© 'doubtnut

CHEMISTRY

BOOKS - MTG WBJEE CHEMISTRY (HINGLISH)

CHEMICAL EQUILIBRIA

Wb Jee Workout Category 1 Single Option Correct Type

1. In what manner will increase of pressure affect the following equation?
$C_{(s)}+H_{2} O_{(g)} \Leftrightarrow C O_{(g)}+H_{2(g)}$
A. Shift in the forward direction
B. Shift in the reverse direction
C. Increase in the yield of hydrogen
D. No effect

Answer: B

- View Text Solution

2. For a chemical reaction $2 A+B \Leftrightarrow C$, the thermodynamic equilibrium constant K_{p} is
A. in atm^{-2}
B. in atm^{-3}
C. in atm^{-1}
D. dimensionless

Answer: A

- View Text Solution

3. k_{1} and k_{2} are the velocity constants of forward and backward reactions. The equilibrium constant K of the reaction is
A. $k_{1} \times k_{2}$
B. $k_{1}-k_{2}$
C. k_{1} / k_{2}
D. $\frac{k_{1}+k_{2}}{k_{1}-k_{2}}$

Answer: C

4. The following equilibrium are given
$N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3}, K_{1}$
$N_{2}+O_{2} \Leftrightarrow 2 N O, K_{2}$
$\mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2} \Leftrightarrow \mathrm{H}_{2} \mathrm{O}, \mathrm{K}_{3}$
The equilibrium constant of the reaction
$2 \mathrm{NH}_{3}+\frac{5}{2} \mathrm{O}_{2} \Leftrightarrow 2 \mathrm{NO}+3 \mathrm{H}_{2} \mathrm{O}$ in terms of
K_{1}, K_{2} and K_{3} is
A. $K_{1} K_{2} K_{3}$
B. $K_{1} K_{2} / K_{3}$
C. $K_{1} K_{3}^{2} / K_{2}$
D. $K_{2} K_{3}^{3} / K_{1}$
5. The reaction $N_{2(g)}+O_{2(g)} \rightarrow 2 N O_{(g)}$ is endothermic.

The forward reaction is
A. favoured by decrease in temperature
B. favoured by increase in pressure
C. unchanged on changing pressure
D. in equilibrium point shifts by adding catalyst

Answer: C

D View Text Solution
6. An equilibrium mixture for the reaction
$2 H_{2} S_{(g)} \Leftrightarrow 2 H_{2(g)}+S_{2(g)}$ had one mole of hydrogen sulphide, 0.2 mole of H_{2} and 0.8 mole of S_{2} in a 2 litre vessel. The value of K_{c} in mole litre ${ }^{-1}$ is
A. 0.004
B. 0.016
C. 0.080
D. 0.032

Answer: B

7. Which of the following oxides of nitrogen will be the most stable one?
A.

$$
2 \mathrm{NO}_{2(g)} \Leftrightarrow N_{2(g)}+2 O_{2(g)}, K=6.7 \times 10^{16} \mathrm{~mol} L^{-1}
$$

B. $2 N O_{(g)} \Leftrightarrow N_{2(g)}+O_{2(g)}, K=2.2 \times 10^{30} \mathrm{molL}^{-1}$
C.

$$
2 N_{2} O_{5(g)} \Leftrightarrow 2 N_{2(g)}+5 O_{2(g)}, K=1.2 \times 10^{24} \mathrm{molL} L^{-1}
$$

D.

$$
2 N_{2} O_{(g)} \Leftrightarrow 2 N_{2(g)}+O_{2(g)}, K=3.5 \times 10^{33} \mathrm{~mol} L^{-1}
$$

Answer: A

8. The equilibrium of the given reaction
$\mathrm{SO}_{2} \mathrm{Cl}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{SO}_{2(\mathrm{~g})}+\mathrm{Cl}_{2(\mathrm{~g})}$
in attained at $25^{\circ} \mathrm{C}$ in a closed container and an inert gas, helium is introduced. Which of the following statement is correct?
A. More chlorine is formed
B. Concentration of SO_{2} is reduced
C. More $\mathrm{SO}_{2} \mathrm{Cl}_{2}$ is formed
D. Concentration of $\mathrm{SO}_{2} \mathrm{Cl}_{2}, \mathrm{SO}_{2}$ and Cl_{2} do not change

Answer: D

9. A catalyst is a substance which
A. increases the equilibrium constant of the reaction
B. increases equilibrium concentration of products
C. does not alter the reaction mechanism
D. changes the activation energy of the reaction

Answer: D

- View Text Solution

10. The equilibrium constant (K) of a reaction may be written as
A. $K=e^{-\Delta G / R T}$
B. $K=e^{-\Delta G^{\circ} / R T}$
C. $K=e^{-\Delta H / R T}$
D. $K=e^{-\Delta H^{\circ} / R T}$

Answer: B

- View Text Solution

$C O_{(g)}+C l_{2(g)} \Leftrightarrow C O C l_{2(g)}, K_{p} / K_{c}$ equal to
A. $1 / R T$
B. $R T$
C. $\sqrt{R T}$
D. 1.0

Answer: A

- View Text Solution

12. Of the following which change will shift the reaction towards the product?
$I_{2(g)} \Leftrightarrow 2 I_{(g)}, \Delta H_{r}^{\circ}(298 K)=+150 k J$
A. Increase in concentration of I
B. Decrease in concentration o I_{2}
C. Increase in temperature
D. Increase in total pressure

Answer: C

13. In the reaction $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$, the equilibrium concentrations of $P C l_{5}$ and $P C l_{3}$ are 0.4 and 0.2 mole/litre respectively. If the value of K_{c} is 0.5 , what is the concentration of $C l_{2}$ in moles/litre?
A. 2.0
B. 1.5
C. 1.0
D. 0.5

Answer: C

D View Text Solution
14. Calculate K_{c} for the reversible process given below, if $K_{p}=167$ and $T=800^{\circ} C$.
$\mathrm{CaCO}_{3(s)} \Leftrightarrow \mathrm{CaO}_{(s)}+\mathrm{CO}_{2(g)}$
A. 1.95
B. 1.85
C. 1.89
D. 1.60

Answer: C

(D) View Text Solution

15. The reaction quotient (Q) for the reaction
$N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$
is given by $Q=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
The reaction will proceed from right to left if
A. $Q=K_{c}$
B. $Q<K_{c}$
C. $Q>K_{c}$
D. $Q=0$

Answer: C

- View Text Solution

16. A quantity of PCl_{5} was heated in a $10 \mathrm{dm}^{3}$ vessel at $250^{\circ} \mathrm{C}$:
$P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$

At equilibrium, the vessel contains 0.1 mole of $P C l_{5}$ and 0.2 mole of $C l_{2}$. The equilibrium constant of the reaction is
A. 0.04
B. 0.025
C. 0.02
D. 0.05

Answer: A

(D) View Text Solution

17. 5 moles of SO_{2} and 5 moles of O_{2} are allowed to react to form $S O_{3}$ in a closed vessel. At the equilibrium stage,
$60 \% S O_{2}$ is used up. The total number of moles of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and SO_{3} in the vessel now is
A. 3.9
B. 10.5
C. 8.5
D. 10.0

Answer: C

(D) View Text Solution

18. For the reaction:
$2 \mathrm{H}_{2(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{H}_{2} O_{(g)}$
Which of the following fact holds good?
A. $K_{p}=K_{c}$
B. $K_{p}>K_{c}$
C. $K_{p}<K_{c}$
D. K_{p} and K_{c} cannot be correlated

Answer: C

D View Text Solution

19. If the equilibrium constants of the following equilibria $S O_{2}+\frac{1}{2} O_{2} \Leftrightarrow S O_{3}$ and $2 \mathrm{SO}_{3} \Leftrightarrow 2 \mathrm{SO}_{2}+O_{2}$
are given by K_{1} and K_{2} respectively, which of the following relation is correct?
A. $K_{2}=\left(\frac{1}{K_{1}}\right)^{2}$
B. $K_{1}=\left(\frac{1}{K_{2}}\right)^{3}$
C. $K_{2}=\left(\frac{1}{K_{1}}\right)$
D. $K_{2}=\left(K_{1}\right)^{2}$

Answer: A

- View Text Solution

20. Calculate K_{p} for the equilibrium,
$\mathrm{NH}_{4} \mathrm{HS} S_{(s)} \Leftrightarrow \mathrm{NH}_{3(g)}+\mathrm{H}_{2} S_{(g)}$
if the total pressure inside the reaction vessel is 1.12 atm at $105^{\circ} \mathrm{C}$.
A. 0.56
B. 1.25
C. 0.31
D. 0.63

Answer: C

D View Text Solution
21. In a reversible chemical reaction at equilibrium, if the concentration of any one of the reactants is doubled, then the equilibrium constant will
A. also be doubled
B. be halved
C. remains the same
D. becomes one-fourth

Answer: C

- View Text Solution

22. For the reaction, $P_{(g)}+3 Q_{(g)} \Leftrightarrow 4 R_{(g)}$

Initial concentration of P is equal to that of Q. The equilibrium concentration of P and R are equal. K_{c} is equal to
A. 0.08
B. 0.8
C. 8
D. $\frac{1}{8}$

- View Text Solution

23.1 mole of N_{2} and 2 moles of H_{2} are allowed to react in a $1 d m^{3}$ vessel. At equilibrium, 0.8 mole of NH_{3} is formed. The concentration of H_{2} in the vessel is
A. 0.6 mole
B. 0.8 mole
C. 0.2 mole
D. 0.4 mole

Answer: B
24. In which of the following equilibrium, change in the volume of the system does not alter the number of moles?
A. $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$
B. $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$
C. $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$
D. $\mathrm{SO}_{2} \mathrm{Cl}_{2(\mathrm{~g})} \Leftrightarrow \mathrm{SO}_{2(g)}+C l_{2(g)}$

Answer: A

- View Text Solution

25. If equilibrium constant of reaction, $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ is K , then K^{\prime} for reaction, $2 \mathrm{~N}_{2}+6 \mathrm{H}_{2} \Leftrightarrow 4 N H_{3}$ is
A. K^{2}
B. \sqrt{K}
C. $1 / \sqrt{K}$
D. $1 / K^{2}$

Answer: A

- View Text Solution

26. One mole of SO_{3} was placed in a vessel of 1 litre capacity at a certain temperature when the following equilibrium was established.
$2 \mathrm{SO}_{3} \Leftrightarrow 2 S O_{2}+O_{2}$
At equilibrium, 0.6 moles of $S O_{2}$ were formed. The equilibrium constant of the reaction will be
A. 0.36
B. 0.45
C. 0.54
D. 0.675

Answer: D

- View Text Solution

27.2 mol of N_{2} is mixed with 6 mol of H_{2} in a closed vessel of one litre capacity. If 50% of N_{2} is converted into NH_{3} at equilibrium, the value of K_{c} for the reaction
$N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$ is
A. $4 / 27$
B. $27 / 4$
C. $1 / 27$
D. 27

Answer: A

- View Text Solution

28. Ammonium carbamate when heated to $200^{\circ} \mathrm{C}$ gives a mixture of NH_{3} and CO_{2} vapours with a density of 16.0.

What is the degree of dissociation of ammonium
carbamate? (Given vapour density of ammonium carbamate is 48)
A. $3 / 2$
B. $1 / 2$
C. 2
D. 1

Answer: D

- View Text Solution

29. Consider the following equilibrium in a closed container:
$\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$
At a fixed temperature, the volume of the reaction container is halved. For this change, which of the following statements, holds true regarding the equilibrium constant $\left(K_{p}\right)$ and degree of dissociation (α) ?
A. Neither K_{p} nor α changes
B. Both K_{p} and α change
C. K_{p} changes but α not change
D. K_{p} does not change, but α changes

Answer: D

- View Text Solution

30. The rate of forward reaction is two times that of the reverse reaction at a given temperature and identical concentration. $K_{\text {equilibrium }}$ is
A. 0.5
B. 1.5
C. 2.5
D. 2.0

Answer: D

- View Text Solution

Wb Jee Workout Category 2 Single Option Correct Type

1. The decomposition of $\mathrm{N}_{2} \mathrm{O}_{4}$ to NO_{2} is carried out at $280^{\circ} \mathrm{C}$ in chloroform. When equilibrium is reached, 0.2 mol of $\mathrm{N}_{2} \mathrm{O}_{4}$ and $2 \times 10^{-3} \mathrm{~mol}$ of NO_{2} are present in 2 litre solution. The equilibrium constant for the reaction,
$N_{2} O_{4} \Leftrightarrow 2 N O_{2}$ is
A. 1×10^{-3}
B. 2×10^{-3}
C. 1×10^{-5}
D. 2×10^{-5}

Answer: C

- View Text Solution

2. For the synthesis of ammonia by the reaction $N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ in the Haber process, the attainment of equilibrium is correctly predicted by the curve

B.

C.

D.

Answer: A

D View Text Solution

3. If 0.2 mol of $H_{2(g)}$ and 2.0 mol of $S_{(s)}$ are mixed in a $1 d m^{3}$ vessel at $90^{\circ} C$, the partial pressure of $H_{2} S_{(g)}$
formed according to the reaction
$H_{2(g)}+S_{(s)} \Leftrightarrow H_{2} S, K_{p}=6.8 \times 10^{-2}$ would be
A. 0.19 atm
B. 0.38 atm
C. 0.6 atm
D. 0.072 atm

Answer: B

- View Text Solution

4. Formaldehyde polymerizes to form glucose according to the reaction
$6 \mathrm{HCHO} \Leftrightarrow \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$

The theoretically computed equilibrium constant for this reaction is found to be 6×10^{22}. If 1 M solution of glucose dissociates according to the above equilibrium, the concentration of formaldehyde in the solution will be
A. $1.6 \times 10^{-2} M$
B. $1.6 \times 10^{-4} M$
C. $1.6 \times 10^{-6} M$
D. $1.6 \times 10^{-8} M$

Answer: B
5. If $\mathrm{Ag}^{+}+2 \mathrm{NH}_{3} \Leftrightarrow\left[\mathrm{Ag}\left(N H_{3}\right)_{2}\right]^{+}, K_{1}=1.7 \times 10^{7}$
$A g^{+}+\mathrm{Cl}^{-} \Leftrightarrow \mathrm{AgCl}, \mathrm{K}_{2}=5.4 \times 10^{9}$
Then for $\mathrm{AgCl}+2 \mathrm{NH}_{3} \Leftrightarrow\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}+\mathrm{Cl}^{-}$ equilibrium constant will be
A. 0.31×10^{-2}
B. 3.2×102
C. 9.18×1016
D. 1.00×10^{-17}

Answer: A

View Text Solution

6. 56 g of nitrogen and 8 g of hydrogen gas are heated in a cloed vessel. At equilibrium, 34 g of ammonia are present.

The equilibrium number of moles of nitrogen, hydrogen and ammonia are respectively
A. 1, 2, 2
B. 2, 2, 1
C. 1, 1, 2
D. 2, 1, 2

Answer: C

7. In the given reaction
$2 X_{(g)}+Y_{(g)} \Leftrightarrow 2 Z_{(g)}+80 \mathrm{kcal}$,
which combination of pressure and temperature will give the highest yield of Z at equilibrium?
A. 1000 atm and $200^{\circ} C$
B. 500 atm and $500^{\circ} \mathrm{C}$
C. 1000 atm and $100^{\circ} \mathrm{C}$
D. 500 atm and $100^{\circ} \mathrm{C}$

Answer: C

D View Text Solution
8. For the following three reaction (i), (ii) and (iii), equilibrium constants are given
(i) $\mathrm{CO}_{(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow \mathrm{CO}_{2(g)}+\mathrm{H}_{2(g)}, K_{1}$
(ii) $\mathrm{CH}_{4(g)}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow C O_{(g)}+3 \mathrm{H}_{2(g)}, K_{2}$
(iii) $\mathrm{CH}_{4(\mathrm{~g})}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \Leftrightarrow C O_{2(g)}+4 \mathrm{H}_{2(\mathrm{~g})}, K_{3}$

Which of the following relations is correct?
A. $K_{3} K_{2}^{3}=K_{1}^{2}$
B. $K_{1} \sqrt{K_{2}}=K_{3}$
C. $K_{2} K_{3}=K_{1}$
D. $K_{3}=K_{1} K_{2}$

Answer: D

9. Select the reaction for which the equilibrium constant is

 written as$\left[M X_{3}\right]^{2}=K\left[M X_{2}\right]^{2}\left[X_{2}\right]$
A. $M X_{3} \Leftrightarrow M X_{2}+1 / 2 X_{2}$
B. $2 M X_{3} \Leftrightarrow 2 M X_{2}+X_{2}$
C. $2 M X_{2}+X_{2} \Leftrightarrow 2 M X_{3}$
D. $M X_{2}+1 / 2 X_{2} \Leftrightarrow M X_{3}$

Answer: C

D View Text Solution

10. For the reaction, $S O_{2(g)}+\frac{1}{2} O_{2(g)} \Leftrightarrow S O_{3(g)}$ if we write $K_{p}=K_{c}(R T)^{x}$, then x becomes
A. -1
B. $-\frac{1}{2}$
C. $\frac{1}{2}$
D. 1

Answer: B

- View Text Solution

11. For the reversible reaction
$N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$
At $500^{\circ} \mathrm{C}$, the value of K_{p} is 1.44×10^{-5} when partial pressure is measured in atmospheres. The corresponding value of K_{c} with concentration in mole litre ${ }^{-1}$, is
A. $1.44 \times 10^{-5} /(0.082 \times 500)^{-2}$
B. $1.44 \times 10^{-5} /(8.314 \times 773)^{-2}$
C. $1.44 \times 10^{-5} /(0.082 \times 773)^{2}$
D. $1.44 \times 10^{-5} /(0.082 \times 773)^{-2}$

Answer: D

- View Text Solution

12. At constant temperature, the equilibrium constant $\left(K_{p}\right)$
for the decomposition reaction, $N_{2} O_{4} \Leftrightarrow 2 N O$ is expressed
by $K_{p}=\frac{\left(4 x^{2} P\right)}{\left(1-x^{2}\right)}$, where $\mathrm{P}=$ pressure, $\mathrm{x}=$ extent of decomposition. Which one of the following statements is true?
A. K_{p} increases with increase of P
B. K_{p} increases with increase of x
C. K_{p} increases with decrease of x
D. K_{p} remains constant with change in P and x

Answer: B

- View Text Solution

13. An equilibrium mixture contains $0.5,0.12$ and 5 moles of $\mathrm{SO}_{2}, \mathrm{O}_{2}$ and SO_{3} respectively, in a one litre vessel at a certain temperature. How many mole of O_{2} must be forced into the reaction mixture in order to increase the conc. Of SO_{3} to 5.3 mole at the same temperature? (Given K_{c} for the reaction, $2 \mathrm{SO}_{2}+\mathrm{O}_{2} \Leftrightarrow 2 \mathrm{SO}_{3}$ is 800)
A. 0.506
B. 0.908
C. 0.74
D. 0.45

Answer: B

- View Text Solution

14. Vapour density of $P C l_{5}$ is 104.16 but when heated at $230^{\circ} C$ its vapour density is reduced to 62 . The degree of dissociation of PCl_{5} at this temperature will be
A. 6.8%
B. 68%
C. 46%
D. 64%

Answer: B

- View Text Solution

15. At a certain temperature and a total pressure of $10^{5} \mathrm{~Pa}$, iodine vapours contain 40% by volume of iodine atoms $\left[I_{2(g)} \Leftrightarrow 2 I_{(g)}\right]$.
K_{p} for the equilibrium will be
A. 0.67
B. 1.5
C. 2.67×10^{4}
D. 9.0×10^{4}

Answer: C

D View Text Solution

Wb Jee Workout Category 3 One Or More Than One Option Correct Type

1. The equilibrium constant of the following reaction in equilibrium at $27^{\circ} C$,
$A+B \Leftrightarrow C+D$ is 10.

Which of the following statements for the given reaction
is/are correct?
A. Free energy change of the reaction is zero
B. Standard free energy of the reaction is zero
C. Standard free energy of the reaction is $-5.74 k J$
D. Free energy change when all the reactants and products are 1 molal each will be $-5.74 k J$

Answer: A:C::D

- View Text Solution

2. For which of the following reactions, $K_{p}=K_{c}$?
A. $H_{2(g)}+I_{2(g)} \Leftrightarrow 2 H I_{(g)}$
B. $2 \mathrm{~N}_{2} \mathrm{O}_{4(\mathrm{~g})} \Leftrightarrow 4 \mathrm{NO}_{2(\mathrm{~g})}$
C. $N_{2(g)}+3 H_{2(g)} \Leftrightarrow 2 \mathrm{NH}_{3(g)}$
D. $H_{2(g)}+C l_{2(g)} \Leftrightarrow 2 H C l(g)$

Answer: A::D

- View Text Solution

3. For the dissociation equilibrium,
$N_{2} O_{4(g)} \Leftrightarrow 2 N O_{2(g)}$, the variation of free energy with the fraction of $N_{2} O_{4}$ dissociated under standard conditions is shown in the figure :

Which of the following statements is/are correct?
A. The free energy change for the forward reaction is negative
B. The free energy change for the backward reaction is negative
C. The net free energy change for the complete reaction is positive
D. Forward reaction is more spontaneous than backward reaction

Answer: A::B::C

D View Text Solution

4. For the reaction, $N_{2} O_{4(g)} \Leftrightarrow 2 N O_{2(g)}$, the value of K is 50 at 400 K and 1700 at 500 K . Which of the following options is/are correct?
A. The reaction is endothermic
B. The reaction is exothermic
C. If $\mathrm{NO}_{2(\mathrm{~g})}$ and $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ are mixed at 400 K at partial pressures 20 bar and 2 bar respectively, more
$\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ will be formed
D. The entropy of the system remains constant

Answer: A::C

- View Text Solution

5. The equilibrium constants of the reactions,
$N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$ and $\frac{1}{2} \mathrm{~N}_{2}+\frac{3}{2} \mathrm{H}_{2} \Leftrightarrow N H_{3}$
are K_{1} and K_{2} respectively. The relationship between
K_{1} and K_{2} is/are
A. $K_{1}=K_{2}$
B. $K_{2}=\sqrt{K_{1}}$
C. $K_{1}=K_{2}^{2}$
D. $K_{1}=\sqrt{K_{2}}$

Answer: B::C

- View Text Solution

6. In the presence of a catalyst, what happens to the chemical equilibrium?
A. Energy of activation of the forward and backward reactions is lowered by same amount
B. Equilibrium amount is not disturbed
C. Rates of forward and reverse reactions increase by the
same factor
D. More product is forward

- View Text Solution

7.138 g of $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ is placed in 8.2 L container at 300 K . The equilibrium vapour density of mixture was found to be 30.67. The $\left(\mathrm{R}=0.082 \mathrm{~L} \mathrm{~atm}_{\mathrm{mol}}{ }^{-1} \mathrm{~K}^{-1}\right)$
A. the total pressure at equilibrium $=4.5$ atm
B. the degree of dissociation of $\mathrm{N}_{2} \mathrm{O}_{5}=0.25$
C. the total number of moles at equilibrium is 1.5
D. K_{p} of $N_{2} O_{4} \Leftrightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$ will be 6 atm
8. In which of the following reactions, the value of K_{p} will be equal to K_{c} ?
A. $N_{2(g)}+O_{2(g)} \Leftrightarrow 2 N O_{(g)}$
B. $P C l_{5(g)} \Leftrightarrow P C l_{3(g)}+C l_{2(g)}$
C. $H_{2(g)}+B r_{2(g)} \Leftrightarrow 2 H B r_{(g)}$
D. $2 \mathrm{SO}_{2(g)}+O_{2(g)} \Leftrightarrow 2 \mathrm{SO}_{3(g)}$

Answer: A::C

D View Text Solution
9. Le-Chatelier's principle is
A. if a system in equilibrium is subjected to a change of concentration, pressure or temperature, the equilibrium shifts in the direction that tends to undo the effect of change
B. applicable to all type of dynamic equilibrium
C. applicable to irreversible system
D. applicable to all physical and chemical equilibrium

Answer: A::B::D

- View Text Solution

10. In which of the following reactions would the yield of the products be increased by the application of high pressure?
A. $2 S O_{2}+O_{2} \Leftrightarrow 2 S O_{3}$
B. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \Leftrightarrow 2 \mathrm{NH}_{3}$
C. $P C l_{5} \Leftrightarrow P C l_{3}+C l_{2}$
D. $H_{2}+I_{2} \Leftrightarrow 2 H I$

Answer: A::B

- View Text Solution

Wb Jee Previous Years Questions Category 1 Single Option Correct Type

1. For the reaction $2 S O_{2(g)}+O_{2(g)} \Leftrightarrow 2 S O_{3(g)}$ at 300 K , the value of ΔG° is $-690.9 R$. The equilibrium constant
value for the reaction at that temperature is (R is gas

constant)

A. $10 \mathrm{~atm}^{-1}$
B. 10 atm
C. 10
D. 1

Answer: A

- View Text Solution

2. Equilibrium constant for the following reactions at 1200 K are given :
$2 \mathrm{H}_{2} \mathrm{O}_{(g)} \Leftrightarrow 2 \mathrm{H}_{2(g)}+O_{2(g)}, K_{1}=6.4 \times 10^{-8}$
$2 C O_{2(g)} \Leftrightarrow 2 C O_{(g)}+O_{2(g)}, K_{2}=1.6 \times 10^{-6}$
The equilibrium constant for the reaction
$H_{2(g)}+\mathrm{CO}_{2(g)} \Leftrightarrow \mathrm{CO}_{(g)}+\mathrm{H}_{2} O_{(g)}$ at 1200 K will be
A. 0.05
B. 20
C. 0.2
D. 5.0

Answer: D

- View Text Solution

3. The following equilibrium constants are given :
$N_{2}+3 H_{2} \Leftrightarrow 2 \mathrm{NH}_{3}, K_{1}$
$N_{2}+O_{2} \Leftrightarrow 2 N O, K_{2}$
$H_{2}+\frac{1}{2} O_{2} \Leftrightarrow H_{2} O, K_{3}$
The equilibrium constant for the oxidation of 2 mol of NH_{3} to give NO is
A. $K_{1} \cdot \frac{K_{2}}{K_{3}}$
B. $K_{2} \cdot \frac{K_{3}^{3}}{K_{1}}$
C. $K_{2} \cdot \frac{K_{3}^{2}}{K_{1}}$
D. $K_{2}^{2} \cdot \frac{K_{3}}{K_{1}}$

Answer: B
4. In the equilibrium, $H_{2}+I_{2} \Leftrightarrow 2 H I$, if at a given temperature the concentrations of the reactants are increased, the value of the equilibrium constant, K_{c}, will
A. increase
B. decrease
C. remain the same
D. cannot be predicted with certainty

Answer: C

(D) View Text Solution

Wb Jee Previous Years Questions Category 2 Single Option
Correct Type

1. The standard Gibbs free energy change $\left(\Delta G^{\circ}\right)$ at $25^{\circ} C$ for the dissociation of $\mathrm{N}_{2} \mathrm{O}_{4(\mathrm{~g})}$ to $\mathrm{NO}_{2(\mathrm{~g})}$ is
(given, equilibrium cont. $=0.15, R=8.314 \mathrm{JK}^{-1} \mathrm{~mol}^{-1}$)
A. 1.1 kJ
B. 4.7 kJ
C. 8.1 kJ
D. 38.2 kJ

Answer: B

D View Text Solution

