©゙doubtnut

India's Number 1 Education App

CHEMISTRY

BOOKS - MTG WBJEE CHEMISTRY (HINGLISH)

CHEMICAL BONDING AND MOLECULAR STRUCTURE

Wbjee Workout Category 1 Single Option Correct Type

1. Which of the following molecular species has unpaired electron(s)?
A. N_{2}
B. F_{2}
C. O_{2}^{-}
D. O_{2}^{2-}

Answer: C

D View Text Solution

2. The Type of hybridisation in diborane is
A. sp-hybridized
B. $s p^{2}$-hybridized
C. $s p^{3}$-hybridized
D. $s p^{3} d^{2}$-hybridized

Answer: C

D View Text Solution

3. The bond order of NO is 2.5 while that of NO^{+}is 3 . Which of the following statements is true for these two species?
A. Bond length in NO^{+}is greater than in NO
B. Bond length in NO is greater than in NO^{+}
C. Bond length in NO^{+}is equal to that in NO
D. Bond length in unpredictable.

Answer: B

D View Text Solution

4. Which of the following is diamagnetic?
A. Superoxide ion
B. Carbon molecule
C. Unipositive ion of nirtogen molecule
D. Oxygen molecule

Answer: B

- View Text Solution

5. The statement true for N_{3}^{-}is
A. it has a non linear structure
B. it is called pseudohalogen
C. the formal oxidition state of nitrogen in this anion is -1
D. it is isoelectronic with NO_{2}

Answer: C

6. Dipole moment is shown by

A. 1,4-dichlorobenzene
B. cis-1,2-dichloroethene
C. trans 1,2-dichloroethene
D. trans -2,3- dichloro-2-butene

Answer: B

- View Text Solution

7. The species in which the central atom uses $s p^{2}$ hybrid orbitals in its bonding is
A. PH_{3}
B. NH_{3}
C. CH_{3}^{+}
D. SbH_{3}

Answer: C

D View Text Solution

8. Which of the following molecular orbital has two nodal plane?
A. $\alpha^{\star} 1 s$
B. $\pi 2 p_{x}$
C. $\pi^{\star} 2 p_{y}$
D. $\sigma^{\star} 2 p_{z}$

Answer: C

9. What is the order of polarity of the following bond?
(i) $\mathrm{C}-\mathrm{H}$ (ii) $\mathrm{F}-\mathrm{H}$ (iii) $\mathrm{Br}-\mathrm{H}$
(iv) $\mathrm{Na-l}(\mathrm{v}) \mathrm{K}-\mathrm{F}(\mathrm{vi}) \mathrm{Li}-\mathrm{Cl}$
A.

$$
L i-C l>K-F>F-H>B r-H>C-H>N a-I
$$

B.

$$
K-F>L i-C l>F-H>B r-H>N a I>C-H
$$

C.

$$
K-F>F-H>L i C l>B r-H>N a-I>C-H
$$

D.

$$
K-F>L i-C l>F-H>N a-I>B r-H>C-H
$$

Answer: D

10. The central atom does not assume $s p^{2}$ hybridisation in

A. $P C l_{3}$
B. SO_{3}
C. $B F_{3}$
D. NO_{3}^{-}

Answer: A

D View Text Solution

11. The maximum numbr of 90° angles between bond pair bond pair of electrons is observed in
A. $d s p^{3}$ hybridisation
B. $s p^{3} d$ hybridisation
C. $d s p^{2}$ hybridisation
D. $s p^{3} d^{2}$ hybridisation.

Answer: D

D View Text Solution

12. A section of the priodic table is given below with elements A, B and X, Y in two grops. Which of the bond given below is the least
polar?

A. AX
B. $A Y$
C. $B X$
D. $B Y$

Answer: B

View Text Solution
13. Carbon suboxide $\left(C_{3} O_{2}\right)$ has recently been shown as a component of the atmosphere of Venus. Which of the following formulation represents the correct ground state Lewis structure for carbon suboxide?

$$
\begin{aligned}
& \text { A. }: O: C:: C: C: O: \\
& \text { B. }: O:: C:: C: C: O: \\
& \text { C. }: \ddot{O}: C:: C:: C:: \ddot{O}: \\
& \text { D. }: O: C: C: C: C:
\end{aligned}
$$

Answer: C

D View Text Solution

14. In NO_{3}^{-}ion number of bond pairs and lone pairs of electrons on nitrogen atom are
A. 2,2
B. 3,1
C. 1,3
D. 4,0

Answer: D

D View Text Solution

15. The bonds is $K_{4}\left[F e(C N)_{6}\right]$ are
A. all ionic
B. all covalent
C. ionic, covalent and coordinate
D. ionic and covalent.

Answer: C

D View Text Solution

16. The molecule /species having one unpaired electron is
A. O
B. CO
C. $C N^{-}$
D. O_{2}

Answer: A

- View Text Solution

17. The compound in which C. uses $s p^{3}$ hybrid orbitals for bond formation is
A. $\mathrm{HC} \cdot \mathrm{OOH}$
B. $\left(\mathrm{NH}_{2}\right)_{2} \mathrm{C} \cdot \mathrm{O}$
C. $\left(\mathrm{CH}_{3}\right)_{3} \mathrm{C} \cdot \mathrm{OH}$
D. $\mathrm{CH}_{3} \mathrm{C} \cdot \mathrm{HO}$

Answer: C

D View Text Solution

18. The type of hybrid orbitals used by chlorine atom in ClO_{3}^{-}is
A. $s p^{3}$
B. $s p^{2}$
C. $s p$
D. None of these

Answer: A

D View Text Solution

19. Dipole momentof

dipole moment of

is
A. 1.5 D
B. 2.25 D
C. 1D
D. 3 D

Answer: A
20. In which of the following molecules hydrogen bridge bond is present?
A. Water
B. Inorganic benzene
C. Diborane
D. Methanol

Answer: C

- View Text Solution

21. In the following electron dot structure, calculate the formal charge from left ot righ nitrogen atom.
$\ddot{N}=N=\ddot{N}$
A. $-1,-1,+1$
B. $-1,+1,-1$
C. $+1,-1,-1$
D. $+1,-1,+1$

Answer: B

D View Text Solution

22. The state of hybridization of the central atom and the number of lone pairs over the central atom in POCl_{3} are
A. $s p, 0$
B. $s p^{2}, 0$
C. $s p^{3}, 0$
D. $d s p^{2}, 1$

Answer: C

D View Text Solution

23. The paramagnetic behaviour of B_{2} is due to the presence of
A. 2 unpaired electrons in $\pi_{b} M O$
B. 2 unpaired electrons in $\pi^{\star} M O$
C. 2 unpaired electrons is $\sigma^{\star} M O$
D. 2 unpaired electron in $\sigma_{b} M O$

Answer: A

24. Which bond angle 0 would result in the maximum dipole moment for the triatomic molecule $X Y_{2}$ as shown in figure?

A. 90°
B. 120°
C. 150°
D. 180°

Answer: A

25. $A s F_{5}$ molecule is trigonal bipyramidal. The orbitals of As atom involved in hybridisation are
A. $d_{x^{2}-y^{2}}, d_{z^{2}}, s, p_{x}, p_{y}$
B. $d_{x y}, s, p_{x}, p_{y}, p_{z}$
C. $s, p_{x}, p_{y}, p_{z}, d_{z^{2}}$
D. $d_{x^{2}-y^{2}}, s, p_{x}, p_{y}, p_{z}$

Answer: C

- View Text Solution

26. The bond lengths in the species O_{2}, O_{2}^{+}and O_{2}^{-}are in the order
A. $O_{2}^{+}>O_{2}>O_{2}^{-}$
B. $O_{2}^{+}>O_{2}^{-}>O_{2}$
C. $O_{2}>O_{2}^{+}>O_{2}^{-}$
D. $O_{2}^{-}>O_{2}>O_{2}^{+}$

Answer: D

- View Text Solution

27. Which one of the following formulae does not correctly represent the bonding capacities of the two atoms involved?

B.
C.
D.

Answer: D

D View Text Solution
28. The bond angle and $\%$ of d - character is $S F_{6}$ are
A. $120^{\circ}, 20 \%$
B. $90^{\circ}, 33 \%$
C. $109^{\circ}, 25 \%$
D. $90^{\circ}, 25 \%$

- View Text Solution

29. Among $\mathrm{KO}_{2}, \mathrm{AlO}_{2}^{-}, \mathrm{BaO}_{2}$ and NO_{2}^{+}unpaired electron is present in
A. NO_{2}^{+}and BaO_{2}
B. KO_{2} and AlO_{2}^{-}
C. $K O_{2}$
D. BaO_{2} only

Answer: C

- View Text Solution

30. In which of the following pairs the two species have identical bond order?
A. N_{2}^{-}, O_{2}^{2-}
B. N_{2}^{-}, O_{2}^{-}
C. N_{2}^{-}, O_{2}^{+}
D. O_{2}^{+}, N_{2}^{2-}

Answer: C

D View Text Solution

Wbjee Workout Category 2 Single Option Correct Type

1. The correct order of hybridization of the central atom in the following species $\mathrm{NH}_{3},\left[\mathrm{PtCl}_{4}\right]^{2-}, \mathrm{PCl}_{5}$ and BCl_{3} is
A. $d s p^{2}, d s p^{3}, s p^{2}$ and $s p^{3}$
B. $s p^{3}, d s p^{2}, d s p^{3}, s p^{2}$
C. $d s p^{2}, s p^{2}, s p^{3}, d s p^{3}$
D. $d s p^{2}, s p^{3}, s p^{2}, d s p^{3}$

Answer: B

- View Text Solution

2. The boiling point of p -nitrophenol is hgiher than that of o nitrophenol because
A. $N O_{2}$ group at p-position behaves in a different way from that at o-position
B. intramolecular hydrogen bonding exists in p-nitrophenol
C. there is intermolecular hydrogen bonding in p-nitrophenol
D. p-nitrophenol has a higher molecular weight than onitrophenol.

Answer: C

D View Text Solution

3. Which one of the following is the correct order of interactions?
A. Covalentlthydrogen bondinglt van der Waal's It dipole dipole
B. vander Waal's It hydrogen bonding It dipole - dipole It covalent
C. vander Waal's lt dipole -dipolelt hydrogen bonding lt covalent
D. Dipole - dipole It vander Waal's It hydrogen bionding It covalent.

Answer: B

D View Text Solution

4. The relationship between the dissociation energy of N_{2} and N_{2}^{+}is
A. dissociation enerty of $N_{2}=$ dissociation energy of N_{2}^{+}
B. dissociation energy of N_{2} can either be lower or higher than the dissociation energy of N_{2}^{+}
C. dissociation energy of $N_{2}>$ dissociation energy of N_{2}^{+}
D. dissociation energy of $N_{2}^{+}>$dissociation energy

Answer: C

- View Text Solution

5. In PO_{4}^{3-} the formal charge on the each oxygen atom and the P-O bond order respectively are
A. $-0.75,0.6$
B. $-0.75,1.0$
C. $-0.75,1.25$
D. $-3.1,1.25$

Answer: C

D View Text Solution

6. Consider the given figure showing that possible levels of the energy of H_{2}^{+}ion depending on internuclear distance versus potential energy of the system.

It may be easily assumed that the ground state of the molecular hydrogen ion H_{2}^{+}corresponds to the lowest level which means that
A. curve 1 represents the most stasble state of the system for

$$
H_{2}^{+} \text {ion }
$$

B. curve 2 represents the most stable state of the system of

$$
H_{2}^{+} \text {ion }
$$

C. data is insufficient
D. None of these

Answer: B

- View Text Solution

7. Molecular shapes of $S F_{4}, C F_{4}, X e F_{4}$ are
A. the same with 2,0 and 1 lone pairs of electrons respectively
B. the same with 1,1 and 1 lone pairs of electrons respectively
C. different with 0,1 and 2 lone pairs of electrons respectively
D. different with 1,0 and 2 lone pairs of electrons respectively.

Answer: D

D View Text Solution

8. N_{2} and O_{2} are converted into monocations N_{2}^{+}and O_{2}^{+} respectively. Which of the following statements is wrong?
A. In N_{2}^{+}, the $\mathrm{N}-\mathrm{N}$ bond weakens
B. In O_{2}^{+}, the O-O bond order increases
C. In O_{2}^{+}, paramagnetism decreases
D. N_{2}^{+}becomes diamagnetic

Answer: D

D View Text Solution

9. According to molecular orbital theory, which of the following statement about the magnetic character and bond order is correct regarding O_{2}^{+}?
A. Paramagnetic and bond order $<\mathrm{O}_{2}$
B. Paramagnetic and bond order $>\mathrm{O}_{2}$
C. Diamagnetic and bond order $<\mathrm{O}_{2}$
D. Diamagnetic and bond order $>\mathrm{O}_{2}$

Answer: B

- View Text Solution

10. The dipole moment of HBr is 0.78×10^{-18} esu cm and interactomic spacing is $1.41 \AA$. The \% ionic character of HBr is
A. 7.5
B. 11.7
C. 15
D. 27

D View Text Solution

11. The charge /size ratio of cation determines its polarising power. Which one of the following sequences represents the increasing order of the polarising power of the cationic species,

$$
K^{+}, C a^{2+}, M g^{2+}, B e^{2+} ?
$$

A. $\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}<\mathrm{K}^{+}$
B. $\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}$
C. $\mathrm{Be}^{2+}<\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}$
D. $\mathrm{K}^{+}<\mathrm{Ca}^{2+}<\mathrm{Mg}^{2+}<\mathrm{Be}^{2+}$

Answer: D

12. The bond stability of $O_{2}^{+}, O_{2}, O_{2}^{-}, O_{2}^{2-}$ varies in the order
A. $\mathrm{O}_{2}^{2-}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}>\mathrm{O}_{2}^{+}$
B. $O_{2}^{-}>O_{2}>O_{2}^{2-}>O_{2}^{+}$
C. $O_{2}^{+}>O_{2}>O_{2}^{-}>O_{2}^{2-}$
D. $O_{2}^{+}>O_{2}^{-}>O_{2}^{2-}>O_{2}$

Answer: C

- View Text Solution

13. In the following of π bond the atomic orbitals overlap in such a way that
A. their axes remain parallel to each other and perpendicular to the internuclear axis
B. their axes remain parallel to each other and parallel to the internuclear axis
C. their axes remain perpendicular to each othr and parallel to the internuclear axis
D. their axis remain perpendicular to each other and perpendicular to the internuclear axis.

Answer: A

- View Text Solution

14. Some of the properties of the two species, NO_{3}^{-}and $\mathrm{H}_{3} \mathrm{O}^{+}$ are described below. Which one of them is correct?
A. Dissimilar in hybridization for the central atom with different structures.
B. Isostructural withsame hybridization for the central atom
C. Isostructural with different hybridization for the central atom
D. Similar in hybridization for the central atom with different structure.

Answer: A

D View Text Solution

15. The cyanide ion, $C N^{-}$and N_{2} are isoelectronic. But in contrast to $C N^{-}, N_{2}$ is chemically inert, because of
A. low bond energy
B. absence of bond polarity
C. unsymmetrical electron distribution
D. presence of more number of electrons in bonding orbitals.

Answer: B

D View Text Solution

Wbjee Workout Category 3 One Or More Than One Option Correct

 Type1. Among the compounds of $\mathrm{BF}_{3}, \mathrm{NCl}_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{SF}_{4}$ and BeCl_{2} identify the ones in which the central atoms has the same type of hybridisation.
A. $B F_{3}, N C l_{3}$ and $H_{2} S$
B. $\mathrm{H}_{2} \mathrm{~S}$ and BeCl_{2}
C. NCl_{3} and $\mathrm{H}_{2} \mathrm{~S}$
D. $S F_{4}$ and $B e C l_{2}$

Answer: C

- View Text Solution

2. Identify correct statement (s)
A. Ionic compounds has high melting and boiling points.
B. CO_{2} is less polar than $\mathrm{N}_{2} \mathrm{O}$
C. Ortho nitrophenol is more volatile than paranitrophenol.
D. Ethyly alcohol is more soluble in water than dimethyl ether.

Answer: A::B::C::D

3. Identify the incorrect statemens
A. All the five $\mathrm{P}-\mathrm{Cl}$ bonds are identical in PCl_{5}
B. $\angle H-P-H$ bonds angles in $P H_{3}$ are smaller than $\angle H-N-H$ bonds angles in NH_{3}.
C. CO_{2} is non polar, while SO_{2} is polar.
D. The dipole moment of NF_{3} is much higher than NH_{3}

Answer: A::D

D View Text Solution

4. Amongst the following, the correct statement(s) is /are
A. NO has one unpaired electron in the antiboding molecular orbital
B. NO^{+}is more stable than O_{2}^{+}
C. $O F^{+}$is more paramagnetic than $N e_{2}^{+}$
D. In a π bond, the electron density is conncentrated along the bond axis.

Answer: A::B::C

D View Text Solution

5. Select the incorrect statement(s) about C_{2} molecule
A. It exists in vapour phase
B. It contains 12 electrons out of which 8 are present in bonding orbitals and 4 in antibonding orbitals.
C. It is paramagnetic in nature.
D. It contains double bonds of which both are π - bonds.

Answer: C

D View Text Solution

6. Compared to meta and para isomers, o-nitrophenol has
A. lower solubility in water
B. higher melting point and boiling point
C. lower enthalpy of fusion
D. all of these

Answer: A::C

7. Which of the following pairs contains same number of electrons but their shapes are different?
A. $B F_{3}, B C l_{3}$
B. $\mathrm{CH}_{4}, \mathrm{NH}_{3}$
C. $\mathrm{NH}_{3}, \mathrm{H}_{2} \mathrm{O}$
D. $B e C l_{2}, B e F_{2}$

Answer: B::C

D View Text Solution

8. According to Fajan's rules, ionic bonds are formed when
A. cations have low positive charge, large size and anions have
B. catios have low positive charge and small size
C. cations have high positive charge and lareg size
D. cations have low positive charge, large size and anions have

small size

Answer: D

D View Text Solution

9. Mark out the incorrect match of shape.
A. XeOF_{2} - Trigonal planar
B. ICl_{4}^{-}Square planar
C. $\left[S b F_{5}\right]^{2-}$ - Square phramidal
D. NH_{2}^{-}- Pyramidal

Answer: A::D

D View Text Solution

10. When O_{2} is adsorbed on a metallic surface, electron transfer occurs from the metal to O_{2}. The true statement(s) regarding this adsorption is (are)
A. O_{2} is physisorbed
B. heat is released
C. occupany of $\pi \star w p$ of O_{2} is increased
D. bond length of O_{2} is increased.

Answer: B::C::D

D View Text Solution
11. According to molecular orbital theory, which of the following statement about the magnetic character and bond order is correct regarding O_{2}^{+}?
A. C_{2}^{2-} is expected tobe diamagnetic
B. O_{2}^{2+} is expected to hav a longer bond length than O_{2}
C. N_{2}^{+}and N_{2}^{-}have the same bond order
D. He_{2}^{+}has the same energy as two isoolated He atoms.

Answer: A::C

D View Text Solution

12. The linear structure is assumed by
A. CO_{3}^{2-}
B. NCO^{-}
C. $C S_{2}$
D. NO_{2}^{+}

Answer: B::C::D

- View Text Solution

13. The molecules that will have dipole moment are
A. 2,2-dimethylpropane
B. trans-2-pentene
C. cis-3-hexene
D. 2,2,3,3,-tetramethylbutane
14. Which of the following have identical bond order?
A. $C N^{-}$
B. O_{2}^{-}
C. NO^{+}
D. $C N^{+}$

Answer: A::C

D View Text Solution

15. The pair(s) of reagents that yeild paramagnetic species is/are
A. Na and excess of NH_{3}
B. K and excess of O_{2}
C. Cu and dilute HNO_{3}
D. O_{2} and 2-ethylanthraquinol.

Answer: A::B::C

D View Text Solution

Wb Jee Previous Years Questons Category 1 Single Option Correct Type

1. The compound that will have a permanent dipole moment among the following is

I

III

II

$$
\mathrm{Br}=\mathrm{Br}
$$

IV
A. I
B. II
C. III
D. IV

Answer:

View Text Solution
2. In case of heteronuclear diatomics of the type $A B$, where A is mor electronegative than B , bonding molecular orbital resembles
the character of A more that of B.

The statement

A. is false
B. is true
C. cannot be evaluated since data is not sufficient
D. is true only for certain systems.

Answer:

D View Text Solution

3. The number of lone pairs of electrons on the central atoms of
$\mathrm{H}_{2} \mathrm{O}, \mathrm{SnCl}_{2}, \mathrm{PCl}_{3}$ and XeF_{2} respectively are
A. 2,1,1,3
B. 2,2,1,3
C. 3,1,1,2
D. 2,1,2,3

Answer:

D View Text Solution

4. The correct order of O-O bond length in $\mathrm{O}_{2}, \mathrm{H}_{2} \mathrm{O}_{2}$ and O_{3} is
A. $O_{2}>O_{3}>\mathrm{H}_{2} \mathrm{O}$
B. $\mathrm{H}_{2} \mathrm{O}_{2}>\mathrm{O}_{3}>\mathrm{O}_{2}$
C. $O_{3}>O_{2}>H_{2} O_{2}$
D. $O_{3}>H_{2} O_{2}>O_{2}$

Answer:

5. The shape of $X e F_{5}^{-}$will be
A. square pyramid
B. trigonal bipyramidal
C. planar
D. pentagonal bipyramid

Answer:

D View Text Solution

6. The ground state magnetic property of B_{2} and C_{2} molecules will be
A. B_{2} paramagnetic and C_{2} diamagnetic
B. B_{2} diamagnetic and C_{2} paramagnetic
C. both are diamagnetic
D. both are paramagnetic.

Answer:

D View Text Solution

7. Which of the following has the strongest H -bong?
A. O-III--S
B. S-H-O
C. F-H-F
D. $\mathrm{F}-\mathrm{H}-\mathrm{O}$

Answer:

8. The melting point (i) BeCl_{2} (ii) CaCl_{2} and (iii) HgCl_{2} follows

 the order
A. (i)lt(ii)lt(iii)

B. (iii) $\mathrm{lt}(\mathrm{i}) \mathrm{lt}(\mathrm{ii})$
C. (i) $\operatorname{lt}(\mathrm{iii}) \mid \mathrm{t}(\mathrm{ii})$
D. (ii) $\mathrm{lt}(\mathrm{i}) \mathrm{lt}(\mathrm{iii})$

Answer:

D View Text Solution

9. The H-N-H angle in ammonia is 107.6°, while the H-P angle in phosphineis 93.5°. Relative to phosphine, the p -character of the lone pair on ammonia is expected to be
A. less
B. more
C. same
D. cannot be predicted

Answer:

D View Text Solution

Wb Jee Previous Years Questons Category 2 One Or More Than One Option Correct Type

1. In basic medium the amount of $N i^{2+}$ in a solution can be estimated with the dimethylglyoxime reagent. The correct statemnt(s) about the reaction an the product is (are)
A. in ammoniacal solution Ni^{2+} salts given cherry red precipitate of nickel (II) dimethlglyoximate
B. two dimethylglyoximate units are bound to one $N i^{2+}$
C. in the complex two dimethylglyoximate units are hydrogen bonded to each other
D. each dimethylglyoximate unit forms a six membered chelate ring with $N i^{2+}$

Answer:

D View Text Solution

2. Of the following molecules, which have shape similar to CO_{2} ?
A. HgCl_{2}
B. SnCl_{2}
C. $\mathrm{C}_{2} \mathrm{H}_{2}$
D. NO_{2}

Answer:

- View Text Solution

3. Which statements are correct for the peroxide ion?
A. It has five completely filled anti-bonding molecular orbitals.
B. It is diamagnetic
C. it has bond order one
D. it is isolectronic with neon

Answer:

\square

