© 'doubtnut

India's Number 1 Education App

MATHS

BOOKS - ICSE

SETS

Example

1. Write the following sets in tabular form :
(i) $x: x=\frac{2 n}{n+2}, n \in W$ and $\left.n<3\right\}$
(ii) $\{x: x=5 y-3, y \in Z$ and $-2 \leq y<2\}$
(iii) $\{x: x \in W$ and $8 x+5<23\}$

(-) Watch Video Solution

2. Express the following sets in set-builder form :
(i) $\left(\frac{7}{8}, \frac{8}{9}, \frac{9}{10}, \frac{10}{11}, \frac{11}{12}\right)$,
(ii) $\{0,3,56,9,12,15,18\}$
(iii) $\left\{\frac{1}{3}, \frac{1}{9}, \frac{1}{17}, \frac{1}{81}, \frac{1}{243}\right\}$
(iv) $\left[x: x^{2}-6 x-7=0\right]$

- Watch Video Solution

3. Given the universal set
$, \sum=\{x: x \in N, 15<x \leq 26\}, \quad$ list
elements of the following sets:
(i) $A=\{x: x>20\}$, (ii) $B=\{x: x \leq 21\}$

- Watch Video Solution

4. If $A=$ factors of 24$\}$ and $B=\{$ factors of 36$\}$, find, (i)

$$
A \cap B \text {, (ii) } A \cup B
$$

- Watch Video Solution

5. For two overlapping sets A and B, draw Venndiagrams to represent the set
6. Use Venn-diagrams to prove that:
$(A \cap B)^{\prime}=A^{\prime} \cup B^{\prime}$

D Watch Video Solution
7. Given, $\zeta=\{x: x \in N, 12 \leq x \leq 20\}$
$A=\{x: x$ is divisible by 3$\}$ and $B=\{12,14,15,16\}$
Draw a Venn-diagram to show the relationship between the given sets.

1. Write the following sets in roster (Tabular) form
:
(i) $A_{1}=\{x: 2 x+3=11\}$,
(ii) $A_{2}=\left\{x: x^{2}-4 x-5=0\right\}$,
(iii) $A_{3}=\{x: x \in Z,-3 \leq x<4\}$
(iv) $A_{4}=\{x: x$ is a two digit number and sum of the digits of x is 7$\}$
(v) $A_{5}=\{x: x=4 n, n \in W$ and $n<4\}$
(vi) $A_{6}=\left\{x: x=\frac{n}{n+2}, n \in N\right.$ and $\left.n>5\right\}$
2. Write the following sets in set-builder (Rule Method) form :
(i) $B_{1}=\{6,9,12,15 \ldots \ldots\}$
(ii) $B_{2}=\{11,13,17,19\}$
(iii) $B_{3}=\left\{\frac{1}{3}, \frac{3}{5}, \frac{5}{7}, \frac{7}{9}, \frac{9}{11} \ldots\right\}$
(iv) $B_{4}=\{8,27,64,125,216\}$
(v) $B_{5}=\{-5,-4,-3,-2,-1\}$
(vi) $B_{6}=\{\ldots .,-6,-3,0,3,6 \ldots$.

- Watch Video Solution

3. Is $\{1,2,4,16,64\}=\{x: x$ is a factor of 32$\}$? Give reason.

D Watch Video Solution

4. Is $\{x: x$ is a factor of 27$\} \neq\{3,9,27,54\} ?$ Give reason.

D Watch Video Solution
5. Write the set of even factors of 124.
6. Write the set of odd factors of 72 .

D Watch Video Solution

7. Write the set of prime factors of 3234 .

- Watch Video Solution

8. Is $\left\{x: x^{2}-7 x+12=0\right\}=\{3,4\}$?

- Watch Video Solution

9. Is $\left\{x: x^{2}-5 x-6=0\right\}=\{2,3\}^{\prime}$?

- Watch Video Solution

10. Write the following sets in Roster form :

The set of letters in the word 'MEERUT'.

- Watch Video Solution

11. The set of letters in the word 'UNIVERSAL'.

12. $A=\{x, x=y+3, y \in N$ and $y>3\}$

- Watch Video Solution

13. $B=\left\{p: p \in W\right.$ and $\left.p^{2}<20\right\}$

- Watch Video Solution

14. $\mathrm{C}=\{\mathrm{x}: \mathrm{x}$ is a composite number and $5 \leq x \leq 21\}$
15. List the elements of the following sets:
$x^{2}-2 x-3=0$

D Watch Video Solution

16. $\{x: x=2 y+5, y \in N$ and $2 \leq y<6\}$

D Watch Video Solution
17. $\{x: x$ is a factor of 24$\}$
18. $\left\{x: x \in Z\right.$ and $\left.x^{2} \leq 4\right\}$

(D) Watch Video Solution

19. $\{x: 3 x-2 \leq 10$ and $x \in N\}$
(D) Watch Video Solution
20. $\{x: 4-2 x>-6, x \in Z\}$

1. Find the cardinal number of the following sets:

$A_{1}=\{-2,-1,1,3,5\}$

- Watch Video Solution

2. $A_{2}=\{x: x \in N$ and $3 \leq x<7\}$

- Watch Video Solution

3. $A=\{p: p \in W$ and $2 p-3<8\}$
4. $A_{4}=\{b: b \in Z$ and $-7<3 b-1 \leq 2\}$

- Watch Video Solution

5. If $\mathrm{P}=\{\mathrm{p}: \mathrm{p}$ is a letter in the word 'PERMANENT'\},
find $n(P)$.

D Watch Video Solution
6. State, which of the following sets are finite and which are infinite :
$A=\{x: x \in Z$ and $x<10\}$
(D) Watch Video Solution
7. $B=\{x: x \in W$ and $5 x-3 \leq 20\}$

D Watch Video Solution
8. $P=\{y: y=3 x-2, x \in N$ and $x>5\}$
9. Check whether it is finite or not

$$
M=\left\{r: r=\frac{3}{n}, n \in W \text { and } 6<n \leq 15\right\}
$$

- Watch Video Solution

10. Find, which of the following sets are singleton sets :

The set of points of intersection of two nonparallel straight lines on the same plane.
11. Find, which of the following sets are singleton sets :
$A=\{x: 7 x-3=11\}$

- Watch Video Solution

12. $B=\{y: 2 y+1<3$ and $y \in W\}$

D Watch Video Solution

13. Find, which of the following sets are empty :

The set of points of intersection of two parallel
lines.

- Watch Video Solution

14. $A=\{x: x \in N$ and $5<x \leq 6\}$

- Watch Video Solution

15. $B=\left\{x: x^{2}+4=0\right.$ and $\left.x \in N\right\}$

- Watch Video Solution

16. $C=\{$ even numbers between 6 and 10\}.

D Watch Video Solution

17. $D=\{$ prime numbers between 7 and 11$\}$.

D Watch Video Solution
18. Are the sets $A=\{4,5,6\}$ and
$B=\left\{x: x^{2}-5 x-6=0\right\}$ disjoint?
19. Are the set $A=\{b, c, d, e\}$ and $B=\{x: x$ is a letter in the word 'MASTER' $\}$ joint?

(D) Watch Video Solution

20. State, whether the following pairs of sets are equivalent or not:

$$
\begin{aligned}
& A=\{x: x \in N \text { and } 11 \geq 2 x-1\} \quad \text { and } \\
& B=\{y: y \in W \text { and } 3 \leq y \leq 9\}
\end{aligned}
$$

21. State, whether the following pairs of sets are equivalent or not:

Set of integers and set of natural numbers.

D Watch Video Solution

22. State, whether the following pairs of sets are equivalent or not:

Set of whole numbers and set of multiples of 3 .
23. State, whether the following pairs of sets are equivalent or not:
$P=\{5,6,7,8\}$
and
$M=\{x: x \in W$ and $x \leq 4\}$

D Watch Video Solution

24. State, whether the following pairs of sets are equal or not:

$$
\begin{array}{ll}
A=\{2,4,6,8\} & \text { and } \\
B=\{2 n: n \in N \text { and } n \leq 4\} &
\end{array}
$$

25. State, whether the following pairs of sets are equal or not:
$M=\{x: x \in W$ and $x+3<8\}$
$N=\{y: y=2 n-1, n \in N$ and $n<5\}$

D Watch Video Solution

26. State, whether the following pairs of sets are equal or not:

$$
E=\left\{x: x^{2}+8 x-9=0\right\} \text { and } F=\{1,-9\}
$$

27. State, whether the following pairs of sets are equal or not:

$$
\begin{array}{ll}
A & =\{x: x \in N, x<3\} \\
B & =\left\{y: y^{2}-3 y+2=0\right\}
\end{array}
$$

D Watch Video Solution

28. State whether each of the following sets is a
finite set or an infinite set:
The set of multiples of 8
29. State whether each of the following sets is a finite set or an infinite set:

The set of integers less that 10.

D Watch Video Solution

30. State whether each of the following sets is a
finite set or an infinite set:
The set of whole numbers less than 12.

- Watch Video Solution

31. State whether each of the following sets is a finite set or an infinite set:
$\{x: x=3 n-2, n \in W, n \leq 8\}$

D Watch Video Solution

32. State whether each of the following sets is a finite set or an infinite set:
$\{x: x=3 n-2, n \in Z, n \leq 8\}$

- Watch Video Solution

33. $\left\{x: x=\frac{n-2}{n+1}, n \in W\right\}$

- Watch Video Solution

34. Answer, whether the following statements are true or false. Give reasons.

The set of even natural numbers less than 21 and the set of odd natural numbers less than 21 are equivalent sets.
35. If $E=\{$ factors of 16$\}$ and $F=\{$ factors of 20$\}$, then $E=F$.

D Watch Video Solution
36. The set $A=\{$ integers less than 20$\}$ is a finite set.

- Watch Video Solution

37. If $A=\{x: x$ is an even prime number $\}$, then set A
is empty.
38. The set of odd prime numbers is the empty set.

- Watch Video Solution

39. The set of squares of integers and the set of whole numbers are equal sets.

- Watch Video Solution

40. If $n(P)=n(M)$, then $P \rightarrow M$.
41. If set $P=$ set M, then $n(P)=n(M)$.

D Watch Video Solution

42. $n(A)=n(B) \Rightarrow A=B$

- Watch Video Solution

Exercise 6 C

1. Find all the subsets of each of the following sets
:
(i) $A=\{5,7\}$, (ii) $B=\{a, b, c\}$
(iii) $C=\{x, x \in W, x \leq 2\}$, (iv) $\{\mathrm{p}: \mathrm{p}$ is a letter in
the word 'poor'\}

D Watch Video Solution

2. If C is the set of letters in the word 'cooler', find:
(i) $\operatorname{set} C$ (ii) $n(C)$
(iii) number of its subsets (iv) number of its proper subsets
3. If $T=\{x: x$ is a letter in the word 'TEETH' $\}$, find all its subsets.

D Watch Video Solution

4. Given the universal set $=\{-7,-3,-1,0,5,6,8,9\}$,
find :
(i) $A=\{x: x<2\}$, (ii) $B=\{x:-4<x<6\}$

- Watch Video Solution
$=\{x: x \in N$ and $x<20\}$, find:
(i) $A=\{x: x=3 p, p \neq N\}$
(ii) $B=\{y: y=2 n+3, n \in N\}$
(iii) $C=\{x: x \quad \mathrm{x}$ is divisible by 4$\}$

- Watch Video Solution

> 6. Find the proper subsets of
> $\left\{x: x^{2}-9 x-10=0\right\}$
7. Given, $A=\{$ Triangles $\}, B=\{$ Isosceles triangles $\}, C=$
\{Equilateral triangles\}. State whether the following are true or false. Give reasons.
(i) $A \subset B$, (ii) $B \subseteq A$, (iii) $C \subseteq B$, (iv) $B \subset A$, (v)
$C \subset A,(\mathrm{vi}) C \subseteq B \subseteq A$

(D) Watch Video Solution

8. Given, $A=\{$ Quadrilaterals $\}, B=\{$ Rectangles $\}, C=$
\{Squares\}, $D=\{R h o m b u s e s\}$. State, giving reasons, whether the following are true or false.
(i) $B \subset C$, (ii) $D \subset B$, (iii) $C \subseteq B \subseteq A$, (iv)
$D \subset A$, (v) $B \supseteq C$, (iv) $A \supseteq B \supseteq C$

(D) Watch Video Solution

> 9. $\begin{gathered}\text { Given, } \\ =\{x: x \in N, 10 \leq x \leq 35\}, A=\{x \in N: x \leq 16\}\end{gathered}$ $=$ universal
and $B=\{x: x>29\}$. Find: (i) A^{\prime}, (ii) B^{\prime}

- Watch Video Solution

10. Given, universal set $=\{x \in Z:-6<x \leq 6\}$,
$N=\{n: n$ is a non-negative number $\}$ and $P=\{x: x$ ia a
non-positive number\}. Find:
(i) N^{\prime}, (ii) P^{\prime}

D Watch Video Solution

11. Let $M=\{$ letters of the word REAL $\}$ and $N=\{$ letters of the word LARE . Write sets M and N in roster form and then state whether:
(i) $M \subseteq N$ is true.
(ii) $N \subseteq M$ is true.
(iii) $M=C$ is true.
12. Given $A=\{x: x \in N$ and $3<x \leq 6\}$ and $B=\{x: x \in W$ and $x<4\}$. Find:
(i) sets A and B in roster form:
(ii) $A \cup B$, (ii) $A \cap B$, (iii) $\mathrm{A}-\mathrm{B}$, (iv) $\mathrm{B}-\mathrm{A}$

D Watch Video Solution

2. If $P=\{x: x \in W$ and $4 \leq x \leq 8\}$ and
$Q=\{x: x \in N$ and $x<6\}$. Find :
(i) $P \cup Q$ and $P \cap Q$
(ii) Is $(P \cup Q) \supset(P \cap Q)$?

- Watch Video Solution

3. If $\mathrm{A}=\{5, \quad 6, \quad 7, \quad 8, \quad 9\}$,
$B=\{x: 3<x<8$ and $x \in W\}$
$C=\{x: x \leq 5$ and $x \in N\}$. Find :
(i) $A \cup B$ and $(A \cup B) \cup C$
(ii) $B \cup C$ and $A \cup(B \cup C)$
(iii) $A \cap B$ and $(A \cap B) \cap C$
(iv) $B \cap C$ and $A \cap(B \cap C)$

Is $(A \cup B) \cup C=A \cup(B \cup C)$?
Is $(A \cap B) \cap C)=A \cap(B \cap C) ?$
4. Given $A=\{0,1,2,4,5\}, B=\{0,2,4,6,8\}$ and $C=\{0,3$,

6, 9\}. Show that:
(i) $A \cup(B \cup C)=(A \cup B) \cup C$ i.e., the union of the sets is associative.
(ii) $\quad A \cap(B \cap C)=(A \cap B) \cap C \quad$ i.e., \quad the intersection of sets is associative.

- Watch Video Solution

5.

$A=\{x \in W: 5<x<10\}, B=\{3,4,5,6,7\}$
and $C=\{x=2 n, n \in N$ and $n \leq 4\}$. Find:
(i) $A \cap(B \cup C)$, (ii) $(B \cup A) \cap(B \cup C)$
(iii) $B \cup(A \cap C)$, (iv) $(A \cap B) \cup(A \cap C)$

Name the sets which are equal.

- Watch Video Solution

6. If $P=\{$ factors of 36$\}$ and $Q=\{$ factors of 48$\}$, find :
(i) $P \cup Q$, (ii) $P \cap Q$, (iii) $Q-P$, (iv) $P^{\prime} \cap Q$

D Watch Video Solution

7. If $A=\{6,7,8,9\}, B=\{4,6,8,10\}$ and
$C=\{x: x \in N: 2<x \leq 7\}$, find:
(i) A-B, (ii) B-C, (iii) B-(A-C), (iv) $A-(B \cup C)$
(v) $B-(A \cap C)$, (vi) B-B

- Watch Video Solution

8. If $A=\{1,2,3,4,5\}, B=\{2,4,6,8\}$ and $C=\{3,4,5,6\}$, verify:
(i) $A-(B \cup C)=(A-B) \cap(A-C)$
(ii) $A-(B \cap C)=(A-B) \cup(A-C)$

- Watch Video Solution

9. Given $A=\{x \in N: x<6\}, B=\{3,6,9\}$ and $C=\{x \in N: 2 x-5 \leq 8\}$. Show that:
(i) $A \cup(B \cap C)=(A \cup B) \cap(A \cup C)$
(ii) $A \cap(B \cup C)=(A \cap B) \cup(A \cap C)$

D Watch Video Solution

Exercise 6 E

1. From the given diagram find:
(i) $A \cup B$
(ii) $A^{\prime} \cap B$
(iii) A-B
(iv) $\mathrm{B}-\mathrm{A}$
(v) $(A \cup B)^{\prime}$

- Watch Video Solution

2. From the given diagram, find:
(i) A^{\prime}, (ii) B^{\prime}, (iii) $A^{\prime} \cup B^{\prime}$, (iv) $(A \cap B)^{\prime}$

Is $A^{\prime} \cup B^{\prime}=(A \cap B)^{\prime}$?

- Watch Video Solution

3. Use the given diagram to find:
(i) $A \cup(B \cap C)$
(ii) $B-(A-C)$
(iii) A-B
(iv) $A \cap B^{\prime}$
is $A \cap B^{\prime}=A-B$?

D Watch Video Solution
4. Use the given Venn-diagram to find:
(i) $\mathrm{B}-\mathrm{A}$
(ii) A
(iii) B^{\prime}
(iv) $A \cap B$
(v) $A \cup B$

D Watch Video Solution

5. Draw a Venn-diagram to show the relationship between two overlapping sets A and B. Now shade
the region representing :
(i) $A \cap B$, (ii) $A \cup B$, (iii) B-A

D Watch Video Solution

6. Draw a Venn-diagram to show the relationship between sets A and B , such that $A \subseteq B$. Now shade the region representing :
(i) $A \cup B$, (ii) $B^{\prime} \cap A$, (iii) $A \cap B$, (iv) $(A \cup B)^{\prime}$
7. Two sets A and B are such that $A \cap B=\pi$.

Draw a Venn-diagram to show the relationship between A and B. Shade the region representing :
(i) $A \cup B$, (ii) $(A \cup B)^{\prime}$, (iii) B-A, (iv) $B \cap A^{\prime}$

- Watch Video Solution

8. State the sets represented by the shaded portion of the following Venn-diagrams :

9. In each of the given diagrams, shade the region which represents the set given underneath the diagram :
(i)

(ii)

(iii)

10. From the given diagram, find:
(i) $(A \cup B)-C$
(ii) $B-(A \cap C)$
(iii) $(B \cap C) \cup A$

Verify: $A-(B \cap C)=(A-B) \cup(A-C)$

D Watch Video Solution
11. Using the given diagram, express the following sets in terms of set A and B.

(i) $\{a, d\}$, (ii) \{a,d,c,f\}, (iii) \{a,d,c,f,g,h\}, (iv) \{a,d,g,h\}, (v)
\{g,h \}

- Watch Video Solution

