© 'doubtnut

CHEMISTRY

BOOKS - MTG WBJEE CHEMISTRY
 (HINGLISH)

ATOMIC STRUCTURE

Wb Jee Workout Category 1 Single Option
Correct Type 1 Mark

1. Which of the following is not correct for electronic distribution in the ground state?

(a) $\mathrm{Co}=[\mathrm{Ar}]$| | $4 s$ |
| :--- | :--- |
| | $1!$ |

(b) $\mathrm{Ni}=[\mathrm{Ar}]$

(c) $\mathrm{Cu}=[\mathrm{Ar}]$

(d) $\mathrm{Zn}=[\mathrm{Ar}] \dagger 1$

- View Text Solution

2. Which one of the following sets of quantum numbers represents an impossible arrangement ?
A. $\left\{\begin{array}{llll}n & l & m_{l} & m_{s}\end{array}\right.$
$\left\{\begin{array}{llll}3 & 2 & -2 & 1 / 2\end{array}\right.$
B. $\left\{\begin{array}{llll}n & l & m_{l} & m_{s} \\ 4 & 0 & 0 & 1 / 2\end{array}\right.$
C. $\left\{\begin{array}{llll}n & l & m_{l} & m_{s} \\ 3 & 2 & -3 & 1 / 2\end{array}\right.$
D. $\left\{\begin{array}{llll}n & l & m_{l} & m_{s} \\ 5 & 3 & 0 & -1 / 2\end{array}\right.$

Answer:

D View Text Solution

3. In a set of degenerate orbitals, the electrons distribute themselves to retain like spins as far as possible. The statement is attributed to
A. Pauli exclusion principle
B. Aufbau principle
C. Hund's rnle of maximum multiplicity
D. Slater's rule.

Answer:

D View Text Solution

4. When the value of the azimuthal quantum number is 3 , the magnetic quantum number can have values
A. $+1,-1$
B. $+1,0,-1$
C. $+2,+1,0,-1,-2$
D. $+3,+2,+1,0,-1,-2,-3$.

Answer:

D View Text Solution
5. A transition metal Xhas a configuration [Ar]
$3 d^{4}$ in its +3 oxidation state. Its atomic number is
A. 25
B. 26
C. 22
D. 19

Answer:

- View Text Solution

6. The orbital angular momentum of an electron in 2 s orbital is
A. $+\frac{1}{2} \cdot \frac{h}{2 \pi}$
B. zero
C. $\frac{h}{2 \pi}$
D. $\sqrt{2} \cdot \frac{h}{2 \pi}$

Answer:

D View Text Solution

7. In Balmer series of hydrogen atom spectrum

A. Fifth Bohr orbit to second one
B. Fifth Bohr orbit to first one
C. Fourth Bohr orbit to second one
D. Fourth Bohr orbit to first one

Answer:

D View Text Solution

8. A photon of radiation of wavelength $4000 \AA$ has an energy E. The wavelength of photon of radiation having energy 0.5 E will be
A. $2000 \AA$
B. $8000 \AA$
C. $4000 \AA$
D. $6000 \AA$

Answer:

D View Text Solution

9. Among the following groupings which represents the collection of isoelectronic species?
A. $\mathrm{NO}^{+}, \mathrm{C}_{2}^{2-}, \mathrm{O}_{2}^{-}, \mathrm{CO}$
B. $N_{2}, C_{2}^{2-}, C O, N O$
C. $\mathrm{CO}, \mathrm{NO}^{+}, \mathrm{CN}^{-}, \mathrm{C}_{2}^{2-}$
D. $N O, C N^{-}, N^{2}, O_{2}^{-}$

Answer:

D View Text Solution
10. The number of d-electrons in Ni (at. no. $=$

28) is equal to that of the
A. p electrons in F^{-}
B. p electrons in Ar
C. d electrons in $N i^{2+}$
D. total electrons in N .

Answer:

D View Text Solution
11. Which is the isotone ${ }_{32}^{76} G e$?
A. ${ }_{32}^{77} G e$
B. ${ }_{34}^{78} S e$
C. ${ }_{36}^{79} K r$
D. ${ }_{32}^{78} G e$

Answer:

D View Text Solution

12. The first emission line in the H -atom spectrum in the Balmer series will have wave number
A. $\frac{5 R}{36} \mathrm{~cm}^{-1}$
B. $\frac{3 R}{4} \mathrm{~cm}^{-1}$
C. $\frac{7 R}{144} \mathrm{~cm}^{-1}$
D. $\frac{9 R}{400} \mathrm{~cm}^{-1}$

Answer:

- View Text Solution

13. If the ionisation energy of hydrogen atom is 13.6 eV , the energy required to excite it from ground state to the next higher state is nearly
A. 3.4 eV
B. 10.2 eV
C. 12.1 eV
D. 1.5 eV

Answer:

D View Text Solution

14. The one electron species having ionisation energy of 54.4 eV is
A. H
B. $H e^{+}$
C. B^{4+}
D. $L i^{2+}$

Answer:

D View Text Solution

15. If $\mathrm{n}=3, \mathrm{l}=0, \mathrm{~m}=0$, then atomic number is
A. 12 or 13
B. 13 or 14
C. 10 or 11
D. 11 or 12

Answer:

D View Text Solution

16. The correct set of quantum numbers (n, I
and m respectively) for the unpaired electron
of chlorine atom is
A. $2,1,0$
B. $2,1,1$
C. $3,1,1$
D. $3,2,1$

Answer:

D View Text Solution

17. The number of $2 p$ electrons having spm quantum number $s=-1 / 2$ are
A. 6
B. 0
C. 2
D. 3

Answer:

D View Text Solution

18. The uncertainty in momentum of an electron is $1 \times 10^{-5} \mathrm{~kg}$ mis. The uncertainty in its position will be $\left(h=6.62 \times 10^{-34} \mathrm{kgm}^{2} / \mathrm{s}\right)$
A. $5.27 \times 10^{-30} \mathrm{~m}$
B. $1.05 \times 10^{-26} \mathrm{~m}$
C. $1.05 \times 10^{-28} \mathrm{~m}$
D. $5.25 \times 10^{-28} \mathrm{~m}$

Answer:

D View Text Solution
19. Which of the following expression gives the de Broglie relationship?

$$
\begin{aligned}
& \text { A. } p=\frac{h}{m v} \\
& \text { B. } \lambda=\frac{h}{m v} \\
& \text { C. } \lambda=\frac{h}{m p} \\
& \text { D. } \lambda m=\frac{v}{p}
\end{aligned}
$$

Answer:

D View Text Solution

20. For the Paschen series the values of n_{1} and
$\Delta E=R_{H} \cdot c\left(\frac{1}{n_{1}^{2}}-\frac{1}{n_{2}^{2}}\right)$
A. $n_{1}=1, n_{2}=2,3,4 \ldots$
B. $n_{1}=2, n_{2}=3,4,5$
C. $n_{1} 3, n_{2}=4,5,6 \ldots . . .$.
D. $n_{1}=4, n_{2}=5,6,7 \ldots .$.

Answer:

- View Text Solution

21. For principal quantum number $n=4$, the total number of orbitals having $\mathrm{I}=3$ is
A. 3
B. 5
C. 7
D. 9

Answer:

D View Text Solution
22. Consider the ground state of Cr atom ($\mathrm{Z}=$

24). The number of electrons with the azimuthal quantum numbers $\mathrm{I}=1$ and 2 are respectively
A. 12 and 4
B. 12 and 5
C. 16 and 4
D. 16 and 5

Answer:

23. A species has 16 protons, 18 electrons and

16 neutrons. Find the species and its charge.
A. S^{-}
B. $S i^{2+}$
C. P^{3-}
D. S^{2-}

Answer:

- View Text Solution

24. The number of d-electrons retained in $F e^{2+}$ (At. no. of $\mathrm{Fe}=26$) ion is
A. 4
B. 5
C. 6
D. 3

Answer:

D View Text Solution
25. Which of the following ions has the maximum magnetic moment?
A. $M n^{2+}$
B. $F e^{2+}$
C. $T i^{2+}$
D. $C r^{2+}$

Answer:

D View Text Solution
26. The spectrum of He is expected to be similar to that of
A. H
B. Na
C. He^{+}
D. Li^{+}

Answer:

- View Text Solution

27. The electronic transitions from $n=2$ to $n=$

1 will produce shortest wavelength in (where 11 = principal quantum state)
A. $L i^{2+}$
B. $\mathrm{He} e^{+}$
C. H
D. H^{+}

Answer:

28. The following quantum numbers are possible for how many orbitals?
$\mathrm{n}=3, \mathrm{l}=2, \mathrm{~m}=+2$.
A. 1
B. 2
C. 3
D. 4

Answer:

D View Text Solution
29. Which of the following does mathematical expression for not represent the the Heisenberg uncertainty principle?
A. $\Delta x . \Delta p \geq h /(4 \pi)$
B. $\Delta x . \Delta v \geq h /(4 \pi m)$
C. $\Delta x . \Delta m v \geq h /(4 \pi)$
D. $\Delta x . \Delta v \geq h /(4 \pi)$

Answer:

D View Text Solution

Wb Jee Workout Category 2 Single Option Correct Type 2 Marks

1. The ratio of the difference in energy between the first and the second Bohr orbit to
that between the second and the third Bohr orbit is
A. $\frac{1}{2}$
B. $\frac{1}{3}$
C. $\frac{4}{9}$
D. $\frac{27}{5}$

Answer:

D View Text Solution

2. The orbital diagram in which both the Pauli
's exclusion principle and Hund's rule are violated is
A. $1 \downarrow|+|1|$
B. $\uparrow \downarrow \downarrow \mid \uparrow \uparrow$
C. $1+1+$
D. $\dagger 1+1 \downarrow 1 \downarrow 1 \uparrow$

Answer:

D View Text Solution

3. If electron, hydrogen, helium and neon nuclei are all moving with the velocity of light, then the wavelengths associated with these particles are in the order
A. electron gt hydrogen gt helium gt neon
B. electron gt helium gt hydrogen gt neon
C. electron It hydrogen It helium It neon

D. neon It hydrogen It helium It electron.

Answer:

D View Text Solution

4. Which one of the following set of quantum numbers is not possible for $4 p$ electron?

$$
\begin{aligned}
& \text { А. } n=4, l=1, m=-1, m_{s}=+\frac{1}{2} \\
& \text { В. } n=4, l=1, m=0, m_{s}=+\frac{1}{2} \\
& \text { С. } n=4, l=1, m=2, m_{s}=+\frac{1}{2}
\end{aligned}
$$

$$
\text { D. } n=4, l=1, m=-1, m_{s}=-\frac{1}{2}
$$

Answer:

D View Text Solution

5. The nucleus of an atom can be assumed to be spherical. The radius of the nucleus of mass number A is given by $1.25 \times 10^{-13} \times A^{1 / 3}$ cm . Radius of atom is one A. If the mass number is 64 , then the fraction of the atomic volume that is occupied by the nucleus is
A. 1.0×10^{-3}
B. 5.0×10^{-5}
C. 2.5×10^{-2}
D. 1.25×10^{-13}

Answer:

D View Text Solution

6. Assuming Rydberg constant $\left(R_{H}\right)$ to be $109670 \mathrm{~cm}^{-1}$, the longest wavelength line in the Lyman series of the hydrogen spectrum is
A. $1215.8 \AA$
B. $1025.8 \AA$
C. $972.6 \AA$
D. $949.8 \AA$

Answer:

D View Text Solution

7. Light of wavelength λ shines on a metal surface with intensity x and the metal emits y
electrons per second of average energy, z.

What will happen to y and z if x is doubled ?
A. y will be doubled and z will become half
B. y will remain same and z will be doubled
C. bothy and z will be doubled
D. y will be doubled but z will remain same.

Answer:

D View Text Solution
8. A particle A moving with a certain velocity
has a de Broglie wavelength of 1 A . If particle B
has mass 25% of that A and velocity 75% of
that of A, the de Broglie wavelength of B will
be approximately
A. $1 \AA$
B. $5.3 \AA$
C. $3 \AA$
D. $0.2 \AA$

Answer:

- View Text Solution

9. If n and I are respectively the principal and azimuthal quantum numbers, then the expression for the calculation of the total no. of electrons in any energy level is

$$
\begin{aligned}
& \text { A. } \sum_{l=0}^{l=n} 2(2 l+1) \\
& \text { B. } \left.\sum_{\substack{l=n+1 \\
l=n-1}}^{l=n} 2 l+1\right) \\
& \text { C. } \sum_{l=n}^{l=n+1} 2(2 l+1) \\
& \text { D. } \sum_{l=0}^{l=n-1} 2(2 l+1)
\end{aligned}
$$

Answer:

D View Text Solution

10. Which of the following element outermost orbit's last electron has magnetic quantum number $\mathrm{m}=0$?
A. Na
B. O
C. Cl
D. N

Answer:

D View Text Solution

11. The value of Planck's constant is
$6.63 \times 10^{-34} \mathrm{Js}$. The velocity of light is $3.0 \times 10^{8} \mathrm{~ms}^{-1}$. Which value is closest to the wavelength in nanometers of a quantum of light with frequency of $8 \times 10^{15} s^{-1}$?

$$
\text { A. } 2 \times 10^{-25}
$$

B. 5×10^{-18}

C. 37.5

D. 26.7

Answer:

D View Text Solution

12. In Bohr series of lines of hydrogen spectrum, the third line from the red end corresponds to which one of the following inter-orbit jumps of the electron for Bohr orbit in an atom of hydrogen?
A. $5 \rightarrow 2$
B. $4 \rightarrow 1$
C. $2 \rightarrow 5$
D. $3 \rightarrow 2$

Answer:

D View Text Solution
13. In the Bohr's orbit, what is the ratio of total
kinetic energy and the total energy of the electron?
A. -1
B. -2
C. +1
D. +2

Answer: A

D View Text Solution
14. The frequency of the radiation emitted when the electron falls from $n=4$ to $n=1$ in a hydrogen atom will be
(Given ionization energy of $H=2.18 \times 10^{-18}$ J ato m^{-1} and $h=6.625 \times 10^{-34} \mathrm{Js}$)
A. $1.54 \times 10^{15} s^{-1}$
B. $1.03 \times 10^{15} \mathrm{Js}^{-1}$
C. $3.08 \times 10^{15} s^{-1}$
D. $2.0 \times 10^{15} s^{-1}$

Answer:

D View Text Solution

Wb Jee Workout Category 3 One Or More Than One Option Correct Type 2 Marks

1. Some of the following sets of quantum numbers are correct for a 4d electron. Which are the correct sets?

$$
\begin{aligned}
& \text { А. } 4,3,2,+\frac{1}{2} \\
& \text { В. } 4,2,1,0 \\
& \text { С. } 4,2,-2,+\frac{1}{2} \\
& \text { D. } 4,2,1,-\frac{1}{2}
\end{aligned}
$$

Answer:

D View Text Solution

2. Which of the following statements are correct for an electron that has $\mathrm{n}=4$ and $\mathrm{m}=$
$-2 ?$
A. The electron may be in a p-orbital.
B. The electron is in the fourth principal
electronic shell.
C. The electron may be in a d-orbital.
D. The electron must have the spin quantum number $=-1 / 2$.

Answer:

D View Text Solution

3. Which of the following is/are not correct?
A. Isotones differ in the number of neutrons.
B. Isobars contain the same number of neutrons but differ in the number of protons.
C. No isotope of hydrogen is radioactive.
D. Density of nucleus is much greater than
that of atom.

Answer:

4. For which of the following species, the expression for the energy of electron in nth orbit
$\left(E_{n}=-\frac{13.6 Z^{2}}{n^{2}} e V a \rightarrow m^{-1}\right)$ has the
validity?
A. $H e^{2+}$
B. $L i^{2+}$
C. Deuterium
D. Tritium
5. Which of the following statement(s) is(are)
correct?
A. The electronic configuration of Cr is
$[A r] 3 d^{5} 4 s^{1}$ (Atomic number of $\mathrm{Cr}=24$)
B. The magnetic quantum number may
have a negative value.
C. In silver atom, 23 electrons have a spin
of one type and 24 of the opposite type.
(Atomic number of $\mathrm{Ag}=47$)
D. The total number of orbitals in a shell
with principal quantum number n is $2 n^{2}$.

Answer:

D View Text Solution

6. Out of the following pairs of electrons, identify the pairs of electrons present in degenerate orbitals.
A. (i)

$$
\begin{aligned}
& \qquad n=3, I=2, m_{l}=-2, m_{s}=-\frac{1}{2} \\
& \qquad \begin{array}{l}
\text { (ii) } n=3, l=2, m_{l}=1, m_{s}=-\frac{1}{2} \\
\text { B. (i) } n=3, I=1, m_{l}=1, m_{s}=+\frac{1}{2} \\
\text { (ii) } n=3, l=2, m_{l}=2, m_{s}=+\frac{1}{2} \\
\text { C. (i) } n=4, I=1, m_{l}=1, m_{s}=+\frac{1}{2} \\
\text { (ii) } n=3, l=2, m_{l}=-2, m_{s}=+\frac{1}{2} \\
\text { D. (i) }
\end{array}
\end{aligned}
$$

$$
n=3, I=2, m_{l}=+2, m_{s}=-\frac{1}{2}
$$

(ii)

$$
n=3, l=2, m_{l}=+2, m_{s}==\frac{1}{2}
$$

Answer:

D View Text Solution

7. The energy of an electron in the first Bohr orbit of H atom is -13.6 eV . The possible energy
value(s) of the excited state(s) for electrons in Bohr orbits of hydrogen is (are)
A. $-3.4 e V$
B. $-4.2 e V$
C. $-6.8 e V$
D. -1.5 eV

Answer:

D View Text Solution
8. Which of the following statements is/are correct?
A. The mass ofneutron is slightly greater
than that of proton.
B.e/m ratio of particle in anode rays
depends upon the nature of the gas
taken in the discharge tube.
C. In H-atom, the electron revolves at a
fixed distance of 0.53 Å.
D. Angular momentum of all s-electrons is
same.
9. The sum of the number of neutrons and protons in the isotope of hydrogen is
A. 6
B. 2
C. 4
D. 3

Answer:
10. According to Bohr's theory,
A. when the atom gets the required energy
from the outside, electrons jump from
lower orbits to higher orbits and remain
there
B. when the atom gets the required energy
from outside, electrons jump from lower
orbits to higher orbits and remain there
for very short intervals of time and return back to the lower orbit, radiating
energy.
C. angular momentum of the electron is proportional to its quantum number

D. angular momentum of the electron is independent of its quantum number.

Answer:

D View Text Solution
11. For a d-electron the orbital angular momentum is
A. h
B. $\sqrt{6} \frac{h}{2 \pi}$
C. $\sqrt{2} h$
D. $\sqrt{6} h$

Answer:

- View Text Solution

12. Which of the following configurations are correct in the first excited state?
A. $C r:[A r] 3 d^{5} 4 s^{1}$
B. $M n^{2+}:[A r] 3 d^{5}$
C. $F e^{2+}:[A r] 3 d^{5} 4 s^{1}$
D. $C o^{3+}:[A r] 3 d^{5} 4 s^{1}$

Answer:

(D) View Text Solution

Wb Jee Previous Years Questions Category 1 Single Option Correct Type 1 Mark

1. The emission spectrum of hydrogen discovered first and the region of the electromagnetic spectrnm in which it belongs, respectively are
A. Lyman, ultraviolet
B. Lyman, visible
C. Balmer, ultraviolet
D. Balmer, visible.

Answer:

D View Text Solution

2. As per de Broglie's formula a macroscopic patiicle of mass 100 g and moving at a velocity of $100 \mathrm{~cm} s^{-1}$ will have a wavelength of
A. $6.6 \times 10^{-29} \mathrm{~cm}$
B. $6.6 \times 10^{-30} \mathrm{~cm}$
C. $6.6 \times 10^{-31} \mathrm{~cm}$
D. $6.6 \times 10^{-32} \mathrm{~cm}$

Answer:

D View Text Solution

3. The electronic configuration of Cu is
A. $[N e] 3 s^{2} 3 p^{6} 3 d^{9} 4 s^{2}$
B. $[N e] 3 s^{2} 3 p^{6} 3 d^{10} 4 s^{1}$
C. $[N e] 3 s^{2} 3 p^{6} 3 d^{3} 4 s^{2} 4 p^{6}$
D. $[N e] 3 s^{2} 3 p^{6} 3 d^{5} 4 s^{2} 4 p^{4}$
4. The energy required to break one mole of hydrogen hydrogen bonds in H_{2} is 436 kJ . What is the longest wavelength of light required to break a single hydrogen-hydrogen bond?
A. 68.5 nm
B. 137 nm
C. 274 nm
D. 548 nm

Answer:

D View Text Solution

5. Which one of the following corresponds to a photon of highest energy?
A. $\lambda=300 \mathrm{~nm}$
B.
C. $v=3 \times 10^{8} s^{-1}$

$$
\text { D. } \bar{v}=30 \mathrm{~cm}^{-1}
$$

Answer:

D View Text Solution

6. If the given four electronic configurations
$n=4, l=1$ (ii) $n=4, l=0$
(iii) $\mathrm{n}=3, \mathrm{l}=2$ (iv) $\mathrm{n}=3, \mathrm{l}=1$
are arranged in order of increasing energy,
then the order will be

> A. (iv)lt (ii)lt (iii) It (i)

B. (ii)lt (iv)lt (i) It (iii)

C. (i) It (iii) It (ii) It (iv)

D. (iii) It (i) It (iv) It (ii)

Answer:

D View Text Solution

7. Which of the following sets of quantum numbers represents the $19^{\text {th }}$ electron of $\mathrm{Cr}(\mathrm{Z}=$ 24)?
A. $\left(4,1,-1,+\frac{1}{2}\right)$
B. $\left(4,0,0,+\frac{1}{2}\right)$
C. $\left(3,2,0,-\frac{1}{2}\right)$
D. $\left(3,2,-2,+\frac{1}{2}\right)$

Answer:

D View Text Solution

8. Which of the following electronic configuration is not possible?
A. $n=3, \mathrm{l}=0, \mathrm{~m}=0$
B. $n=3, l=1, m=-1$
C. $n=2, l=0, m=-1$
D. $n=2, l=1, m=0$

Answer:

D View Text Solution
9. The number of unpaired electrons in Ni
(atomic number $=28$) are
A. 0
B. 2
C. 4
D. 8

Answer:

- View Text Solution

Wb Jee Previous Years Questions Category 2 Single Option Correct Type 2 Marks

1. The time taken for an electron to complete one revolution in Bohr orbit of hydrogen atom is

$$
\begin{aligned}
& \text { A. } \frac{4 m^{2} \pi r^{2}}{n^{2} h^{2}} \\
& \text { B. } \frac{n^{2} h^{2}}{4 m r^{2}} \\
& \text { C. } \frac{4 \pi^{2} m r^{2}}{n h} \\
& \text { D. } \frac{n h}{4 \pi^{2} m r^{2}}
\end{aligned}
$$

Answer:

D View Text Solution

