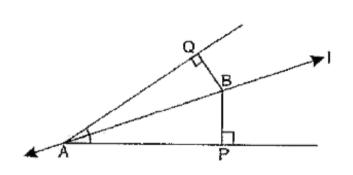


MATHS


BOOKS - S CHAND IIT JEE FOUNDATION

TRIANGLES

Solved Examples

1. In the given figure, line I is the bisector of an angle A and B is any point on I. BP and BQ are

perpendiculars from B to the arms of $\angle A$. Show that B is equidistant from the arms of $\angle A$.

2. ABC is a triangle and D is the mid-point of BC . The perpendiculars from D to AB and

AC are equal. Prove that the triangle is isosceles.

Watch Video Solution

3. In Fig. 4.91, QA and PB are perpendiculars to AB . If AO=10cm , BO=6cm and

PB=9cm . Find AQ . (FIGURE)

4. D is a point on the side BC of ABC such that $\angle ADC = \angle BAC$. Prove that

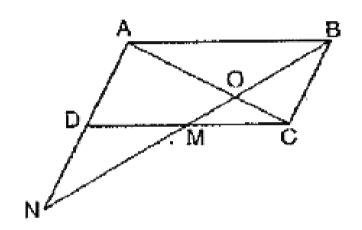
$$rac{CA}{CD} = rac{CB}{CA}$$
 or, $CA^2 = CB imes CD$.

5. If ΔABC is similar to ΔDEF such that

$$BC=3cm, EF=4cm$$
 and area of

$$\Delta ABC = 54cm^2$$
. Find the area of ΔDEF .

6. Prove that the area of the equilateral triangle described on the side of a square is half the area of the equilateral triangle described on its diagonal.


Watch Video Solution

7. In an isosceles triangle ABC with AB = AC, BD is perpendicular from B to side AC. Prove that

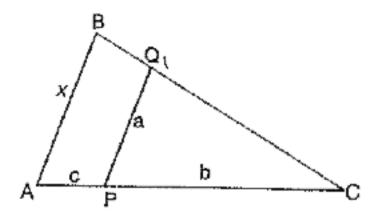
$$BD^2 - CD^2 = 2CD. AD$$

8. In the given figure, M is the mid-point of the side CD of the parallelogram ABCD. What is ON:OB?

A. 3:2

B.2:1

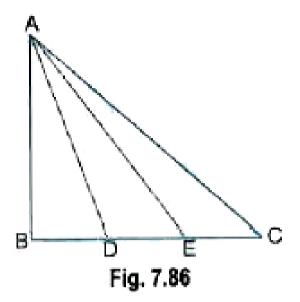
C.3:1


D. 5:2

Answer: A::B

Watch Video Solution

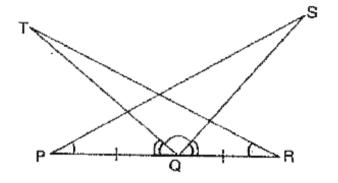
9. In the given triangle, AB is parallel to PQ.AP=c, PC=b, PQ=a, AB=x. What is the value of



Watch Video Solution

10. In Fig. 7.86, if D and E trisects BC. Prove that

$$8AE^2 = 3AC^2 + 5AD^2$$
.



Watch Video Solution

Question Bank

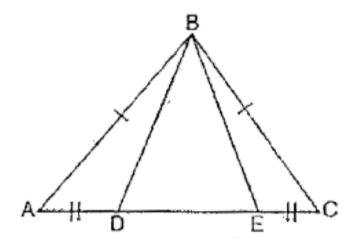
1. In the given figure, $\Delta RTQ\cong\Delta PSQ$ by ASA congruency condition. Which of the following

pairs does not satisfy the condition.

$$\mathsf{A.}\,PQ=QR$$

$$\mathsf{B.} \angle P = \angle R$$

$$\mathsf{C}.\, \angle TQP = \angle SQR$$


D. None of these

Answer: D

2. It is given that AB=BC and AD=EC.

The $\Delta ABC\cong \Delta CBD$ by _____ congruency.

A. SSS

B. ASA

C. SAS

D. AAS

Answer: C

Watch Video Solution

3. ABCD is a quadrilateral. AM and CN are perpendiculars to BD, AM= CN and diagonals AC and BD intersect at O, then which one of the following is correct?

A. AO=OC

B. BO=OD

C. AO=BO

D. CO=DO

Answer: A

Watch Video Solution

4. Squares ABDE and ACFH are drawn externally on the sides AB and AC respectively of a scalene ΔABC . Which one of the following is correct?

A. BH=CE

B.AD = AF

C. BF=CD

D.DF = FH

Answer: A

Watch Video Solution

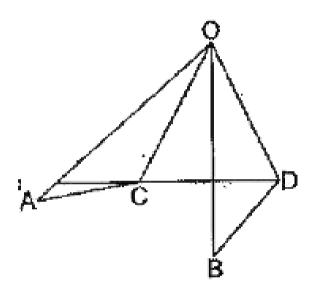
5. In the given figure, the two sides AB and BC, the median AD of ΔABC are and correspondingly equal to the two sides PQ and

QR, and the medium PM of ΔPQR . Prove that

$$\Delta ABC\cong \Delta PQR.$$

A.
$$\triangle ABD\cong \triangle PQM$$

B. $\triangle ABC\cong \triangle PQR$


 $\mathsf{C}.\,\Delta ABD\cong\Delta PMR$

D. $\triangle ADC \cong \triangle PMR$

Answer: C

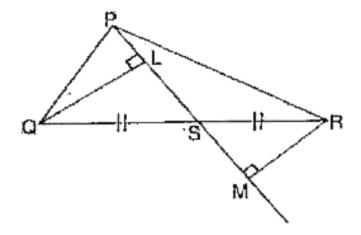
6. In the given figure, OA = OB, OC = OD, $\angle AOB = \angle COD$. Which of the following statements is true?

A. AC = CD

B. OA=OD

C. AC=BD

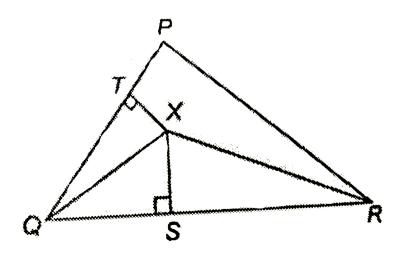
D.
$$\angle OCA = \angle ODC$$


Answer: C

Watch Video Solution

7. PS is a median and QL and RM are perpendiculars drawn from Q and R respectively on PS and PS produced. Then

which of the following statements is correct?


- A. PQ=RM
- B. QL=RM
- C. PL=SR
- D. PS=SM

Answer: B

8. In the adjoining figure, QX and RX are the bisectors of the angles Q and R respectively of the angles Q and R respectively of the triangle PQR. If $XS\perp PQ$. Prove that :

(i)
$$\Delta XTQ\cong\Delta XSQ$$

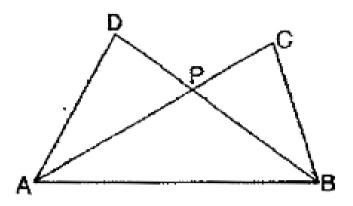
(ii) PX bisects angle P.

A. SAS

B. RHS

C. AAS

D. ASA


Answer: C

Watch Video Solution

9. In the given figure AD=BC, AC=BD.

Then ΔPAB is

- A. equilateral
- B. right angled
- C. scalene
- D. isosceles

Answer: D

10. In a right angled triangle, one acute angle is double the other. The hypotenuse is _____ the smallest side.

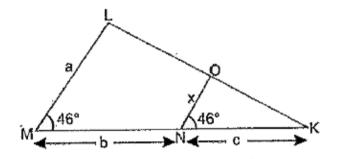
- A. $\sqrt{2}$ times
- B. three times
- C. double
- D. 4 times

Answer: C

11. If $\triangle ABC \sim \triangle EDF$ and $\triangle ABC$ is not similar to $\triangle DEF$, then which of the following is not true?

A.
$$BC$$
. $EF = AC$. FD

B.
$$AB. EF = AC. DE$$


C.
$$BC$$
. $DE = AB$. EF

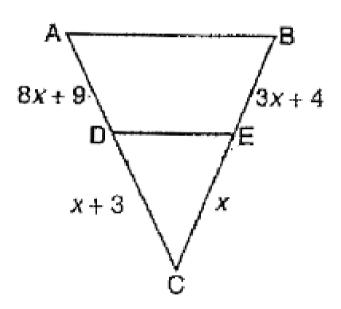
$$\mathsf{D}.\,BC.\,DE=AB.\,FD$$

Answer: C

12. In the figure, x equals

A.
$$\frac{ab}{a+c}$$

B.
$$\frac{ac}{a+b}$$


$$c. \frac{ac}{b+c}$$

D.
$$\frac{ab}{b+c}$$

Answer: C

13. What value of x will make DE \parallel AB in the given figure?

A.
$$x = 3$$

B.
$$x = 2$$

$$C. x = 1$$

D.
$$x = 5$$

Answer: B

Watch Video Solution

14. If the medians of two equilateral triangles are in the ratio 3:2, then what is ratio of the sides?

A. 1:1

B. 2:3

C. 3: 2

D. $\sqrt{3}$: $\sqrt{2}$

Answer: C

Watch Video Solution

15. The areas of two similar triangles are 121 cm^2 and $64cm^2$ respectively. If the median of the first triangle is 12.1 cm, then the corresponding median of the other is :

- A. 6.4 cm
- B. 10 cm
- C. 8.8 cm
- D. 3.2 cm

Answer: C

Watch Video Solution

16. In the given figure, DE is parallel to BC and the ratio of the areas of ΔADE and trapezium BDEC is 4:5. What is DE: BC?

A. 1:2

B. 2:3

C.4:5

D. None of these

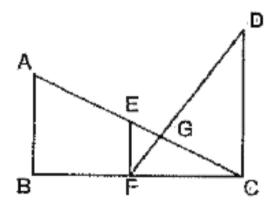
Answer: B

Watch Video Solution

17. ABCD is a trapezium in which $AB \mid \mid CD$ and AB = 2CD. It its diagonals intersect

each other at O then ratio of the area of triangle AOB and COD is

- A. 1:2
- B.2:1
- C.4:1
- D. 1:4


Answer: C

18. AB, EF and CD are parallel lines. Given that

EG=5cm, GC= 10 cm, AB = 15 cm and DC= 18 cm.

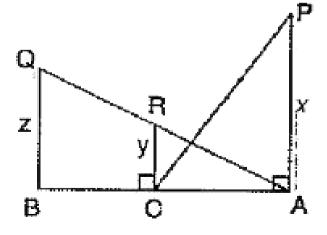
What is the value of AC?

A. 20 cm

B. 24 cm

C. 25 cm

D. 28 cm


Answer: C

Watch Video Solution

19. In the given figure, if PA = x, RC = y and QB =

z, then which one of the following is correct?

A.
$$2y = x + z$$

$$B. 4y = x + z$$

$$\mathsf{C}.\,xy+yz=xz$$

$$\mathsf{D}.\, xy + xz = yz$$

Answer: C

Watch Video Solution

20. In ΔPQR , QR=10, RP=11 and PQ=12. D is the midpoint of PR, DE is drawn parallel to PQ

meeting QR in E. EF is drawn parallel to RP meeting PQ in F. What is the length of DF?

- A. $\frac{11}{2}$
- B. 6
- c. $\frac{33}{4}$
- D. 5

Answer: D

21. The hypotenuse of a right triangle is 6 m more than twice the shortest side. If the third side is 2 m less than the hypotenuse, find the hypotenuse of the triangle.

- A. 24 m
- B. 34 m
- C. 26 m
- D. 10 m

Answer: C

Vatch Video Colution

atti video Solution

22. If the distance from the vertex to the centroid of an equilateral triangle is 6 cm, then what is the area of the triangle?

A.
$$24cm^2$$

B.
$$27\sqrt{3}cm^2$$

$$\mathsf{C.}\,12cm^2$$

D.
$$12\sqrt{3}cm^2$$

Answer: B

23. $\triangle ABC$ is an equilateral triangle such that

AD
$$\perp$$
 BC, then $AD^2=$

A.
$$\frac{3}{2}DC^2$$

 $B. 2DC^2$

 $\mathsf{C.}\,3CD^2$

D. $4DC^2$

Answer: C

Vatch Video Solution

24. P and Q are points on the sides CA and

 ${\cal CB}$ respectively of ${\cal ABC}$, right angled at ${\cal C}$.

Prove that $AQ^2+BP^2=AB^2+PQ^2$.

A.
$$BC^2 + PQ^2$$

$$\mathsf{B.}\,AB^2+PC^2$$

$$\mathsf{C.}\,AB^2+PQ^2$$

D.
$$BC^2 + AC^2$$

Answer: C

Watch Video Solution

25. ABC is a right-angled triangle, right angled at A and AD is the altitude on BC. If AB: AC= 3:4, what is the ratio BD:DC?

A. 3:4

B. 9:16

C. 2:3

D. 1:2

Answer: B

26. ABC is a right angle triangle right angled at A. A circle is inscribed in it the length of the two sidescontaining right angle are 6 cm and 8 cm then the radius of the circle is

A. 3 cm

B. 2 cm

C. 5 cm

D. 4 cm

Watch Video Solution

27. ΔABC is right angled at A and $AD \perp BC$

. Then
$$\frac{BD}{DC} =$$

A.
$$\left(\frac{AB}{AC}\right)^2$$

B.
$$\frac{AB}{AC}$$

c.
$$\left(\frac{AB}{AD}\right)^2$$

D.
$$\frac{AB}{AD}$$

Watch Video Solution

28. If ABC is a right angled triangle at B and M, N are the mid-points of AB and BC, then $4(AN^2+CM^2)$ is equal to :

A.
$$4AC^2$$

$$\mathsf{B.}\,5AC^2$$

C.
$$\frac{5}{4}AC^2$$

D.
$$6AC^2$$

Watch Video Solution

29. Ii ΔPQR , PD \perp QR such that D lies on QR, if PQ=a,PR=b,QD=c and DR=d, then prove that (a+b)(a-b)=(c+d)(c-d).

A.
$$(a - d)(a + d) = (b - c)(b + c)$$

B.
$$(a - c)(b - d) = (a + c)(b + d)$$

$$\mathsf{C.}\,(a-b)(a+b) = (c+d)(c-d)$$

D.
$$(a - b)(c - d) = (a + b)(c + d)$$

Answer: C

Watch Video Solution

30. ABC is a triangle right- angled at B and D is a point on BC produced (BD>BC), such that BD=2DC. Which one of the following is correct?

A.
$$AC^2=AD^2-3CD^2$$

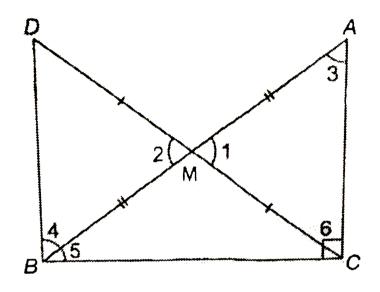
$$\mathsf{B.}\,AC^2 = AD^2 - 2CD^2$$

$$\mathsf{C.}\,AC^2 = AD^2 - 4CD^2$$

D.
$$AC^2=AD^2-5CD^2$$

Answer: A

Watch Video Solution


Self Assessment Sheet

1. In right triangle ABC, right angle at C, M is the mid-point of the hydrotenuse AB. C is joined to M and produced to a point D such that DM=CM. Point D is joined to point B.

Show that

(i) $\Delta AMC \cong \Delta BMD$ (ii) $\angle DBC = \angle ACB$

(iii)
$$\Delta DBC\cong \Delta ACB$$
 (iv) $CM=rac{1}{2}AB$

A. ASA

B. RHS

C. SSS

D. SAS

Answer: D

Watch Video Solution

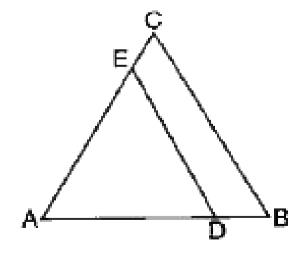
2. AD is angular bisector of AABC such that

BD:DC = 2:3. If AB = 7cm, what is AC: BC?

A. 2:3

B.3:2

C. 21:10


D. None of these

Answer: C

View Text Solution

3. In the given figure DE || BC.

AD = x, DB = x - 2

AE = x + 2, EC = x - 1

What is the value of x?

A. 3

B. 4

C. 5

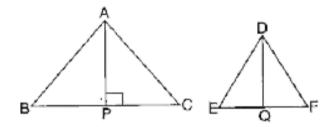
D. 6

Answer: B

Watch Video Solution

4. If in Δs ABC and DEF, $\angle A=\angle E=37^{\circ}$, AE :

ED = AC : EF and $\angle F = 69^{\circ}$, then what is the value of $\angle B$?


- A. 69°
- B. 74°
- C. 84°
- D. 94°

Answer: B

View Text Solution

5. Triangles ABC and DEF are similar. If the length of the perpendicular AP from A on the opposite side BC is 2 cm and the length of the perpendicular DQ from D on the opposite side EF is 1 cm, then what is the area of ΔABC ?

A. One and half times the area of the triangle DEF

B. Four times the area of triangle DEF

- C. Twice the area of the triangle DEF.
- D. Three times the area of triangle DEF.

Watch Video Solution

6. In the given figure, ABCD is a parallelogram. E and F are the centroids of $\triangle\ ABD$ and $\triangle\ BCD$, respectively.EF is equal to

A. AE

B. BE

C. CE

D. DE

Answer: A

Watch Video Solution

meets BC at D. If BD = 8 cm, DC = 2 cm and AD=4 cm, then

7. In a ΔABC , perpendicular AD from A on BC

A. ΔABC is isosceles

B. ΔABC is equilateral

C. Ac = 2AB

D. ΔABC is right angled at A

Answer: D

View Text Solution

8. If E is a point on side r:A of an equilateral triangle ABC such that $BE \perp CA$, then prove that $AB^2 + BC^2 + CA^2 = 4BE^2$.

A. $2BE^2$

 $B.3BE^2$

 $\mathsf{C.}\,4BE^2$

D $6BE^2$

Answer: C

Watch Video Solution

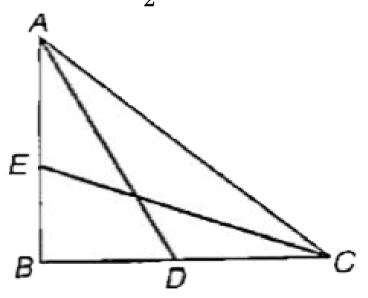
9. In a right triangle ABC right angled at C, P and Q are points on the sides CA and CB respectively, which divide these sides in the

ratio 2:1. Then, which of the following statements is true?

A.
$$9AQ^2 = 9BC^2 + 4AC^2$$

$${\tt B.}\, 9AQ^2 = 9AC^2 + 4BC^2$$

$$\mathsf{C.}\, 9AQ^2 = 9BC^2 + 4PQ^2$$


D.
$$9AQ^2 = 9AB^2 - 4BP^2$$

Answer: B

Watch Video Solution

10. In figure, ABC is a right triangle, right angled at B. AD and CE are the two medians drawn from A and C respectively. If AC = 5 cm and $AD=\frac{3\sqrt{5}}{2}cm$, find the length of CE:

A. 2 cm

- B. $2\sqrt{5}$ cm
- $\mathsf{C.}\,5\sqrt{2}\,\mathsf{cm}$
- D. $3\sqrt{2}$ cm

Watch Video Solution