \| A B$ in the given figure?

A. $x=3$
B. $x=2$

C. $x=1$

$$
\text { D. } x=5
$$

Answer: B

- Watch Video Solution

14. If the medians of two equilateral triangles
are in the ratio $3: 2$, then what is ratio of the sides?
A. $1: 1$
B. $2: 3$
C. $3: 2$
D. $\sqrt{3}: \sqrt{2}$

Answer: C

D Watch Video Solution

15. The areas of two similar triangles are 121
cm^{2} and $64 \mathrm{~cm}^{2}$ respectively. If the median of
the first triangle is 12.1 cm , then the corresponding median of the other is :
A. 6.4 cm
B. 10 cm
C. 8.8 cm
D. 3.2 cm

Answer: C

D Watch Video Solution
16. In the given figure, $D E$ is parallel to $B C$ and
the ratio of the areas of $\triangle A D E$ and trapezium BDEC is $4: 5$. What is $\mathrm{DE}: \mathrm{BC}$?
A. $1: 2$
B. 2:3
C. $4: 5$
D. None of these

Answer: B

D Watch Video Solution
17. ABCD is a trapezium in which $A B|\mid C D$
and $A B=2 C D$. It its diagonals intersect
each other at O then ratio of the area of triangle $A O B$ and COD is
A. $1: 2$
B. $2: 1$
C. $4: 1$
D. 1: 4

Answer: C
(Watch Video Solution
18. $A B, E F$ and $C D$ are parallel lines. Given that
$E G=5 \mathrm{~cm}, \mathrm{GC}=10 \mathrm{~cm}, \mathrm{AB}=15 \mathrm{~cm}$ and $\mathrm{DC}=18 \mathrm{~cm}$.

What is the value of $A C$?

A. 20 cm
B. 24 cm
C. 25 cm
D. 28 cm

Answer: C

D Watch Video Solution

19. In the given figure, if $P A=x, R C=y$ and $Q B=$ z , then which one of the following is correct?

A. $2 y=x+z$
B. $4 y=x+z$
C. $x y+y z=x z$
D. $x y+x z=y z$

Answer: C

D Watch Video Solution
20. In $\Delta P Q R, \mathrm{QR}=10, \mathrm{RP}=11$ and $\mathrm{PQ}=12$. D is the midpoint of $P R$, $D E$ is drawn parallel to $P Q$
meeting $Q R$ in E. EF is drawn parallel to RP meeting PQ in F. What is the length of DF?

> A. $\frac{11}{2}$
> B. 6
> C. $\frac{33}{4}$
> D. 5

Answer: D

D Watch Video Solution
21. The hypotenuse of a right triangle is 6 m more than twice the shortest side. If the third side is 2 m less than the hypotenuse, find the hypotenuse of the triangle.
A. 24 m
B. 34 m
C. 26 m
D. 10 m

Answer: C

22. If the distance from the vertex to the centroid of an equilateral triangle is 6 cm , then what is the area of the triangle?
A. $24 \mathrm{~cm}^{2}$
B. $27 \sqrt{3} \mathrm{~cm}^{2}$
C. $12 \mathrm{~cm}^{2}$
D. $12 \sqrt{3} \mathrm{~cm}^{2}$

Answer: B
23. $\triangle A B C$ is an equilateral triangle such that
$\mathrm{AD} \perp \mathrm{BC}$, then $A D^{2}=$
A. $\frac{3}{2} D C^{2}$
B. $2 D C^{2}$
C. $3 C D^{2}$
D. $4 D C^{2}$

Answer: C

24. P and Q are points on the sides $C A$ and
$C B$ respectively of $A B C$, right angled at C.
Prove that $A Q^{2}+B P^{2}=A B^{2}+P Q^{2}$.
A. $B C^{2}+P Q^{2}$
B. $A B^{2}+P C^{2}$
C. $A B^{2}+P Q^{2}$
D. $B C^{2}+A C^{2}$

Answer: C
25. ABC is a right-angled triangle, right angled at A and $A D$ is the altitude on $B C$. If $A B: A C=$ $3: 4$, what is the ratio $\mathrm{BD}: \mathrm{DC}$?
A. 3:4
B. 9:16
C. 2:3
D. 1:2

Answer: B
26. $A B C$ is a right angle triangle right angled at
A. A circle is inscribed in it the length of the two sidescontaining right angle are 6 cm and 8 cm then the radius of the circle is
A. 3 cm
B. 2 cm
C. 5 cm
D. 4 cm

Answer: B

- Watch Video Solution

27. $\triangle A B C$ is right angled at A and $A D \perp B C$
. Then $\frac{B D}{D C}=$
A. $\left(\frac{A B}{A C}\right)^{2}$
B. $\frac{A B}{A C}$
c. $\left(\frac{A B}{A D}\right)^{2}$
D. $\frac{A B}{A D}$

Answer: B

D Watch Video Solution

28. If $A B C$ is a right angled triangle at B and M,
N are the mid-points of $A B$ and $B C$, then
$4\left(A N^{2}+C M^{2}\right)$ is equal to :
A. $4 A C^{2}$
B. $5 A C^{2}$
C. $\frac{5}{4} A C^{2}$
D. $6 A C^{2}$

Answer: B

- Watch Video Solution

29. Ii $\Delta P Q R, \mathrm{PD} \perp \mathrm{QR}$ such that D lies on QR ,
if $P Q=a, P R=b, Q D=c$ and $D R=d$, then prove that
$(a+b)(a-b)=(c+d)(c-d)$.
A. $(a-d)(a+d)=(b-c)(b+c)$
B. $(a-c)(b-d)=(a+c)(b+d)$
C. $(a-b)(a+b)=(c+d)(c-d)$
D. $(a-b)(c-d)=(a+b)(c+d)$

Answer: C

- Watch Video Solution

30. $A B C$ is a triangle right- angled at B and D is
a point on $B C$ produced $(B D>B C)$, such
that $B D=2 D C$. Which one of the following is correct?
A. $A C^{2}=A D^{2}-3 C D^{2}$
B. $A C^{2}=A D^{2}-2 C D^{2}$
C. $A C^{2}=A D^{2}-4 C D^{2}$

$$
\text { D. } A C^{2}=A D^{2}-5 C D^{2}
$$

Answer: A

D Watch Video Solution

Self Assessment Sheet

1. In right triangle $A B C$, right angle at C, M is
the mid-point of the hydrotenuse $A B . C$ is
joined to M and produced to a point D such
that $D M=C M$. Point D is joined to point B .

Show that
(i) $\triangle A M C \cong \triangle B M D$ (ii) $\angle D B C=\angle A C B$
(iii) $\triangle D B C \cong \triangle A C B$ (iv) $C M=\frac{1}{2} A B$

A. ASA
B. RHS
C. SSS

D. SAS

Answer: D

D Watch Video Solution

2. $A D$ is angular bisector of $A A B C$ such that $B D: D C=2: 3$. If $A B=7 \mathrm{~cm}$, what is $A C: B C$?
A. $2: 3$
B. $3: 2$
C. 21: 10
D. None of these

Answer: C

D View Text Solution

3. In the given figure $D E \| B C$.

$A D=x, D B=x-2$
$A E=x+2, E C=x-1$

What is the value of x ?

A. 3
B. 4
C. 5
D. 6

Answer: B
(Watch Video Solution
4. If in $\Delta s \mathrm{ABC}$ and $\mathrm{DEF}, \angle A=\angle E=37^{\circ}, \mathrm{AE}$:
$\mathrm{ED}=\mathrm{AC}: \mathrm{EF}$ and $\angle F=69^{\circ}$, then what is the value of $\angle B$?
A. 69°
B. 74°
C. 84°
D. 94°

Answer: B

D View Text Solution
5. Triangles $A B C$ and DEF are similar. If the length of the perpendicular AP from A on the opposite side $B C$ is 2 cm and the length of the perpendicular $D Q$ from D on the opposite side

EF is 1 cm , then what is the area of $\triangle A B C$?

A. One and half times the area of the triangle DEF B. Four times the area of triangle DEF
C. Twice the area of the triangle DEF.
D. Three times the area of triangle DEF.

Answer: B

D Watch Video Solution

6. In the given figure, $A B C D$ is a parallelogram. E and F are the centroids of
$\triangle A B D$ and $\triangle B C D$, respectively.EF is equal to
A. AE
B. BE
C. CE
D. DE

Answer: A

D Watch Video Solution

7. In a $\triangle A B C$, perpendicular AD from A on BC meets $B C$ at D. If $B D=8 \mathrm{~cm}, D C=2 \mathrm{~cm}$ and $A D=4 \mathrm{~cm}$, then
A. $\Delta A B C$ is isosceles
B. $\triangle A B C$ is equilateral
C. $A C=2 A B$
D. $\triangle A B C$ is right angled at A

Answer: D

D View Text Solution

8. If E is a point on side $r: A$ of an equilateral triangle ABC such that $B E \perp C A$, then prove that $A B^{2}+B C^{2}+C A^{2}=4 B E^{2}$.
A. $2 B E^{2}$
B. $3 B E^{2}$
C. $4 B E^{2}$
D. $6 B E^{2}$

Answer: C

D Watch Video Solution

9. In a right triangle $A B C$ right angled at C, P and Q are points on the sides $C A$ and $C B$ respectively, which divide these sides in the
ratio 2:1. Then, which of the following statements is true?

$$
\begin{aligned}
& \text { A. } 9 A Q^{2}=9 B C^{2}+4 A C^{2} \\
& \text { B. } 9 A Q^{2}=9 A C^{2}+4 B C^{2} \\
& \text { C. } 9 A Q^{2}=9 B C^{2}+4 P Q^{2} \\
& \text { D. } 9 A Q^{2}=9 A B^{2}-4 B P^{2}
\end{aligned}
$$

Answer: B

D Watch Video Solution

10. In figure, $A B C$ is a right triangle, right angled at $B . A D$ and $C E$ are the two medians drawn from A and C respectively. If $A C=5 \mathrm{~cm}$ and $A D=\frac{3 \sqrt{5}}{2} c m$, find the length of $C E$:

A. 2 cm
B. $2 \sqrt{5} \mathrm{~cm}$
C. $5 \sqrt{2} \mathrm{~cm}$
D. $3 \sqrt{2} \mathrm{~cm}$

Answer: B

- Watch Video Solution

